• <!DOCTYPE html>
  • <html lang="en">
  • <div id="title">
  • <h2>AOP ID and Title:</h2>
  • <div class="title">AOP 443: DNA damage and mutations leading to Metastatic Breast Cancer</div>
  • <strong>Short Title: DNA damage and metastatic breast cancer</strong>
  • </div>
  • <h2>Graphical Representation</h2>
  • <img src="https://aopwiki.org/system/dragonfly/production/2022/08/14/zwe78w3og_AOP_diagram_new.jpg" height="500" width="700" alt=""/>
  • <img src="https://www.aopwiki.org/system/dragonfly/production/2022/08/14/zwe78w3og_AOP_diagram_new.jpg" height="500" width="700" alt=""/>
  • <div id="authors">
  • <h2>Authors</h2>
  • <p><strong>Dr Usha S Adiga</strong> MD PhD, Professor,Department of Biochemistry,Apollo Institute of Medical Sciences &amp;Research,India</p>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • </div>
  • <div id="status">
  • <h2>Status</h2>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Author status</th>
  • <th scope="col">OECD status</th>
  • <th scope="col">OECD project</th>
  • <th scope="col">SAAOP status</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Under development: Not open for comment. Do not cite</td>
  • <td>Under Development</td>
  • <td>1.103</td>
  • <td>Included in OECD Work Plan</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div id="abstract">
  • <h2>Abstract</h2>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0pt">This adverse outcome pathway details the effect of alcohol as a stressor in metastatic breast cancer. Aim of this AOP is intended to detail the linkage between alcohol and miRNA- SIRT-1 axis induced metastatic breast cancer which represents a knowledge gap as there are not many references available. Consecutive KEs identified are as follows.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0pt">Acetaldehyde, which is a metabolite of alcohol is considered a major mutagen which has been determined to induce genotoxic effects on DNA &nbsp;resulting in increased DNA damage. Inadequate DNA crosslink repair mechanisms leads to accumulation of damaged DNA resulting in impaired DNA synthesis leading to mutations and increased miRNA expression ; leads to disruption of &nbsp;SIRT-1 signalling . This step is followed by increased acetylation and activity of &nbsp;NFkB ; &nbsp;loss of estrogen receptor functions &nbsp;; molecular alterations of epithelial cells ; gain of mesenchymal cell features ; eventuating in increased invasion and migration of breast cancer cells resulting in Metastatic breast cancer .</span></span></span></p>
  • </div>
  • <div id="background">
  • <h3>Background</h3>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="font-size:12.0000pt">Alcoholic beverages are classified by the International Agency for Research on Cancer(IARC) as Group 1 carcinogens. Studies have reported alcohol consumption to be a&nbsp; risk factor for breast cancer in women(</span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Room R</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;2005)</span></span></span><span style="font-size:12.0000pt">. A woman drinking an average of two units of alcohol per day has an 8% higher risk of developing breast cancer than a woman who drinks an average of one unit of alcohol per day[2]. Alcohol is metabolized by alcohol dehydrogenase to acetaldehyde which is a mutagen. Various theories have been proposed which explain the mutagenicity of alcohol. Among them, the most relevant one for carcinoma of the breast has been proposed by Purohita et al, suggesting an alcohol-induced inactivation of the tumor suppressor gene BRCA1 and increased estrogen&nbsp;Responsiveness in breast tissues</span><span style="font-size:12.0000pt">(</span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Purohit V</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al, 2005)</span></span></span><span style="font-size:12.0000pt">. Boffetta and Hashibe list plausible mechanisms of breast cancer as a result of the genotoxic effect of acetaldehyde-induced increased estrogen concentration</span><span style="font-size:12.0000pt">(</span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Boffetta P</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2006)</span></span></span><span style="font-size:12.0000pt">.</span><span style="font-size:12.0000pt"><span style="color:#222222">&nbsp;It has also been found that alcohol stimulates the </span></span><span style="font-size:12.0000pt">epithelial-mesenchymal transition (EMT), because of which there is distant metastasis </span><span style="font-size:12.0000pt">(</span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Forsyth C. B.</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2010)</span></span>. However, this mechanism needs to be elucidated in detail.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="font-size:12.0000pt">MicroRNAs (miRNAs) are non-coding, single-stranded RNA molecules that regulate target gene expression via post-transcriptional modifications [<span style="background-color:#ffffff"><span style="color:#222222">Mohr A. M&amp; Mott J. L 201</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">5 and </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Lai</span></span></span>&nbsp;<span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">E. C. 2002</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">)</span></span></span><span style="font-size:12.0000pt">. Several studies indicated the promising role of miRNA in the diagnosis and outcome prediction in several cancers </span><span style="font-size:12.0000pt">(</span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Mirzaei H</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2018 and </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Liu, S. Y</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2017)</span></span></span><span style="font-size:12.0000pt">. miRNA-21 is upregulated and promotes metastasis in several cancers </span><span style="font-size:12.0000pt">(</span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Kunita, A</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2018 and&nbsp;</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Liu Z</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2015)</span></span></span><span style="font-size:12.0000pt">. A Chinese study by Kunita et al proved that plasma levels of miRNA&nbsp;were up-regulated in large B-cell lymphoma patients </span><span style="font-size:12.0000pt">(</span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Kunita, A</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2018)</span></span></span><span style="font-size:12.0000pt">. A study</span><span style="font-size:12.0000pt"><span style="color:#131413">&nbsp;by Wang et al also proved that plasma levels of miR&nbsp;were upregulated in large B-cell lymphoma patients in China </span></span><span style="font-size:12.0000pt"><span style="color:#131413">(</span></span><span style="font-size:12.0000pt">Chen et al 2014)</span><span style="font-size:12.0000pt"><span style="color:#131413">. Although miR-21 was indicated to play a crucial role in the metastasis of lung cancer, ovarian cancer, and head and neck cancer through several signaling pathways, the molecular mechanism of how miR-21 regulates the EMT process in breast cancer is not clear </span></span><span style="font-size:12.0000pt"><span style="color:#131413">(</span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Liu S. Y</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al, </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Lopez-Santillan</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2018, </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Panagal M.</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2018, </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Zhou, B.</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">et al 2018, </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Brabletz T</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al and </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Ye, X.</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2017)</span></span></span><span style="font-size:12.0000pt"><span style="color:#131413">.There are a number of miRNAs which regulate SIRT 1 expression.&nbsp;The epithelial-mesenchymal transition (EMT) is a process that which epithelial cells lose their cell polarity and cell adhesion ability, which will lead to cancer metastasis </span></span><span style="font-size:12.0000pt"><span style="color:#131413">(</span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Vaziri H</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2001 and </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Luo, J</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2001)</span></span><span style="color:#131413">. Epithelial cells exhibit the property of regular cell-cell contacts, adhesion to the surrounding cellular fabric, preventing the detachment of individual cells. Whereas mesenchymal cells do not form intercellular contacts.&nbsp; </span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="font-size:12.0000pt"><span style="color:#000000">Sirtuins are nicotinamide adenine dinucleotide (NAD+)&ndash;dependent deacetylases that function as intracellular regulators of transcriptional activity (</span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Blander G &amp; Guarente L 2004</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;and </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Roth M &amp; Chen W 2014</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">)</span></span></span><span style="font-size:12.0000pt"><span style="color:#000000">. It plays important roles in cell survival, signal transduction, and cell apoptosis by deacetylating key cell signaling molecules and apoptotic related proteins, such as NF-kB, p53, Ku70, and HIFs </span></span><span style="font-size:12.0000pt"><span style="color:#000000">(</span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Zhao, W</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2008 and </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Chen W &amp; Bhatia R</span></span></span>&nbsp;<span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">2013</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">)</span></span></span><span style="font-size:12.0000pt"><span style="color:#000000">. Various studies have inconclusive reports</span></span>&nbsp;<span style="font-size:12.0000pt"><span style="color:#000000">on the role of SIRT1 in cancer, because of its opposite effects as both a tumor activator or suppressor in various human cancers, including breast cancer.&nbsp; Deng et al found that the expression of SIRT1 was lower in prostate cancer, bladder cancer, ovarian cancer, and glioblastoma when compared with normal tissues </span></span><span style="font-size:12.0000pt"><span style="color:#000000">(</span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Han, L</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2013)</span></span></span><span style="font-size:12.0000pt"><span style="color:#000000">.On the contrary, it was found that, in leukemia and lung cancer, SIRT1 was significantly higher</span></span><span style="font-size:12.0000pt"><span style="color:#000000">(</span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Riggio M</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2012 and </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Lee M S</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2015)</span></span><span style="color:#000000">. </span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#000000">This can be explained as follows: SIRT1-mediated deacetylation suppresses the functions of several tumor suppressors including p53, p73, and HIC1, it has been suggested that SIRT1 has a promoting function in tumor development and progression [</span><span style="color:#222222">Pinton G</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2016, </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Pillai VB</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;&nbsp;et al 2014, </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Wan G</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2017 and </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Hwang B</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2014</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#000000">].</span></span></span>&nbsp;<span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#000000">In contrast, SIRT1 may have a suppressive activity in tumor cell growth by suppressing NF-&kappa;B,&nbsp;a transcription factor playing a central role in the regulation of the innate and adaptive immune responses and carcinogenesis, the dysregulation of which leads to the onset of tumorigenesis and tumor malignancy</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#000000">(</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Yuan J</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2009, </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Wang R H</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2008, </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Chen L F</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2004 and </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Greten F R &amp; Karin M 2004</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">)</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#000000">.</span></span></span>&nbsp;<span style="font-size:12.0000pt"><span style="color:#000000">Here, we aim to further explore the role of the SIRT1-NF kB signaling pathway in tumorigenesis</span></span>&nbsp;<span style="font-size:12.0000pt"><span style="color:#000000">of the breast as well as its associated mechanisms.</span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="font-size:12.0000pt"><span style="color:#131413">The nuclear factor-&kappa;B (NF- &kappa;B)/REL family of transcription factors is comprised of a RELA/p65,c-REL, RELB, p105/NF- &kappa;B1 and p100/NF- &kappa;B2 (</span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Van Laere S J</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2007)</span></span></span><span style="font-size:12.0000pt"><span style="color:#131413">. The p105 and p100 proteins can be processed by proteolytic cleavage into p50 and p52, respectively. Activation of the NF-&kappa;B signaling pathway leads to the induction of target genes that can inhibit apoptosis, interaction with cell cycle regulation, cell invasion, contribute to tumorigenesis and metastatic invasion </span></span><span style="font-size:12.0000pt"><span style="color:#131413">(</span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Shostak K &amp; Chariot 2011</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">)</span></span></span><span style="font-size:12.0000pt"><span style="color:#131413">. Activation NF-&kappa;B in breast cancer is loss of Estrogen Receptor (ER) expression and Human Epidermal Growth Factor Receptor 2 (HER-2) overexpressed via epidermal growth factor receptor (EGFR) and Mitogen-Activated Protein Kinase (MAPK) pathway </span></span><span style="font-size:12.0000pt"><span style="color:#131413">(</span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Ali S &amp; Coombes R C</span></span></span>&nbsp;<span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">2002</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">)</span></span></span><span style="font-size:12.0000pt"><span style="color:#131413">. Indeed, the binding of epidermal growth factor (EGF) to its receptor (EGFR) also ultimately activates NF-&kappa;B and most likely contributes to the enhanced activity of this transcription factor in ER-negative breast cancer cells </span></span><span style="font-size:12.0000pt"><span style="color:#131413">(</span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Kalkhoven E</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 1996)</span></span><span style="color:#131413">. </span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="font-size:12.0000pt"><span style="color:#131413">Loss of ER function has been associated with constitutive NFkB activity and hyperactive MAPK, because of constitutive secretion of cytokine and growth factors, which ultimately culminates in aggressive, metastatic, hormone-resistant cancers (</span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Merkhofer E C</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2010)</span></span></span><span style="font-size:12.0000pt"><span style="color:#131413">. Activation of the progesterone receptor can lead to inhibition of NF-&kappa;B driven gene expression </span></span><span style="font-size:12.0000pt"><span style="color:#131413">(</span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Sethi G</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2008</span></span></span><span style="font-size:12.0000pt"><span style="color:#131413">)</span></span><span style="font-size:12.0000pt"><span style="color:#131413">&nbsp;reducing its DNA binding and transcriptional activity. HER-2 activates NF-&kappa;B through the canonical pathway which surprisingly, involves IKK&alpha; </span></span><span style="font-size:12.0000pt"><span style="color:#131413">(</span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Ito, T</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2010)</span></span></span><span style="font-size:12.0000pt"><span style="color:#131413">. Activation of NF-&kappa;B promotes the survival of tumor cells. Several gene products that negatively regulate apoptosis in tumor cells are controlled by NF-&kappa;B activation </span></span><span style="font-size:12.0000pt"><span style="color:#131413">(</span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Lee J</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2010</span></span></span><span style="font-size:12.0000pt"><span style="color:#131413">)</span></span><span style="font-size:12.0000pt"><span style="color:#131413">. Estrogen plays an important role in breast cancer initiation and progression. Breast cancer over time acquires different mutations and the proportion of estrogen receptor-negative cells in tumors increases. This transformation confers aggressive biological characteristics to breast cancer such as rapid growth, poor differentiation, and poor response to hormone therapy. NF-&kappa;B pathway plays important role in this pathway </span></span><span style="font-size:12.0000pt"><span style="color:#131413">(</span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Lee J</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2010</span></span></span><span style="font-size:12.0000pt"><span style="color:#131413">). </span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="font-size:12.0000pt">Expression of SIRT1 is controlled at multiple levels by transcriptional, post-transcriptional, and post-translational mechanisms under physiological and pathological conditions. Emerging evidence indicates that miRs are important regulators of SIRT1 expression (</span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Lovis P</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2008,&nbsp;</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Ortega F J</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2010, </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Zovoilis A</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2011, </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Yamakuchi M</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2008 and </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Mullany L E</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2017)</span></span></span><span style="font-size:12.0000pt">. Studies have shown that miR-34a directly binds to the 3&prime; untranslated region (UTR) of SIRT1 mRNA and reduces its expression </span><span style="font-size:12.0000pt">(</span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Ortega F J</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2010)</span></span>. </span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="font-size:12.0000pt">Study findings support the hypothesis that alcohol consumption is able to influence miRNA expression.</span>&nbsp;<span style="font-size:12.0000pt">Considerable evidence from rodent and human studies demonstrates that disruption of the hepatic SIRT1 signaling by ethanol plays a central role in the development of AFLD </span><span style="font-size:12.0000pt">(</span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Yin H</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2014, </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Li M</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2014)</span></span></span><span style="font-size:12.0000pt">.Ethanol down-regulates SIRT1 in hepatic cells and in the animal livers. The ethanol-mediated disruption of SIRT1 signaling leads to excess fat accumulation and inflammatory responses in the liver of animals and humans. Treatment with resveratrol, a known SIRT1 agonist, can alleviate liver steatosis . Accumulating evidence demonstrates that ethanol-mediated SIRT1 inhibition leads to the development of AFLD largely through disruption of a signaling network mediated by various transcriptional regulators and co-regulators, including nuclear transcription factor-&kappa;B (NF-&kappa;B)</span><span style="font-size:12.0000pt">(</span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Yin H</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2014, </span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Li M</span></span></span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;et al 2014)</span></span>.</span></span></span></p>
  • </div>
  • <div id="aop_summary">
  • <h2>Summary of the AOP</h2>
  • <h3>Events</h3>
  • <h3>Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)</h3>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sequence</th>
  • <th scope="col">Type</th>
  • <th scope="col">Event ID</th>
  • <th scope="col">Title</th>
  • <th scope="col">Short name</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>1</td>
  • <td>MIE</td>
  • <td>1669</td>
  • <td><a href="/events/1669">Increased, DNA damage and mutation</a></td>
  • <td>Increased, DNA damage and mutation</td>
  • </tr>
  • <tr><td></td><td></td><td></td><td></td><td></td></tr>
  • <tr>
  • <td>2</td>
  • <td>KE</td>
  • <td>155</td>
  • <td><a href="/events/155">Inadequate DNA repair</a></td>
  • <td>Inadequate DNA repair</td>
  • </tr>
  • <tr>
  • <td>3</td>
  • <td>KE</td>
  • <td>185</td>
  • <td><a href="/events/185">Increase, Mutations</a></td>
  • <td>Increase, Mutations</td>
  • </tr>
  • <tr>
  • <td></td>
  • <td>KE</td>
  • <td>1554</td>
  • <td><a href="/events/1554">Increase Chromosomal Aberrations</a></td>
  • <td>Increase chromosomal aberrations</td>
  • </tr>
  • <tr>
  • <td>4</td>
  • <td>KE</td>
  • <td>1980</td>
  • <td><a href="/events/1980">Increased microRNA expression</a></td>
  • <td>Increase,miRNA levels</td>
  • </tr>
  • <tr>
  • <td>5</td>
  • <td>KE</td>
  • <td>1981</td>
  • <td><a href="/events/1981">Decreased SIRT1 expression</a></td>
  • <td>Decrease,SIRT1(sirtuin 1) levels</td>
  • </tr>
  • <tr>
  • <td>6</td>
  • <td>KE</td>
  • <td>1172</td>
  • <td><a href="/events/1172">Increased activation, Nuclear factor kappa B (NF-kB)</a></td>
  • <td>Increased activation, Nuclear factor kappa B (NF-kB)</td>
  • </tr>
  • <tr>
  • <td>7</td>
  • <td>KE</td>
  • <td>112</td>
  • <td><a href="/events/112">Antagonism, Estrogen receptor</a></td>
  • <td>Antagonism, Estrogen receptor</td>
  • </tr>
  • <tr>
  • <td>8</td>
  • <td>KE</td>
  • <td>1457</td>
  • <td><a href="/events/1457">Epithelial Mesenchymal Transition</a></td>
  • <td>EMT</td>
  • </tr>
  • <tr><td></td><td></td><td></td><td></td><td></td></tr>
  • <tr>
  • <td>9</td>
  • <td>AO</td>
  • <td>1982</td>
  • <td><a href="/events/1982">metastatic breast cancer</a></td>
  • <td>Metastasis, Breast Cancer</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h3>Key Event Relationships</h3>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Upstream Event</th>
  • <th scope="col">Relationship Type</th>
  • <th scope="col">Downstream Event</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/relationships/2608">Increased, DNA damage and mutation</a></td>
  • <td>adjacent</td>
  • <td>Inadequate DNA repair</td>
  • <td>High</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/164">Inadequate DNA repair</a></td>
  • <td>adjacent</td>
  • <td>Increase, Mutations</td>
  • <td>High</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/2609">Increase, Mutations</a></td>
  • <td>adjacent</td>
  • <td>Increased microRNA expression</td>
  • <td>Moderate</td>
  • <td>Moderate</td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/2610">Increased microRNA expression</a></td>
  • <td>adjacent</td>
  • <td>Decreased SIRT1 expression</td>
  • <td>Moderate</td>
  • <td>Moderate</td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/2611">Decreased SIRT1 expression</a></td>
  • <td>adjacent</td>
  • <td>Increased activation, Nuclear factor kappa B (NF-kB)</td>
  • <td>Moderate</td>
  • <td>Moderate</td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/2612">Increased activation, Nuclear factor kappa B (NF-kB)</a></td>
  • <td>adjacent</td>
  • <td>Antagonism, Estrogen receptor</td>
  • <td>Moderate</td>
  • <td>Moderate</td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/2613">Antagonism, Estrogen receptor</a></td>
  • <td>adjacent</td>
  • <td>Epithelial Mesenchymal Transition</td>
  • <td>High</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/2614">Epithelial Mesenchymal Transition</a></td>
  • <td>adjacent</td>
  • <td>metastatic breast cancer</td>
  • <td>High</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td></td>
  • <td></td>
  • <td></td>
  • <td></td>
  • <td></td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/2728">Increased, DNA damage and mutation</a></td>
  • <td>non-adjacent</td>
  • <td>Increase Chromosomal Aberrations</td>
  • <td>High</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/2729">Increase Chromosomal Aberrations</a></td>
  • <td>non-adjacent</td>
  • <td>Increased microRNA expression</td>
  • <td>High</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h3>Stressors</h3>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Name</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Ethyl alcohol</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div id="overall_assessment">
  • <h2>Overall Assessment of the AOP</h2>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="color:#212529"><strong>Increased DNA damage and mutations [Evidence: high]</strong>:&nbsp;</span>DNA damage refers to a<span style="background-color:white"><span style="color:#333333">ny modification in the physical and/or chemical structure of DNA resulting in an altered DNA molecule that is different from the original DNA molecule with regard to its physical, chemical, and/or structural properties&quot;.</span></span><span style="color:#333333">External factors to the cell such as environmental or potentially aggressive factors produced by the normal cell metabolism can damage the DNA. The effects caused by the action of endogenous factors may be more serious and/or more extensive than the effect of most of the exogenous DNA damaging factors.&nbsp;</span>Evidence suggested that prolonged alcohol intake is positively associated with an increased risk of cancer.&nbsp; It can cause changes in the sequence of genomic DNA, which may act as a tumor promoter as well. Alcohol consumption can result in the generation of DNA-damaging molecules such as reactive oxygen species (ROS), lipid peroxidation products, and acetaldehyde. Strand breaks and oxidative base damage in DNA can be produced by hydroxyl radicals which are both mutagenic and cytotoxic.&nbsp;Alcohol is a known inducer of microsomal oxidizing system, which includes a specific ethanol-inducible form of cytochrome <strong>P450, </strong>referred to as CYP2EL (Lieber C 1992). This effect on the enzyme system has been associated with liver pathology induced by alcohol (Morimoto M et al 1993, French S et al 1993, Nanji A et al 1994, Albano E et al 1996). Again the damaging effects of high levels of CYP2E1 may be mediated by the generation of ROS (Cederbaum 1989, Reinke L et al 1990, Ishii H et al 1989). ROS that is highly reactive, include the oxygen radicals superoxide anion and hydroxyl radicals and can react with lipids, proteins, and DNA and thereby damage them (Knecht K et al 1990).&nbsp; It has been confirmed in vivo experiments that hydroxyethyl radical formation takes place after ethanol exposure (Albano E et al 1996, Moore D et al 1995, <span style="background-color:white"><span style="color:#222222">Clot, P</span></span> et al 1996, Thurman R 1973). Chronic exposure to ethanol also results in increased production of H<sub>2</sub>0<sub>2</sub>, (Kukieka E et al 1992, <span style="background-color:white"><span style="color:#222222">Kukielka, E., &amp; Cederbaum, A. I. 1994</span></span>) which can react with metal ions (such as iron in the Fenton reaction); thus resulting in the production of the highly reactive hydroxyl radicals. DNA is very sensitive to the attack by the hydroxyl radical. A sensitive assay for hydroxyl radical formation from CYP2E1 uses DNA damage (strand breakage) as an endpoint (Breen AP, Murphy JA 1995). Apart from this, more than twenty<strong> </strong>different types of DNA base damage with diverse biological properties are produced by hydroxyl radical (Moriya M 1993).8-hydroxy-2&#39;-deoxyguanosine, is one such DNA lesion brought about by oxidative stress.<strong>&nbsp; This is&nbsp;</strong>mutagenic, due to the tendency of DNA polymerases to misincorporate deoxyadenosine residues opposite this oxidized base (Song B 1996).</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><strong><span style="color:#212529">Inadequate DNA cross-link repair mechanisms&nbsp;</span></strong><span style="color:#212529"><strong>[Evidence:high]</strong>:</span></span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">As a result of DNA damage, DNA repair activities change. A variety of genotoxic agents, such as N-nitrosodimethylamine, aflatoxin B1, and 2-acetylaminofluorene induce the protein, O6-Alkylguanine-DNA alkyltransferase (ATase), are&nbsp;responsible for the repair of DNA alkylation damage in rats (O&rsquo;Connor, 1989; Chinnasamy et al.,1996). Grombacher and Kaina (1996) reported an increased human ATase mRNA expression by alkylating agents like N-methyl-N&prime;-nitro-N-nitrosoguanidine and methyl methanesulphonate and by ionizing radiation via the induction of the ATase promoter. ATase mRNA expression was increased in response to treatment with 2-acetylaminofluorene in rat liver (Potter et al., 1991; Chinnasamy et al., 1996). In another study, it was demonstrated that ATase gene induction is p53 gene-dependent: ATase activity was induced in mouse tissues following &gamma;-irradiation in p53 wild-type mice, but not in p53 null animals (Rafferty et al., 1996).&nbsp;Alkylating agents and X-rays also induce DNA glycosylase, alkylpurine-DNA-N-glycosylase (APNG) &nbsp;(Lefebvre et al., 1993; Mitra and Kaina, 1993).</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><strong><span style="color:#212529">Increased mutations&nbsp;</span></strong><span style="color:#212529"><strong>[Evidence: moderate]</strong>:&nbsp;</span><span style="background-color:white"><span style="color:black">Inadequate repair causes damaged DNA to be retained and used as a template during DNA replication. Incorrect nucleotides may be inserted during the replication of damaged DNA, and these nucleotides become &#39;fixed&#39; in the cell after replication. The mutation propagates to more cells as a result of further replication.&nbsp;Non-homologous end joining (NHEJ) is one of the repair methods employed in human somatic cells to repair DNA double-strand breaks (DSBs). (Petrini et al., 1997; Mao et al., 2008). </span></span>However, this mechanism is prone to errors and may result in mutations during the DNA repair process. (Little, 2000). As it does not use a homologous template to repair the DSB, NHEJ is considered error-prone. Many proteins work together in the NHEJ pathway to bridge the DSB gap by overlapping single-strand termini that are typically less than 10 nucleotides long. (Anderson, 1993; Getts &amp; Stamato, 1994; Rathmell &amp; Chu, 1994). Errors are introduced during this process, which can result in mutations like insertions, deletions, inversions, or translocations.</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><strong><span style="color:#212529">Increased micro RNA expression&nbsp;</span></strong><span style="color:#212529"><strong>[Evidence: moderate]</strong>:&nbsp;</span>DNA damage-responsive transcription factors, such as NF-kB, E2F, and Myc, are also involved in miRNA transcription regulation. The p53 protein also functions as a transcriptional repressor by binding to miRNA promoters and preventing the recruitment of transcriptional activators.&nbsp;For example, p53 prevents the TATA-binding protein from binding to the TAATA site in the promoter of the miR-17-92 cluster gene, suppressing transcription. Under hypoxic conditions, the miR-17-92 cluster is suppressed by a p53-dependent mechanism, making cells more susceptible to hypoxia-induced death (Yan et al.,2009).</span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><strong><span style="color:#212529">Decreased SIRT1 expression&nbsp;</span></strong><span style="color:#212529"><strong>[Evidence: moderate]</strong>:&nbsp;</span>There are several signaling pathways that establish the role of increased miRNA expression in downregulating the SIRT 1 gene few of which are listed as follows; Butyrate has been demonstrated to cause apoptosis and reduce carcinogenesis in a variety of cancers (Tailor et al.,2014; Rahmani et al.,2002). Although butyrate has been shown to suppress SIRT1 gene expression in various cancers, this has yet to be proven in hepatocellular carcinoma (HCC) (Iglesias et al., 2007). In HCC, miR-22 was found to be downregulated, and its low levels aided carcinogenesis (Zhang et al.,2010). The Huh7 cells&#39; in vitro proliferation was decreased by miR-22 expression, which activated apoptosis. In Huh7 cells, on the other hand, SIRT1 expression was high, which enhanced the expression of antioxidants such as superoxide dismutase (SOD), allowing cell growth to continue (Chen et al.,2012). Butyrate upregulated miR-22 in Huh7 cells, which binds directly to the 3&prime;UTR region of SIRT1 and suppresses its expression.Notch3&ndash;SIRT1&ndash;LSD1&ndash;SOX2 Signaling Pathway<strong>&nbsp;in&nbsp;</strong>metastasis (Wang et al.,2016; Wu et al .,2017).MiR-486 inhibits HCC invasion and tumorigenicity by directly targeting and suppressing SIRT1 expression. This reduced the tumorigenic and chemo-resistant features of LCSCs and inhibited HCC invasion and tumorigenicity (Yan et al.,2019).</span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><strong><span style="color:#212529">Increased activity of NF kB&nbsp;</span></strong><span style="color:#212529"><strong>[Evidence: moderate]</strong>:&nbsp;</span>SIRT1 deacetylates&nbsp; NFkB. In the context of NFkB, all of the evidence so far points to its signaling being inhibited after SIRT1 deacetylation (Morris, 2012). According to Yeung et al, SIRT1 can directly interact with and deacetylate the RelA/p65 component of the NF-B complex (Yeung et al.,2004). <span style="color:#202122">NF-B can be activated by cytokines (TNF-, IL-1), growth factors (EGF), bacterial and viral products (lipopolysaccharide (LPS), dsRNA), UV and ionizing radiation, reactive oxygen species (ROS), DNA damage, and oncogenic stress from inside the cells. Almost all stimuli eventually activate a large cytoplasmic protein complex called the inhibitor of B (IB) kinase (IKK) complex via a so-called &quot;canonical pathway.&quot; The exact composition of this complex is unknown, however, it has three fundamental components: IKK1/IKK, IKK2/IKK, and NEMO/IKK. IB is phosphorylated by the activated IKK complex, which marks it for destruction by the -transducin repeat-containing protein (-TrCP)-dependent E3 ubiquitin ligase-mediated proteasomal degradation pathway (Liu et al., 2012;Li et al., 2002). As a result, unbound NF-B dimers can go from the cytoplasm to the nucleus, bind to DNA, and control gene transcription.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><strong>Antagonism of&nbsp;<span style="color:#212529">estrogen receptor&nbsp;</span></strong><span style="color:#212529"><strong>[Evidence: moderate]</strong>:&nbsp;</span>Activation NF-&kappa;B in breast cancer leads to loss of Estrogen Receptor (ER) expression and Human Epidermal Growth Factor Receptor 2 (HER-2) overexpressed via epidermal growth factor receptor (EGFR) and Mitogen-Activated Protein Kinase (MAPK) pathway (Laere et al.,2007). Indeed, the binding of epidermal growth factor (EGF) to its receptor (EGFR) activates NF-B, which most likely contributes to this transcription factor&#39;s increased activity in ER-negative breast cancer cells (Shostak et al.,2011). Because of the constitutive production of cytokines and growth factors, loss of ER function has been linked to constitutive NF-kB activity and hyperactive MAPK, resulting in aggressive, metastatic, hormone-resistant malignancies (Ali et al., 2002). Activation of the progesterone receptor can reduce DNA binding and transcriptional activity by inhibiting NF-B-driven gene expression (Kalkhoven et al., 1996). HER-2 stimulates NF-B via the conventional route, which includes IKK (Merkhofer et al., 2010).</span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><strong><span style="color:#212529">Epithelial-mesenchymal transition cell&nbsp;</span></strong><span style="color:#212529"><strong>[Evidence: high]</strong>:&nbsp;</span>Estrogen/ERa signaling maintains an epithelial phenotype and suppresses EMT.ERa signaling promotes proliferation and epithelial differentiation and opposes EMT. Various studies support this finding (Eeckhoute et al.,2007, Kouros-Mehr et al.,2008, Nakshatri et al., 2009, Taylor et al.,2010).&nbsp;ER-a negative was related to activation of genes implicated in Wnt, Sonic Hedgehog, and TGF-b signaling, indicating epithelial-mesenchymal transition (EMT)(Wik et al.,2013).</span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><strong><span style="color:#212529">Metastatic breast cancer&nbsp;</span></strong><span style="color:#212529"><strong>[Evidence: high]</strong>:&nbsp;</span>The &ldquo;epithelial-mesenchymal transition&rdquo; (EMT), a key developmental regulatory program, has been reported to play critical and intricate roles in promoting tumor invasion and metastasis in epithelium-derived carcinomas in recent years. Some of the cells undergoing EMT have the characteristics of cancer stem cells (CSCs), which are linked to cancer malignancy (Shibue &amp; Weinberg, 2017; Shihori Tanabe, 2015a, 2015b; Tanabe, Aoyagi, Yokozaki, &amp; Sasaki, 2015). Cancer metastasis and cancer therapeutic resistance are linked to the EMT phenomenon (Smith &amp; Bhowmick, 2016; Tanabe, 2013). EMT causes the cell to escape from the basement membrane and metastasize by increasing the production of enzymes that break down extracellular matrix components and decreasing adherence to the basement membrane (Smith &amp; Bhowmick, 2016).&nbsp;</span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Overall Assessment:</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">overall assessment of the AOP was based on the biological domain of the applicability, the essentiality of all KEs, Biological plausibility of each KER, Empirical support for each KER, and Quantitative weight of evidence considerations optional.</span></span></p>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px; text-align:justify; width:976px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:58px">
  • <p>&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:111px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">MIE 1669</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:103px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">KE 155</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:96px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">KE 185</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:101px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">KE1980</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:105px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">KE1981</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:103px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">KE 1172</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:108px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">KE 112</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:85px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">KE1457</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:104px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">AO1982</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:58px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Sex/Life stage /Taxa</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:111px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Female/Reproductive/Human,human cell line,mice,rat</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:103px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Female/Reproductive/Rat/rat cel lines/mouse</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:96px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Female/Reproductive/Mice,yeast,hman cel line</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Female/Reproductive/canine,mouse,human cell line</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:105px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Female/Reproductive/human,human cell ine</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:103px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Female/Reproductive/human,human cell ine,mice</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:108px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Female/Reproductive/human,human cell ine,mice</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:85px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Female/Reproductive/hman,hman cell line</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:104px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Female/Reproductive/hman,hman cell line,mice</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:58px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Essentiality of KEs</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:111px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Direct Evidence</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:103px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Direct Evidence</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:96px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Direct Evidence</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Direct Evidence</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:105px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Direct Evidence</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:103px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Direct Evidence</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:108px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Direct Evidence</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:85px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Direct Evidence</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:104px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Direct Evidence</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:58px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Empirical Support of KER</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:111px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">High for MIE1669 to KE155</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:103px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">High for KE 155&nbsp;to KE 185</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:96px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Moderate for KE 185&nbsp;to KE1980</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Moderate for KE1980&nbsp;to KE1981</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:105px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Moderate for KE1981&nbsp;to KE 1172</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:103px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Moderate for KE 1172&nbsp;to KE 112</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:108px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">High for KE 112&nbsp;to KE1457</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:85px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">High for KE 1457 to AO 1982</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:104px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">-</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:58px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Biological plausibiity of KER</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:111px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">High for MIE1669 to KE155</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:103px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">High for KE 155&nbsp;to KE 185</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:96px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Moderate for KE 185&nbsp;to KE1980</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Moderate for KE1980&nbsp;to KE1981</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:105px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Moderate for KE1981&nbsp;to KE 1172</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:103px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Moderate for KE 1172&nbsp;to KE 112</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:108px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Moderate for KE 112&nbsp;to KE1457</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:85px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">High for KE 1457 to AO 1982</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:104px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">-</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:58px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Quantitative assessment</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:111px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">PCR-RFLP </span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">OHdG &ndash; ELISA &amp;RT- PCR, Western Blot </span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">MAPK assay, Immunoprecipitation,</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Western immunoblotting </span></span></p>
  • <ol start="8">
  • <li>&nbsp;</li>
  • </ol>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:103px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Quantification of ATase activity &ndash; BSA method</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">APNG assay,</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">OXOG glycosylase activity assay,</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Western immunoblotting,</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Immunohistochemical detection of ATase.</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:96px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Acetaldehyde assay,</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Extract preparation and Western blotting,</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">N<sup>2</sup>- Ethyl dGuo quantitation</span></span></p>
  • <p>&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Western blotting,clonal survival assay,FACs</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:105px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">qRT-PCR,Western blotting,Luciferase reporter assay </span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Micro-array </span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:103px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">qRT-PCR,immunohistochemistry </span></span></p>
  • <p>&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:108px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">qRT-PCR, immunohistochemistry ()</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:85px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">IHC,micro array,qPCR, SNP array</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:104px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">qRT-PCR,,Luciferase reporter assay ,immunoblotting,immunoprecipitation,cell invasion assay,cell migration assay, </span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:58px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">References</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:111px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#212121">Chen CH et al 2011,</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:103px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#2a2a2a">Panida Navasumrit et al, 2001</span></span>),Kotova N et al, 2013,<span style="background-color:#ffffff"><span style="color:#212121">Garaycoechea JI et al, 2012</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:96px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Abraham J et al 2011,Garaycoechea JI et al, 2018,Voordeckers K et al, 2020</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">van Jaarsveld MT et al 2014,</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Abdelfattah, N et al, 2018,Liu Z et al, 2017,Zhang X et al,2011&nbsp;Wan G et al, 2013,Bulkowska M et al, 2017</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:105px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Shen ZL et al 2016,Guo S et al 2020,Bae HJ et al 2014,Zhou J et al 2017,Fu H et al 2018,,Lian B et al 2018,Guan Y et al 2017,Yang X et al 2014,Jiang G et al 2016,Luo J et al 2017,Tian Z et al 2016,Yan X et al 2019,Zhang S et al 2016</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:103px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#212121">McGlynn LM et al 2014,</span></span>Paul T. Pfluger et al 2008,<span style="background-color:#ffffff"><span style="color:#212121">Yeung F et al 2004</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:108px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Sampepajung E et al 2021, Van Laere SJ et al 2007,</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Singh S&nbsp;&nbsp;et al 2007,Holloway JN&nbsp;&nbsp;et al 2004,Biswas DK&nbsp;&nbsp;et al 2000,&nbsp;Song RX&nbsp;et al 2005,Scherbakov AM&nbsp;et al 2009,Allred DC and Mohsin SK 2000</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Biswas DK&nbsp;et al 2001</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:85px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#212121">Wik E et al 2013,,Bouris P</span></span>&nbsp;et al 2015, <span style="background-color:#ffffff"><span style="color:#212121">Liu Y</span></span>&nbsp;et al 2015,<span style="background-color:#ffffff"><span style="color:#212121">Al Saleh S</span></span>&nbsp;et al 2011,<span style="background-color:#ffffff"><span style="color:#212121">Zeng Q</span></span>&nbsp;et al 2014,<span style="background-color:#ffffff"><span style="color:#212121">Ye Y</span></span>&nbsp;et al 2010,</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Lin, HY</span></span>&nbsp;et al 2018</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:104px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Liang et al., 2013;Liu et al., 2016;Zhang et al.,2015; Chen et al., 2015;Yue et al.,2019;Wang et al., &nbsp;2018;Yu et al.,2017</span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <h3>Domain of Applicability</h3>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Adult, reproductively mature</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>human and other cells in culture</td>
  • <td>human and other cells in culture</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>human</td>
  • <td>Homo sapiens</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>mice</td>
  • <td>Mus sp.</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>rat</td>
  • <td>Rattus norvegicus</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>canine heartworm nematode</td>
  • <td>Dirofilaria immitis</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=6287" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>yeast</td>
  • <td>Saccharomyces cerevisiae</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=4932" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Female</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><strong>Sex</strong>:The AOP is appicable to women.However s<span style="font-size:11pt"><span style="background-color:white"><span style="color:#212121">tudy suggests that the relative risk of breast cancer in men is comparable to that in women for alcohol intakes below 60 g per day. It continues to increase at high consumption levels not usually studied in women (Gu&eacute;nel P et al 2004).</span></span></span>&nbsp;</span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><strong>Life stage:</strong><span style="font-size:11pt">There are no research articles which highlight the role alcohol in a particular life stage.</span><span style="font-size:11pt">In addition, age-related differences in response to alcohol exposure are neither uniform nor linear. The data available is insufficient which direct the construction of a catalog of &ldquo;appropriate&rdquo; tests or to define all the factors which influence nonlinear effects (<span style="font-size:10.0pt"><span style="background-color:white"><span style="color:#303030">Squeglia LM</span></span></span>&nbsp; et al 2014). </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><strong>Taxonomic</strong>:The evidences for the key events of this AOP are available in various species ike rat,mice and humans.</span></p>
  • <h3>Essentiality of the Key Events</h3>
  • <p style="text-align:justify">Direct evidence is available for all the suggested key events. However the strength of weight of evidence varies from moderate to high. however, some inconsistencies are also available. majority of the experimental evidence is available in rats, mice, canine and human cell lines. only a few studies are available on human subjects.</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="font-size:12.0000pt"><span style="color:#212529">Human normal hepatocytes (HL-7702) were subjected to escalating doses of N,N-dimethylformamide for 24 hours (C. Wang et al., 2016).&nbsp;</span></span></span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="font-size:12.0000pt"><span style="color:#212529">At all concentrations, a concentration-dependent increase in ROS was detected; the rise was statistically significant when compared to control (6.4, 16, 40, 100 mM). Until the highest two concentrations (40 and 100 mM), no significant rise in 8-oxodG was seen, indicating inadequate repair at these dosages.&nbsp;</span></span></span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="font-size:12.0000pt"><span style="color:#212529">Excision repair genes (XRCC2 and XRCC3) were considerably up-regulated at 6.4 and 16 mM, well below the doses that significantly produced 8-oxodG, indicating that adequate DNA repair was possible at these low concentrations. These findings show that repair is competent at low concentrations (removing 8-oxodG quickly), but that repair is swamped (i.e., insufficient) at larger doses, where 8-oxodG greatly increases.&nbsp;</span></span></span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="font-size:12.0000pt"><span style="color:#212529">AS52 Chinese hamster ovary cells (wild type and OGG1-overexpressing) were exposed to varying doses of ultraviolet A (UVA) radiation (Dahle et al., 2008).&nbsp;</span></span></span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="font-size:12.0000pt"><span style="color:#212529">Formamidopyrimidine glycosylase (Fpg)-sensitive sites were quantified using alkaline elution after increasing repair times (0, 1, 2, 3, 4 h) following 100 kJ/m</span></span><sup><span style="font-size:12.0000pt"><span style="color:#212529">2</span></span></sup><span style="font-size:12.0000pt"><span style="color:#212529">&nbsp;UVA irradiation.&nbsp;</span></span></span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="font-size:12.0000pt"><span style="color:#212529">OGG1-overexpressing AS52 cells (OGG1+): Fpg-sensitive sites reduced to 71% within half an hour and down to background levels at 4h.Wild type AS52 cells: at 4h, 70% of the Fpg-sensitive sites remained, indicating accumulation of oxidative lesions.&nbsp;</span></span></span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="font-size:12.0000pt"><span style="color:#212529">Mutations in the&nbsp;</span></span><em><span style="font-size:12.0000pt"><span style="color:#212529"><em>Gpt</em></span></span></em><span style="font-size:12.0000pt"><span style="color:#212529">&nbsp;gene was quantified in both wild type and OGG1+ cells by sequencing after 13-15 days following 400 kJ/m</span></span><sup><span style="font-size:12.0000pt"><span style="color:#212529">2&nbsp;</span></span></sup><span style="font-size:12.0000pt"><span style="color:#212529">UVA irradiation</span></span><span style="font-size:12.0000pt"><span style="color:#212529">.G:C&rarr;T:A mutations in UVA-irradiated OGG1+ cells were completely eliminated (thus, repair was sufficient when repair overexpressed).G:C&rarr;T:A mutation frequency in wild type cells increased from 1.8 mutants/million cells to 3.8 mutants/million cells following irradiation &ndash; indicating incorrect repair or lack of repair of accumulated 8-oxo-dG.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="background-color:#ffffff"><span style="font-size:12.0000pt">There is evidence from knock-out/knock-down studies indicating there is a strong link between DNA repair adequacy and the frequency of mutations. Defects in proteins involved in DNA repair resulted in altered mutation frequencies in all of the instances studied when compared to wild-type cases. In cell lines deficient in LIG4 (Smith et al., 2003) and Ku80 (Feldmann et al., 2000), there were significant decline&nbsp;in the frequency and accuracy of DNA repair; rescue experiments performed with these two cell lines further confirmed that inadequate DNA repair was the cause of the observed decreases in repair frequency and accuracy (Feldmann et al., 2000; Smith et al., 2003). There was more spontaneous DNA damage in Nibrin-deficient mouse cells than in wild-type controls, implying insufficient DNA repair.&nbsp;</span></span></span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vivo mutation frequencies were also observed to be higher in Nibrin-deficient mice than in wild-type mice using the corresponding Nibrin-deficient and wild-type mice (Wessendorf et al., 2014). Furthermore, depending on the XPC status of cancer patients, mutation densities in certain genomic areas were influenced differentially. In XPC-wild-type patients, mutation frequencies were higher at DHS promoters and 100 bp upstream of TSS than in cancer patients missing functional XPC (Perera et al., 2016). Finally,it was found that&nbsp;radiation exposure caused four times more mutations in WKT1 cells with lower repair capacity than in TK6 cells with normal repair capacity in a research (Amundson and Chen, 1996).&nbsp;</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">There are findings that strongly link the different elements of DNA damage and repair events to the expression of miRNA.&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Zhang and coworkers examined genome-wide mature miRNA expression in Atm+/+ and Atm-/- littermate mouse embryonic fibroblasts to see how miRNAs are regulated in the DNA damage response (MEFs)(Zhang et al.,2011).&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">MEFs were given neocarzinostatin (NCS), a radiomimetic medication that causes DSBs (Ziv et al., 2006). Mouse miRNA microarray analysis was used to determine miRNA expression profile in each sample, which was done at several time points (0&ndash;24 hr). As many as 71 distinct miRNAs were found to be considerably (2-fold) upregulated in the NCS-treated Atm+/+ MEFs, but not in the corresponding Atm-/- MEFs, implying that DNA damage stress causes broad-spectrum changes in miRNA expression.&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">According to Wan et al., regulatory RNA-binding proteins in the Drosha and Dicer complexes, such as DDX5 and KSRP, drive posttranscriptional processing of primary and precursor miRNAs after DNA damage. The findings show that nuclear export of pre-miRNAs is increased in an ATM-dependent manner after DNA damage. The ATM-activated AKT kinase phosphorylates Nup153, a main component of the nucleopore, resulting in enhanced interaction between Nup153 and Exportin-5 (XPO5) and increased nuclear export of pre-miRNAs. These findings demonstrate that DNA damage signalling is important for miRNA transport and maturation.&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In agreement with previous reports showing that ATM-activated p53 and KSRP promote miRNA expression (Suzuki et al., 2009; Zhang et al., 2011), the study found 61 p53-dependent miRNAs and 29 KSRP-dependent miRNAs among the ATM-induced miRNAs.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In Jiang et al&#39;s study, the cellular function and molecular mechanism of miR2045p in hepatocellular cancer were investigated (HCC)(Jiang et al.,2016).&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Shen et al showed that downregulation of miR-199b is associated with distant metastasis in colorectal cancer via activation of SIRT1 and inhibition of CREB/KISS1 signalling(Shen et al.,&nbsp;2016).&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">A study by Tian et al found that MicroRNA-133b targets Sirt1 and suppresses hepatocellular carcinoma cell progression(Tian et al.,&nbsp;2016).&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In liver cancer, Yan et al discovered that MicroRNA 486 5p acts as a tumour suppressor of proliferation and cancer stem-like cell characteristics by targeting Sirt1(Yan et al.,2019).&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Zhang et al reported that MicroRNA-22 functions as a tumor suppressor by targeting SIRT1 in renal cell carcinoma (Zhang et al., 2016).&nbsp;</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">According to Lu et al, SIRT1 inhibited the growth of gastric cancer through inhibiting the activation of STAT3 and NF-B (Lu et al.,2014). The goal was to look at SIRT1&#39;s regulatory effects on gastric cancer (GC) cells (AGS and MKN-45) as well as the links between SIRT1 and STAT3 and NF-B activation in GC cells. The SIRT1 activator (resveratrol RSV) was discovered to contribute to the repression of viability and increase of senescence, which was reversed by SIRT1 inhibitor (nicotinamide NA) and SIRT1 depletion using the CCK-8 and SA-&beta;-gal&nbsp;assays, respectively. SIRT1 activation (RSV supplement) reduced not only STAT3 activation, including STAT3 mRNA level, c-myc mRNA level, phosphorylated STAT3 (pSTAT3) proteins, and acetylizad STAT3 (acSTAT3) proteins, but also pNF-B p65 and acNF-B p65 suppression. The effects of RSV were reversed by NA.</span></span>&nbsp;<span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Furthermore, when STAT3 or NF-B were knocked down, neither RSV nor NA could affect cellular survival or senescence in MKN-45 cells. Overall, the outcomes of the study revealed that SIRT1 activation could cause GC in vitro to lose viability and senescence. Furthermore, our findings demonstrated that SIRT1 inhibited proliferation in GC cells and was related to deacetylation-mediated suppression of STAT3 and NF-B protein activation</span><em><span style="font-size:12.0000pt"><em>.</em></span></em></span>&nbsp;<span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">The levels of SIRT1 protein expression in non-small-cell lung cancer (NSCLC) cell lines were examined in a study by Yeung et al.,2004. In comparison to immortalised epithelial human lung NL-20 cells, NSCLC cells exhibit significant quantities of SIRT1 protein, as reported by other researchers (Luo et al, 2001; Vaziri et al, 2001).&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Pharmacological modulators of Sirtuin activity were employed to see if NF-kB transcription was regulated by Sirtuins (Landry et al, 2000; Bedalov et al, 2001; Howitz et al, 2003).&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Transient luciferase reporter experiments revealed that cells pretreated with resveratrol had very minimal NF-kB transcription following the presence of TNFa. TNFa-induced NF-kB activity was boosted when cells were pretreated with the Sirtuin inhibitors nicotinamide or splitomicin. NF-kB transcription was also potentiated in cells treated with trichostatin A (TSA), an HDAC class I and class II inhibitor, as expected.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In specific subclasses of human breast cancer cells and tumour tissue specimens, an enhanced level of activated NF-kB is found, primarily in erbB2-overexpressing ER-negative breast cancer (Biswas et al 2000;2003).&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Singh et al explored a variety of methods to inhibit NF-kB activation in ER-negative breast cancer cells and looked at the effects on cell proliferation, apoptosis, and tumour growth in xenografts(Singh et al.,2007).&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In a prospective cohort study, Sampepajung et al used immunohistochemistry (IHC) to examine NF-B expression and intrinsic subtypes of breast cancer tissue and found a significant correlation between negative ER and overexpression of NF-B (p 0.05), with overexpression of NF-B being higher in negative ER (77.3 percent) compared to positive ER (47.4 percent )( Sampepajung et al., 2021).&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Laere et al suggested that activation of NF-kB in inflammatory breast cancer (IBC) is associated with loss of estrogen receptor (ER) expression, indicating potential crosstalk between NF-kB and ER(Laere et al.,2007).&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Differential Sensitivity of ER &alpha;&nbsp;and ER</span><span style="font-size:12.0000pt">&beta;</span><span style="font-size:12.0000pt">&nbsp;Cells to the NF-kB Inhibitor Go6976</span><span style="font-size:12.0000pt">&nbsp;was tested.</span><span style="font-size:12.0000pt">&nbsp;A differential sensitivity to Go6976 by ER </span><span style="font-size:12.0000pt">&alpha;</span><span style="font-size:12.0000pt">&nbsp;and ER</span><span style="font-size:12.0000pt">&beta;</span><span style="font-size:12.0000pt">&nbsp;breast cancer cells was observed (Holloway et al.,2004). The ER&nbsp;&alpha;&nbsp;cells were more sensitive and less viable after treatment with this NF-kB inhibitor. The IC50 (50% killing) by Go6976 was 1 mM for Era of MDA-MB435 and MDA-MB231 breast cancer cells, whereas it was greater than 10 mM for ERa of MCF-7 and T47D or the normal mammary epithelial H16N &nbsp;cells. At 10 mM Go6976, about 80% of the ERa cells were killed, whereas only 15&ndash;30% of ERa and normal H16N cells were sensitive to this compound. The relative resistance of the H16N normal human mammary cells indicates a possible high therapeutic index of Go6976 against ERa cancer cells.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Endogenous ER silencing causes EMT in ER-positive breast cancer cells. ER-positive MCF-7 cells were infected with ER shRNA lentiviral particles and stable clones were selected with puromycin (optimal dose of 0.8 g/mL) to knock down ER gene expression (Zheng et al.,2014). When the number of cell passages was increased following infection, the expression of ER was gradually knocked down.&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Saleh et al. hypothesise that loss of oestrogen receptor function, which causes endocrine resistance in breast cancer, also causes trans-differentiation from an epithelial to a mesenchymal phenotype, which causes enhanced aggressiveness and metastatic tendency(Saleh et al., 2011).&nbsp;</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">&nbsp;EMT is the most crucial step in initiating metastasis, including metastasis to lymph nodes, because tumour cell movement is a pre-requisite for the metastatic process (Da et al., 2017). Multiple signalling pathways cause cancer cells to lose their cell-to-cell connections and cellular polarity during EMT, increasing their motility and invasive ness (Huang et al., 2017). MMPs cause E-cadherin to be cleaved, which increases tumour cell motility and invasion (Pradella et al., 2017).&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Chen et al investigated the potential function of MDM2 in ovarian cancer SKOV3 cells&#39; EMT and metastasis(Chen et al.,2015).&nbsp;</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="font-size:12.0000pt">TGFbeta and Twist induce EMT by upregulating the expression of EMT markers such Snail, Vimentin, N-cadherin, and ABC transporters like ABCA3, ABCC1, ABCC3, and ABCC10 (Saxena et al., 2011).In the treatment with about 0.3, 3, 30 mM of doxorubicin, human mammary epithelial cells (HMLE) stably expressing Twist, FOXC2 or Snail demonstrate increased cell viability compared to control HMLE, dose-dependently (</span><a href="#_ENREF_77" title="Saxena, 2011 #119"><span style="font-size:12.0000pt">Saxena et al., 2011</span></a><span style="font-size:12.0000pt">).&nbsp;</span></span></span></li>
  • </ul>
  • <h3>Weight of Evidence Summary</h3>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><a href="https://aopwiki.org/relationships/2608"><span style="color:#000000"><strong><span style="font-size:12.0000pt"><strong>Increased, DNA damage and mutation leads to Inadequate DNA repair</strong></span></strong></span></a></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="background-color:#ffffff"><span style="font-size:12.0000pt"><span style="color:#212529">DNA base excision repair (BER</span></span><span style="font-size:12.0000pt"><span style="color:#212529">)</span></span><span style="font-size:12.0000pt"><span style="color:#212529">&nbsp;and, to a lesser extent,</span></span><span style="font-size:12.0000pt"><span style="color:#212529">&nbsp;nucleotide excision repair</span></span>&nbsp;<span style="font-size:12.0000pt"><span style="color:#212529">(</span></span><span style="font-size:12.0000pt"><span style="color:#212529">NER</span></span><span style="font-size:12.0000pt"><span style="color:#212529">) &nbsp;are used to repair oxidative DNA damage. Previous research has found thresholded dose-response curves in oxidative DNA damage and attributed these findings to a lack of repair capability at the curve&#39;s inflection point (Gagne et al., 2012; Seager et al., 2012). Following chemical exposures, in vivo, a rise and buildup of oxidative DNA lesions was seen despite the activation of BER, suggesting poor repair of oxidative DNA lesions beyond a certain level(Ma et al., 2008).</span></span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="background-color:#ffffff"><span style="font-size:12.0000pt">Empirical Evidence (include consideration of temporal concordance ) has been documented in several studies as follows;</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <table class="Table" style="border-bottom:1px solid windowtext; border-left:1px solid windowtext; border-right:1px solid windowtext; border-top:1px solid windowtext; font-family:&quot;Times New Roman&quot;; font-size:13px; margin-left:3px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Compound class</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Species</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Study type</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:64px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Dose</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">KER findings</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Reference</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt"><span style="color:#212529">N,N-dimethylformamide</span></span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Homosapiens hepatocyte cell line</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vitro</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Experimental</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:64px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">mM</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Increased DNA damage leads to decreased DNA cross link repair mechanisms</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Wang et al.,2016</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">UV radiation</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Cricetulus griseus(Chinese hamster)</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:64px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">kJ/m2</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Dahle et al.,2008</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">X-rays</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Human leukemia cell line</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:64px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Gy/min</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Li et al.,2013</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">X rays</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Mice</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vivo</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Experimental</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:64px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Gy/min</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Li et al.,2013</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Aniline</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Rat</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:64px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Kg/day</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Ma et al.,2008</span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify">&nbsp;</p>
  • <h1 style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:24pt"><span style="background-color:#ffffff"><strong><strong><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><strong>Inadequate DNA repair leads to Increase, Mutations</strong></span></span></strong></strong></span></span></span></h1>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="background-color:#ffffff"><span style="font-size:12.0000pt">There will be no increase in mutation frequency if DNA repair is capable of appropriately and efficiently repairing DNA lesions caused by a genotoxic stressor.</span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="background-color:#ffffff"><span style="font-size:12.0000pt">For alkylated DNA, for example, efficient AGT removal will result in no increases in mutation frequency. However, once AGT reaches a certain dose, it becomes saturated and can no longer effectively remove alkyl adducts. Mutation occurs when O-alkyl adducts are replicated. The evidence that unrepaired O-alkylated DNA replication induces mutations in somatic cells is vast and has been evaluated. (Basu and Essigmann 1990; Shrivastav et al. 2010).</span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="background-color:#ffffff"><span style="font-size:12.0000pt">Empirical Evidence (include consideration of temporal concordance ) has been documented in several studies as follows;</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <table class="Table" style="border-bottom:1px solid windowtext; border-left:1px solid windowtext; border-right:1px solid windowtext; border-top:1px solid windowtext; font-family:&quot;Times New Roman&quot;; font-size:13px; margin-left:4px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Compound class</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Species</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Study type</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:64px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Dose</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">KER findings</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Reference</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">UV radiation</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Chinese hamster</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vitro</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:64px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">kJ/m2</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">inadequate DNA repair leads to increased mutations</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Dahle et al.,2008</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Mice </span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vivo</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:64px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Klungland et al., 1999</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">X ray</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">human</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vitro</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:64px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Gy</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-(dose-incidence)</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Mcmohan et al., 2016</span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <p style="text-align:justify">&nbsp;</p>
  • <h1 style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:24pt"><span style="background-color:#ffffff"><strong><strong><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><strong>Increase, Mutations leads to Increase,miRNA levels</strong></span></span></strong></strong></span></span></span></h1>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Evidences suggest that&nbsp;transcription pathway for miRNAs is regulated in the DNA damage response&nbsp;(DDR).Inadequate repair and mutations increase miRNA expression.</span><span style="font-size:12.0000pt">DNA damage-responsive transcription factors, such as NF-</span><span style="font-size:12.0000pt">k</span><span style="font-size:12.0000pt">B, E2F, and Myc, are also involved in miRNA &nbsp;transcription regulation.</span><span style="font-size:12.0000pt">The p53 protein also functions as a transcriptional repressor by binding to miRNA promoters and preventing the recruitment of transcriptional activators.The empirical and dose response evidence for increased mutations inducing miRNA expression has been documented as follows;</span></span></p>
  • <table class="Table" style="border-bottom:1px solid windowtext; border-left:1px solid windowtext; border-right:1px solid windowtext; border-top:1px solid windowtext; font-family:&quot;Times New Roman&quot;; font-size:13px; margin-left:4px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Compound class</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Species</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:80px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Study type</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:59px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Dose</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:134px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">KER findings</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:118px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Reference</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Neocarzinostatin</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Mouse</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Fibroblast </span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:80px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vitro</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:59px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Ng/ml</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:134px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Increased mutation leads to increased microRNA expression </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif">&nbsp;&nbsp;</span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:118px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Ziv et al.,2006</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Neocarzinostatin</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Mouse</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Fibroblast</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:80px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vitro</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:59px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Ng/ml</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:134px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:118px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Zhang et al.,2011</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Cisplatin and IR</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Human mammary epithelial cells</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:80px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vitro</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:59px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">mM and Gy</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:134px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:118px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Jaarsveld et al., 2014</span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <p style="text-align:justify">&nbsp;</p>
  • <h1 style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:24pt"><span style="background-color:#ffffff"><strong><strong><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><strong>Increase,miRNA levels leads to Decrease,SIRT1(sirtuin 1) leves</strong></span></span></strong></strong></span></span></span></h1>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">There are several pathways which suggest suppression of SIRT1 &nbsp;expression when miRNA is elevated.SIRT1 was downregulated at the mRNA and protein levels when miR-138 expression was increased. MiR-138 binds to the SIRT1 gene&#39;s 3&prime;UTR unique complimentary site and inhibits SIRT1 expression directly, preventing HCC proliferation, migration, and invasion (Luo </span><span style="font-size:12.0000pt">et al.,2017).When compared to the normal hepatic cell line L02, SIRT1 is overexpressed, while miR-138 levels are lowered in HepG2, SMMC7721, Bel7404, and HCCM3 .</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">The evidence for this fact has been listed as follows;</span></span></p>
  • <table class="Table" style="border-bottom:1px solid windowtext; border-left:1px solid windowtext; border-right:1px solid windowtext; border-top:1px solid windowtext; font-family:&quot;Times New Roman&quot;; font-size:13px; margin-left:4px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Compound class</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Species</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Study type</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">KER findings</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Reference</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Human HCC Cell lines</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vitro</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Increased miRNA leads to Reduced SIRT1</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Jiang et al.,2016;&nbsp;Luo </span><span style="font-size:12.0000pt">et al</span><span style="font-size:12.0000pt">.,2017; Tian </span><span style="font-size:12.0000pt">et al.,</span><span style="font-size:12.0000pt">&nbsp;2016; Yan </span><span style="font-size:12.0000pt">et al.,2019; Bae et al.,2014;Zhou et al.,2017</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Human CRC cell lines</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vitro</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Shen et al.,&nbsp;2016;Lian et al.,2018</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Human RCC Cell lines</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vitro</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Zhang et al., 2016;Fu et al.,2018</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Astragalus Polysachcharide</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Prostate cancer cell lines</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vitro</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Guo et al.,2020;Yang et al.,2014</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Lung cancer cell lines</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vitro</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Guan et al.,2017</span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <p style="text-align:justify">&nbsp;</p>
  • <h1 style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:24pt"><span style="background-color:#ffffff"><strong><strong><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><strong>Decrease,SIRT1(sirtuin 1) leves leads to Increase activation, Nuclear factor kappa B (NF-kB)</strong></span></span></strong></strong></span></span></span></h1>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">SIRT1 suppresses NF-B signalling either directly by deacetylating the RelA/p65 subunit or indirectly by triggering repressive transcriptional complexes, which frequently involve heterochromatin formation at NF-B promoter regions. SIRT1 expression and signalling are both inhibited by NF-B.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Zhang et al. &nbsp;found that overexpressing RelA/p65 protein increased SIRT1 expression at both the transcriptional and protein levels (36 h treatment), whereas knocking down RelA/p65 expression decreased TNF-induced SIRT1 expression (8 h treatment)(Zhang et al.,2010). They also discovered that the RelA/p65 protein may bind to the SIRT1 promoter&#39;s NF-B motifs. These findings suggest that NF-B may promote SIRT1 expression. Given that SIRT1 induction appeared to occur much later than NF-B activation, it appears that this action could represent a feedback response limiting inflammation and eventually generating endotoxin tolerance.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Evidences supporting this key event is as follows;</span></span></p>
  • <table class="Table" style="border-bottom:1px solid windowtext; border-left:1px solid windowtext; border-right:1px solid windowtext; border-top:1px solid windowtext; font-family:&quot;Times New Roman&quot;; font-size:13px; margin-left:4px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Compound class</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Species</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:87px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Study type</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:145px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">KER findings</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:127px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Reference</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><em><span style="font-size:12.0000pt"><em>nicotinamide</em></span></em></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Human gastric cancer cell lines</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:87px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vitro</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:145px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Decreased, SIRT1 leads to increased NF kB activity </span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:127px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><em><span style="font-size:12.0000pt"><em>Lu </em></span></em><span style="font-size:12.0000pt">et al.,2014</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">nicotinamide or splitomicin</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">non-small-cell lung cancer (NSCLC) cell lines</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:87px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vitro</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:145px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Decreased, SIRT1 leads to increased NF kB activity </span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:127px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Yeung et al.,2004;&nbsp;Luo et al, 2001; Vaziri et al, 2001</span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify">&nbsp;</p>
  • <h1 style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:24pt"><span style="background-color:#ffffff"><strong><strong><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><strong>Increase activation, Nuclear factor kappa B (NF-kB) leads to Antagonism, Estrogen receptor</strong></span></span></strong></strong></span></span></span></h1>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">NF-kB activation in breast cancer has been extensively documented in oestrogen receptor negative (ER) breast tumours and ER breast cancer cell lines, implying a significant inhibitory interaction between both signalling pathways (Biswas et al, 2000, 2001, 2004; Zhou et al, 2005). A rise in both NF-kB DNA-binding activity (Nakshatri et al, 1997) and expression of NF-kB target genes such IL8 coincides with a transition from oestrogen dependence to oestrogen independence in breast cancer, indicating inhibitory cross-talk. The fact that some breast tumours that are resistant to the tumoricidal action of anti-estrogens become sensitised to apoptosis and show a drop in NF-kB activity after treatment with oestrogen supports the inverse relationship between ER and NF-kB activity. </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-This shows that oestrogen&#39;s proapoptotic actions in these tumours are mediated via NF-kB suppression.</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Both in vivo and in vitro studies support the finding;</span></span></p>
  • <table class="Table" style="border-bottom:1px solid windowtext; border-left:1px solid windowtext; border-right:1px solid windowtext; border-top:1px solid windowtext; font-family:&quot;Times New Roman&quot;; font-size:13px; margin-left:4px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Compound class</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Species</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Study type</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:64px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Dose</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">KER findings</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Reference</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Bortezomib</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Breast cancer cell lines</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vitro</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:64px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Increased activity of NF kB, &nbsp;leads to Reduced Estrogen receptor expression</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Singh et al.,2017;&nbsp;Holloway et l.,2004</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Human Breast tissue</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vivo</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:64px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Biswas et al 2000;2003</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Human Breast tissue</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:88px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">In vivo</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:64px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:148px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">-do-</span></span></p>
  • </td>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:129px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Sampepajung et al., 2021; Laere et al.,2007; Indra et al.,2021;</span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <p style="text-align:justify">&nbsp;</p>
  • <h1 style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:24pt"><span style="background-color:#ffffff"><strong><strong><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><strong>Antagonism, Estrogen receptor leads to EMT</strong></span></span></strong></strong></span></span></span></h1>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">E2/ERa signalling, in part through transcriptional activation of luminal/epithelial-related transcription factors, promotes the development of mammary epithelia along a luminal/epithelial lineage. GATA3 and ERa both promote each other (Eeckhoute et al.,2007)</span><span style="font-size:12.0000pt">. In normal breast epithelia, GATA3 is needed for luminal differentiation(Kouros-Mehr </span><span style="font-size:12.0000pt">et al.,2008)</span><span style="font-size:12.0000pt">&nbsp;and GATA3 and ERa control many of the same genes (Wilson </span><span style="font-size:12.0000pt">et al.,2008)</span><span style="font-size:12.0000pt">. &nbsp;In mice, forcing GATA3 expression in mesenchymal breast cancer cells produces mesenchymal&ndash;epithelial transition (MET), a reversible mechanism analogous to EMT, and prevents tumour metastasis (Yan </span><span style="font-size:12.0000pt">et al.,2010)</span><span style="font-size:12.0000pt">. Another ERa-interacting transcription factor, FOXA1, is essential for luminal lineage in mammary epithelia and stimulates ductal development in mice (Bernardo </span><span style="font-size:12.0000pt">et al.,2010)</span><span style="font-size:12.0000pt">. FOXA1 enhances ERa gene expression by increasing the accessibility of estrogen-response regions for ERa binding (Nakshatri </span><span style="font-size:12.0000pt">et al.,</span><span style="font-size:12.0000pt">&nbsp;2009). In breast cancer cells, on the other hand, E2 appears to increase FOXA1 expression. Importantly, ERa, FOXA1, and GATA3 are all positive breast cancer prognostic factors(Nakshatri </span><span style="font-size:12.0000pt">et al.,2009).</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Ye et al. &nbsp;investigated the impact of ERa overexpression in ERa-negative breast cancer cell lines (MDA-MB-468, MDA-MB-231) or ERa knockdown in ERa-positive cell lines (MCF-7, T47D) on Slug and Snail expression and phenotypes in ERa-positive cell lines (MCF-7, T47D)(Ye et al., 2010). Slug is repressed, E-cadherin is increased, and cells develop as adherent colonies with less invasiveness when ERa is forced to get&nbsp;expressed. ERa knockdown, on the other hand, causes an increase in Slug expression, a decrease in E-cadherin, and spindle-shaped invasive cells.</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">Wik et al used integrated molecular profiling to examine Endometrial cancer samples from a primary investigation cohort and three independent validation cohorts (Wik et al.,2013). Patient survival was closely linked to ER-a immunohistochemical staining and receptor gene (ESR1) mRNA expression. In the study cohort, ER-a negative was related with activation of genes implicated in Wnt, Sonic Hedgehog, and TGF-b signalling, indicating epithelial&ndash;mesenchymal transition (EMT)</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <h1 style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:24pt"><span style="background-color:#ffffff"><strong><strong><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><strong>EMT leads to Metastasis, Breast Cancer</strong></span></span></strong></strong></span></span></span></h1>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">The &ldquo;epithelial&ndash;mesenchymal transition&rdquo; (EMT), a key developmental regulatory program, has been reported to play critical and intricate roles in promoting tumor invasion and metastasis in epithelium-derived carcinomas.</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt">&nbsp;&quot;EMT is marked by a decrease in E-cadherin expression, increase in vimentin, fibronectin, and N-cadherin expression, and translocation of beta-catenin into the nucleus&#39;&#39;(Irani et al., 2018). EMT is a master mechanism in cancer cells that allows them to lose their epithelial characteristics and gain mesenchymal-like qualities. EMT is the most crucial step in initiating metastasis, including metastasis to lymph nodes, because tumour cell movement is a pre-requisite for the metastatic process (Da et al., 2017). Multiple signalling pathways cause cancer cells to lose their cell-to-cell connections and cellular polarity during EMT, increasing their motility and invasive ness (Huang et al., 2017). MMPs cause E-cadherin to be cleaved, which increases tumour cell motility and invasion (Pradella et al., 2017).</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify">&nbsp;</p>
  • <h3>Quantitative Consideration</h3>
  • <p>&nbsp;</p>
  • <p>The techniques used for quantifying KE&#39;s were reliable with repeatability and reproducibility. Assays were fit for the purpose.</p>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px; text-align:justify; width:976px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:2px solid black; vertical-align:top; width:73px">
  • <p>&nbsp;</p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:2px solid black; vertical-align:top; width:139px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">MIE 1669</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:2px solid black; vertical-align:top; width:128px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">KE 155</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:2px solid black; vertical-align:top; width:120px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">KE 185</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:2px solid black; vertical-align:top; width:126px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">KE1980</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:2px solid black; vertical-align:top; width:131px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">KE1981</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:2px solid black; vertical-align:top; width:128px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">KE 1172</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:2px solid black; vertical-align:top; width:135px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">KE 112</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:2px solid black; vertical-align:top; width:106px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">KE1457</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:2px solid black; vertical-align:top; width:130px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">AO1982</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:73px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Human</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:139px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">PCR-RFLP </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">8-OHdG &ndash; ELISA &amp; MDA </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">(<span style="background-color:#ffffff"><span style="color:#212121">Chen CH et al 2011</span></span>)</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:120px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Acetaldehyde assay,</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Extract preparation and Western blotting,</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">N<sup>2</sup>- Ethyl dGuo quantitation</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff"><span style="color:#222222">Abraham J et al 2011</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:126px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:131px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">qRT-PCR,immunohistochemistry (<span style="background-color:#ffffff"><span style="color:#212121">McGlynn LM et al 2014</span></span>)</span></span></p>
  • <p>&nbsp;</p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:135px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">qRT-PCR, immunohistochemistry (Sampepajung E et al 2021, Van Laere SJ et al 2007,)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:106px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">IHC,micro array,qPCR, SNP array(<span style="background-color:#ffffff"><span style="color:#212121">Wik E et al 2013</span></span>)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:130px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Liang et al., 2013;Liu et al., 2016;Zhang et al.,2015; Chen et al., 2015;Yue et al.,2019;Wang et al., &nbsp;2018;Yu et al.,2017</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:73px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Human Tissues</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:139px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:120px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff"><span style="color:#222222">-</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:126px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:131px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">qRT-PCR,Western blotting,Luciferase reporter assay H2,H4,H7,H8,H9</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Micro-array (Shen ZL et al 2016)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:135px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:106px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:130px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:73px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Human Cell lines</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:139px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">RT- PCR, Western Blot </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">MAPK assay, Immunoprecipitation,</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Western immunoblotting </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Thymidine uptake </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">ECL-SDS PAGE, </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">RIA </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Adduct removal measurements,</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">DNA isolation, </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">TLC, </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">LCMS </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Acetaldehyde estimation, </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">DNA adducts &ndash; LC-ESI-MS/ MS-SRM, Western blotting </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Western blotting, enzymatic assay, </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">LC-ESI-MS/ MS-SRM </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">DNA oxidative damage by ELISA, Immunofluorescence, cell culture, </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">8-OHdG &ndash; ELISA &amp; Ph2A<span style="background-color:#ffffff">&lambda;&ndash;fociformation assays, </span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff">P53 luciferase assays, </span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff">qPCR, </span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff">Western Blotting</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff">(</span>Elise A. Triano&nbsp;et al 2003,</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Etique.Nicolas etiqu&nbsp;et al 2004,</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff">Izevbigie EB</span>&nbsp;et al 2002,</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff">Przylipiak A</span>&nbsp;et al 1996,</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff">Singletary KW et al 2001,</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff">Singletary KW et al 2004,</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff">Abraham J et al 2011,</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff">Zhao M et al 2017,</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Jessy <span style="background-color:#ffffff"><span style="color:#212121">Abraham J et al 2011</span>)</span></span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:120px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:126px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Western blotting,clonal survival assay,FACs(van Jaarsveld MT et al 2014)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:131px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Micro-array, qRT-PCR,Western blotting,Luciferase reporter assay</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">(Guo S et al 2020,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Bae HJ et al 2014,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Zhou J et al 2017,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Fu H et al 2018,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Lian B et al 2018</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Guan Y et al 2017</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Yang X et al 2014)</span></span></p>
  • <p>&nbsp;</p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">qRT-PCR,,Luciferase reporter assay </span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Cell based HDAC assay(<span style="background-color:#ffffff"><span style="color:#212121">Yeung F et al 2004</span></span>)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:135px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">qPCR, western blotting, immunoprecipitation, immunofluorescent microscopy, Luciferase reporter assay </span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">EMSA,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">IHC,Cell viability assay (Singh S et al 2007, Holloway JN &nbsp;et al 2004,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Biswas DK et al 2000,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Song RX et al 2005,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Scherbakov AM et al 2005,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Scherbakov AM et al 2009)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:106px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">qRT-PCR,cell viability assay,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Western blotting,EdU incorporation assay(<span style="background-color:#ffffff"><span style="color:#212121">Bouris P</span></span>&nbsp;et al 2015, </span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff"><span style="color:#212121">Liu Y</span></span>&nbsp;et al 2015,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff"><span style="color:#212121">Al Saleh S</span></span>&nbsp;et al 2011,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff"><span style="color:#212121">Zeng Q</span></span>&nbsp;et al 2014,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff"><span style="color:#212121">Ye Y</span></span>&nbsp;et al 2010,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff"><span style="color:#222222">Lin, HY</span></span>&nbsp;et al 2018)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:130px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">qRT-PCR,,Luciferase reporter assay ,immunoblotting,immunoprecipitation,cell invasion assay,cell migration assay, bioluminesence imaging,wound healing assay,Wound scratch &amp; Transwell assay, Microarray,Immunofluorescence, Immunohistochemistry,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Gujral et al.,2014;Cui et al.,2013;Shiota et al.,2012;Gao et al.,2018;Chen et al.,2017;Liu et al.,2020;Casas et al.,2011;Jackstadt et al.,2013;Kong et al.,2016;Zhang et al.,2014;Huang et al.,2014</span></span></p>
  • <p>&nbsp;</p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:73px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Rat</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:139px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Free radical assay</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">GC-MS-SIM </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">&nbsp;(Hackney JF&nbsp;et al 1992,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">McDermott EW&nbsp;et al 1992)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Quantification of ATase activity &ndash; BSA method</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">APNG assay,</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">OXOG glycosylase activity assay,</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Western immunoblotting,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Immunohistochemical detection of ATase. (Kotova N et al, 2013)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:120px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:126px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Free radicCyQuant cell Proliferation assay (Abdelfattah, N. et al 2018)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:131px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:135px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:106px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:130px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:73px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Rat Cell lines</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:139px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Flow cytometric micronucleus assay,</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Cell cycle analysis,</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Replication fork elongation assay,</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Cytotoxicity assay,</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Recombination assay, (<span style="background-color:#ffffff"><span style="color:#2a2a2a">Panida Navasumrit et al, 2001</span></span>)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:120px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:126px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:131px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:135px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:106px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:130px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:73px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Mice</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:139px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Comet assay, </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">ROS generation assay. </span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">(Lei &nbsp;Guo et al 2008)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">FISH karyotyping,</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Invivo point mutation assay,</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Whole genome sequencing of HSC clones. (<span style="background-color:#ffffff"><span style="color:#212121">Garaycoechea JI et al, 2012</span></span>)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:120px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">In vivo point mutation assay</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff"><span style="color:#222222">Garaycoechea JI et al, 2018</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:126px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Free radicCyQuant cell Proliferation assay (Abdelfattah, N. et al 2018)</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">RNA sequence analysis,Immuno staining,immunoblotting,Flowcytometry,COMET assay,qRT PCR(Liu Z et al 2017)</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Microarray (Zhang X et al 2011)</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">qRT PCR,RIP assay,Immunogold EM(Wan G et al 2013)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:131px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">qRT-PCR,Western blotting,Luciferase reporter assay,ELISA,cell culture</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Bai XZ et al 2018</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">qRT-PCR,Southern and northern blotting, reporter gene &nbsp;assay(Paul T et al 2008)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:135px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">EMSA,Autoradiography,Immunofluorescent microscopy, Westernblotting (Biswas DK et al 2001)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:106px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:130px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Chen et al.,2017; Gumireddy et al.,2009; Yu et al., 2016; Sarkar et al.,2015</span></span></p>
  • <p>&nbsp;</p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:73px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Canine</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:139px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:120px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:126px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">micro array(Bulkowska M et al 2017)</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:131px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:135px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:106px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:130px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:73px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Yeast</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:139px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:120px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Fluctuation assay</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px"><span style="background-color:#ffffff"><span style="color:#222222">Voordeckers K et al, 2020</span></span></span></span></p>
  • <p>&nbsp;</p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:126px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:131px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:128px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:135px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:106px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • <td style="border-bottom:2px solid black; border-left:2px solid black; border-right:2px solid black; border-top:none; vertical-align:top; width:130px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">-</span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <div id="considerations_for_potential_applicaitons">
  • <h2>Considerations for Potential Applications of the AOP (optional)</h2>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0pt">Intended uses of this AOP:</span></span></span></p>
  • <ul>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0pt">Helpful for risk assessors, in assessing the risk of alcohol on metastatic breast cancer</span></span></span></li>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0pt">If the causal relationship is established between key events, it may be useful drug targets</span></span></span></li>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0pt">An alternative model to animal model based test methods</span></span></span></li>
  • </ul>
  • </div>
  • <div id="references">
  • <h2>References</h2>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">44.Non-Technical Summary Archived 24 July 2006 at the Wayback Machine. UK Committee on Carcinogenicity of Chemicals in Food Consumer Products and the Environment (COC)</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Abdelfattah, N., Rajamanickam, S., Panneerdoss, S., Timilsina, S., Yadav, P., Onyeagucha, B. C., ... &amp; Rao, M. K. (2018). MiR-584-5p potentiates vincristine and radiation response by inducing spindle defects and DNA damage in medulloblastoma. Nature communications, 9(1), 1-19.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Abraham, J., Balbo, S., Crabb, D., &amp; Brooks, P. J. (2011). Alcohol metabolism in human cells causes DNA damage and activates the fanconi anemia&ndash;breast cancer susceptibility (FA‐BRCA) DNA damage response network. Alcoholism: Clinical and Experimental Research, 35(12), 2113-2120.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Al Saleh, S., Al Mulla, F., &amp; Luqmani, Y. A. (2011). Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells. PloS one, 6(6), e20610</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Albano, E., Clot, P., Morimoto, M., Tomasi, A., Ingelman‐Sundberg, M., &amp; French, S. W. (1996). Role of cytochrome P4502E1‐dependent formation of hydroxyethyl free radical in the development of liver damage in rats intragastrically fed with ethanol. Hepatology, 23(1), 155-163.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Ali, S., &amp; Coombes, R. C. (2002). Endocrine-responsive breast cancer and strategies for combating resistance. Nature Reviews Cancer, 2(2), 101-112.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Amundson, S. A., &amp; Chen, D. J. (1996). Ionizing radiation-induced mutation of human cells with different DNA repair capacities. Advances in Space Research, 18(1-2), 119-126.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Anderson, C. W. (1993). DNA damage and the DNA-activated protein kinase. Trends in biochemical sciences, 18(11), 433-437</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Bae, H. J., Noh, J. H., Kim, J. K., Eun, J. W., Jung, K. H., Kim, M. G., ... &amp; Nam, S. W. (2014). MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene, 33(20), 2557-2567.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Bai, X. Z., Zhang, J. L., Liu, Y., Zhang, W., Li, X. Q., Wang, K. J., ... &amp; Hu, D. H. (2018). MicroRNA-138 aggravates inflammatory responses of macrophages by targeting SIRT1 and regulating the NF-&kappa;B and AKT pathways. Cellular Physiology and Biochemistry, 49(2), 489-500.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Basu, A. K., &amp; Essigmann, J. M. (1990). Site-specifically alkylated oligodeoxynucleotides: probes for mutagenesis, DNA repair and the structural effects of DNA damage. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 233(1-2), 189-201.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Bedalov, A., Gatbonton, T., Irvine, W. P., Gottschling, D. E., &amp; Simon, J. A. (2001). Identification of a small molecule inhibitor of Sir2p. Proceedings of the National Academy of Sciences, 98(26), 15113-15118.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Bernardo, G. M., Lozada, K. L., Miedler, J. D., Harburg, G., Hewitt, S. C., Mosley, J. D., ... &amp; Keri, R. A. (2010). FOXA1 is an essential determinant of ER&alpha; expression and mammary ductal morphogenesis. Development, 137(12), 2045-2054.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Biswas, D. K., Cruz, A. P., Gansberger, E., &amp; Pardee, A. B. (2000). Epidermal growth factor-induced nuclear factor &kappa;B activation: a major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proceedings of the National Academy of Sciences, 97(15), 8542-8547</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Biswas, D. K., Dai, S. C., Cruz, A., Weiser, B., Graner, E., &amp; Pardee, A. B. (2001). The nuclear factor kappa B (NF-&kappa;B): a potential therapeutic target for estrogen receptor negative breast cancers. Proceedings of the National Academy of Sciences, 98(18), 10386-10391.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Biswas, D. K., Martin, K. J., McAlister, C., Cruz, A. P., Graner, E., Dai, S. C., &amp; Pardee, A. B. (2003). Apoptosis caused by chemotherapeutic inhibition of nuclear factor-&kappa;B activation. Cancer research, 63(2), 290-295</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Biswas, D. K., Martin, K. J., McAlister, C., Cruz, A. P., Graner, E., Dai, S. C., &amp; Pardee, A. B. (2003). Apoptosis caused by chemotherapeutic inhibition of nuclear factor-&kappa;B activation. Cancer research, 63(2), 290-295.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Biswas, D. K., Shi, Q., Baily, S., Strickland, I., Ghosh, S., Pardee, A. B., &amp; Iglehart, J. D. (2004). NF-&kappa;B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proceedings of the National Academy of Sciences, 101(27), 10137-10142.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Biswas, D. K., Singh, S., Shi, Q., Pardee, A. B., &amp; Iglehart, J. D. (2005). Crossroads of estrogen receptor and NF-&kappa;B signaling. Science&#39;s STKE, 2005(288), pe27-pe27. </span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Blander, G., &amp; Guarente, L. (2004). The Sir2 family of protein deacetylases. Annual review of biochemistry, 73(1), 417-435..</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Boffetta, P., &amp; Hashibe, M. (2006). Alcohol and cancer. The lancet oncology, 7(2), 149-156.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Bouris, P., Skandalis, S. S., Piperigkou, Z., Afratis, N., Karamanou, K., Aletras, A. J., ... &amp; Karamanos, N. K. (2015). Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix Biology, 43, 42-60.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Brabletz, T., Kalluri, R., Nieto, M. A., &amp; Weinberg, R. A. (2018). EMT in cancer. Nature Reviews Cancer, 18(2), 128-134. </span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Breen, A. P., &amp; Murphy, J. A. (1995). Reactions of oxyl radicals with DNA. Free radical biology and medicine, 18(6), 1033-1077.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Bulkowska, M., Rybicka, A., Senses, K. M., Ulewicz, K., Witt, K., Szymanska, J., ... &amp; Krol, M. (2017). MicroRNA expression patterns in canine mammary cancer show significant differences between metastatic and non-metastatic tumours. BMC cancer, 17(1), 1-17.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Casas E, Kim J, Bendesky A, Ohno-Machado L, Wolfe CJ, Yang J.(2011) Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer Res. 1;71(1):245-54</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Cederbaum, A. I. (1989). Introduction: role of lipid peroxidation and oxidative stress in alcohol toxicity. Free Radical Biology and Medicine, 7(5), 537-539.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Chen L, Mai W, Chen M, Hu J, Zhuo Z, Lei X, Deng L, Liu J, Yao N, Huang M, Peng Y, Ye W, Zhang D.(2017) Arenobufagin inhibits prostate cancer epithelial-mesenchymal transition and metastasis by down-regulating &beta;-catenin. Pharmacol Res. 123:130-142</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Chen, C. H., Pan, C. H., Chen, C. C., &amp; Huang, M. C. (2011). Increased oxidative DNA damage in patients with alcohol dependence and its correlation with alcohol withdrawal severity. Alcoholism: Clinical and Experimental Research, 35(2), 338-344.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Chen, H. C., Jeng, Y. M., Yuan, R. H., Hsu, H. C., &amp; Chen, Y. L. (2012). SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis. Annals of surgical oncology, 19(6), 2011-2019</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Chen, L. F., &amp; Greene, W. C. (2004). Shaping the nuclear action of NF-&kappa;B. Nature reviews Molecular cell biology, 5(5), 392-401.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Chen, S. P., Liu, B. X., Xu, J., Pei, X. F., Liao, Y. J., Yuan, F., &amp; Zheng, F. (2015). MiR-449a suppresses the epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma by multiple targets. BMC cancer, 15(1), 1-13.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Chen, W., &amp; Bhatia, R. (2013). Roles of SIRT1 in leukemogenesis. Current opinion in hematology, 20(4). </span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Chen, W., Wang, H., Chen, H., Liu, S., Lu, H., Kong, D., ... &amp; Lu, Z. (2014). Clinical significance and detection of micro RNA‐21 in serum of patients with diffuse large B‐cell lymphoma in C hinese population. European journal of haematology, 92(5), 407-412.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Chinnasamy, N., Rafferty, J. A., Margison, G. P., O&#39;CONNOR, P. J., &amp; Elder, R. H. (1997). Induction of O 6-alkylguanine-DNA-alkyltransferase in the hepatocytes of rats following treatment with 2-acetylaminofluorene. DNA and cell biology, 16(4), 493-500.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Clot, P. A. O. L. O., Albano, E. M. A. N. U. E. L. E., Eliasson, E. R. I. K., Tabone, M. A. R. C. O., Arico, S. A. R. I. N. O., Israel, Y., ... &amp; Ingelman-Sundberg, M. (1996). Cytochrome P4502E1 hydroxyethyl radical adducts as the major antigen in autoantibody formation among alcoholics. Gastroenterology, 111(1), 206-216.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Cui B, Zhang S, Chen L, Yu J, Widhopf GF 2nd, Fecteau JF, Rassenti LZ, Kipps TJ. (2013)Targeting ROR1 inhibits epithelial-mesenchymal transition and metastasis. Cancer Res. 73(12):3649-60.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Da, C., Wu, K., Yue, C., Bai, P., Wang, R., Wang, G., ... &amp; Hou, P. (2017). N-cadherin promotes thyroid tumorigenesis through modulating major signaling pathways. Oncotarget, 8(5), 8131.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Dahle, J., Brunborg, G., Svendsrud, D. H., Stokke, T., &amp; Kvam, E. (2008). Overexpression of human OGG1 in mammalian cells decreases ultraviolet A induced mutagenesis. Cancer letters, 267(1), 18-25.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Eeckhoute, J., Keeton, E. K., Lupien, M., Krum, S. A., Carroll, J. S., &amp; Brown, M. (2007). Positive cross-regulatory loop ties GATA-3 to estrogen receptor &alpha; expression in breast cancer. Cancer research, 67(13), 6477-6483.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Etique, N., Chardard, D., Chesnel, A., Merlin, J. L., Flament, S., &amp; Grillier-Vuissoz, I. (2004). Ethanol stimulates proliferation, ER&alpha; and aromatase expression in MCF-7 human breast cancer cells. International journal of molecular medicine, 13(1), 149-155.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Feldmann, E., Schmiemann, V., Goedecke, W., Reichenberger, S., &amp; Pfeiffer, P. (2000). DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic acids research, 28(13), 2585-2596.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Forsyth, C. B., Tang, Y., Shaikh, M., Zhang, L., &amp; Keshavarzian, A. (2010). Alcohol stimulates activation of Snail, epidermal growth factor receptor signaling, and biomarkers of epithelial&ndash;mesenchymal transition in colon and breast cancer cells. Alcoholism: Clinical and Experimental Research, 34(1), 19-31.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">French, S. W., Wong, K., Jui, L., Albano, E., Hagbjork, A. L., &amp; Ingelman-Sundberg, M. (1993). Effect of ethanol on cytochrome P450 2E1 (CYP2E1), lipid peroxidation, and serum protein adduct formation in relation to liver pathology pathogenesis. Experimental and molecular pathology, 58(1), 61-75.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Fu, H., Song, W., Chen, X., Guo, T., Duan, B., Wang, X., ... &amp; Zhang, C. (2018). MiRNA-200a induce cell apoptosis in renal cell carcinoma by directly targeting SIRT1. Molecular and cellular biochemistry, 437(1), 143-152.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Gagn&eacute;, J. P., Rouleau, M., &amp; Poirier, G. G. (2012). PARP-1 activation&mdash;bringing the pieces together. Science, 336(6082), 678-679.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Gao J, Yang Y, Qiu R, Zhang K, Teng X, Liu R, Wang Y. (2018) Proteomic analysis of the OGT interactome: novel links to epithelial-mesenchymal transition and metastasis of cervical cancer. Carcinogenesis. 39(10):1222-1234</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Garaycoechea, J. I., Crossan, G. P., Langevin, F., Daly, M., Arends, M. J., &amp; Patel, K. J. (2012). Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature, 489(7417), 571-575.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Garaycoechea, J. I., Crossan, G. P., Langevin, F., Mulderrig, L., Louzada, S., Yang, F., ... &amp; Patel, K. J. (2018). Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature, 553(7687), 171-177.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Gocke, E., &amp; M&uuml;ller, L. (2009). In vivo studies in the mouse to define a threshold for the genotoxicity of EMS and ENU. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 678(2), 101-107.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Greten, F. R., &amp; Karin, M. (2004). The IKK/NF-&kappa;B activation pathway&mdash;a target for prevention and treatment of cancer. Cancer letters, 206(2), 193-199.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">GROMBACHER, T., &amp; KAINA, B. (1996). Isolation and analysis of inducibility of the rat N-methylpurine-DNA glycosylase promoter. DNA and cell biology, 15(7), 581-588</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Guan, Y., Rao, Z., &amp; Chen, C. (2018). miR-30a suppresses lung cancer progression by targeting SIRT1. Oncotarget, 9(4), 4924.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Gujral TS, Chan M, Peshkin L, Sorger PK, Kirschner MW, MacBeath G. (2014) A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell. 159(4):844-56</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Guo, S., Ma, B., Jiang, X., Li, X., &amp; Jia, Y. (2020). Astragalus polysaccharides inhibits tumorigenesis and lipid metabolism through miR-138-5p/SIRT1/SREBP1 pathway in prostate cancer. Frontiers in Pharmacology, 11, 598</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Guo, S., Ma, B., Jiang, X., Li, X., &amp; Jia, Y. (2020). Astragalus polysaccharides inhibits tumorigenesis and lipid metabolism through miR-138-5p/SIRT1/SREBP1 pathway in prostate cancer. Frontiers in Pharmacology, 11, 598.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Hackney, J. F., Engelman, R. W., &amp; Good, R. A. (1992). Ethanol calories do not enhance breast cancer in isocalorically fed C3H/Ou mice.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Han, L., Liang, X. H., Chen, L. X., Bao, S. M., &amp; Yan, Z. Q. (2013). SIRT1 is highly expressed in brain metastasis tissues of non-small cell lung cancer (NSCLC) and in positive regulation of NSCLC cell migration. International journal of clinical and experimental pathology, 6(11), 2357. &nbsp;</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Holloway, J. N., Murthy, S., &amp; El-Ashry, D. (2004). A cytoplasmic substrate of mitogen-activated protein kinase is responsible for estrogen receptor-&alpha; down-regulation in breast cancer cells: the role of nuclear factor-&kappa;B. Molecular Endocrinology, 18(6), 1396-1410.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., ... &amp; Sinclair, D. A. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425(6954), 191-196.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Huang Y, Zhao M, Xu H, Wang K, Fu Z, Jiang Y, Yao Z. (2014) RASAL2 down-regulation in ovarian cancer promotes epithelial-mesenchymal transition and metastasis. Oncotarget. 5(16):6734-45</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Huang, R., &amp; Zong, X. (2017). Aberrant cancer metabolism in epithelial&ndash;mesenchymal transition and cancer metastasis: Mechanisms in cancer progression. Critical reviews in oncology/hematology, 115, 13-22</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Huang, R., &amp; Zong, X. (2017). Aberrant cancer metabolism in epithelial&ndash;mesenchymal transition and cancer metastasis: Mechanisms in cancer progression. Critical reviews in oncology/hematology, 115, 13-22.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Hwang, B. J., Madabushi, A., Jin, J., Lin, S. Y. S., &amp; Lu, A. L. (2014). Histone/protein deacetylase SIRT1 is an anticancer therapeutic target. American journal of cancer research, 4(3), 211.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Irani, S., &amp; Dehghan, A. (2018). The expression and functional significance of vascular endothelial-cadherin, CD44, and vimentin in oral squamous cell carcinoma. Journal of International Society of Preventive &amp; Community Dentistry, 8(2), 110.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Ishii H, Thurman R, Ingelman-Sundberg M, Cederbaum A, Fernandez-Checa J, Kato S, Yokoyama H, Tsukamoto H. (1996). Oxidative stress in alcoholic liver injury. Alcohol Clin Exp Res 20:162A-l67A.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Ito, T., Yagi, S., &amp; Yamakuchi, M. (2010). MicroRNA-34a regulation of endothelial senescence. Biochemical and biophysical research communications, 398(4), 735-740.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Jackstadt R, R&ouml;h S, Neumann J, Jung P, Hoffmann R, Horst D, Berens C, Bornkamm GW, Kirchner T, Menssen A, Hermeking H. (2013)AP4 is a mediator of epithelial-mesenchymal transition and metastasis in colorectal cancer. J Exp Med. 210(7):1331-50.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Jiang, G., Wen, L., Zheng, H., Jian, Z., &amp; Deng, W. (2016). miR‐204‐5p targeting SIRT1 regulates hepatocellular carcinoma progression. Cell biochemistry and function, 34(7), 505-510</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Kalkhoven, E., Wissink, S., van der Saag, P. T., &amp; van der Burg, B. (1996). Negative Interaction between the RelA (p65) Subunit of NF-&kappa;B and the Progesterone Receptor (&lowast;). Journal of Biological Chemistry, 271(11), 6217-6224.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Klungland, A., Rosewell, I., Hollenbach, S., Larsen, E., Daly, G., Epe, B., ... &amp; Barnes, D. E. (1999). Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proceedings of the National Academy of Sciences, 96(23), 13300-13305.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Knecht, K. T., Bradford, B. U., Mason, R. P., &amp; Thurman, R. G. (1990). In vivo formation of a free radical metabolite of ethanol. Molecular Pharmacology, 38(1), 26-30.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Kong J, Sun W, Li C, Wan L, Wang S, Wu Y, Xu E, Zhang H, Lai M. (2016)Long non-coding RNA LINC01133 inhibits epithelial-mesenchymal transition and metastasis in colorectal cancer by interacting with SRSF6. Cancer Lett. 380(2):476-484</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Kotova, N., Vare, D., Schultz, N., Gradecka Meesters, D., Stępnik, M., Graw&eacute;, J., ... &amp; Jenssen, D. (2013). Genotoxicity of alcohol is linked to DNA replication-associated damage and homologous recombination repair. Carcinogenesis, 34(2), 325-330.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Kouros-Mehr, H., Kim, J. W., Bechis, S. K., &amp; Werb, Z. (2008). GATA-3 and the regulation of the mammary luminal cell fate. Current opinion in cell biology, 20(2), 164-170.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">KUKIEŁKA, E., &amp; CEDERBAUM, A. I. (1992). The effect of chronic ethanol consumption on NADH-and NADPH-dependent generation of reactive oxygen intermediates by isolated rat liver nuclei. Alcohol and Alcoholism, 27(3), 233-239.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Kukielka, E., &amp; Cederbaum, A. I. (1994). DNA strand cleavage as a sensitive assay for the production of hydroxyl radicals by microsomes: role of cytochrome P4502E1 in the increased activity after ethanol treatment. Biochemical Journal, 302(3), 773-779.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Kunita, A., Morita, S., Irisa, T. U., Goto, A., Niki, T., Takai, D., ... &amp; Fukayama, M. (2018). MicroRNA-21 in cancer-associated fibroblasts supports lung adenocarcinoma progression. Scientific reports, 8(1), 1-14.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Lai, E. C. (2002). Micro RNAs are complementary to 3&prime; UTR sequence motifs that mediate negative post-transcriptional regulation. Nature genetics, 30(4), 363-364.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Landry, J., Slama, J. T., &amp; Sternglanz, R. (2000). Role of NAD+ in the deacetylase activity of the SIR2-like proteins. Biochemical and biophysical research communications, 278(3), 685-690.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Lee, J., Padhye, A., Sharma, A., Song, G., Miao, J., Mo, Y. Y., ... &amp; Kemper, J. K. (2010). A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. Journal of Biological Chemistry, 285(17), 12604-12611.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Lee, M. S., Jeong, M. H., Lee, H. W., Han, H. J., Ko, A., Hewitt, S. M., ... &amp; Song, J. (2015). PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nature communications, 6(1), 1-14. </span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">LEFEBVRE, P., ZAK, P., &amp; LAVAL, F. (1993). Induction of O6-methylguanine-DNA-methyltransferase and N3-methyladenine-DNA-glycosylase in human cells exposed to DNA-damaging agents. DNA and cell biology, 12(3), 233-241.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Lei &nbsp;Guo (2008). Basic and clinical pharmacology and toxicology.103:222-227.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Li, M., Lu, Y., Hu, Y., Zhai, X., Xu, W., Jing, H., ... &amp; Yao, J. (2014). Salvianolic acid B protects against acute ethanol-induced liver injury through SIRT1-mediated deacetylation of p53 in rats. Toxicology Letters, 228(2), 67-74.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Li, Q., &amp; Verma, I. M. (2002). NF-&kappa;B regulation in the immune system. Nature reviews immunology, 2(10), 725-734.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Li, Y. S., Song, M. F., Kasai, H., &amp; Kawai, K. (2013). Generation and threshold level of 8-OHdG as oxidative DNA damage elicited by low dose ionizing radiation. Genes and Environment.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Lian, B., Yang, D., Liu, Y., Shi, G., Li, J., Yan, X., ... &amp; Zhang, R. (2018). miR-128 targets the SIRT1/ROS/DR5 pathway to sensitize colorectal cancer to TRAIL-induced apoptosis. Cellular Physiology and Biochemistry, 49(6), 2151-2162.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Lieber, C. S. (1992). Metabolism of ethanol. In Medical and nutritional complications of alcoholism (pp. 1-35). Springer, Boston, MA.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Lin, H. Y., Liang, Y. K., Dou, X. W., Chen, C. F., Wei, X. L., Zeng, D., ... &amp; Zhang, G. J. (2018). Notch3 inhibits epithelial&ndash;mesenchymal transition in breast cancer via a novel mechanism, upregulation of GATA-3 expression. Oncogenesis, 7(8), 1-15</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Little, J. B. (2000). Radiation carcinogenesis. Carcinogenesis, 21(3), 397-404.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Liu M, Xiao Y, Tang W, Li J, Hong L, Dai W, Zhang W, Peng Y, Wu X, Wang J, Chen Y, Bai Y, Lin J, Yang Q, Wang Y, Lin Z, Liu S, Xiong J, Wang J, Xiang L. (2020) HOXD9 promote epithelial-mesenchymal transition and metastasis in colorectal carcinoma. Cancer Med. 9(11):3932-3943</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Liu, F., Xia, Y., Parker, A. S., &amp; Verma, I. M. (2012). IKK biology. Immunological reviews, 246(1), 239-253.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Liu, S. Y., Li, X. Y., Chen, W. Q., Hu, H., Luo, B., Shi, Y. X., ... &amp; Lu, Z. X. (2017). Demethylation of the MIR145 promoter suppresses migration and invasion in breast cancer. Oncotarget, 8(37), 61731.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Liu, Y., Liu, R., Fu, P., Du, F., Hong, Y., Yao, M., ... &amp; Zheng, S. (2015). N1-Guanyl-1, 7-diaminoheptane sensitizes estrogen receptor negative breast cancer cells to doxorubicin by preventing epithelial-mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2 activation. Cellular Physiology and Biochemistry, 36(6), 2494-2503</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Liu, Z., Jin, Z. Y., Liu, C. H., Xie, F., Lin, X. S., &amp; Huang, Q. (2015). MicroRNA-21 regulates biological behavior by inducing EMT in human cholangiocarcinoma. International journal of clinical and experimental pathology, 8(5), 4684.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Liu, Z., Zhang, C., Khodadadi-Jamayran, A., Dang, L., Han, X., Kim, K., ... &amp; Zhao, R. (2017). Canonical microRNAs enable differentiation, protect against DNA damage, and promote cholesterol biosynthesis in neural stem cells. Stem cells and development, 26(3), 177-188</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Lopez-Santillan, M., Larrabeiti-Etxebarria, A., Arzuaga-Mendez, J., Lopez-Lopez, E., &amp; Garcia-Orad, A. (2018). Circulating miRNAs as biomarkers in diffuse large B-cell lymphoma: a systematic review. Oncotarget, 9(32), 22850.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Lovis, P., Roggli, E., Laybutt, D. R., Gattesco, S., Yang, J. Y., Widmann, C., ... &amp; Regazzi, R. (2008). Alterations in microRNA expression contribute to fatty acid&ndash;induced pancreatic &beta;-cell dysfunction. Diabetes, 57(10), 2728-2736.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Lu, J., Zhang, L., Chen, X., Lu, Q., Yang, Y., Liu, J., &amp; Ma, X. (2014). SIRT1 counteracted the activation of STAT3 and NF-&kappa;B to repress the gastric cancer growth. International journal of clinical and experimental medicine, 7(12), 5050.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Luo, J., Chen, P., Xie, W., &amp; Wu, F. (2017). MicroRNA-138 inhibits cell proliferation in hepatocellular carcinoma by targeting Sirt1. Oncology reports, 38(2), 1067-1074.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Luo, J., Nikolaev, A. Y., Imai, S. I., Chen, D., Su, F., Shiloh, A., ... &amp; Gu, W. (2001). Negative control of p53 by Sir2&alpha; promotes cell survival under stress. Cell, 107(2), 137-148.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Ma, H., Wang, J., Abdel-Rahman, S. Z., Boor, P. J., &amp; Khan, M. F. (2008). Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline. Toxicology and applied pharmacology, 233(2), 247-253.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">McDermott, E. W., O&#39;Dwyer, P. J., &amp; O&#39;Higgins, N. J. (1992). Dietary alcohol intake does not increase the incidence of experimentally induced mammary carcinoma. European journal of surgical oncology, 18(3), 251-254.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">McGlynn, L. M., Zino, S., MacDonald, A. I., Curle, J., Reilly, J. E., Mohammed, Z. M., ... &amp; Shiels, P. G. (2014). SIRT2: tumour suppressor or tumour promoter in operable breast cancer?. European Journal of Cancer, 50(2), 290-301.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">McMahon, S. J., Schuemann, J., Paganetti, H., &amp; Prise, K. M. (2016). Mechanistic modelling of DNA repair and cellular survival following radiation-induced DNA damage. Scientific reports, 6(1), 1-14.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Merkhofer, E. C., Cogswell, P., &amp; Baldwin, A. S. (2010). Her2 activates NF-&kappa;B and induces invasion through the canonical pathway involving IKK&alpha;. Oncogene, 29(8), 1238-1248. </span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Mirzaei, H., Masoudifar, A., Sahebkar, A., Zare, N., Sadri Nahand, J., Rashidi, B., ... &amp; Jaafari, M. R. (2018). MicroRNA: A novel target of curcumin in cancer therapy. Journal of Cellular Physiology, 233(4), 3004-3015.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Mitra, S., &amp; Kaina, B. (1993). Regulation of repair of alkylation damage in mammalian genomes. Progress in nucleic acid research and molecular biology, 44, 109-142.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Mohr, A. M., &amp; Mott, J. L. (2015, February). Overview of microRNA biology. In Seminars in liver disease (Vol. 35, No. 01, pp. 003-011). Thieme Medical Publishers.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Moore, D. R., Reinke, L. A., &amp; McCAY, P. B. (1995). Metabolism of ethanol to 1-hydroxyethyl radicals in vivo: detection with intravenous administration of alpha-(4-pyridyl-1-oxide)-Nt-butylnitrone. Molecular pharmacology, 47(6), 1224-1230.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Morimoto, M., Hagbj&ouml;rk, A. L., Nanji, A. A., Ingelman-Sundberg, M., Lindros, K. O., Fu, P. C., ... &amp; French, S. W. (1993). Role of cytochrome P4502E1 in alcoholic liver disease pathogenesis. Alcohol, 10(6), 459-464.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Moriya, M. (1993). Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted GC--&gt; TA transversions in simian kidney cells. Proceedings of the National Academy of Sciences, 90(3), 1122-1126</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Mullany, L. E., Herrick, J. S., Wolff, R. K., Stevens, J. R., &amp; Slattery, M. L. (2017). Alterations in microRNA expression associated with alcohol consumption in rectal cancer subjects. Cancer Causes &amp; Control, 28(6), 545-555.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Nakshatri, H., &amp; Badve, S. (2009). FOXA1 in breast cancer. Expert reviews in molecular medicine, 11.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Nakshatri, H., Bhat-Nakshatri, P., Martin, D. A., Goulet Jr, R. J., &amp; Sledge Jr, G. W. (1997). Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Molecular and cellular biology, 17(7), 3629-3639</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Nanji, A. A., Zhao, S., Sadrzadeh, S. H., Dannenberg, A. J., Tahan, S. R., &amp; Waxman, D. J. (1994). Markedly enhanced cytochrome P450 2E1 induction and lipid peroxidation is associated with severe liver injury in fish oil&mdash;ethanol‐fed rats. Alcoholism: Clinical and Experimental Research, 18(5), 1280-1285.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Navasumrit, P., Margison, G. P., &amp; O&#39;Connor, P. J. (2001). Ethanol modulates rat hepatic DNA repair functions. Alcohol and Alcoholism, 36(5), 369-376</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">O&rsquo;Connor, P. J. (1989). Towards a role for promutagenic lesions in carcinogenesis. In DNA repair mechanisms and their biological implications in mammalian cells (pp. 61-71). Springer, Boston, MA.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Ortega, F. J., Moreno-Navarrete, J. M., Pardo, G., Sabater, M., Hummel, M., Ferrer, A., ... &amp; Fernandez-Real, J. M. (2010). MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PloS one, 5(2), e9022.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Panagal, M., SR, S. K., Gopinathe, V., Sivakumare, P., &amp; Sekar, D. (2018). MicroRNA21 and the various types of myeloid leukemia. Cancer Gene Therapy, 25(7), 161-166.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Perera, D., Poulos, R. C., Shah, A., Beck, D., Pimanda, J. E., &amp; Wong, J. W. (2016). Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes. Nature, 532(7598), 259-263.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Petrini, J. H., Bressan, D. A., &amp; Yao, M. S. (1997, June). TheRAD52epistasis group in mammalian double strand break repair. In Seminars in immunology (Vol. 9, No. 3, pp. 181-188). Academic Press.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M., &amp; Tsch&ouml;p, M. H. (2008). Sirt1 protects against high-fat diet-induced metabolic damage. Proceedings of the national academy of sciences, 105(28), 9793-9798</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Pillai, V. B., Sundaresan, N. R., &amp; Gupta, M. P. (2014). Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circulation research, 114(2), 368-378.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Pinton, G., Zonca, S., Manente, A. G., Cavaletto, M., Borroni, E., Daga, A., ... &amp; Moro, L. (2016). SIRT1 at the crossroads of AKT1 and ER&beta; in malignant pleural mesothelioma cells. Oncotarget, 7(12), 14366.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Potter, P. M., Rafferty, J. A., Cawkwell, L., Wilkinson, M. C., Cooper, D. P., O&#39;Connor, P. J., &amp; Margison, G. P. (1991). Isolation and cDNA cloning of a rat; O 6-alkyllguanine-DNA-alkyltransferase gene, molecelar analysis of expression in rat liver. Carcinogenesis, 12(4), 727-733.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Pradella, D., Naro, C., Sette, C., &amp; Ghigna, C. (2017). EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Molecular cancer, 16(1), 1-19.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Przylipiak, A., Rabe, T., Hafner, J., Przylipiak, M., &amp; Runnebaum, B. (1996). Influence of ethanol on in vitro growth of human mammary carcinoma cell line MCF-7. Archives of gynecology and obstetrics, 258(3), 137-140.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Purohit, V., Khalsa, J., &amp; Serrano, J. (2005). Mechanisms of alcohol-associated cancers: introduction and summary of the symposium. Alcohol, 35(3), 155-160.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Rada-Iglesias, A., Enroth, S., Ameur, A., Koch, C. M., Clelland, G. K., Respuela-Alonso, P., ... &amp; Wadelius, C. (2007). Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes. Genome research, 17(6), 708-719.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Rafferty, J. A., Clarke, A. R., Sellappan, D., Koref, M. S., Frayling, I. M., &amp; Margison, G. P. (1996). Induction of murine O6-alkylguanine-DNA-alkyltransferase in response to ionising radiation is p53 gene dose dependent. Oncogene, 12(3), 693-697.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Rahmani, M., Dai, Y., &amp; Grant, S. (2002). The histone deacetylase inhibitor sodium butyrate interacts synergistically with phorbol myristate acetate (PMA) to induce mitochondrial damage and apoptosis in human myeloid leukemia cells through a tumor necrosis factor-&alpha;-mediated process. Experimental cell research, 277(1), 31-47.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Rathmell, W. K., &amp; Chu, G. (1994). Involvement of the Ku autoantigen in the cellular response to DNA double-strand breaks. Proceedings of the National Academy of Sciences, 91(16), 7623-7627.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Reinke, L. A., Rau, J. M., &amp; McCay, P. B. (1990). Possible roles of free radicals in alcoholic tissue damage. Free radical research communications, 9(3-6), 205-211.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Riggio, M., Polo, M. L., Blaustein, M., Colman-Lerner, A., L&uuml;thy, I., Lanari, C., &amp; Novaro, V. (2012). PI3K/AKT pathway regulates phosphorylation of steroid receptors, hormone independence and tumor differentiation in breast cancer. Carcinogenesis, 33(3), 509-518.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Room, R., Babor, T., &amp; Rehm, J. (2005). Alcohol and public health. The lancet, 365(9458), 519-530.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Roth, M., &amp; Chen, W. (2014). Sorting out functions of sirtuins in cancer. Oncogene, 33(13), 1609-1620.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Sampepajung, E., Hamdani, W., Sampepajung, D., &amp; Prihantono, P. (2021). Overexpression of NF-kB as a predictor of neoadjuvant chemotherapy response in breast cancer. Breast Disease, (Preprint), 1-9</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Saxena, M., Stephens, M. A., Pathak, H., &amp; Rangarajan, A. (2011). Transcription factors that mediate epithelial&ndash;mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell death &amp; disease, 2(7), e179-e179.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Scherbakov, A. M., Lobanova, Y. S., Shatskaya, V. A., &amp; Krasil&rsquo;nikov, M. A. (2009). The breast cancer cells response to chronic hypoxia involves the opposite regulation of NF-kB and estrogen receptor signaling. Steroids, 74(6), 535-542</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Seager, A. L., Shah, U. K., Mikhail, J. M., Nelson, B. C., Marquis, B. J., Doak, S. H., ... &amp; Jenkins, G. J. (2012). Pro-oxidant induced DNA damage in human lymphoblastoid cells: homeostatic mechanisms of genotoxic tolerance. Toxicological Sciences, 128(2), 387-397.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Sethi, G., Sung, B., &amp; Aggarwal, B. B. (2008). Nuclear factor-&kappa;B activation: from bench to bedside. Experimental biology and medicine, 233(1), 21-31.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Shen, Z. L., Wang, B., Jiang, K. W., Ye, C. X., Cheng, C., Yan, Y. C., ... &amp; Wang, S. (2016). Downregulation of miR-199b is associated with distant metastasis in colorectal cancer via activation of SIRT1 and inhibition of CREB/KISS1 signaling. Oncotarget, 7(23), 35092</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Shibue, T., &amp; Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nature reviews Clinical oncology, 14(10), 611-629.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Shiota, M., Zardan, A., Takeuchi, A., Kumano, M., Beraldi, E., Naito, S., ... &amp; Gleave, M. E. (2012). Clusterin mediates TGF-&beta;&ndash;induced epithelial&ndash;mesenchymal transition and metastasis via Twist1 in prostate cancer cells. Cancer research, 72(20), 5261-5272.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Shostak, K., &amp; Chariot, A. (2011). NF-&kappa;B, stem cells and breast cancer: the links get stronger. Breast Cancer Research, 13(4), 1-7</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Shrivastav, N., Li, D., &amp; Essigmann, J. M. (2010). Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation. Carcinogenesis, 31(1), 59-70.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Singh, S., Shi, Q., Bailey, S. T., Palczewski, M. J., Pardee, A. B., Iglehart, J. D., &amp; Biswas, D. K. (2007). Nuclear factor-&kappa;B activation: a molecular therapeutic target for estrogen receptor&ndash;negative and epidermal growth factor receptor family receptor&ndash;positive human breast cancer. Molecular cancer therapeutics, 6(7), 1973-1982.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Singletary, K. W., Barnes, S. L., &amp; van Breemen, R. B. (2004). Ethanol inhibits benzo [a] pyrene-DNA adduct removal and increases 8-oxo-deoxyguanosine formation in human mammary epithelial cells. Cancer letters, 203(2), 139-144.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Singletary, K. W., Frey, R. S., &amp; Yan, W. (2001). Effect of ethanol on proliferation and estrogen receptor-&alpha; expression in human breast cancer cells. Cancer letters, 165(2), 131-137.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Smith, B. N., &amp; Bhowmick, N. A. (2016). Role of EMT in metastasis and therapy resistance. Journal of clinical medicine, 5(2), 17.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Smith, J., Riballo, E., Kysela, B., Baldeyron, C., Manolis, K., Masson, C., ... &amp; Jeggo, P. (2003). Impact of DNA ligase IV on the fidelity of end joining in human cells. Nucleic acids research, 31(8), 2157-2167.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Song, B. J., &amp; Cederbaum, A. I. (1996). Ethanol‐inducible cytochrome P450 (CYP2E1): biochemistry, molecular biology and clinical relevance: 1996 update. Alcoholism: Clinical and Experimental Research, 20, 138a-146a.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Song, R. D., Zhang, Z., Mor, G., &amp; Santen, R. J. (2005). Down-regulation of Bcl-2 enhances estrogen apoptotic action in long-term estradiol-depleted ER+ breast cancer cells. Apoptosis, 10(3), 667-678.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Suzuki, H. I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., &amp; Miyazono, K. (2009). Modulation of microRNA processing by p53. Nature, 460(7254), 529-533.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Tailor, D., Hahm, E. R., Kale, R. K., Singh, S. V., &amp; Singh, R. P. (2014). Sodium butyrate induces DRP1-mediated mitochondrial fusion and apoptosis in human colorectal cancer cells. Mitochondrion, 16, 55-64.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Tanabe, S. (2013). Perspectives of gene combinations in phenotype presentation. World journal of stem cells, 5(3), 61.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Tanabe, S., Aoyagi, K., Yokozaki, H., &amp; Sasaki, H. (2015). Regulated genes in mesenchymal stem cells and gastric cancer. World journal of stem cells, 7(1), 208.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Taylor, M. A., Parvani, J. G., &amp; Schiemann, W. P. (2010). The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-&beta; in normal and malignant mammary epithelial cells. Journal of mammary gland biology and neoplasia, 15(2), 169-190.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Thurman, R. G. (1973). Induction of hepatic microsomal NADPH-dependent production of hydrogen peroxide by chronic prior treatment with ethanol. Mol. Pharmacol, 9, 670-675.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Tian, Z., Jiang, H., Liu, Y., Huang, Y., Xiong, X., Wu, H., &amp; Dai, X. (2016). MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1. Experimental cell research, 343(2), 135-147</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Triano, E. A., Slusher, L. B., Atkins, T. A., Beneski, J. T., Gestl, S. A., Zolfaghari, R., ... &amp; Weisz, J. (2003). Class I alcohol dehydrogenase is highly expressed in normal human mammary epithelium but not in invasive breast cancer: implications for breast carcinogenesis. Cancer research, 63(12), 3092-3100.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">van Jaarsveld MT, Wouters MD, Boersma AW, Smid M, van Ijcken WF, Mathijssen RH, Hoeijmakers JH, Martens JW, van Laere S, Wiemer EA, Pothof J. (2014) .DNA damage responsive microRNAs misexpressed in human cancer modulate therapy sensitivity. Mol Oncol. 8(3), 458-68</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Van Laere, S. J., Van der Auwera, I., Van den Eynden, G. G., Van Dam, P., Van Marck, E. A., Vermeulen, P. B., &amp; Dirix, L. Y. (2007). NF-&kappa;B activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation. British journal of cancer, 97(5), 659-669</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Vaziri, H., Dessain, S. K., Eaton, E. N., Imai, S. I., Frye, R. A., Pandita, T. K., ... &amp; Weinberg, R. A. (2001). hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell, 107(2), 149-159.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Voordeckers, K., Colding, C., Grasso, L., Pardo, B., Hoes, L., Kominek, J., ... &amp; Verstrepen, K. J. (2020). Ethanol exposure increases mutation rate through error-prone polymerases. Nature communications, 11(1), 1-16</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Wan, G., Tian, L., Yu, Y., Li, F., Wang, X., Li, C., ... &amp; Cao, F. (2017). Overexpression of Pofut1 and activated Notch1 may be associated with poor prognosis in breast cancer. Biochemical and biophysical research communications, 491(1), 104-111.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Wan, G., Zhang, X., Langley, R. R., Liu, Y., Hu, X., Han, C., ... &amp; Lu, X. (2013). DNA-damage-induced nuclear export of precursor microRNAs is regulated by the ATM-AKT pathway. Cell reports, 3(6), 2100-2112.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Wang, C., Yang, J., Lu, D., Fan, Y., Zhao, M., &amp; Li, Z. (2016). Oxidative stress‐related DNA damage and homologous recombination repairing induced by N, N‐dimethylformamide. Journal of Applied Toxicology, 36(7), 936-945.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Wang, R. H., Sengupta, K., Li, C., Kim, H. S., Cao, L., Xiao, C., ... &amp; Deng, C. X. (2008). Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer cell, 14(4), 312-323. </span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Wang, R., Li, C., Qiao, P., Xue, Y., Zheng, X., Chen, H., ... &amp; Ba, X. (2018). OGG1-initiated base excision repair exacerbates oxidative stress-induced parthanatos. Cell death &amp; disease, 9(6), 1-15.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Wang, R., Sun, Q., Wang, P., Liu, M., Xiong, S., Luo, J., ... &amp; Cheng, B. (2016). Notch and Wnt/&beta;-catenin signaling pathway play important roles in activating liver cancer stem cells. Oncotarget, 7(5), 5754.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Wessendorf, P., Vijg, J., Nussenzweig, A., &amp; Digweed, M. (2014). Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 769, 11-16.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Wik, E., R&aelig;der, M. B., Krakstad, C., Trovik, J., Birkeland, E., Hoivik, E. A., ... &amp; Salvesen, H. B. (2013). Lack of estrogen receptor-&alpha; is associated with epithelial&ndash;mesenchymal transition and PI3K alterations in endometrial carcinoma. Clinical Cancer Research, 19(5), 1094-1105.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Wilson, B. J., &amp; Gigu&egrave;re, V. (2008). Meta-analysis of human cancer microarrays reveals GATA3 is integral to the estrogen receptor alpha pathway. Molecular cancer, 7(1), 1-8.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Wu, C. X., Xu, A., Zhang, C. C., Olson, P., Chen, L., Lee, T. K., ... &amp; Wang, X. Q. (2017). Notch inhibitor PF-03084014 inhibits hepatocellular carcinoma growth and metastasis via suppression of cancer stemness due to reduced activation of Notch1&ndash;Stat3. Molecular cancer therapeutics, 16(8), 1531-1543</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Yamakuchi, M., Ferlito, M., &amp; Lowenstein, C. J. (2008). miR-34a repression of SIRT1 regulates apoptosis. Proceedings of the National Academy of Sciences, 105(36), 13421-13426.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Yan, H. L., Xue, G., Mei, Q., Wang, Y. Z., Ding, F. X., Liu, M. F., ... &amp; Sun, S. H. (2009). Repression of the miR‐17‐92 cluster by p53 has an important function in hypoxia‐induced apoptosis. The EMBO journal, 28(18), 2719-2732</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Yan, W., Cao, Q. J., Arenas, R. B., Bentley, B., &amp; Shao, R. (2010). GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. Journal of Biological Chemistry, 285(18), 14042-14051.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Yan, X., Liu, X., Wang, Z., Cheng, Q., Ji, G., Yang, H., ... &amp; Pei, X. (2019). MicroRNA4865p functions as a tumor suppressor of proliferation and cancer stemlike cell properties by targeting Sirt1 in liver cancer. Oncology reports, 41(3), 1938-1948.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Yao, H., Li, P., Venters, B. J., Zheng, S., Thompson, P. R., Pugh, B. F., &amp; Wang, Y. (2008). Histone Arg modifications and p53 regulate the expression of OKL38, a mediator of apoptosis. Journal of Biological Chemistry, 283(29), 20060-20068.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Ye, X., Brabletz, T., Kang, Y., Longmore, G. D., Nieto, M. A., Stanger, B. Z., ... &amp; Weinberg, R. A. (2017). Upholding a role for EMT in breast cancer metastasis. Nature, 547(7661), E1-E3.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Ye, Y., Xiao, Y., Wang, W., Yearsley, K., Gao, J. X., Shetuni, B., &amp; Barsky, S. H. (2010). ER&alpha; signaling through slug regulates E-cadherin and EMT. Oncogene, 29(10), 1451-1462</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Yeung, F., Hoberg, J. E., Ramsey, C. S., Keller, M. D., Jones, D. R., Frye, R. A., &amp; Mayo, M. W. (2004). Modulation of NF‐&kappa;B‐dependent transcription and cell survival by the SIRT1 deacetylase. The EMBO journal, 23(12), 2369-2380</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Yin, H., Hu, M., Liang, X., Ajmo, J. M., Li, X., Bataller, R., ... &amp; You, M. (2014). Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology, 146(3), 801-811.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Yuan, J., Minter-Dykhouse, K., &amp; Lou, Z. (2009). A c-Myc&ndash;SIRT1 feedback loop regulates cell growth and transformation. Journal of Cell Biology, 185(2), 203-211. &nbsp;</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Zeng, Q., Zhang, P., Wu, Z., Xue, P., Lu, D., Ye, Z., ... &amp; Yan, X. (2014). Quantitative proteomics reveals ER-&alpha; involvement in CD146-induced epithelial-mesenchymal transition in breast cancer cells. Journal of proteomics, 103, 153-169.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Zhang JP, Zeng C, Xu L, Gong J, Fang JH, Zhuang SM. (2014) MicroRNA-148a suppresses the epithelial-mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling. Oncogene. 33(31):4069-76.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Zhang, H. N., Li, L., Gao, P., Chen, H. Z., Zhang, R., Wei, Y. S., ... &amp; Liang, C. C. (2010). Involvement of the p65/RelA subunit of NF-&kappa;B in TNF-&alpha;-induced SIRT1 expression in vascular smooth muscle cells. Biochemical and biophysical research communications, 397(3), 569-575.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Zhang, J., Yang, Y., Yang, T., Liu, Y., Li, A., Fu, S., ... &amp; Zhou, W. (2010). microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. British journal of cancer, 103(8), 1215-1220.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Zhang, X., Wan, G., Berger, F. G., He, X., &amp; Lu, X. (2011). The ATM kinase induces microRNA biogenesis in the DNA damage response. Molecular cell, 41(4), 371-383.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Zhao, M., Howard, E. W., Guo, Z., Parris, A. B., &amp; Yang, X. (2017). p53 pathway determines the cellular response to alcohol-induced DNA damage in MCF-7 breast cancer cells. PLoS One, 12(4), e0175121.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Zhao, W., Kruse, J. P., Tang, Y., Jung, S. Y., Qin, J., &amp; Gu, W. (2008). Negative regulation of the deacetylase SIRT1 by DBC1. Nature, 451(7178), 587-590. </span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Zhou, B., Wang, D., Sun, G., Mei, F., Cui, Y., &amp; Xu, H. (2018). Effect of miR-21 on apoptosis in lung cancer cell through inhibiting the PI3K/Akt/NF-&kappa;B signaling pathway in vitro and in vivo. Cellular Physiology and Biochemistry, 46(3), 999-1008. </span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Zhou, J., Zhou, W., Kong, F., Xiao, X., Kuang, H., &amp; Zhu, Y. (2017). microRNA34a overexpression inhibits cell migration and invasion via regulating SIRT1 in hepatocellular carcinoma Corrigendum in/10.3892/ol. 2019.11048. Oncology letters, 14(6), 6950-6954.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Zhou, Y., Eppenberger-Castori, S., Eppenberger, U., &amp; Benz, C. C. (2005). The NFkB pathway and endocrine-resistant breast cancer. Endocrine Related Cancer, 12(1), S37.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif">Zovoilis, A., Agbemenyah, H. Y., Agis‐Balboa, R. C., Stilling, R. M., Edbauer, D., Rao, P., ... &amp; Fischer, A. (2011). microRNA‐34c is a novel target to treat dementias. The EMBO journal, 30(20), 4299-4308.</span></p>
  • </div>
  • <div id="appendicies">
  • <h2>Appendix 1</h2>
  • <h3>List of MIEs in this AOP</h3>
  • <h4><a href="/events/1669">Event: 1669: Increased, DNA damage and mutation</a></h4>
  • <h5>Short Name: Increased, DNA damage and mutation</h5>
  • <h4>Key Event Component</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Process</th>
  • <th scope="col">Object</th>
  • <th scope="col">Action</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>DNA damage response, detection of DNA damage</td>
  • <td>site of DNA damage</td>
  • <td>increased</td>
  • </tr>
  • <tr>
  • <td>mutation</td>
  • <td></td>
  • <td>increased</td>
  • </tr>
  • <tr>
  • <td>chromosome breakage</td>
  • <td>chromosome</td>
  • <td>increased</td>
  • </tr>
  • <tr>
  • <td>chromosomal instability</td>
  • <td>chromosome</td>
  • <td>increased</td>
  • </tr>
  • <tr>
  • <td>abnormal DNA repair</td>
  • <td>DNA repair complex</td>
  • <td>increased</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/303">Aop:303 - Frustrated phagocytosis-induced lung cancer</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/409">Aop:409 - Frustrated phagocytosis leads to malignant mesothelioma</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/416">Aop:416 - Aryl hydrocarbon receptor activation leading to lung cancer through IL-6 toxicity pathway</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/417">Aop:417 - Aryl hydrocarbon receptor activation leading to lung cancer through AHR-ARNT toxicity pathway</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/443">Aop:443 - DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>MolecularInitiatingEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/451">Aop:451 - Interaction with lung resident cell membrane components leads to lung cancer</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Stressors</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Name</th></tr>
  • </thead>
  • <tbody>
  • <tr><td>Reactive oxygen species</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Cellular</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>mammals</td>
  • <td>mammals</td>
  • <td></td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Adult</td>
  • <td></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p><span style="font-family:times new roman,serif; font-size:12.0pt">The DNA damages and mutations can occur in mammals, male or female, and is generally measured in adults.</span></p>
  • <h4>Key Event Description</h4>
  • <p>DNA damages are alteration of the DNA backbone including abasic site, single or double strand breaks or inter-strand crosslinks. These damages could be recognized and repaired by specialized enzymes. However, if damages persist, mutation in the DNA sequences can occur. Unlike DNA damages, DNA mutations when both strands are modified cannot be repaired and are heritable. Mutations affect the genotype and could affect phenotype.</p>
  • <p>Different mechanisms are implicated in DNA damage such as oxidative burst, DNA repair dysfunction or centrosome amplification and chromosome instability [1].</p>
  • <h4>How it is Measured or Detected</h4>
  • <p>DNA damages could be measured using different assays, such as micronucleus formation (OECD n&deg;487) <!--[endif]---->[2], comet assay with different protocols for the detection of double and single-strand breaks, DNA-DNA and DNA-protein crosslinks, adduct and oxidized nucleotides (OECD n&deg;489) <!--[endif]---->[3, 4] and &gamma;H2AX for the analysis of DNA strand breaks <!--[endif]---->[5].<!--![endif]----><!--![endif]----><!--![endif]----></p>
  • <p><!--[endif]----><!--[endif]----><!--[endif]---->DNA mutation could be analyzed with Ames test or <em>via</em> the analysis of frequencies of mutations (OECD n&deg;471) [6]. <!--![endif]----><!--![endif]----><!--![endif]----></p>
  • <h4>References</h4>
  • <p style="margin-left:36.0pt; margin-right:0cm; text-align:justify"><span style="font-family:times new roman,serif; font-size:12.0pt">1.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Zhang Y. Cell toxicity mechanism and biomarker. 2018;7 1:34; doi: 10.1186/s40169-018-0212-7.</span></p>
  • <p style="margin-left:36.0pt; margin-right:0cm; text-align:justify"><span style="font-family:times new roman,serif; font-size:12.0pt">2.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Kato T, Totsuka Y, Ishino K, Matsumoto Y, Tada Y, Nakae D, et al. Genotoxicity of multi-walled carbon nanotubes in both in vitro and in vivo assay systems. Nanotoxicology.<em> </em>2013;7 4:452-61; doi: 10.3109/17435390.2012.674571.</span></p>
  • <p style="margin-left:36.0pt; margin-right:0cm; text-align:justify"><span style="font-family:times new roman,serif; font-size:12.0pt">3.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, et al. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. 2008;116 9:1211-7; doi: 10.1289/ehp.10924.</span></p>
  • <p style="margin-left:36.0pt; margin-right:0cm; text-align:justify"><span style="font-family:times new roman,serif; font-size:12.0pt">4.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Hiraku Y, Guo F, Ma N, Yamada T, Wang S, Kawanishi S, et al. Multi-walled carbon nanotube induces nitrative DNA damage in human lung epithelial cells via HMGB1-RAGE interaction and Toll-like receptor 9 activation. Particle and fibre toxicology.<em> </em>2016;13:16; doi: 10.1186/s12989-016-0127-7.</span></p>
  • <p style="margin-left:36.0pt; margin-right:0cm; text-align:justify"><span style="font-family:times new roman,serif; font-size:12.0pt">5.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Catalan J, Siivola KM, Nymark P, Lindberg H, Suhonen S, Jarventaus H, et al. In vitro and in vivo genotoxic effects of straight versus tangled multi-walled carbon nanotubes. Nanotoxicology.<em> </em>2016;10 6:794-806; doi: 10.3109/17435390.2015.1132345.</span></p>
  • <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <span style="font-family:times new roman,serif; font-size:12.0pt">6.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Fukai E, Sato H, Watanabe M, Nakae D, Totsuka Y. Establishment of an in vivo simulating co-culture assay &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; platform for genotoxicity of multi-walled carbon nanotubes. Cancer science.<em> </em>2018; doi: 10.1111/cas.13534.</span></p>
  • <h3>List of Key Events in the AOP</h3>
  • <h4><a href="/events/155">Event: 155: Inadequate DNA repair</a></h4>
  • <h5>Short Name: Inadequate DNA repair</h5>
  • <h4>Key Event Component</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Process</th>
  • <th scope="col">Object</th>
  • <th scope="col">Action</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>DNA repair</td>
  • <td>deoxyribonucleic acid</td>
  • <td>functional change</td>
  • <td>abnormal</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/15">Aop:15 - Alkylation of DNA in male pre-meiotic germ cells leading to heritable mutations</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/141">Aop:141 - Alkylation of DNA leading to cancer 2</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/139">Aop:139 - Alkylation of DNA leading to cancer 1</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/296">Aop:296 - Oxidative DNA damage leading to chromosomal aberrations and mutations</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/272">Aop:272 - Deposition of energy leading to lung cancer</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/322">Aop:322 - Alkylation of DNA leading to reduced sperm count</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/397">Aop:397 - Bulky DNA adducts leading to mutations</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/432">Aop:432 - Deposition of Energy by Ionizing Radiation leading to Acute Myeloid Leukemia</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/443">Aop:443 - DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/478">Aop:478 - Deposition of energy leading to occurrence of cataracts</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/602">Aop:602 - Excessive reactive oxygen species leading to growth inhibition via oxidative DNA damage</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Stressors</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Name</th></tr>
  • </thead>
  • <tbody>
  • <tr><td>Ionizing Radiation</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Cellular</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>mouse</td>
  • <td>Mus musculus</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>rat</td>
  • <td>Rattus norvegicus</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Syrian golden hamster</td>
  • <td>Mesocricetus auratus</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10036" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Homo sapiens</td>
  • <td>Homo sapiens</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>cow</td>
  • <td>Bos taurus</td>
  • <td>Low</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9913" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>All life stages</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p>The retention of adducts has been directly measured in many different types of eukaryotic somatic cells (in vitro and in vivo). In male germ cells, work has been done on hamsters, rats and mice. The accumulation of mutation and changes in mutation spectrum has been measured in mice and human cells in culture. Theoretically, saturation of DNA repair occurs in every species (prokaryotic and eukaryotic). The principles of this work were established in prokaryotic models. Nagel et al. (2014) have produced an assay that directly measures DNA repair in human cells in culture.</p>
  • <p>NHEJ is primarily used by vertebrate multicellular eukaryotes, but it also been observed in plants. Furthermore, it has recently been discovered that some bacteria (Matthews et al., 2014) and yeast (Emerson et al., 2016) also use NHEJ. In terms of invertebrates, most lack the core DNA-PK<sub>cs</sub> and Artemis proteins; they accomplish end joining by using the RA50:MRE11:NBS1 complex (Chen et al., 2001).&nbsp; HR occurs naturally in eukaryotes, bacteria, and some viruses (Bhatti et al., 2016).</p>
  • <p><strong>Taxonomic applicability:</strong> Inadequate DNA repair is applicable to all species, as they all contain DNA (White &amp; Vijg, 2016). &nbsp;</p>
  • <p><strong>Life stage applicability:</strong> This key event is not life stage specific as any life stage can have poor repair, though as individuals age their repair process become less effective (Gorbunova &amp; Seluanov, 2016).&nbsp;</p>
  • <p><strong>Sex applicability: </strong>There is no evidence of sex-specificity for this key event, with initial rate of DNA repair not significantly different between sexes (Trzeciak et al., 2008).&nbsp;</p>
  • <p><strong>Evidence for perturbation by a stressor: </strong>Multiple studies demonstrate that inadequate DNA repair can occur as a result of stressors such as ionizing and non-ionizing radiation, as well as chemical agents (Kuhne et al., 2005; Rydberg et al., 2005; Dahle et al., 2008; Seager et al., 2012; Wilhelm, 2014; O&rsquo;Brien et al., 2015). &nbsp;</p>
  • <h4>Key Event Description</h4>
  • <p>DNA lesions may result from the formation of DNA adducts (i.e., covalent modification of DNA by chemicals), or by the action of agents such as radiation that may produce strand breaks or modified nucleotides within the DNA molecule. These DNA lesions are repaired through several mechanistically distinct pathways that can be categorized as follows:</p>
  • <ol>
  • <li><strong>Damage reversal</strong> acts to reverse the damage without breaking any bonds within the sugar phosphate backbone of the DNA. The most prominent enzymes associated with damage reversal are photolyases (Sancar, 2003) that can repair UV dimers in some organisms, and O6-alkylguanine-DNA alkyltransferase (AGT) (Pegg 2011) and oxidative demethylases (Sundheim et al., 2008), which can repair some types of alkylated bases.</li>
  • <li><strong>Excision repair</strong> involves the removal of a damaged nucleotide(s) through cleavage of the sugar phosphate backbone followed by re-synthesis of DNA within the resultant gap. Excision repair of DNA lesions can be mechanistically divided into:&nbsp;
  • <p style="margin-left:40px"><strong>a) Base excision repair (BER)</strong><span style="font-size:1rem"> (Dianov and H&uuml;bscher, 2013), in which the damaged base is removed by a damage-specific glycosylase prior to incision of the phosphodiester backbone at the resulting abasic site.&nbsp;</span>This leads to an intermediate that contains a DNA strand break, whereby DNA ligase is then recruited to seal the ends of the DNA.</p>
  • <p style="margin-left:40px"><strong>b) Nucleotide excision repair (NER)</strong> (Sch&auml;rer, 2013), in which the DNA strand containing the damaged nucleotide is incised at sites several nucleotides 5&rsquo; and 3&rsquo; to the site of damage, and a polynucleotide containing the damaged nucleotide is removed prior to DNA resynthesis within the resultant gap&nbsp;and sealing of the ends by DNA ligase.&nbsp;&nbsp;</p>
  • <p style="margin-left:40px"><strong>c) Mismatch repair (MMR)</strong> (Li et al., 2016)&nbsp;&nbsp;which does not act on DNA lesions but does recognize mispaired bases resulting from replication errors. In MMR the strand containing the misincorporated base is removed prior to DNA resynthesis.</p>
  • <p style="margin-left:40px">The major pathway that removes oxidative DNA damage is base excision repair (BER), which can be either monofunctional or bifunctional; in mammals, a specific DNA glycosylase (OGG1: 8-Oxoguanine glycosylase) is responsible for excision of 8-oxoguanine (8-oxoG) and other oxidative lesions (Hu et al., 2005; Scott et al., 2014; Whitaker et al., 2017). We note that long-patch BER is used for the repair of clustered oxidative lesions, which uses several enzymes from DNA replication pathways (Klungland and Lindahl, 1997). These pathways are described in detail in various reviews e.g., (Whitaker et al., 2017).&nbsp;</p>
  • </li>
  • <li><strong>Single strand break repair (SSBR)&nbsp;</strong>involves different proteins and enzymes depending on the origin of the SSB (e.g., produced as an intermediate in excision repair or due to direct chemical insult) but the same general steps of repair&nbsp;are taken for all SSBs: detection, DNA end processing, synthesis, and ligation&nbsp;(Caldecott, 2014). Poly-ADP-ribose polymerase1 (PARP1)&nbsp;detects and binds&nbsp;unscheduled SSBs (i.e., not deliberately induced during excision repair) and synthesizes&nbsp;PAR as a signal to the downstream factors in repair.&nbsp;PARP1 is not required to initiate SSBR of BER intermediates. The XRCC1 protein complex is then recruited to the site of damage&nbsp;where a common DNA intermediate as BER was generated, and&nbsp;acts as a scaffold for proteins and enzymes&nbsp;required for repair.&nbsp;Depending on the nature of the damaged termini of the DNA strand, different enzymes are required for end processing to generate the substrates that&nbsp;DNA polymerase &beta; (Pol&beta;;&nbsp;short patch repair) or Pol&nbsp;&delta;/&epsilon; (long patch repair)&nbsp;can bind to synthesize&nbsp;over the gap, although end processing is generally done by polynucleotide kinase. Synthesis&nbsp;in long-patch repair&nbsp;displaces a single stranded flap which is excised by flap endonuclease 1 (FEN1). In short-patch repair, the XRCC1/Lig3&alpha; complex joins the two ends after synthesis. In&nbsp;long-patch repair, the PCNA/Lig1 complex ligates the ends. (Caldecott, 2014).&nbsp;</li>
  • <li><strong>Double strand break repair (DSBR)</strong> is necessary to preserve genomic integrity when breaks occur in both strands of a DNA molecule. There are two major pathways for DSBR: homologous recombination (HR), which operates primarily during the S phase of&nbsp;dividing cell types, and nonhomologous end joining (NHEJ), which can function in both dividing and non-dividing cell types. No repair occurs in the M phase&nbsp;(Teruaki Iyama and David M. Wilson III, 2013).&nbsp;DNA repair in mitosis is controversial (Mladenov et al., 2023).</li>
  • </ol>
  • <p style="margin-left:40px">Complex lesions can be created by a single mutagen and can be more difficult to repair, as the mechanism behind how different repair pathways cooperate to address this is still unclear (Aleksandrov et al., 2018). In higher eukaryotes such as mammals, NHEJ is usually the preferred pathway for DNA DSBR. Its use, however, is dependent on the cell type, the gene locus, and the nuclease platform (Miyaoka et al., 2016). The use of NHEJ is also dependent on the cell cycle; NHEJ is generally not the pathway of choice when the cell is in the late S or G2 phase of the cell cycle, or in mitotic cells when the sister chromatid is directly adjacent to the double-strand break (DSB) (Lieber et al., 2003). In these cases, the HR pathway is commonly used for repair of DSBs. Despite this, NHEJ is still used more commonly than HR in human cells. Classical NHEJ (C-NHEJ) is the most common NHEJ repair mechanism, but alternative NHEJ (alt-NHEJ) can also occur, especially in the absence of C-NHEJ and HR.</p>
  • <p style="margin-left:40px">The process of C-NHEJ in humans requires at least seven core proteins: Ku70, Ku86, DNA-dependent protein kinase complex (DNA-PK<sub>cs&nbsp;</sub>), Artemis, X-ray cross-complementing protein 4 (XRCC4), XRCC4-like factor (XLF), and DNA ligase IV (Boboila et al., 2012). When DSBs occur, the Ku proteins, which have a high affinity for DNA ends, will bind to the break site and form a heterodimer. This protects the DNA from exonucleolytic attack and acts to recruit DNA-PK<sub>cs</sub>, the catalytic subunit,&nbsp;thus forming a trimeric complex on the ends of the DNA strands. Alternative NHEJ, or alt NHEJ, uses small similar sequences in two broken DNA ends to join them together. Unlike the usual repair method (cNHEJ), aNHEJ doesn&#39;t need specific proteins like LIG4 and KU. Instead, it relies on the MRN complex to process the breaks. However, alt NHEJ tends to cause mutations by adding or removing bits of DNA during the repair (Chaudhuri and Nussenzweig, 2017). The kinase activity of DNA-PK<sub>cs&nbsp;</sub>is then triggered, causing DNA-PK<sub>cs&nbsp;</sub>to auto-phosphorylate and thereby lose its kinase activity; the now phosphorylated DNA-PK<sub>cs</sub>&nbsp;dissociates from the DNA-bound Ku proteins. The free DNA-PK<sub>cs</sub>&nbsp;phosphorylates Artemis, an enzyme that possesses 5&rsquo;-3&rsquo; exonuclease and endonuclease activity in the presence of DNA-PK<sub>cs</sub>&nbsp;and ATP. Artemis is responsible for &lsquo;cleaning up&rsquo; the ends of the DNA. For 5&rsquo; overhangs, Artemis nicks the overhang, generally leaving a blunt duplex end. For 3&rsquo; overhangs, Artemis will often leave a four- or five-nucleotide single stranded overhang (Pardo et al., 2009; Fattah et al., 2010; Lieber et al., 2010). Next, the XLF and XRCC4 proteins form a complex which makes a channel to bind DNA and aligns the ends for efficient ligation via DNA ligase IV (Hammel et al., 2011).</p>
  • <p style="margin-left:40px">The process of alt-NHEJ is less well understood than C-NHEJ and is a lower fidelity mechanism. &nbsp;Alt-NHEJ is known to involve slightly different core proteins than C-NHEJ and required microhomology repeats, but the steps of the pathway are essentially the same between the two processes (reviewed in Chiruvella et al., 2013). It is established, however, that alt-NHEJ is more error-prone in nature than C-NHEJ, which contributes to incorrect DNA repair. Alt-NHEJ is thus considered primarily to be a backup repair mechanism (reviewed in Chiruvella et al., 2013).&nbsp;</p>
  • <p style="margin-left:40px">In contrast to NHEJ, HR takes advantage of similar or identical DNA sequences to repair DSBs and is not error-prone (Sung and Klein, 2006). The initiating step of HR is the creation of a 3&rsquo; single strand DNA (ss-DNA) overhang. Combinases such as RecA and Rad51 then bind to the ss-DNA overhang, and other accessory factors, including Rad54, help recognize and invade the homologous region on another DNA strand. From there, DNA polymerases are able to elongate the 3&rsquo; invading single strand and resynthesize the broken DNA strand using the corresponding sequence on the homologous strand.</p>
  • <p>&nbsp;</p>
  • <p><strong><u>Fidelity of DNA Repair</u></strong></p>
  • <p><br />
  • Most DNA repair pathways are extremely efficient. However, in principal, all DNA repair pathways can be overwhelmed when the DNA lesion burden exceeds the capacity of a given DNA repair pathway to recognize and remove the lesion. Exceeded repair capacity may lead to toxicity or mutagenesis following DNA damage. Apart from extremely high DNA lesion burden,&nbsp;inadequate repair&nbsp;may arise through several different specific mechanisms. For example, during repair of DNA containing O6-alkylguanine adducts, AGT irreversibly binds a single O6-alkylguanine lesion and as a result is inactivated (this is termed suicide inactivation, as its own action causes it to become inactivated). Thus, the capacity of AGT to carry out alkylation repair can become rapidly saturated when the DNA repair rate exceeds the de novo synthesis of AGT (Pegg, 2011).</p>
  • <p>A second mechanism relates to cell specific differences in the cellular levels or activity of some DNA repair proteins. For example, XPA is an essential component of the NER complex. The level of XPA that is active in NER is low in the testes, which may reduce the efficiency of NER in testes as compared to other tissues (K&ouml;berle et al., 1999). Likewise, both NER and BER have been reported to be deficient in cells lacking functional p53 (Adimoolam and Ford, 2003; Hanawalt et al., 2003; Seo and Jung, 2004). A third mechanism relates to the importance of the DNA sequence context of a lesion in its recognition by DNA repair enzymes. For example, 8-oxoguanine (8-oxoG) is repaired primarily by BER; the lesion is initially acted upon by a bifunctional glycosylase, OGG1, which carries out the initial damage recognition and excision steps of 8-oxoG repair. However, the rate of excision of 8-oxoG is modulated strongly by both chromatin components (Menoni et al., 2012) and DNA sequence context (Allgayer et al., 2013) leading to significant differences in the repair of lesions situated in different chromosomal locations.</p>
  • <p>DNA repair is also remarkably error-free. However, misrepair can arise during repair under some circumstances. DSBR is notably error prone, particularly when breaks are processed through NHEJ, during which partial loss of genome information is common at the site of the double strand break (Iyama and Wilson, 2013).&nbsp;This is because NHEJ rejoins broken DNA ends without the use of extensive homology; instead, it uses the microhomology present between the two ends of the DNA strand break to ligate the strand back into one. When the overhangs are not compatible, however, indels (insertion or deletion events),&nbsp;duplications, translocations, and inversions in the DNA can occur. These changes in the DNA may lead to significant issues within the cell, including alterations in the gene determinants for cellular fatality (Moore et al., 1996).</p>
  • <p>Activation of mutagenic DNA repair pathways to withstand cellular or replication stress either from endogenous or exogenous sources can promote cellular viability, albeit at a cost of increased genome instability and mutagenesis (Fitzgerald et al., 2017). These salvage DNA repair pathways including, Break-induced Replication (BIR) and Microhomology-mediated Break-induced Replication (MMBIR). BIR repairs one-ended DSBs and has been extensively studied in yeast as well as in mammalian systems. BIR and MMBIR are linked with heightened levels of mutagenesis, chromosomal rearrangements and ensuing genome instability (Deem et al., 2011; Sakofsky et al., 2015; Saini et al., 2017; Kramara et al., 2018). In mammalian genomes BIR-like synthesis has been proposed to be involved in late stage Mitotic DNA Synthesis (MiDAS) that predominantly occurs at so-called Common Fragile Sites (CFSs) and maintains telomere length under s conditions of replication stress that serve to promote cell viability (Minocherhomji et al., 2015; Bhowmick et al., 2016; Dilley et al., 2016).&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</p>
  • <p>Misrepair may also occur through other repair pathways.&nbsp;Excision repair pathways require the resynthesis of DNA and rare DNA polymerase errors during gap resynthesis will result in mutations (Brown et al., 2011). Errors may also arise during gap resynthesis when the strand that is being used as a template for DNA synthesis contains DNA lesions (Kozmin and Jinks-Robertson, 2013). In addition, it has been shown that sequences that contain tandemly repeated sequences, such as CAG triplet repeats, are subject to expansion during gap resynthesis that occurs during BER of 8-oxoG damage (Liu et al., 2009).</p>
  • <h4>How it is Measured or Detected</h4>
  • <p>There is no test guideline for this event. The event is usually inferred from measuring the retention of DNA adducts or the creation of mutations as a measure of lack of repair or incorrect repair. These &lsquo;indirect&rsquo; measures of its occurrence are crucial to determining the mechanisms of genotoxic chemicals and for regulatory applications (i.e., determining the best approach for deriving a point of departure). More recently, a fluorescence-based multiplex flow-cytometric host cell reactivation assay (FM-HCR) has been developed to directly measure&nbsp;the ability of human cells to repair plasmid reporters (Nagel et al., 2014).</p>
  • <p><u><strong>Indirect Measurement</strong></u></p>
  • <p>In somatic and spermatogenic cells, measurement of DNA repair is usually inferred by measuring DNA adduct formation/removal. Insufficient repair is inferred from the retention of adducts and from increasing adduct formation with dose. Insufficient DNA repair is also measured by the formation of increased numbers of mutations and alterations in mutation spectrum. The methods will be specific to the type of DNA adduct that is under study.</p>
  • <p>Some EXAMPLES are given below for alkylated DNA.</p>
  • <p>DOSE-RESPONSE CURVE FOR ALKYL ADDUCTS/MUTATIONS: It is important to consider that some adducts are not mutagenic at all because they are very effectively repaired. Others are effectively repaired, but if these repair processes become overwhelmed mutations begin to occur. The relationship (shape of dose-response curve) between exposure to mutagenic agents and mutations&nbsp;provide an indication of whether the removal of adducts occurs, and whether it is more efficient at low doses. Sub-linear dose-response curves (hockey stick or j-shape curves) for mutation induction indicates that adducts are not converted to mutations at low doses. This suggests the effective repair of adducts at low doses, followed by saturation of repair at higher doses (Clewell et al., 2019). Thus, measurement of a clear point of inflection in the dose-response curve for mutations suggests that repair does occur, at least to some extent, at low dosees but that reduced repair efficiency arises above the inflection point. A lack of increase in mutation frequencies (i.e., flat line for dose-response) for a compound showing a dose-dependent increase in adducts would imply that the adducts formed are either not mutagenic or are effectively repaired.</p>
  • <p>RETENTION OF ALKYL ADDUCTS: Alkylated DNA can be found in cells long after exposure has occurred. This indicates that repair has not effectively removed the adducts. For example, DNA adducts have been measured in hamster and rat spermatogonia several days following exposure to alkylating agents, indicating lack of repair (Seiler et al., 1997; Scherer et al., 1987).</p>
  • <p>MUTATION SPECTRUM: Shifts in mutation spectrum (i.e., the specific changes in the DNA sequence) following a chemical exposure (relative to non-exposed mutation spectrum) indicates that repair was not operating effectively to remove specific types of lesions. The shift in mutation spectrum is indicative of the types of DNA lesions (target nucleotides and DNA sequence context) that were not repaired. For example, if a greater proportion of mutations occur at guanine nucleotides in exposed cells, it can be assumed that the chemical causes DNA adducts on guanine that are not effectively repaired.</p>
  • <p><br />
  • <u><strong>Direct Measurement</strong></u></p>
  • <p>Nagel et al. (2014) we developed a fluorescence-based multiplex flow-cytometric host cell reactivation assay (FM-HCR) to measures the ability of human cells to repair plasmid reporters. These reporters contain different types and amounts of DNA damage and can be used to measure repair through by NER, MMR, BER, NHEJ, HR and MGMT.</p>
  • <p><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:12px">Please refer to the table below for additional details and methodologies for detecting DNA damage and repair.</span></span></p>
  • <table border="1" cellpadding="1" cellspacing="1" style="height:2082px; width:629px">
  • <tbody>
  • <tr>
  • <td style="background-color:#eeeeee; text-align:center"><span style="font-size:14px"><strong>Assay Name</strong></span></td>
  • <td style="background-color:#eeeeee; text-align:center"><span style="font-size:14px"><strong>References</strong></span></td>
  • <td style="background-color:#eeeeee; text-align:center"><span style="font-size:14px"><strong>Description</strong></span></td>
  • <td style="background-color:#eeeeee; text-align:center"><span style="font-size:14px"><strong>DNA Damage/Repair Being Measured</strong></span></td>
  • <td style="background-color:#eeeeee; text-align:center"><span style="font-size:14px"><strong>OECD Approved Assay</strong></span></td>
  • </tr>
  • <tr>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Dose-Response Curve for Alkyl Adducts/ Mutations</span></span></td>
  • <td>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Lutz 1991</span></span></p>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">&nbsp;</span></span></p>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Clewell 2016</span></span></p>
  • </td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Creation of a curve plotting the stressor dose and the abundance of adducts/mutations; Characteristics of the resulting curve can provide information on the efficiency of DNA repair</span></span></td>
  • <td>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Alkylation,</span></span></p>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">oxidative damage, or DSBs</span></span></p>
  • </td>
  • <td style="text-align:center"><span style="font-size:14px">N/A</span></td>
  • </tr>
  • <tr>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Retention of Alkyl Adducts</span></span></td>
  • <td>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Seiler 1997</span></span></p>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">&nbsp;</span></span></p>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Scherer 1987</span></span></p>
  • </td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Examination of DNA for alkylation after exposure to an alkylating agent; Presence of alkylation suggests a lack of repair</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Alkylation</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px">N/A</span></td>
  • </tr>
  • <tr>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Mutation Spectrum</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Wyrick 2015</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Shifts in the mutation spectrum after exposure to a chemical/mutagen relative to an unexposed subject can provide an indication of DNA repair efficiency, and can inform as to the type of DNA lesions present</span></span></td>
  • <td>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Alkylation,</span></span></p>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">oxidative damage, or DSBs</span></span></p>
  • </td>
  • <td style="text-align:center"><span style="font-size:14px">N/A</span></td>
  • </tr>
  • <tr>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">DSB Repair Assay (Reporter constructs)</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:times new roman,serif"><span style="font-family:arial,sans-serif">Mao</span></span><span style="font-family:arial,sans-serif"> et al., 2011</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px">Transfection of a GFP reporter construct (and DsRed control) where the GFP signal is only detected if the DSB is repaired; GFP signal&nbsp; is quantified using fluorescence microscopy or flow cytometry</span></td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">DSBs</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px">N/A</span></td>
  • </tr>
  • <tr>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Primary Rat Hepatocyte DNA Repair Assay</span></span></td>
  • <td>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Jeffrey and Williams, 2000</span></span></p>
  • <p style="text-align:center"><span style="font-size:14px"><u><span style="font-family:arial,sans-serif">&nbsp;</span></u></span></p>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Butterworth et al., 1987</span></span></p>
  • </td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Rat primary hepatocytes are cultured with a <sup>3</sup>H-thymidine solution in order to measure DNA synthesis in response to a stressor in non-replicating cells; Autoradiography is used to measure the amount of <sup>3</sup>H incorporated in the DNA post-repair</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Unscheduled DNA synthesis in response to DNA damage</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px">N/A</span></td>
  • </tr>
  • <tr>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Repair synthesis measurement by </span><sup><span style="font-family:arial,sans-serif">3</span></sup><span style="font-family:arial,sans-serif">H-thymine incorporation</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Iyama and Wilson, 2013</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Measure DNA synthesis in non-dividing cells as indication of gap filling during excision repair</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Excision repair</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px">N/A</span></td>
  • </tr>
  • <tr>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Comet Assay with Time-Course</span></span></td>
  • <td>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Olive et al., 1990</span></span></p>
  • <p style="text-align:center"><span style="font-size:14px"><u><span style="font-family:arial,sans-serif">&nbsp;</span></u></span></p>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Trucco et al., 1998</span></span></p>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">-</span></span></p>
  • <p style="text-align:center">Dunkenberger et al., 2022&nbsp;</p>
  • </td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Comet assay is performed with a time-course </span></span>under alkaline conditions to detect SSBs and DSBs.<span style="font-size:14px"><span style="font-family:arial,sans-serif">&nbsp;Quantity of DNA in the tail should decrease as DNA repair progresses</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">DSBs</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">&nbsp;</span><span style="font-family:times new roman,serif"><a href="https://read.oecd-ilibrary.org/environment/test-no-489-in-vivo-mammalian-alkaline-comet-assay_9789264264885-en"><span style="font-family:arial,sans-serif">Yes</span></a></span><u><span style="font-family:arial,sans-serif"> (No. 489)</span></u></span></td>
  • </tr>
  • <tr>
  • <td style="text-align:center">Flow Cytometry&nbsp;&nbsp;&nbsp;</td>
  • <td>Corneo et al., 2007&nbsp;&nbsp;&nbsp;</td>
  • <td style="text-align:center">The alt-NHEJ flow cytometer method involves utilizing an extrachromosomal substrate. Green fluorescent protein (GFP) expression is indicative of successful alt-NHEJ activity, contingent on the removal of 10 nucleotides from each end of the DNA and subsequent rejoining within a 9-nucleotide microhomology region. This approach provides a quantitative and visual means to measure the efficiency of alternative non-homologous end joining in cellular processes.&nbsp;&nbsp;&nbsp;</td>
  • <td style="text-align:center">Alt NHEJ</td>
  • <td style="text-align:center">No</td>
  • </tr>
  • <tr>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Pulsed Field Gel Electro-phoresis (PFGE) with Time-Course</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:times new roman,serif"><span style="font-family:arial,sans-serif">Biedermann</span></span><u><span style="font-family:arial,sans-serif"> </span></u><span style="font-family:arial,sans-serif">et al., 1991</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px">PFGE assay with a time-course; Quantity of small DNA fragments should decrease as DNA repair&nbsp; progresses</span></td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">DSBs</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px">N/A</span></td>
  • </tr>
  • <tr>
  • <td>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Fluorescence -Based Multiplex Flow-Cytometric Host Reactivation Assay </span></span></p>
  • <p style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">(FM-HCR)</span></span></p>
  • </td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Nagel et al., 2014</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">Measures the ability of human cells to repair plasma reporters, which contain different types and amounts of DNA damage; Used to measure repair processes including HR, NHEJ, BER, NER, MMR, and MGMT</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px"><span style="font-family:arial,sans-serif">HR, NHEJ, BER, NER, MMR, or MGMT</span></span></td>
  • <td style="text-align:center"><span style="font-size:14px">N/A</span></td>
  • </tr>
  • <tr>
  • <td><span style="font-size:14px">Alkaline Unwinding Assay with Time Course&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">Nacci et al. 1991&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">DNA is stored in alkaline solutions with DNA-specific dye and allowed to unwind following removal from tissue, increased strand damage associated with increased unwinding. Samples analyzed at different time points to compare remaining damage following repair opportunities&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">DSBs&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">Yes (<u><span style="font-family:arial,sans-serif">No. 489)</span></u>&nbsp;</span></td>
  • </tr>
  • <tr>
  • <td><span style="font-size:14px">Sucrose Density Gradient Centrifugation with Time Course&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">Larsen et al. 1982&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">Strand breaks alter the molecular weight of the DNA piece. DNA in alkaline solution centrifuged into sugar density gradient, repeated set time apart. The less DNA breaks identified in the assay repeats, the more repair occurred&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">SSBs&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">N/A</span></td>
  • </tr>
  • <tr>
  • <td><span style="font-size:14px">y-H2AX Foci Staining with Time Course&nbsp;</span></td>
  • <td style="text-align:center">
  • <p><span style="font-size:14px">Mariotti et al. 2013&nbsp;</span></p>
  • <p><span style="font-size:14px">Penninckx et al. 2021&nbsp;</span></p>
  • </td>
  • <td style="text-align:center"><span style="font-size:14px">Histone H2AX is phosphorylated in the presence of DNA strand breaks, the rate of its disappearance over time is used as a measure of DNA repair&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">DSBs&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">N/A</span></td>
  • </tr>
  • <tr>
  • <td><span style="font-size:14px">Alkaline Elution Assay with Time Course&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">Larsen et al. 1982&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">DNA with strand breaks elute faster than DNA without, plotted against time intervals to determine the rate at which strand breaks repair&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">SSBs&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">N/A</span></td>
  • </tr>
  • <tr>
  • <td><span style="font-size:14px">53BP1 foci Detection with Time Course&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">Penninckx et al. 2021&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">53BP1 is recruited to the site of DNA damage, the rate at which its level decreases over time is used to measure DNA repair&nbsp;</span></td>
  • <td style="text-align:center"><span style="font-size:14px">DSBs</span></td>
  • <td style="text-align:center"><span style="font-size:14px">N/A&nbsp;</span></td>
  • </tr>
  • </tbody>
  • </table>
  • <p>&nbsp;</p>
  • <h4>References</h4>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Adimoolam, S. &amp; J.M. Ford (2003), &quot;p53 and regulation of DNA damage recognition during nucleotide excision repair&quot; <em>DNA Repair</em> (Amst), 2(9): 947-54.</span></span></p>
  • <p>Aleksandrov, Radoslav et al. (2018), &ldquo;Protein Dynamics in Complex DNA Lesions.&rdquo; Molecular cell,69(6): 1046-1061.e5. doi:10.1016/j.molcel.2018.02.016&nbsp;</p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Allgayer, J. et al. (2013), &quot;Modulation of base excision repair of 8-oxoguanine by the nucleotide sequence&quot;, <em>Nucleic Acids Res</em>, 41(18): 8559-8571. Doi: <a href="https://doi.org/10.1093/nar/gkt620" target="_blank">10.1093/nar/gkt620</a>.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Beranek, D.T. (1990), &quot;Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents&quot;, <em>Mutation Research</em>, 231(1): 11-30. Doi: 10.1016/0027-5107(90)90173-2.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Bhatti, A. et al.,&nbsp;(2016), &ldquo;Homologous Recombination Biology.&rdquo;, <em>Encyclopedia Britannica</em>.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Bhowmick, R., S. et al. (2016), &quot;RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress&quot;, <em>Mol Cell</em>, 64:1117-1126. Doi: 10.1016/j.molcel.2016.10.037.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Biedermann, A. K. et al. (1991), &ldquo;SCID mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair&rdquo;, <em>Cell Biology</em>, 88(4): 1394-7. Doi: 10.1073/pnas.88.4.1394.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Boboila, C., F. W. Alt &amp; B. Schwer. (2012), &ldquo;Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks.&rdquo; <em>Adv Immunol</em>, 116, 1-49. doi:10.1016/B978-0-12-394300-2.00001-6</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Bronstein, S.M. et al. (1991), &quot;Toxicity, mutagenicity, and mutational spectra of N-ethyl-N-nitrosourea in human cell lines with different DNA repair phenotypes&quot;, <em>Cancer Research</em>, 51(19): 5188-5197.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Bronstein, S.M. et al. (1992), &quot;Efficient repair of O6-ethylguanine, but not O4-ethylthymine or O2-ethylthymine, is dependent upon O6-alkylguanine-DNA alkyltransferase and nucleotide excision repair activities in human cells&quot;, <em>Cancer Research</em>, 52(7): 2008-2011.&nbsp;</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Brown, J.A. et al. (2011), &quot;Efficiency and fidelity of human DNA polymerases &lambda; and &beta; during gap-filling DNA synthesis&quot;, <em>DNA Repair (Amst).</em>, 10(1):24-33.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Butterworth, E. B. et al.,&nbsp;(1987), A protocol and guide for the in vitro rat hepatocyte DNA-repair assay. <em>Mutation Research</em>. 189, 113-21. Doi: 10.1016/0165-1218(87)90017-6.</span></span></p>
  • <p>Caldecott, K. W. (2014), &quot;DNA single-strand break repair&quot;,&nbsp;Exp Cell Res, 329(1): 2-8.</p>
  • <p>Chaudhuri, R.A. and Nussenzweig, A. (2017), &ldquo;The multifaceted roles of PARP1 in DNA repair and chromatin remodelling&rdquo;. Nat Rev Mol Cell Biol 18, 610&ndash;621. https://doi.org/10.1038/nrm.2017.53&nbsp;&nbsp;&nbsp;</p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Chen, L. et al.,&nbsp;(2001), Promotion of DNA ligase IV-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. <em>Mol Cell</em>. 8(5), 1105-15.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Chiruvella, K. K., Z. Liang &amp; T. E. Wilson, (2013),&nbsp;Repair of Double-Strand Breaks by End Joining. <em>Cold Spring Harbor Perspectives in Biology</em>, 5(5):127-57. Doi: 10.1101/cshperspect.a012757.</span></span></p>
  • <p>Clewell, R. A. et al. (2019). &ldquo;Dose-dependence of chemical carcinogenicity: Biological mechanisms for thresholds and implications for risk assessment&rdquo;. Chem Biol Interact. 2019 Mar 1;301:112-127. doi: 10.1016/j.cbi.2019.01.025.&nbsp;</p>
  • <p>Corneo, B. et al., 2007, &quot;Rag mutations reveal robust alternative end joining&rdquo;. Nature 449, 483&ndash;486 (2007). https://doi.org/10.1038/nature06168&nbsp;&nbsp;&nbsp;</p>
  • <p><span style="font-size:14px">Dahle, J., et al. (2008), &ldquo;Overexpression of human OGG1 in mammalian cells decreases ultraviolet A induced mutagenesis&rdquo;, Cancer Letters, Vol.267, Elsevier, Amsterdam, https://doi.org/10.1016/j.canlet.2008.03.002.&nbsp;</span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Deem, A. et al. (2011), &quot;Break-Induced Replication Is Highly Inaccurate.&quot;, <em>PLoS Biol</em>. &nbsp;9:e1000594. Doi: 10.1371/journal.pbio.1000594.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Dianov, G.L. &amp; U. H&uuml;bscher (2013), &quot;Mammalian base excision repair: the forgotten archangel&quot;, <em>Nucleic Acids Res.</em>, 41(6):3483-90. Doi: 10.1093/nar/gkt076.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Dilley, R.L. et al. &nbsp;Greenberg (2016), &quot;Break-induced telomere synthesis underlies alternative telomere maintenance&quot;, <em>Nature</em>, 539:54-58. Doi: 10.1038/nature20099.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Douglas, G.R. et al. &nbsp;(1995), &quot;Temporal and molecular characteristics of mutations induced by ethylnitrosourea in germ cells isolated from seminiferous tubules and in spermatozoa of lacZ transgenic mice&quot;, <em>Proceedings of the National Academy of Sciences of the United States of America</em>, 92(16):7485-7489. Doi: 10.1073/pnas.92.16.7485.</span></span></p>
  • <p>Dunkenberger, Logan et al. (2022), &ldquo;Comet Assay for the Detection of Single and Double-Strand DNA Breaks.&rdquo; Methods in molecular biology (Clifton, N.J.), 2422: 263-269. doi:10.1007/978-1-0716-1948-3_18&nbsp;</p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Fattah, F. et al.,&nbsp;(2010), Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells. PLoS Genet, 6(2), doi:10.1371/journal.pgen.1000855</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Fitzgerald, D.M., P.J. Hastings, and S.M. Rosenberg (2017), &quot;Stress-Induced Mutagenesis: Implications in Cancer and Drug Resistance&quot;, Ann Rev Cancer Biol, 1:119-140. Doi: 10.1146/annurev-cancerbio-050216-121919.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Gorbunova, V. and A. Seluanov. (2016), &ldquo;DNA double strand break repair, aging and the chromatin connection&rdquo;, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, Vol.788/1-2, Elsevier, Amsterdam, http://dx.doi.org/10.1016/j.mrfmmm.2016.02.004.&nbsp;</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Hammel, M. et al.,&nbsp;(2011), XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J Biol Chem, 286(37), 32638-32650. doi:10.1074/jbc.M111.272641.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Hanawalt, P.C., J.M. Ford and D.R. Lloyd (2003), &quot;Functional characterization of global genomic DNA repair and its implications for cancer&quot;, <em>Mutation Research</em>, 544(2-3): 107&ndash;114.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Harbach, P. R. et al., (1989), &ldquo;The in vitro unscheduled DNA synthesis (UDS) assay in rat primary hepatocytes&rdquo;, <em>Mutation Research</em>, 216(2):101-10. Doi:10.1016/0165-1161(89)90010-1.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Iyama, T. and D.M. Wilson III (2013), &quot;DNA repair mechanisms in dividing and non-dividing cells&quot;, <em>DNA Repair</em>, 12(8): 620&ndash; 636.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Jeffrey, M. A.&amp; M. G. Williams, (2000), &ldquo;Lack of DNA-damaging Activity of Five Non-nutritive Sweeteners in the Rat Hepatocyte/DNA Repair Assay&rdquo;, &nbsp;<em>Food and Chemical Toxicology</em>, 38: 335-338. Doi: 10.1016/S0278-6915(99)00163-5.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">K&ouml;berle, B. et al. (1999), &quot;Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours&quot;, <em>Curr. Biol.</em>, 9(5):273-6. Doi: <a href="https://doi.org/10.1016/s0960-9822(99)80118-3" target="_blank">10.1016/s0960-9822(99)80118-3</a>.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Kozmin, S.G. &amp; S. Jinks-Robertson S. (2013), &ldquo;The mechanism of nucleotide excision repair-mediated UV-induced mutagenesis in nonproliferating cells&rdquo;, <em>Genetics</em>, 193(3): 803-17. Doi: 10.1534/genetics.112.147421.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Kramara, J., B. Osia, and A. Malkova (2018), &quot;Break-Induced Replication: The Where, The Why, and The How&quot;, <em>Trends Genet</em>, 34:518-531. Doi: 10.1016/j.tig.2018.04.002.</span></span></p>
  • <p><span style="font-size:14px">Kuhne, M., G. Urban and M. Lo (2005), &quot;DNA Double-Strand Break Misrejoining after Exposure of Primary Human Fibroblasts to CK Characteristic X Rays, 29 kVp X Rays and 60Co &gamma; Rays&quot;, Radiation. Research, Vol.164/5, Radiation Research Society, Indianapolis, https://doi.org/10.1667/RR3461.1.&nbsp;</span></p>
  • <p><span style="font-size:14px">Larsen, K.H. et al. (1982), &ldquo;DNA repair assays as tests for environmental mutagens: A report of the U.S. EPA gene-tox program&rdquo;, Mutation Research, Vol.98/3, Elsevier, Amsterdam, https://doi.org/10.1016/0165-1110(82)90037-9.&nbsp;</span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Li Z, A. H. Pearlman, and P. Hsieh&nbsp;(2016), &quot;DNA mismatch repair and the DNA damage response&quot;,&nbsp;<em>DNA Repair (Amst)</em>, 38:94-101.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Lieber, M. R., (2010), &ldquo;The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway.&rdquo; <em>Annu Rev Biochem</em>. 79:181-211. doi:10.1146/annurev.biochem.052308.093131.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Lieber, M. R. et al., (2003), &ldquo;Mechanism and regulation of human non-homologous DNA end-joining&rdquo;, <em>Nat Rev Mol Cell Biol</em>. 4(9):712-720. doi:10.1038/nrm1202.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Liu, Y. et al. (2009), &quot;Coordination between polymerase beta and FEN1 can modulate CAG repeat expansion&quot;, J. Biol. Chem., 284(41): 28352-28366. Doi: 10.1074/jbc.M109.050286.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Mao, Z. et al.,&nbsp;(2011), &ldquo;SIRT6 promotes DNA repair under stress by activating PARP1&rdquo;, <em>Science</em>. 332(6036): 1443-1446. doi:10.1126/science.1202723.</span></span></p>
  • <p><span style="font-size:14px">Mariotti, L.G. et al. (2013), &ldquo;Use of the &gamma;-H2AX Assay to Investigate DNA Repair Dynamics Following Multiple Radiation Exposures&rdquo;, PLoS ONE, Vol.8/11, PLoS, San Francisco, https://doi.org/10.1371/journal.pone.0079541.&nbsp;</span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Matthews, L. A., &amp; L. A. Simmons, (2014), &ldquo;Bacterial nonhomologous end joining requires teamwork&rdquo;, <em>J Bacteriol</em>. 196(19): 3363-3365. doi:10.1128/JB.02042-14.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Menoni, H. et al. (2012), &quot;Base excision repair of 8-oxoG in dinucleosomes&quot;, <em>Nucleic Acids Res.</em> ,40(2): 692-700. Doi: <a href="https://doi.org/10.1093/nar/gkr761" target="_blank">10.1093/nar/gkr761</a>.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Minocherhomji, S. et al. (2015), &quot;Replication stress activates DNA repair synthesis in mitosis&quot;, <em>Nature</em>, 528:286-290. Doi: 10.1038/nature16139.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Miyaoka, Y. et al.,&nbsp;(2016), &ldquo;Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing&rdquo;, <em>Sci Rep</em>, 6, 23549. doi:10.1038/srep23549/.</span></span></p>
  • <p>Mladenov. et al.&nbsp; (2023), . &ldquo;New Facets of DNA Double Strand Break Repair: Radiation Dose as Key Determinant of HR versus c-NHEJ Engagement&rdquo;. International journal of molecular sciences, 24(19), 14956. https://doi.org/10.3390/ijms241914956&nbsp;</p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Moore, J. K., &amp; J. E. Haber, (1996), &ldquo;Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae&rdquo;, <em>Molecular and Cellular Biology</em>, 16(5), 2164&ndash;73. &nbsp;Doi: 10.1128/MCB.16.5.2164.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Nacci, D. et al. (1992), &ldquo;Application of the DNA alkaline unwinding assay to detect DNA strand breaks in marine bivalves&rdquo;, Marine Environmental Research, Vol.33/2, Elsevier BV, Amsterdam, https://doi.org/10.1016/0141-1136(92)90134-8.&nbsp;</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Nagel, Z.D. et al. (2014), &quot;Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis&quot;, <em>Proc. Natl. Acad. Sci. USA</em>, 111(18):E1823-32. Doi: 10.1073/pnas.1401182111.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">O&rsquo;Brien, J.M. et al. (2015), &quot;Sublinear response in lacZ mutant frequency of Muta&trade; Mouse spermatogonial stem cells after low dose subchronic exposure to N-ethyl-N-nitrosourea&quot;, <em>Environ. Mol. Mutagen.</em>, 56(4): 347-55. Doi: 10.1002/em.21932.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Olive, L. P., J. P. Bnath &amp; E. R. Durand, (1990), &ldquo;Heterogeneity in Radiation-Induced DNA Damage and Repairing Tumor and Normal Cells Measured Using the &quot;Comet&quot; Assay&rdquo;, <em>Radiation Research</em>. 122: 86-94. Doi: 10.1667/rrav04.1.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Pardo, B., B. Gomez-Gonzalez &amp; A. Aguilera, (2009), &ldquo;DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship<em>&rdquo;, Cell Mol Life Sci</em>, 66(6), 1039-1056. doi:10.1007/s00018-009-8740-3.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Pegg, A.E. (2011), &quot;Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools&quot;, <em>Chem. Res. Toxicol.</em>, 4(5): 618-39. Doi: 10.1021/tx200031q.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Penninckx, S. et al. (2021), &ldquo;Quantification of radiation-induced DNA double strand break repair foci to evaluate and predict biological responses to ionizing radiation&rdquo;, NAR Cancer, Vol.3/4, Oxford University Press, Oxford, https://doi.org/10.1093/narcan/zcab046.&nbsp;</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Rydberg, B. et al. (2005), &quot;Dose-Dependent Misrejoining of Radiation-Induced DNA Double-Strand Breaks in Human Fibroblasts: Experimental and Theoretical Study for High- and Low-LET Radiation&quot;, Radiation Research, Vol.163/5, Radiation Research Society, Indianapolis, https://doi.org/10.1667/RR3346. &nbsp;</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Sancar, A. (2003), &quot;Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors&quot;, <em>Chem Rev.</em>, 103(6): 2203-37. Doi: 10.1021/cr0204348.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Saini, N. et al. (2017), &quot;Migrating bubble during break-induced replication drives conservative DNA synthesis&quot;, <em>Nature</em>, 502:389-392. Doi: 10.1038/nature12584.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Sakofsky, C.J. et al. (2015), &quot;Translesion Polymerases Drive Microhomology-Mediated Break-Induced Replication Leading to Complex Chromosomal Rearrangements&quot;, <em>Mol Cell</em>, 60:860-872. Doi: 10.1016/j.molcel.2015.10.041.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Sch&auml;rer, O.D. (2013), &quot;Nucleotide excision repair in eukaryotes&quot;, <em>Cold Spring Harb. Perspect. Biol.</em>, 5(10): a012609. Doi: 10.1101/cshperspect.a012609.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Scherer, E., A.A. Jenner and L. den Engelse (1987), &quot;Immunocytochemical studies on the formation and repair of O6-alkylguanine in rat tissues&quot;, <em>IARC Sci Publ.</em>, 84: 55-8.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Seiler, F., K. Kamino, M. Emura, U. Mohr and J. Thomale (1997), &quot;Formation and persistence of the miscoding DNA alkylation product O6-ethylguanine in male germ cells of the hamster&quot;, <em>Mutat Res.</em>, 385(3): 205-211. Doi: 10.1016/s0921-8777(97)00043-8.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Shelby, M.D. and K.R. Tindall (1997), &quot;Mammalian germ cell mutagenicity of ENU, IPMS and MMS, chemicals selected for a transgenic mouse collaborative study&quot;,<em> Mutation Research</em>, 388(2-3): 99-109. Doi: 10.1016/s1383-5718(96)00106-4.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Seo, Y.R. and H.J. Jung (2004), &quot;The potential roles of p53 tumor suppressor in nucleotide excision repair (NER) and base excision repair (BER)&quot;, <em>Exp. Mol. Med.</em>, 36(6): 505-509. Doi: 10.1038/emm.2004.64.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Sundheim, O. et al. (2008), &quot;AlkB demethylases flip out in different ways&quot;,<em> DNA Repair (Amst)</em>., 7(11): 1916-1923. Doi: <a href="https://doi.org/10.1016/j.dnarep.2008.07.015" target="_blank">10.1016/j.dnarep.2008.07.015</a>.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Sung, P., &amp; H.&nbsp;Klein, (2006), &ldquo;Mechanism of homologous recombination: mediators and helicases take on regulatory functions&rdquo;, &nbsp;<em>Nat Rev Mol Cell Biol</em>, 7(10), 739-750. Doi:10. 1038/nrm2008.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Trucco, C., et al., (1998), &ldquo;DNA repair defect i poly(ADP-ribose) polymerase-deficient cell lines&rdquo;, Nucleic Acids Research. 26(11): 2644&ndash;2649. Doi: 10.1093/nar/26.11.2644.</span></span></p>
  • <p><span style="font-size:14px">Trzeciak, A.R. et al. (2008), &ldquo;Age, sex, and race influence single-strand break repair capacity in a human population&rdquo;, Free Radical Biology &amp; Medicine, Vol. 45, Elsevier, Amsterdam, https://doi.org/10.1016/j.freeradbiomed.2008.08.031.&nbsp;</span></p>
  • <p><span style="font-size:14px">White, R.R. and J. Vijg. (2016), &ldquo;Do DNA Double-Strand Breaks Drive Aging?&rdquo;, Molecular Cell, Vol.63, Elsevier, Amsterdam, http://doi.org/10.1016/j.molcel.2016.08.004.&nbsp;</span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">Wyrick, J.J. &amp;&nbsp;S. A.&nbsp;Roberts, (2015), &ldquo;Genomic approaches to DNA repair and mutagenesis&rdquo;, DNA Repair (Amst). 36:146-155. doi: 10.1016/j.dnarep.2015.09.018.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:arial,helvetica,sans-serif">van Zeeland, A.A., A. de Groot and A. Neuh&auml;user-Klaus (1990), &quot;DNA adduct formation in mouse testis by ethylating agents: a comparison with germ-cell mutagenesis&quot;, <em>Mutat. Res.</em>, 231(1): 55-62.</span></span></p>
  • <h4><a href="/events/185">Event: 185: Increase, Mutations</a></h4>
  • <h5>Short Name: Increase, Mutations</h5>
  • <h4>Key Event Component</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Process</th>
  • <th scope="col">Object</th>
  • <th scope="col">Action</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>mutation</td>
  • <td>deoxyribonucleic acid</td>
  • <td>increased</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/15">Aop:15 - Alkylation of DNA in male pre-meiotic germ cells leading to heritable mutations</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/141">Aop:141 - Alkylation of DNA leading to cancer 2</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/139">Aop:139 - Alkylation of DNA leading to cancer 1</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/294">Aop:294 - Increased reactive oxygen and nitrogen species (RONS) leading to increased risk of breast cancer</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/293">Aop:293 - Increased DNA damage leading to increased risk of breast cancer</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/296">Aop:296 - Oxidative DNA damage leading to chromosomal aberrations and mutations</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/272">Aop:272 - Deposition of energy leading to lung cancer</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/397">Aop:397 - Bulky DNA adducts leading to mutations</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/443">Aop:443 - DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/478">Aop:478 - Deposition of energy leading to occurrence of cataracts</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Stressors</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Name</th></tr>
  • </thead>
  • <tbody>
  • <tr><td>Ionizing Radiation</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Molecular</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Mus musculus</td>
  • <td>Mus musculus</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>medaka</td>
  • <td>Oryzias latipes</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=8090" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>rat</td>
  • <td>Rattus norvegicus</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Homo sapiens</td>
  • <td>Homo sapiens</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>All life stages</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p><strong>Taxonomic applicability:</strong> Mutations can occur in any organism and in any cell type, and are the fundamental material of evolution. The test guidelines described above range from analysis from prokaryotes, to rodents, to human cells in vitro. Mutations have been measured in virtually every human tissue sampled in vivo.</p>
  • <p><strong>Life stage applicability:</strong> This key event is not life stage specific as all stages of life have DNA that can be mutated; however, baseline levels of mutations are seen to increase with age (Slebos et al., 2004; Kirkwood, 1989).&nbsp;</p>
  • <p><strong>Sex applicability:</strong> This key event is not sex specific as both sexes undergo mutations. Males have a higher mutation rate than females (Hedrick, 2007).&nbsp;</p>
  • <p><strong>Evidence for perturbation by a stressor:</strong> Many studies demonstrate that increased mutations can occur as a result of ionizing radiation (Sankaranarayanan &amp; Nikjoo, 2015; Russell et al., 1957; Winegar et al., 1994; Gossen et al., 1995). &nbsp;</p>
  • <h4>Key Event Description</h4>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">A mutation is a change in DNA sequence. Mutations can thus alter the coding sequence of genes, potentially leading to malformed or truncated proteins. Mutations can also occur in promoter regions, splice junctions, non-coding RNA, DNA segments, and other functional locations in the genome. These mutations can lead to various downstream consequences, including alterations in gene expression. There are several different types of mutations including missense, nonsense, insertion, deletion, duplication, and frameshift mutations, all of which can impact the genome and its expression in unique ways. </span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Missense mutations are the substitution of one base in the codon with another. This change is significant because the three bases in a codon code for a specific amino acid and the new combination may signal for a different amino acid to be formed. Nonsense mutations also result from changes to the codon bases, but in this case, they cause the generation of a stop codon in the DNA strand where there previously was not one. This stop codon takes the place of a normal coding triplet, preventing its translation into an amino acid. This will cause the translation of the strand to prematurely stop. Both missense and nonsense mutations can result from substitutions, insertions, or deletions of bases (Chakarov et al. 2014). &nbsp;</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Insertion and deletion mutations are the addition and removal of bases from the strand, respectively. These often accompany a frameshift mutation, as the alteration in the number of bases in the strand causes the frame of the base reader to shift by the added or reduced number, altering the amino acids that are produced if that number is not devisable by three. Codons come in specific orders, sectioned into groups of three. When the boundaries of which three bases are included in one group are changed, this can change the whole transcriptional output of the strand (Chakaroy et al. 2014).&nbsp;</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Mutations can be propagated to daughter cells upon cellular replication. Mutations in stem cells (versus terminally differentiated non-replicating cells) are the most concerning, as these will persist in the organism. The consequence of the mutation, and thus the fate of the cell, depends on the location (e.g., coding versus non-coding) and the type (e.g., nonsense versus silent) of mutation.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Mutations can occur in somatic cells or germ cells (sperm or egg).</span></span></p>
  • <h4>How it is Measured or Detected</h4>
  • <p>Mutations can be measured using a variety of both OECD and non-OECD mutagenicity tests. Listed below are common methods for detecting the KE, however there may be other comparable methods that are not listed.</p>
  • <p><strong>Somatic cells:</strong> The Salmonella mutagenicity test (Ames Test) is generally used as part of a first tier screen to determine if a chemical can cause gene mutations. This well-established test has an OECD test guideline (OECD TG 471, 2020). A variety of bacterial strains are used, in the presence and absence of a metabolic activation system (e.g., rat liver microsomal S9 fraction), to determine the mutagenic potency of chemicals by dose-response analysis. A full description is found in Test No. 471: Bacterial Reverse Mutation Test (OECD, 2016).</p>
  • <p>A variety of in vitro mammalian cell gene mutation tests are described in OECD&rsquo;s Test Guidelines 476 (2016) and 490 (2015). TG 476 (2016) is used to identify substances that induce gene mutations at the hprt (hypoxanthine-guanine phosphoribosyl transferase) gene, or the transgenic xprt (xanthine-guanine phosphoribosyl transferase) reporter locus. The most commonly used cells for the HPRT test include the CHO, CHL and V79 lines of Chinese hamster cells, L5178Y mouse lymphoma cells, and TK6 human lymphoblastoid cells. The only cells suitable for the XPRT test are AS52 cells containing the bacterial xprt (or gpt) transgene (from which the hprt gene was deleted).</p>
  • <p>The new OECD TG 490 (2015) describes two distinct in vitro mammalian gene mutation assays using the thymidine kinase (tk) locus and requiring two specific tk heterozygous cells lines: L5178Y tk+/-3.7.2C cells for the mouse lymphoma assay (MLA) and TK6 tk+/- cells for the TK6 assay. The autosomal and heterozygous nature of the thymidine kinase gene in the two cell lines enables the detection of cells deficient in the enzyme thymidine kinase following mutation from tk+/- to tk-/-.</p>
  • <p>It is important to consider that different mutation spectra are detected by the different mutation endpoints assessed. The non-autosomal location of the hprt gene (X-chromosome) means that the types of mutations detected in this assay are point mutations, including base pair substitutions and frameshift mutations resulting from small insertions and deletions. Whereas, the autosomal location of the transgenic xprt, tk, or gpt locus allows the detection of large deletions not readily detected at the hemizygous hprt locus on X-chromosomes. Genetic events detected using the tk locus include both gene mutations (point mutations, frameshift mutations, small deletions) and large deletions.</p>
  • <p>The transgenic rodent mutation assay (OECD TG 488, 2020) is the only assay capable of measuring gene mutation in virtually all tissues in vivo. Specific details on the rodent transgenic mutation reporter assays are reviewed in Lambert et al. (2005, 2009). The transgenic reporter genes are used for detection of gene mutations and/or chromosomal deletions and rearrangements resulting in DNA size changes (the latter specifically in the lacZ plasmid and Spi- test models) induced in vivo by test substances (OECD, 2009, OECD, 2011; Lambert et al., 2005). Briefly, transgenic rodents (mouse or rat) are exposed to the chemical agent sub-chronically. Following a manifestation period, genomic DNA is extracted from tissues, transgenes are rescued from genomic DNA, and transfected into bacteria where the mutant frequency is measured using specific selection systems.</p>
  • <p>The Pig-a (phosphatidylinositol glycan, Class A) gene on the X chromosome codes for a catalytic subunit of the N-acetylglucosamine transferase complex that is involved in glycosylphosphatidyl inositol (GPI) cell surface anchor synthesis. Cells lacking GPI anchors, or GPI-anchored cell surface proteins are predominantly due to mutations in the Pig-a gene. Thus, flow cytometry of red blood cells expressing or not expressing the Pig-a gene has been developed for mutation analysis in blood cells from humans, rats, mice, and monkeys. The assay is described in detail in Dobrovolsky et al. (2010). Development of an OECD guideline for the Pig-a assay is underway. In addition, experiments determining precisely what proportion of cells expressing the Pig-a mutant phenotype have mutations in the Pig-a gene are in progress (e.g., Nicklas et al., 2015, Drobovolsky et al., 2015). A recent paper indicates that the majority of CD48 deficient cells from 7,12-dimethylbenz[a]anthracene-treated rats (78%) are indeed due to mutation in Pig-a (Drobovolsky et al., 2015).</p>
  • <p><br />
  • <strong>Germ cells:</strong> Tandem repeat mutations can be measured in bone marrow, sperm, and other tissues using single-molecule PCR. This approach has been applied most frequently to measure repeat mutations occurring in sperm DNA. Isolation of sperm DNA is as described above for the transgenic rodent mutation assay, and analysis of tandem repeats is done using electrophoresis for size analysis of allele length using single-molecule PCR. For expanded simple tandem repeat this involved agarose gel electrophoresis and Southern blotting, whereas for microsatellites sizing is done by capillary electrophoresis. Detailed methodologies for this approach are found in Yauk et al. (2002) and Beal et al. (2015).</p>
  • <p>Mutations in rodent sperm can also be measured using the transgenic reporter model (OECD TG 488, 2020). A description of the approach is found within this published TG. Further modifications to this protocol have been made as of 2022 for the analysis of germ cells. Detailed methodology for detecting mutant frequency arising in spermatogonia is described in Douglas et al. (1995), O&#39;Brien et al. (2013); and O&#39;Brien et al. (2014). Briefly, male mice are exposed to the mutagen and killed at varying times post-exposure to evaluate effects on different phases of spermatogenesis. Sperm are collected from the vas deferens or caudal epididymis (the latter preferred). Modified protocols have been developed for extraction of DNA from sperm.</p>
  • <p>A similar transgenic assay can be used in transgenic medaka (Norris and Winn, 2010).</p>
  • <p><br />
  • Please note, gene mutations that occur in somatic cells in vivo (OECD Test. No. 488, 2020) or in vitro (OECD Test No. 476: In vitro Mammalian Cell Gene Mutation Test, 2016), or in bacterial cells (i.e., OECD Test No. 471, 2020) can be used as an indicator that mutations in male pre-meiotic germ cells may occur for a particular agent (sensitivity and specificity of other assays for male germ cell effects is given in Waters et al., 1994). However, given the very unique biological features of spermatogenesis relative to other cell types, known exceptions to this rule, and the small database on which this is based, inferring results from somatic cell or bacterial tests to male pre-meiotic germ cells must be done with caution. That mutational assays in somatic cells may predict mutations in germ cells has not been rigorously tested empirically (Singer and Yauk, 2010). The IWGT working group on germ cells specifically addressed this gap in knowledge in their report (Yauk et al., 2015) and recommended that additional research address this issue. Mutations can be directly measured in humans (and other species) through the application of next-generation sequencing. Although single-molecule approaches are growing in prevalence, the most robust approach to measure mutation using next-generation sequencing today requires clonal expansion of the mutation to a sizable proportion (e.g., sequencing tumours; Shen et al., 2015), or analysis of families to identify germline derived mutations (reviewed in Campbell and Eichler, 2013; Adewoye et al., 2015).</p>
  • <p><span style="font-size:14px"><span style="font-family:arial,sans-serif">Please refer to the table below for additional details and methodologies for measuring mutations. </span></span></p>
  • <table border="1" cellpadding="1" cellspacing="1" style="height:2351px; width:633px">
  • <tbody>
  • <tr>
  • <td style="background-color:#eeeeee; text-align:center">A<strong>ssay Name</strong></td>
  • <td style="background-color:#eeeeee; text-align:center"><strong>References </strong></td>
  • <td style="background-color:#eeeeee; text-align:center"><strong>Description </strong></td>
  • <td style="background-color:#eeeeee; text-align:center"><strong>OECD Approved Assay</strong></td>
  • </tr>
  • <tr>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">Assorted Gene Loci Mutation Assays</span></td>
  • <td>
  • <p style="text-align:center"><span style="font-family:arial,sans-serif; font-size:11pt">Tindall et al., 1989; <span style="font-family:arial,sans-serif; font-size:11pt"><span style="font-family:times new roman,serif; font-size:12pt"><span style="font-family:arial,sans-serif; font-size:11pt">Kruger</span></span><span style="font-family:arial,sans-serif; font-size:11pt"> et al., 2015</span></span></span></p>
  • </td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">After exposure to a chemical/mutagen, mutations can be measured by the ability of exposed cells to form colonies in the presence of specific compounds that would normally inhibit colony growth; Usually only cells -/- for the gene of interest are able to form colonies</span></td>
  • <td>N/A</td>
  • </tr>
  • <tr>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">TK Mutation Assay</span></td>
  • <td>
  • <p style="text-align:center"><span style="font-family:arial,sans-serif; font-size:11pt">Yamamoto et al., 2017; <span style="font-family:arial,sans-serif; font-size:11pt"><span style="font-family:arial,sans-serif; font-size:11pt">Liber et al., 1982; <span style="font-family:arial,sans-serif; font-size:11pt"><span style="font-family:arial,sans-serif; font-size:11pt">Lloyd and Kidd, 2012</span></span></span></span></span></p>
  • </td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">After exposure to a chemical/mutagen, mutations are detected at the thymidine kinase (TK) loci&nbsp;of L5178Y wild-type mouse lymphoma TK (+/-) cells by measuring resistance to lethaltriflurothymidine (TFT); Only TK-/- cells are able to form colonies</span></td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">Yes&nbsp;(No. 490)</span></td>
  • </tr>
  • <tr>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">HPRT Mutation Assay</span></td>
  • <td>
  • <p style="text-align:center"><span style="font-family:arial,sans-serif; font-size:11pt">Ayres et al., 2006; <span style="font-family:arial,sans-serif; font-size:11pt"><span style="font-family:arial,sans-serif; font-size:11pt">Parry and Parry, 2012</span></span></span></p>
  • </td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">Similar to TK Mutation Assay above, X-linked HPRT mutations produced in response to chemical/mutagen exposure can be measured through colony formation in the presence of 6-TG or 8-azoguanine; Only HPRT-/- cells are able to form colonies</span></td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">Yes&nbsp;(No. 476)</span></td>
  • </tr>
  • <tr>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">Salmonella Mutagenicity Test (Ames Test)</span></td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">OECD, 1997</span></td>
  • <td>After exposure to a chemical/mutagen, point mutations are detected by analyzing the growth capacity of different bacterial strains in the presence and absence of various metabolic activation systems&nbsp;</td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">Yes (No. 471)</span></td>
  • </tr>
  • <tr>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">PIG-A / PIG-O Assay</span></td>
  • <td>
  • <p style="text-align:center"><span style="font-family:arial,sans-serif; font-size:11pt">Kruger et al., 2015; <span style="font-family:arial,sans-serif; font-size:11pt"><span style="font-family:arial,sans-serif; font-size:11pt">Nakamura, 2012; <span style="font-family:arial,sans-serif; font-size:11pt"><span style="font-family:arial,sans-serif; font-size:11pt">Chikura, 2019</span></span></span></span></span></p>
  • </td>
  • <td>After exposure to a chemical/mutagen, mutations&nbsp; in PIG-A or PIG-O (which decrease the biosynthesis of the glycosylphosphatidylinositol (GPI) anchor protein) are assessed by the colony-forming capabilities of cells after <em>in vitro</em> exposure, or by flow cytometry of blood samples after <em>in vivo </em>exposure</td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">N/A</span></td>
  • </tr>
  • <tr>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">Single Molecule PCR</span></td>
  • <td>
  • <p style="text-align:center"><span style="font-family:arial,sans-serif; font-size:11pt">Kraytsberg &amp; Khrapko, 2005; <span style="font-family:arial,sans-serif; font-size:11pt"><span style="font-family:arial,sans-serif; font-size:11pt">Yauk, 2002</span></span></span></p>
  • </td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">This PCR technique uses a single DNA template, and is often employed for detection of mutations in microsatellites, recombination studies, and generation of polonies</span></td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">N/A</span></td>
  • </tr>
  • <tr>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">ACB-PCR</span></td>
  • <td>
  • <p>Myers et al., 2014 (Textbook, pg 345-363); Banda et al.,&nbsp; 2013; Banda et al.,&nbsp; 2015; Parsons et al., 2017</p>
  • </td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">Using this PCR technique, single base pair substitution mutations within oncogenes or tumour suppressor genes can be detected by selectively amplifying specific point mutations within an allele and selectively blocking amplification of the wild-type allele </span></td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">N/A</span></td>
  • </tr>
  • <tr>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">Transgenic Rodent Mutation Assay </span></td>
  • <td>
  • <p style="text-align:center"><span style="font-family:arial,sans-serif; font-size:11pt">OECD 2013; <span style="font-family:arial,sans-serif; font-size:11pt"><span style="font-family:arial,sans-serif; font-size:11pt">Lambert 2005; <span style="font-family:arial,sans-serif; font-size:11pt"><span style="font-family:arial,sans-serif; font-size:11pt">Lambert 2009</span></span></span></span></span></p>
  • </td>
  • <td>This <em>in vivo</em> test detects gene mutations using transgenic rodents that possess transgenes and reporter genes; After<em> in vivo</em> exposure to a chemical/mutagen, the transgenes are analyzed by transfecting bacteria with the reporter gene and examining the resulting phenotype</td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">Yes (No. 488)</span></td>
  • </tr>
  • <tr>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">Conditionally inducible transgenic mouse models</span></td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">Parsons 2018 (Review)</span></td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">Inducible mutations linked to fluorescent tags are introduced into transgenic mice; Upon exposure of the transgenic mice to an inducing agent, the presence and functional assessment of the mutations can be easily ascertained due to expression of the linked fluorescent tags </span></td>
  • <td>N/A</td>
  • </tr>
  • <tr>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">Error</span><span style="font-family:arial,sans-serif; font-size:12pt">-</span><span style="font-family:arial,sans-serif; font-size:11pt">Corrected Next Generation Sequencing (NGS)</span></td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">Salk 2018 (Review)</span></td>
  • <td><span style="font-family:arial,sans-serif; font-size:11pt">This technique detects rare subclonal mutations within a pool of heterogeneous DNA samples through the application of new error-correction strategies to NGS; At present, few laboratories in the world are capable of doing this, but commercial services are becoming available (e.g., Duplex sequencing at TwinStrand BioSciences) </span></td>
  • <td>N/A&nbsp;</td>
  • </tr>
  • </tbody>
  • </table>
  • <p>&nbsp;</p>
  • <h4>References</h4>
  • <p>Adewoye, A.B. et al. (2015), &quot;The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline&quot;, <em>Nat. Commu.</em>, 6:6684. Doi: 10.1038/ncomms7684.</p>
  • <p>Ayres, M. F. et al. (2006), &nbsp;&ldquo;Low doses of gamma ionizing radiation increase hprt mutant frequencies of TK6 cells without triggering the mutator phenotype pathway&rdquo;, &nbsp;<em>Genetics and Molecular Biology</em>. 2(3): 558-561. Doi:10.1590/S1415-4757200600030002.</p>
  • <p>Banda M, Recio L, and Parsons BL. (2013), &ldquo;ACB-PCR measurement of spontaneous and furan-induced H-ras codon 61 CAA to CTA and CAA to AAA mutation in B6C3F1 mouse liver&rdquo;, <em>Environ Mol Mutagen</em>. 54(8):659-67. Doi:10.1002/em.21808.</p>
  • <p>Banda, &nbsp;M. et al. (2015), &ldquo;Quantification of Kras mutant fraction in the lung DNA of mice exposed to aerosolized particulate vanadium pentoxide by inhalation&rdquo;, &nbsp;<em>Mutat Res Genet Toxicol Environ Mutagen</em>. 789-790:53-60. Doi: 10.1016/j.mrgentox.2015.07.003</p>
  • <p>Campbell, C.D. &amp; E.E. Eichler (2013), &quot;Properties and rates of germline mutations in humans&quot;, <em>Trends Genet</em>., 29(10): 575-84. Doi: &nbsp;10.1016/j.tig.2013.04.005</p>
  • <p>Chakarov, S. et al. (2014), &ldquo;DNA damage and mutation. Types of DNA damage&rdquo;, BioDiscovery, Vol.11, Pensoft Publishers, Sofia, https://doi.org/10.7750/BIODISCOVERY.2014.11.1.</p>
  • <p>Chikura, S. et al. (2019), &ldquo;Standard protocol for the total red blood cell Pig-a assay used in the interlaboratory trial organized by the Mammalian Mutagenicity Study Group of the Japanese Environmental Mutagen Society&rdquo;, &nbsp;<em>Genes Environ</em>.&nbsp; 27:41-5. Doi: 10.1186/s41021-019-0121-z.</p>
  • <p>Dobrovolsky, V.N. et al. (2015), &quot;CD48-deficient T-lymphocytes from DMBA-treated rats have de novo mutations in the endogenous Pig-a gene. CD48-Deficient T-Lymphocytes from DMBA-Treated Rats Have De Novo Mutations in the Endogenous Pig-a Gene&quot;, Environ. Mol. Mutagen., (6): 674-683. Doi: 10.1002/em.21959.</p>
  • <p>Douglas, G.R. et al. (1995), &quot;Temporal and molecular characteristics of mutations induced by ethylnitrosourea in germ cells isolated from seminiferous tubules and in spermatozoa of lacZ transgenic mice&quot;, <em>Proceedings of the National Academy of Sciences of the United States of America</em>, 92(16): 7485-7489. Doi: 10.1073/pnas.92.16.7485.</p>
  • <p>Gossen, J.A. et al. (1995), &quot;Spontaneous and X-ray-induced deletion mutations in a LacZ plasmid-based transgenic mouse model&quot;, Mutation Research, 331/1, Elsevier, Amsterdam, https://doi.org/10.1016/0027-5107(95)00055-N.&nbsp;</p>
  • <p>Hedrick, P.W. (2007), &ldquo;Sex: Differences In Mutation, Recombination, Selection, Gene Flow, And Genetic Drift&rdquo;, Evolution, Vol.61/12, Wiley, Hoboken, https://doi.org/10.1111/j.1558-5646.2007.00250.x.&nbsp;</p>
  • <p>Kirkwood, T.B.L. (1989), &ldquo;DNA, mutations and aging&rdquo;, Mutation Research, Vol.219/1, Elsevier B.V., Amsterdam, https://doi.org/10.1016/0921-8734(89)90035-0</p>
  • <p>Kraytsberg,Y. &amp; &nbsp;Khrapko, K. (2005), &nbsp;&ldquo;Single-molecule PCR: an artifact-free PCR approach for the analysis of somatic mutations&rdquo;, &nbsp;<em>Expert Rev Mol Diagn</em>. 5(5):809-15. Doi: 10.1586/14737159.5.5.809.</p>
  • <p>Kr&uuml;ger, T. C., Hofmann, M., &amp; Hartwig, A. (2015), &ldquo;The in vitro PIG-A gene mutation assay: mutagenicity testing via flow cytometry based on the glycosylphosphatidylinositol (GPI) status of TK6 cells&rdquo;, <em>Arch Toxicol</em>. 89(12), 2429-43. Doi: 10.1007/s00204-014-1413-5.</p>
  • <p>Lambert, I.B. et al. (2005), &quot;Detailed review of transgenic rodent mutation assays&quot;, <em>Mutat Res.</em>, 590(1-3):1-280. Doi: 10.1016/j.mrrev.2005.04.002.</p>
  • <p>Liber, L. H., &amp; Thilly, G. W. (1982), &nbsp;&ldquo;Mutation assay at the thymidine kinase locus in diploid human lymphoblasts&rdquo;, &nbsp;<em>Mutation Research</em>. 94: 467-485. Doi:10.1016/0027-5107(82)90308-6.</p>
  • <p>Lloyd, M., &amp; Kidd, D. (2012), &ldquo;The Mouse Lymphoma Assay. In: Parry J., Parry E. (eds) Genetic Toxicology, Methods in Molecular Biology (Methods and Protocols), 817. Springer, New York, NY.</p>
  • <p>Myers, M. B. et al., (2014), &ldquo;ACB-PCR Quantification of Somatic Oncomutation&rdquo;, &nbsp;<em>Molecular Toxicology Protocols, Methods in Molecular Biology</em>. DOI: 10.1007/978-1-62703-739-6_27</p>
  • <p>Nakamura, J. et al., (2012), &ldquo;Detection of PIGO-deficient cells using proaerolysin: a valuable tool to investigate mechanisms of mutagenesis in the DT40 cell system&rdquo;, <em>PLoS One</em>.7(3): e33563. Doi:10.1371/journal.pone.0033563.</p>
  • <p>Nicklas, J.A., E.W. Carter and R.J. Albertini (2015), &quot;Both PIGA and PIGL mutations cause GPI-a deficient isolates in the Tk6 cell line&quot;, Environ. Mol. Mutagen., 6(8):663-73. Doi: 10.1002/em.21953.</p>
  • <p>Norris, M.B. and R.N. Winn (2010), &quot;Isolated spermatozoa as indicators of mutations transmitted to progeny&quot;, Mutat Res., 688(1-2): 36&ndash;40. Doi: 10.1016/j.mrfmmm.2010.02.008.</p>
  • <p>O&#39;Brien, J.M. et al.(2013), &quot;No evidence for transgenerational genomic instability in the F1 or F2 descendants of Muta&trade;Mouse males exposed to N-ethyl-N-nitrosourea&quot;, <em>Mutat. Res</em>., 741-742:11-7. Doi: 10.1016/j.mrfmmm.2013.02.004.</p>
  • <p>O&#39;Brien, J.M. et al. (2014), &quot;Transgenic rodent assay for quanitifying male germ cell mutation frequency&quot;, <em>Journal of Visual Experimentation</em>, Aug 6;(90). Doi: 10.3791/51576.</p>
  • <p>O&rsquo;Brien, J.M. et al. (2015), &quot;Sublinear response in lacZ mutant frequency of Muta&trade; Mouse spermatogonial stem cells after low dose subchronic exposure to N-ethyl-N-nitrosourea&quot;, <em>Environ. Mol. Mutagen.</em>, 6(4): 347-355. Doi: 10.1002/em.21932.</p>
  • <p>OECD (2020), Test No. 471: Bacterial Reverse Mutation Test, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris.</p>
  • <p>OECD (2016), Test No. 476: In vitro Mammalian Cell Gene Mutation Test, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris.</p>
  • <p>OECD (2009), Detailed Review Paper on Transgenic Rodent Mutation Assays, Series on Testing and Assessment, N&deg; 103, ENV/JM/MONO 7, OECD, Paris.</p>
  • <p>OECD (2020), Test No. 488: Transgenic Rodent Somatic and Germ Cell Gene Mutation Assays, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris.</p>
  • <p>OECD (2016), Test. No. 490: In vitro mammalian cell gene mutation mutation tests using the thymidine kinase gene, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris.</p>
  • <p>OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris.</p>
  • <p>Parry MJ, &amp; Parry ME. 2012. Genetic Toxicology Principles and Methods. Humana Press. Springer Protocols.</p>
  • <p>Parsons BL, McKim KL, Myers MB. 2017. Variation in organ-specific PIK3CA and KRAS mutant levels in normal human tissues correlates with mutation prevalence in corresponding carcinomas. Environ Mol Mutagen. 58(7):466-476. Doi: 10.1002/em.22110.</p>
  • <p>Parsons BL. Multiclonal tumor origin: Evidence and implications<em>. Mutat Res</em>. 2018. 777:1-18. doi: 10.1016/j.mrrev.2018.05.001.</p>
  • <p>Russell, W.L. et al. (1957), &quot;Radiation Dose Rate and Mutation Frequency.&quot;, Science, Vol.128/3338, American Association for the Advancement of Science, Washington, https://doi.org/10.1126/science.128.3338.1546.</p>
  • <p>Salk JJ, Schmitt MW, &amp;Loeb LA. (2018), &ldquo;Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations&rdquo;, <em>Nat Rev Genet</em>. 19(5):269-285. Doi: 10.1038/nrg.2017.117.</p>
  • <p>Sankaranarayanan, K. &amp; H. Nikjoo (2015), &quot;Genome-based, mechanism-driven computational modeling of risks of ionizing radiation: The next frontier in genetic risk estimation?&quot;, Mutation Research, Vol.764, Elsevier, Amsterdam, https://doi.org/10.1016/j.mrrev.2014.12.003.&nbsp;</p>
  • <p>Shen, T., S.H. Pajaro-Van de Stadt, N.C. Yeat and J.C. Lin (2015), &quot;Clinical applications of next generation sequencing in cancer: from panels, to exomes, to genomes&quot; <em>Front. Genet.</em>, 6: 215. Doi: 10.3389/fgene.2015.00215.</p>
  • <p>Singer, T.M. and C.L. Yauk CL (2010), &quot;Germ cell mutagens: risk assessment challenges in the 21st century&quot;, <em>Environ. Mol. Mutagen.</em>, 51(8-9): 919-928. Doi: 10.1002/em.20613.</p>
  • <p>Slebos, R.J.C. et al. (2004), &ldquo;Mini-and microsatellite mutations in children from Chernobyl accident cleanup workers&rdquo;, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Vol.559/1-2, Elsevier, Amsterdam, https://doi.org/10.1016/j.mrgentox.2004.01.003.&nbsp;</p>
  • <p>Tindall, R. K., &amp; Stankowski Jr., F. L. (1989), &nbsp;&ldquo;Molecular analysis of spontaneous mutations at the GPT locus in Chinese hamster ovary (AS52) cells&rdquo;, <em>Mutation Research</em>, 220, 241-53. Doi: 10.1016/0165-1110(89)90028-6.</p>
  • <p>Waters, M.D. et al. (1994), &quot;The performance of short-term tests in identifying potential germ cell mutagens: a qualitative and quantitative analysis&quot;, <em>Mutat. Res.</em>, 341(2): 109-31. Doi: 10.1016/0165-1218(94)90093-0.</p>
  • <p>Winegar, R.A. et al. (1994), &quot;Radiation-induced point mutations, deletions and micronuclei in lacI transgenic mice&quot;, Mutation Research, Vol.307/2, Elsevier, Amsterdam, https://doi.org/10.1016/0027-5107(94)90258-5.&nbsp;</p>
  • <p>Yamamoto, A. et al. (2017), &ldquo;Radioprotective activity of blackcurrant extract evaluated by in vitro micronucleus and gene mutation assays in TK6 human lymphoblastoid cells&rdquo;,<em> Genes and Environment. </em>39: 22. Doi: 10.1186/s41021-017-0082-z.</p>
  • <p>Yauk, C.L. et al. (2002), &quot;A novel single molecule analysis of spontaneous and radiation-induced mutation at a mouse tandem repeat locus&quot;, Mutat. Res., 500(1-2): 147-56. Doi: 10.1016/s0027-5107(02)00005-2.</p>
  • <p>Yauk, C.L. et al. (2015), &quot;Approaches for Identifying Germ Cell Mutagens: Report of the 2013 IWGT Workshop on Germ Cell Assays&quot;, <em>Mutat. Res. Genet. Toxicol. Environ. Mutagen.</em>, 783: 36-54. Doi: 10.1016/j.mrgentox.2015.01.008.</p>
  • <p>Yeat and J.C. Lin. 2015. Clinical applications of next generation sequencing in cancer: from panels, to exomes, to genomes. <em>Front. Genet</em>., 6: 215. Doi: 10.3389/fgene.2015.00215.</p>
  • <h4><a href="/events/1554">Event: 1554: Increase Chromosomal Aberrations</a></h4>
  • <h5>Short Name: Increase chromosomal aberrations</h5>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/443">Aop:443 - DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Molecular</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>human</td>
  • <td>Homo sapiens</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>rat</td>
  • <td>Rattus norvegicus</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>mouse</td>
  • <td>Mus musculus</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>All life stages</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">Chromosomal aberrations indicating clastogenicity can occur in any eukaryotic or prokaryotic cell.&nbsp;</span></span><span style="font-size:10.5000pt"><span style="font-family:Arial">However, dose-response curves can differ depending on the cell cycle stage when the DSB agent was introduced (Obe et al., 2002).</span></span></span></span></p>
  • <h4>Key Event Description</h4>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">The term &quot;structural chromosomal aberrations&quot; refers to chromosome damage caused by breaks in the DNA that can result in the deletion, addition, or rearrangement of chromosomal segments. According to whether one or both chromatids are affected, chromosomal aberrations can be classified into two main groups: chromatid-type and chromosome-type. Additionally, they can be divided into rejoined and non-rejoined aberrations. Translocations, insertions, dicentrics, and rings are examples of rejoined aberrations, whereas acentric fragments and breaks are examples of unrejoined aberrations (Savage, 1976). Some of these abnormalities, like reciprocal translocations, are long-lasting and can last for many years (Tucker and Preston, 1996). Others, such as dicentrics and acentric fragments, are unstable and weaken with each cell division due to cell death (Boei et al., 1996).</span></span>&nbsp;<span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">After cell division, these activities might still be visible, and the DNA is irreversibly damaged. The occurrence of chromosomal abnormalities is linked to cancer development and cell death (Mitelman, 1982).</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">A missing, excess, or asymmetrical part of chromosomal DNA is referred to as a chromosomal aberration (CA). There are various double-strand break (DSB) repair mechanisms that could be responsible for these DNA modifications in the chromosome structure (Obe et al., 2002).</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">The four basic categories of CAs are inversions, translocations, duplications, and deletions. When a section of a chromosome&#39;s genetic material is destroyed, deletions take place. When a chromosome&#39;s end portion is cut, terminal deletions result.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">When a chromosome splits into two different places and wrongly rejoins, leaving the middle portion out, interstitial deletions result. Duplications occur when excess genetic material is added to or rearranged; they can take the forms of transpositions, tandem duplications, reverse duplications, and misplaced duplications (Griffiths et al., 2000). A segment of one chromosome is transferred to a non-homologous chromosome in translocations (Bunting and Nussenzweig, 2013). A reciprocal translocation occurs when regions of two non-homologous chromosomes are switched. When an inversion occurs, the DNA sequence is effectively reversed because both ends of the chromosome split and are ligated at the opposite ends.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">The copy number variant is a fifth type of CA that can exist in the genome (CNV). CNVs are deletions or duplications that can range in size from 50 base pairs (Arlt et al., 2012; Arlt et al., 2014; Liu et al., 2013) up into the megabase pair range and may make up more than 10% of the human genome (Shlien et al., 2009; Zhang et al., 2016; Hastings et al., 2009). (Arlt et al., 2012; Wilson et al., 2015; Arlt et al., 2014; Zhang et al., 2016). According to Wilson et al. (2015), CNV regions are particularly abundant in large active transcription units and genes, and they are especially problematic when they result in the duplication of oncogenes or the loss of tumor suppressor genes</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">&nbsp;(Liu et al., 2013; Curtis et al., 2012)</span></span><em><span style="font-family:'Times New Roman'"><em>.&nbsp;</em></span></em></span></span></p>
  • <p style="text-align:left">&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">Recurrent and non-recurrent CNVs are two different types. Non-allelic homologous recombination (NAHR), a recombination process that occurs during meiosis, is hypothesised to be the cause of recurrent CNVs (Arlt et al., 2012; Hastings et al., 2009). These germline CNVs, also known as recurrent CNVs, may be inherited and are hence prevalent in various people (Shlien et al., 2009; Liu et al., 2013). It is thought that non-recurrent CNVs are created in mitotic cells during the replication process. It has been proposed that replication-related stress, particularly stalled replication forks, triggers microhomology-mediated processes to break the replication stall, which frequently leads to duplications or deletions, despite the fact that the mechanism is not well understood.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">Two models that have been proposed to explain this mechanism include the Fork Stalling and Template Switching (FoSTeS) model, and the Microhomology-Mediated Break-Induced Replication (MMBIR) model (Arlt et al., 2012; Wilson et al., 2015; Lee et al., 2007; Hastings et al., 2009).</span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-size:10.5pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:'Times New Roman'">Depending on whether the aberration affects the chromatid or the chromosome, CAs can be categorized. Chromosome-type aberrations (CSAs) are chromosome breakage and chromatid swaps; ring chromosomes, marker chromosomes, and dicentric chromosomes are examples of chromatid-type aberrations (CTAs) (Bonassi et al., 2008; Hagmar et al., 2004). Micronuclei (MN; small nucleus-like structures that contain a chromosome or a fragment of a chromosome that was lost during mitosis) and nucleoplasmic bridges (NPBs; physical linkages between the two nuclei) are visible in binucleated cells when cells are halted at the cytokinesis step (El-Zein et al., 2014). The DNA sequence can be examined to evaluate other CAs, as it is for identifying copy number variants (CNVs)</span></span><span style="font-size:10.5000pt"><span style="font-family:'Times New Roman'">&nbsp;(Liu et al., 2013)</span></span><span style="font-size:10.5000pt"><span style="font-family:'Times New Roman'">.</span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-size:10.5pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:'Times New Roman'">Essentiality of the key event</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <p>Chromosomal aberrations, such as mutations, deletions, and translocations, are indicative of genetic damage, which can result from exposure to genotoxic agents. This key event represents a mechanistic step that contributes to the overall progression of the pathway, helping to bridge the gap between the initial exposure and the manifestation of adverse effects.</p>
  • <p>By showcasing experimental evidence that supports the occurrence of increased chromosomal aberrations in response to the MIE, the AOP gains scientific credibility and biological plausibility. Studies demonstrating the genotoxic effects of certain substances provide empirical support for the connectivity of events within the pathway. For example, genotoxicity assays that detect structural changes in chromosomes can serve as evidence of chromosomal aberrations (e.g., Ames test, in vitro micronucleus assay).</p>
  • <p>Furthermore, the presence of increased chromosomal aberrations is indicative of potential genetic harm, which aligns with the adverse outcome. This insight aids in risk assessment and regulatory decision-making, as the occurrence of genotoxicity informs the evaluation of the potential health risks associated with exposure to certain agents.</p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Fischer et al., in their mRNA expression profiles showed that&nbsp;the tumor subtypes of neuroblastoma had&nbsp;significantly more segmental genomic imbalances,&nbsp;indicating that a combination of expression profiling (miRNAs and mRNAs) with analysis of DNA copy number alterations, will lead to improved prognostication of this often fatal tumor subtype&nbsp;(Fischer et al., 2010)</span></span></p>
  • <h4>How it is Measured or Detected</h4>
  • <table cellspacing="0" class="Table" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px; margin-left:6px; width:580px">
  • <tbody>
  • <tr>
  • <td style="background-color:#f2f2f2; border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:center; width:207px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><strong><span style="font-size:11.0000pt"><span style="font-family:Arial"><strong>Assay</strong></span></span></strong></span></span></p>
  • </td>
  • <td style="background-color:#f2f2f2; border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:center; width:243px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><strong><span style="font-size:11.0000pt"><span style="font-family:Arial"><strong>References</strong></span></span></strong></span></span></p>
  • </td>
  • <td style="background-color:#f2f2f2; border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:center; width:274px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><strong><span style="font-size:11.0000pt"><span style="font-family:Arial"><strong>Description</strong></span></span></strong></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:center; width:207px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Fluorescent In&nbsp;Situ&nbsp; Hybridization (FISH)</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:243px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Beaton et al., 2013; Pathak</span></span></span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">et al., 2017</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:274px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Fluorescent assay of metaphase chromosomes that can detect CAs through chromosome painting and microscopic analysis</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:center; width:207px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Cytokinesis Block Micronucleus (CBMN)</span></span></span></span></p>
  • <p style="margin-right:3px; text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Assay with Microscopy in vitro</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:243px">
  • <p style="margin-right:1px; text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Fenech, 2000;&nbsp;OECD, 2016a</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:274px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Cells are cultured with cytokinesis blocking agent, fixed to slides, and undergo MN quantification using microscopy.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:center; width:207px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Micronucleus (MN)</span></span></span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Assay by Microscopy in vivo</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:243px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">OECD, 2016b</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:274px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Cells are fixed on slides and MN are scored using microscopy. Red blood cells can also be scored for MN using flow cytometry (see below)</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:center; width:207px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">CBMN with Imaging Flow Cytometry</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:243px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Rodrigues et al., 2015</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:274px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Cells are cultured with cytokinesis blocking agent, fixed in solution, and imaged with flow cytometry to quantify MN</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:center; width:207px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Flow cytometry detection of MN</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:243px">
  • <p style="margin-right:9px; text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Dertinger et al., 2004; Bryce et al., 2007; OECD 2016a, 2016b</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:274px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">In vivo and in vitro flow cytometry-based, automated micronuclei measurements are also done without cytokinesis block. MN analysis in vivo is performed in peripheral blood cells to detect MN in erythrocytes and reticulocytes.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:center; width:207px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">High-throughput biomarker assays (indirect measures to confirm clastogenicity)</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:243px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Bryce et al. 2014, 2016, 2018</span></span></span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;">&nbsp;</span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Khoury et al., 2013, Khoury et al., 2016)</span></span></span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;">&nbsp;</span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;">&nbsp;</span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Hendriks et al., 2012, 2016; Wink et al., 2014</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:274px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Multiplexed biomarkers can be measured by flow cytometry are used to discern clastogenic and aneugenic mechanisms for MN induction.&nbsp;Flow cytometry-based quantification of &gamma;H2AX foci and p53 protein expression (Bryce et al., 2016).</span></span></span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;">&nbsp;</span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Prediscreen Assay&ndash; In-Cell Western-based quantification of &gamma;H2AX</span></span></span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;">&nbsp;</span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Green fluorescent protein reporter assay to detect the activation of stress signaling pathways, including DNA damage signaling including a reporter porter that is associated with DNA double strand breaks.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:center; width:207px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Dicentric Chromosome Assay (DCA)</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:243px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Abe et al., 2018</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:274px">
  • <p style="margin-right:25px; text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Cells are fixed on microscope slides, chromosomes are stained, and the number of dicentric chromosomes are quantified</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:center; width:207px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">High content imaging</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:243px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Shahane et al., 2016</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:274px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">DNA can be stained using fluorescent dyes and micronuclei can be scored high-throughput microscopy image analysis.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:center; width:207px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Chromosomal aberration test</span></span></span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;">&nbsp;</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:243px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">OECD, 2016c; 2016d; 20l16e</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:274px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">In vitro, the cell cycle is arrested at metaphase after 1.5 cell cycle following 3-6 hour exposure</span></span></span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;">&nbsp;</span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">In vivo, the test chemical is administered as a single treatment, bone marrow is collected 18-24 hrs later (TG 475), while testis is collected 24-48 hrs later (TG 483). The cell cycle is arrested with a metaphase-arresting chemical (e.g., colchicine) 2-5 hours before cell collection. Once cells are fixed and stained on microscope slides, chromosomal aberrations are scored</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:center; width:207px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Array Comparative Genomic Hybridization (aCGH) or SNP</span></span></span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Microarray</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:243px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Adewoye et al., 2015;&nbsp;Wilson et al., 2015; Arlt et&nbsp;al., 2014;&nbsp;Redon et al., 2006; Keren,&nbsp;2014;&nbsp;Mukherjee,&nbsp;2017</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:274px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">CNVs are most commonly detected using global DNA microarray technologies; This method, however, is unable to detect balanced CAs, such as inversions</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:center; width:207px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Next Generation Sequencing (NGS): Whole Genome Sequencing (WGS) or</span></span></span></span></p>
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Whole Exome Sequencing (WES)</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:243px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">Liu, 2013;&nbsp;Shen, 2016; Mukherjee, 2017</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:center; width:274px">
  • <p style="text-align:center"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:11.0000pt"><span style="font-family:Arial">CNVs are detected by fragmenting the genome and using NGS to sequence either the entire genome (WGS), or only the exome (WES); Challenges with this methodology include only being able to detect CNVs in exon-rich areas if using WES, the computational investment required for the storage and analysis of these large datasets, and the lack of computational algorithms available for effectively detecting somatic CNVs</span></span></span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <h4>References</h4>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Abe, Y et al. (2018), &ldquo;Dose-response curves for analyzing of dicentric chromosomes and chromosome translocations following doses of 1000 mGy or less, based on irradiated peripheral blood samples from five healthy individuals&rdquo;, &nbsp;</span></span><em><span style="font-size:10.5000pt"><span style="font-family:Arial"><em>J Radiat Res</em></span></span></em><span style="font-size:10.5000pt"><span style="font-family:Arial">. 59(1), 35-42. doi:10.1093/jrr/rrx052</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Adewoye, A.B.et al. (2015), &ldquo;The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline&rdquo;,&nbsp;</span></span><em><span style="font-size:10.5000pt"><span style="font-family:Arial"><em>Nat. Commun</em></span></span></em><span style="font-size:10.5000pt"><span style="font-family:Arial">. 6:66-84. doi: 10.1038/ncomms7684.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Arlt MF, Wilson TE, Glover TW. (2012), &ldquo;Replication stress and mechanisms of CNV formation&rdquo;,&nbsp;</span></span><em><span style="font-size:10.5000pt"><span style="font-family:Arial"><em>Curr Opin Genet Dev</em></span></span></em><span style="font-size:10.5000pt"><span style="font-family:Arial">. 22(3):204-10. doi: 10.1016/j.gde.2012.01.009.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Arlt, MF. Et al. (2014), &ldquo;Copy number variants are produced in response to low-dose ionizing radiation in cultured cells&rdquo;,&nbsp;</span></span><em><span style="font-size:10.5000pt"><span style="font-family:Arial"><em>Environ Mol Mutagen</em></span></span></em><span style="font-size:10.5000pt"><span style="font-family:Arial">. 55(2):103-13. doi: 10.1002/em.21840.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Beaton, L. A. et al. (2013), &ldquo;Investigating chromosome damage using fluorescent in situ hybridization to identify biomarkers of radiosensitivity in prostate cancer patients&rdquo;, Int J Radiat Biol. 89(12): 1087-1093. doi:10.3109/09553002.2013.825060</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Boei, J.J., Vermeulen, S., Natarajan, A.T. (1996), &ldquo;Detection of chromosomal aberrations by fluorescence in situ hybridization in the first three postirradiation divisions of human lymphocytes&rdquo;, Mutat Res, 349:127-135. Doi: 10.1016/0027-5107(95)00171-9.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Bonassi, S. &nbsp;(2008),&rdquo;Chromosomal aberration&nbsp;frequency&nbsp;in&nbsp;lymphocytes&nbsp;predicts&nbsp;the&nbsp;risk of&nbsp;cancer: results from a pooled cohort study of 22 358 subjects in 11 countries&rdquo;,&nbsp;</span></span><em><span style="font-size:10.5000pt"><span style="font-family:Arial"><em>Carcinogenesis.</em></span></span></em><span style="font-size:10.5000pt"><span style="font-family:Arial">&nbsp;29(6):1178-83. doi: 10.1093/carcin/bgn075.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:'Times New Roman'">Bryce SM, Bemis JC, Avlasevich SL, Dertinger SD. In vitro micronucleus assay scored by flow cytometry provides a comprehensive evaluation of cytogenetic damage and cytotoxicity. Mutat Res. 2007 Jun 15;630(1-2):78-91. doi: 10.1016/j.mrgentox.2007.03.002. Epub 2007 Mar 19. PMID: 17434794; PMCID: PMC1950716.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Bryce, S. et al. (2014), &ldquo;Interpreting In VitroMicronucleus Positive Results: Simple Biomarker Matrix Discriminates Clastogens, Aneugens, and Misleading Positive Agents&rdquo;, Environ Mol Mutagen, 55:542-555. Doi:10.1002/em.21868.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Bryce, S. et al.(2016), &ldquo;Genotoxic mode of action predictions from a multiplexed flow cytometric assay and a machine learning approach&rdquo;, Environ Mol Mutagen, 57:171-189. Doi: 10.1002/em.21996.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:'Times New Roman'">Bryce SM, Bernacki DT, Smith-Roe SL, Witt KL, Bemis JC, Dertinger SD. Investigating the Generalizability of the MultiFlow &reg; DNA Damage Assay and Several Companion Machine Learning Models With a Set of 103 Diverse Test Chemicals. Toxicol Sci. 2018 Mar 1;162(1):146-166. doi: 10.1093/toxsci/kfx235. PMID: 29106658; PMCID: PMC6059150.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Bunting, S. F., &amp; Nussenzweig, A. (2013), &ldquo;End-joining, translocations and cancer&rdquo;, Nature Reviews Cancer.13 (7): 443-454. doi:10.1038/nrc3537</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Curtis, C. et al. (2012), &ldquo;The&nbsp;genomic&nbsp;and&nbsp;transcriptomic&nbsp;architecture&nbsp;of 2,000&nbsp;breast tumours&nbsp;reveals novel subgroups&rdquo;, Nature. 486(7403):346-52. doi: 10.1038/nature10983.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Dertinger, S.D. et al.(2004), &ldquo;Three-color labeling method for flow cytometric measurement of cytogenetic damage in rodent and human blood&rdquo;, Environ Mol Mutagen, 44:427-435. Doi:&nbsp;</span></span><a href="https://doi.org/10.1002/em.20075"><span style="font-size:10.5000pt"><span style="font-family:Arial">10.1002/em.20075</span></span></a><span style="font-size:10.5000pt"><span style="font-family:Arial">.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">El-Zein, RA. Et al. (2014), &ldquo;The&nbsp;cytokinesis-blocked&nbsp;micronucleus assay&nbsp;as a&nbsp;strong&nbsp;predictor&nbsp;of&nbsp;lung cancer: extension of a&nbsp;lung cancer&nbsp;risk prediction model&rdquo;, &nbsp;Cancer&nbsp;Epidemiol Biomarkers Prev. 23(11):2462-70. doi: 10.1158/1055-9965.EPI-14-0462.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Fenech, M. (2000), &ldquo;The in vitro micronucleus technique&rdquo;, Mutation Research. 455(1-2), 81-95. Doi: 10.1016/s0027-5107(00)00065-8</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Fischer, M., Bauer, T., Oberth&uuml;r, A., Hero, B., Theissen, J., Ehrich, M., ... &amp; Berthold, F. (2010). Integrated genomic profiling identifies two distinct molecular subtypes with divergent outcome in neuroblastoma with loss of chromosome 11q.&nbsp;<em>Oncogene</em>,&nbsp;<em>29</em>(6), 865-875.</span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Griffiths, A. J. F., Miller, J. H., &amp; Suzuki, D. T. (2000), &ldquo;An Introduction to Genetic Analysis&rdquo;, 7th edition. New York: W. H. Freeman. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21766/</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Hagmar, L. et al. (2004), &ldquo;Impact&nbsp;of&nbsp;types&nbsp;of&nbsp;lymphocyte&nbsp;chromosomal aberrations&nbsp;on&nbsp;human&nbsp;cancer risk: results from Nordic and Italian cohorts&rdquo;, Cancer Res. 64(6):2258-63.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Hastings PJ, Ira G &amp; Lupski JR. (2009), &ldquo;A microhomology-mediated&nbsp;break-induced&nbsp;replication&nbsp;model&nbsp;for the&nbsp;origin&nbsp;of human copy number variation&rdquo;. PLoS Genet. 2009 Jan;5(1): e1000327. doi: 10.1371/journal.pgen.1000327.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Hendriks, G. et al. (2012), &ldquo;The ToxTracker assay: novel GFP reporter systems that provide mechanistic insight into the genotoxic properties of chemicals&rdquo;, Toxicol Sci, 125:285-298. Doi: 10.1093/toxsci/kfr281.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Hendriks, G. et al. (2016), &ldquo;The Extended ToxTracker Assay Discriminates Between Induction of DNA Damage, Oxidative Stress, and Protein Misfolding&rdquo;, Toxicol Sci, 150:190-203. Doi: 10.1093/toxsci/kfv323.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Keren, B. (2014),&rdquo;The advantages of SNP arrays over CGH arrays&rdquo;, Molecular Cytogenetics.7( 1):I31. Doi: 10.1186/1755-8166-7-S1-I31.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Khoury, L., Zalko, D., Audebert, M. (2016), &ldquo;Evaluation of four human cell lines with distinct biotransformation properties for genotoxic screening&rdquo;, Mutagenesis. 31:83-96. Doi: 10.1093/mutage/gev058.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Khoury, L., Zalko, D., Audebert, M. (2013), &ldquo;Validation of high-throughput genotoxicity assay screening using cH2AX in-cell Western assay on HepG2 cells&rdquo;, Environ Mol Mutagen, 54:737-746. Doi: 10.1002/em.21817.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Lee JA, Carvalho CM, Lupski JR. (2007). &ldquo;Replication mechanism for generating nonrecurrent rearrangements&nbsp;associated&nbsp;with&nbsp;genomic&nbsp;disorders&rdquo;, Cell. 131(7):1235-47. Doi: 10.1016/j.cell.2007.11.037.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Liu B. et al. (2013). &ldquo;Computational methods for detecting copy number variations in cancer genome using next generation sequencing: principles and challenges&rdquo;, Oncotarget. 4(11):1868-81. Doi: 10.18632/oncotarget.1537.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Mitelman, F. (1982), &ldquo;Application of cytogenetic methods to analysis of etiologic factors in carcinogenesis&rdquo;, IARC Sci Publ, 39:481-496.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Mukherjee. S. et al. (2017),&nbsp;&ldquo;Addition&nbsp;of&nbsp;chromosomal&nbsp;microarray&nbsp;and&nbsp;next generation sequencing&nbsp;to&nbsp;FISH&nbsp;and classical cytogenetics enhances genomic profiling of myeloid malignancies, Cancer Genet. 216-217:128-141. doi: 10.1016/j.cancergen.2017.07.010.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Obe, G. et al. (2002), &ldquo;Chromosomal Aberrations: formation, Identification, and Distribution&rdquo;, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 504(1-2), 17-36. Doi: 10.1016/s0027-5107(02)00076-3.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Savage, J.R. (1976), &ldquo;Classification and relationships of induced chromosomal structual changes&rdquo;, J Med Genet, 13:103-122. Doi: 10.1136/jmg.13.2.103.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:'Times New Roman'">Shahane SA, Nishihara K, Xia M. High-Throughput and High-Content Micronucleus Assay in CHO-K1 Cells. Methods Mol Biol. 2016;1473:77-85. doi: 10.1007/978-1-4939-6346-1_9. PMID: 27518626.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">OECD (2016a),&nbsp;</span></span><em><span style="font-family:'Times New Roman'"><em>Test No. 487: In Vitro Mammalian Cell Micronucleus Test</em></span></em><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris,&nbsp;</span></span><a href="https://doi.org/10.1787/9789264264861-en"><span style="font-family:'Times New Roman'">https://doi.org/10.1787/9789264264861-en</span></a><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">OECD. (2016b), &ldquo;Test No. 474: Mammalian Erythrocyte Micronucleus Test. OECD Guideline for the Testing of Chemicals, Section 4.&rdquo;Paris: OECD Publishing.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">OECD. (2016c), &ldquo;In Vitro Mammalian Chromosomal Aberration Test 473.&rdquo;</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">OECD. (2016d). Test No. 475: Mammalian Bone Marrow Chromosomal Aberration Test. OECD Guideline for the Testing of Chemicals, Section 4.&nbsp;Paris: OECD Publishing.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">OECD. (2016e). Test No. 483: Mammalian Spermatogonial Chromosomal Aberration Test. Paris: OECD Publishing.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Pathak, R., Koturbash, I., &amp; Hauer-Jensen, M. (2017), &ldquo;Detection of Inter-chromosomal Stable Aberrations by Multiple Fluorescence In Situ Hybridization (mFISH) and Spectral Karyotyping (SKY) in Irradiated Mice&rdquo;, J Vis Exp(119). doi:10.3791/55162.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Redon, R. et al. (2006), &ldquo;Global&nbsp;variation&nbsp;in&nbsp;copy&nbsp;number&nbsp;in the&nbsp;human genome&rdquo;, Nature.&nbsp;444(7118):444-54. 10.1038/nature05329.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Rodrigues, M. A., Beaton-Green, L. A., &amp; Wilkins, R. C. (2016), &ldquo;Validation of the Cytokinesis-block Micronucleus Assay Using Imaging Flow Cytometry for High Throughput Radiation Biodosimetry&rdquo;, Health Phys. 110(1): 29-36. doi:10.1097/HP.0000000000000371</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Shahane S, Nishihara K, Xia M. (2016), &ldquo;High-Throughput and High-Content Micronucleus Assay in CHO-K1 Cells&rdquo;, In: Zhu H, Xia M, editors. High-Throughput Screening Assays in Toxicology. New York, NY: Humana Press. p 77-85.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Shen.TW, &nbsp;(2016),&rdquo;Concurrent&nbsp;detection&nbsp;of&nbsp;targeted&nbsp;copy&nbsp;number&nbsp;variants&nbsp;and&nbsp;mutations&nbsp;using a myeloid malignancy next generation sequencing panel allows comprehensive genetic analysis using a single testing strategy&rdquo;, Br J Haematol. 173(1):49-58. doi: 10.1111/bjh.13921.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Shlien A, Malkin D. (2009), &ldquo;Copy&nbsp;number&nbsp;variations&nbsp;and&nbsp;cancer&rdquo;, Genome Med.&nbsp;1(6):62. doi: 10.1186/gm62.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Tucker, J.D., Preston, R.J. (1996), &ldquo;Chromosome aberrations, micronuclei, aneuploidy, sister chromatid exchanges, and cancer risk assessment&rdquo;, Mutat Res, 365:147-159.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Wilson, TE. et al.&nbsp; (2015), &ldquo;Large transcription units unify copy number variants and common fragile sites arising under replication stress&rdquo;, Genome Res. 25(2):189-200. doi: 10.1101/gr.177121.114.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Wink, S. et al. (2014), &ldquo;Quantitative high content imaging of cellular adaptive stress response pathways in toxicity for chemical safety assessment&rdquo;, Chem Res Toxicol, 27:338-355.</span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-size:10.5pt"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:10.5000pt"><span style="font-family:Arial">Zhang N, Wang M, Zhang P, Huang T. 2016. Classification&nbsp;of&nbsp;cancers&nbsp;based&nbsp;on&nbsp;copy number variation&nbsp;landscapes. Biochim Biophys Acta.&nbsp; 1860(11 Pt B):2750-5. doi: 10.1016/j.bbagen.2016.06.003.</span></span></span></span></p>
  • <h4><a href="/events/1980">Event: 1980: Increased microRNA expression</a></h4>
  • <h5>Short Name: Increase,miRNA levels</h5>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/443">Aop:443 - DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Stressors</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Name</th></tr>
  • </thead>
  • <tbody>
  • <tr><td>Ethyl alcohol</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Cellular</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>mice</td>
  • <td>Mus sp.</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>human and other cells in culture</td>
  • <td>human and other cells in culture</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Adult, reproductively mature</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Female</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Regulation of miRNA expression by DNA replication,damage and repair responses,transcription and translation has been proved in animals like mice,canine and cell line experiments.</span></span></p>
  • <h4>Key Event Description</h4>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><strong><strong>Biological state</strong></strong></span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">The elevation of microRNA (miRNA) levels as a consequence of mutations and chromosomal aberrations is a multifaceted outcome stemming from the intricate regulatory dynamics of gene expression. These genetic alterations can trigger a cascade of events that influence miRNA expression. Mutations and aberrations in regulatory regions can lead to increased transcription of miRNA genes, augmenting the production of precursor miRNAs. Moreover, copy number changes resulting from chromosomal aberrations, such as gene amplification, can amplify the output of miRNA genes, ultimately boosting mature miRNA levels. Disruptions in genes responsible for miRNA processing can perturb the biogenesis pathway, leading to the accumulation of precursor miRNAs and subsequent rise in mature miRNA abundance. In parallel, altered regulatory interactions and epigenetic modifications brought about by genetic changes can free miRNA genes from their constraints, promoting enhanced expression. Additionally, miRNA-mediated feedback loops, influenced by mutations, can indirectly influence miRNA levels. This complex interplay underscores how genetic alterations can reshape the miRNA landscape, potentially influencing downstream gene expression patterns and contributing to diverse cellular outcomes and disease processes.</span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Genome integrity must be maintained for the proper functioning and survival of an organism. &nbsp;There has been an efficient and rapid response developed by the eukaryotic cells to DNA damage &nbsp;to overcome the harmful effects.&nbsp;&nbsp;As soon as the DNA damage or replication arrest is detected, the &nbsp;activation of cell cycle checkpoint&nbsp;and &nbsp;stopping the progress of the cell cycle&nbsp;thus providing time for the cell to &nbsp;repair the DNA damage. &nbsp;The response to &nbsp;DNA damage &nbsp;also leads&nbsp;to transcriptional regulation, activation of DNA repair, and, in severe cases, initiation of apoptosis&nbsp;(Harper, J.W., and Elledge, S.J. , 2007). Expression of miRNAs may be regulated&nbsp;by the DNA damage response. A study reported that&nbsp;&nbsp;that micro RNA expression&nbsp;is a &nbsp;a partially ATM / ATR-independent manner(Pothof, J.&nbsp;et al , 2009). Subsequent studies have shown that the tumor suppressor p53 promotes PrimeRNA processing via &nbsp;RNA helicase p68 (Suzuki, H.I&nbsp;et al, 2009).</span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Han et al evaluated&nbsp;miRNA expression pattern in a DNA damage regulatory protein, DDX1 in controls, as well in&nbsp;DDX1-knockdown U2OS cells&nbsp;with the help of&nbsp;reverse transcription quantitative-PCR (qRT-PCR)&nbsp;and&nbsp;human miRNA array&nbsp;(Han C et al, 2014). The study noticed a significant&nbsp;reduction in the&nbsp;expression levels of a subset of miRNAs&nbsp;-200 family&nbsp;such as miR-200a, miR-200b, miR-200c, miR-141 and miR-429 (cut-off&nbsp;&gt;2-fold).d miR-429). The&nbsp;ovarian cancer genomics&nbsp;study&nbsp;revealed a 8-miRNA signature that defines&nbsp;the mesenchymal subtype of serous ovarian cancer&nbsp;(Yang Y, et al, 2011). Among the eight miRNAs, miR-200a, miR-29c, miR-141 and miR-101 were significantly dependent on DDX1, suggesting that DDX1 may play a role in ovarian tumor progression. Nuclear run-on assays&nbsp;were performed&nbsp;to determine whether DDX1 regulates the miRNA expression at transcriptional or post-transcriptional levels, No notable differences were seen in the transcription of pri-miR-200s from the two miR-200 gene clusters (miR-200a/200b/429 and miR-200c/141) in the control and DDX1-silenced cells . However, in the DDX1-knockdown U2OS cells, the&nbsp;levels of mature DDX1-dependent miRNAs, but not control miR-21, were significantly decreased.&nbsp;Due to the potential inhibition of miRNA processing activity, primary transcripts of the DDX1-dependent miRNAs were accumulated. Conversely, these DDX1-dependent miRNAs were up-regulated in the DDX1- overexpressing cells. &nbsp;The above findings suggested that expression of specific miRNAs was promoted by DDX1&nbsp;at the post-transcriptional level.</span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><strong><strong>Biological compartments:</strong></strong>&nbsp;</span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Cellular, nucleus, cytoplasm and mitochondria</span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><strong><strong>General role in biology:</strong></strong>&nbsp;</span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff">MicroRNAs (miRNAs) are endogenous non-coding RNAs that contain approximately 22 nucleotides. They function as major regulators of various biological processes, and their dysregulation is associated with many diseases, including cancer.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Cells trigger a specific cellular responses to preserve the integrity of the genome.&nbsp;&nbsp;The &nbsp;DNA damage response (DDR)&nbsp;is one among them along with several distinct DNA repair pathways.Normal cells&nbsp;need to repair DNA damage&nbsp;through various repair mechanisms&nbsp;or induce apoptosis and cell cycle arrest if repair is not possible [Jackson SP&nbsp;and Bartek J, 2009]. Genomic instability and mutagenesis &nbsp;are brought about by the disruption of repair mechanisms.DNA damage response (DDR) determines&nbsp;the&nbsp;fate&nbsp;of the cell&nbsp;and controls microRNAs expression. This will &nbsp;in turn &nbsp;regulate important components of the DNA repair machinery.&nbsp;Various reports suggest the key &nbsp;role&nbsp;of miRNA &nbsp;in the regulation of the DDR [d&rsquo;Adda di Fagagna F, 2014 and WeiW&nbsp;et al 2012].The DDR and DNA damage are known regulators&nbsp;of miRNA expression [Sharma V&nbsp;et al 2013 and Chowdhury D&nbsp;et al 2013]. Several studies have shown that the&nbsp;cellular sensitivity to chemotherapeutic&nbsp;drugs is affected by &nbsp;DDR- miRNA network.[ van Jaarsveld MT&nbsp;et al 2014]. </span></span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">A&nbsp;bidirectional relationship between miRNAs and the DDR&nbsp;has been suggested by studies. The DDR is a known regulator of miRNA expression at both transcriptional and post-transcriptional levels, and miRNA-mediated gene silencing has been shown to modulate the activity of the DDR [d&rsquo;Adda di Fagagna F, 2014 ; WeiW&nbsp;et al 2012 and Han C &nbsp;et al 2012].&nbsp;A&nbsp;unique set of miRNAs as well as a common core miRNA signature are activated depending on DNA damage type and level, &nbsp;suggesting that miRNAs regulate the DDR by mechanisms based on the type and/or the intensity of DNA damage [Han C &nbsp;et al 2012]. miRNAs expression &nbsp;may be regulated by transcription factors either&nbsp;&nbsp;binding&nbsp;directly &nbsp;to miRNA promoters and modulating their transcriptional activity, or by modifying&nbsp;the expression of miRNA processing machinery components. </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:14px">&nbsp; Studies have widely explored the TP53-mediated transcriptional pathways&nbsp;regulating miRNA expression following DNA damage.&nbsp;miRNA-34a-c is induced by DNA damage and oncogenic stress,&nbsp;is one of the transcriptional target of the tumor suppressor TP53 [Hermeking H&nbsp;et al 2012]. TP53 directly binds to the promoter of&nbsp;miRNA-34 and activates&nbsp;transcription. Micro &nbsp;RNA-34 has been reported to&nbsp;repress the mRNA transcripts of several genes involved in the regulation of cell cycle, cell proliferation and survival, such as BCL2, CCND1 CCNE2, MYC, CDK4, CDK6 and SIRT1 [Hermeking H&nbsp;et al 2012]. Activation of&nbsp;miRNA-34a &nbsp;promotes TP53-mediated apoptosis, cell cycle arrest or senescence [Hermeking H&nbsp;et al 2012]. &nbsp;miRNA-34a may target SIRT1,&nbsp;form a positive feedback loop of the &nbsp;acetylation of TP53, expression of its transcriptional targets, regulating cell cycle and apoptosis [Hermeking H&nbsp;et al 2012]. &nbsp;&nbsp;The alternative pathway involving&nbsp;p38 MAPK signaling&nbsp;&nbsp;also induces miR-34c [Cannell IG&nbsp;et al 2010]. Inhibition&nbsp;of miRNA 34&nbsp;prevents the DNA damage&nbsp;induced cell cycle arrest and results in an increased DNA synthesis [Cannell IG&nbsp;et al 2010].</span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">DNA damage promotes the TP53-dependent upregulation of miRNA-192, miRNA-194 and miRNA-215. The genomic region surrounding the miRNA-194/miRNA-215 cluster contains a putative TP53-binding element, indicating that these miRNAs are transcriptionally activated by TP53 [Hermeking H&nbsp;et al 2012]. The expression of miRNA-192 and miRNA-215 induces cell cycle arrest and targets several transcripts involved in cell cycle checkpoints [Georges SA&nbsp;et al 2008].</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:14px">MYC and E2F,&nbsp;are the two other transcription factors involved in DNA damage- induced cell cycle checkpoints, that &nbsp;regulate the expression of several miRNAs. Both factors induce transcription of the miRNA-17-92 cluster that forms a feedback loop by inhibiting E2F expression [Aguda BD&nbsp;et al 2008]. E2F transcription factors are repressed by several other miRNAs, including miRNA-106a-92 and miRNA-106b-25 cluster members, miRNA-210, miRNA-128, miRNA-34 and miRNA-20 [Wan G&nbsp;et al 2011].</span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:14px">&nbsp;DNA damage&nbsp;upregulates several miRNAs, including miRNA-16-1, miRNA-143 and miRNA-145. [Suzuki HI&nbsp;et al 2009]. Most TP53 mutations found in cancers are located in a domain required for miRNA processing and transcriptional activity [Suzuki HI&nbsp;et al 2009]. Thus, loss of TP53 functions in miRNAs transcription and processing might contribute to cancer progression. Considering that some miRNAs are reduced after DNA damage in an ATM-dependent manner, ATM could be also involved in inhibitory pathways that downregulate miRNA expression [Wang Y&nbsp;et al 2013]. These findings support the existence of a critical link between the DDR and miRNA processing pathway.</span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">&nbsp;</span></span><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">In the DNA damage response, post-transcriptional processing of miRNAs is also regulated.&nbsp;It was reported that DNA damage led to increased levels of some pre-miRNAs and mature miRNAs without significant changes of levels of their primary transcripts, suggesting posttranscriptional mechanisms could contribute to the induction of certain miRNAs under DNA damage stress [Zhang X, et al&nbsp;2011]. There appears to be functional connections between DNA damage response and miRNA processing and maturation.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:14px">Micro RNA - 18a, miR-100, miR-101, miR-181, and miR-421, have been implicated as novel regulators to control the protein level of ATM (Majid S&nbsp;et al 2010). BRCA1, a critical tumor suppressor, BRCA1, is also recruited to DNA damage lesions, where it facilitates DNA repair. The level of BRCA1 is regulated by miR-182, miR-146a, and 146b-5p (Matsui M&nbsp;et al 2013).</span></p>
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">The tumor suppressor p53 has a central role in the activation of genes in multiple pathways, including cell&nbsp;cycle regulation, tumor suppression, and apoptosis.&nbsp;Micro RNA-125b and miR-504 have been identified as negative regulators of p53 in several types of human cells (Kreis S&nbsp;et al 2008 and Wang J&nbsp;et al 2012). </span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:14px">The available evidence suggests that DNA damage signaling participates in miRNA biogenesis by regulating both transcriptional and post-transcriptional mechanisms. Further studies can through light on the correlation between DNA damaging signaling and miRNA processing. The majority of the studies&nbsp;have examined the miRNA regulation in response to DNA damage&nbsp;and have focused on events that occur in the nucleus. It is important to extend the investigations in understanding the contribution of cytoplasmic regulation of miRNA biogenesis following DNA damage. It is very interesting to determine whether DNA damage signals can modulate the turnover, stabilization, modification, and degradation of miRNAs.</span></p>
  • <h4>How it is Measured or Detected</h4>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px; width:586px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:57px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Method/ measurement reference</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Reliability</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Strength of evidence</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Assay fit for purpose</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Repeatability/ reproducibility</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Direct measure</span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:57px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Human cell line</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:155px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Western blotting,clonal survival assay,FACs(</span><span style="font-size:11.0000pt">van Jaarsveld MT et al 2014)</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Strong</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes </span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes </span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td rowspan="4" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:57px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Mice</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Free radicCyQuant cell Proliferation assay (</span><span style="font-size:11.0000pt">Abdelfattah, N. et al 2018)</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Strong</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes </span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes </span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">RNA sequence analysis,Immuno staining,immunoblotting,Flowcytometry,COMET assay,qRT PCR(Liu Z et al 2017)</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Strong</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes </span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes </span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Microarray (Zhang X et al 2011)</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Strong</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes </span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes </span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">qRT PCR,RIP assay,Immunogold EM(Wan G et al 2013)</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif">Strong</span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:57px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Canine</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">micro array(Bulkowska M et al 2017)</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Strong</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes </span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes </span></span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <h4>References</h4>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px; width:601px">
  • <tbody>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Abdelfattah, N., Rajamanickam, S., Panneerdoss, S., Timilsina, S., Yadav, P., Onyeagucha, B. C., ... &amp; Rao, M. K. (2018). MiR-584-5p potentiates vincristine and radiation response by inducing spindle defects and DNA damage in medulloblastoma.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature communications</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>9</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 1-19.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Aguda, B. D., Kim, Y., Piper-Hunter, M. G., Friedman, A., &amp; Marsh, C. B. (2008). MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Proceedings of the National Academy of Sciences</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>105</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(50), 19678-19683.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Bulkowska, M., Rybicka, A., Senses, K. M., Ulewicz, K., Witt, K., Szymanska, J., ... &amp; Krol, M. (2017). MicroRNA expression patterns in canine mammary cancer show significant differences between metastatic and non-metastatic tumours.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>BMC cancer</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>17</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 1-17.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Cannell, I. G., Kong, Y. W., Johnston, S. J., Chen, M. L., Collins, H. M., Dobbyn, H. C., ... &amp; Bushell, M. (2010). p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Proceedings of the National Academy of Sciences</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>107</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(12), 5375-5380.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Chowdhury, D., Choi, Y. E., &amp; Brault, M. E. (2013). Charity begins at home: non-coding RNA functions in DNA repair.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature reviews Molecular cell biology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>14</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(3), 181-189.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">di Fagagna, F. D. A. (2014). A direct role for small non-coding RNAs in DNA damage response.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Trends in cell biology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>24</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(3), 171-178.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Georges, S. A., Biery, M. C., Kim, S. Y., Schelter, J. M., Guo, J., Chang, A. N., ... &amp; Chau, B. N. (2008). Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer research</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>68</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(24), 10105-10112.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Han, C., Liu, Y., Wan, G., Choi, H. J., Zhao, L., Ivan, C., ... &amp; Lu, X. (2014). The RNA-binding protein DDX1 promotes primary microRNA maturation and inhibits ovarian tumor progression.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell reports</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>8</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(5), 1447-1460.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Han, C., Wan, G., Langley, R. R., Zhang, X., &amp; Lu, X. (2012). Crosstalk between the DNA damage response pathway and microRNAs.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cellular and molecular life sciences</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>69</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(17), 2895-2906.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Harper, J. W., &amp; Elledge, S. J. (2007). The DNA damage response: ten years after.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular cell</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>28</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(5), 739-745.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Hermeking, H. (2012). MicroRNAs in the p53 network: micromanagement of tumour suppression.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature reviews cancer</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>12</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(9), 613-626.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="color:#000000">Jackson SP, Bartek J. (2009). The DNA-damage response in human biology and disease. Nature, 461,1071-8</span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Kreis, S., Philippidou, D., Margue, C., &amp; Behrmann, I. (2008). IL‐24: a classic cytokine and/or a potential cure for cancer?.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of cellular and molecular medicine</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>12</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(6a), 2505-2510.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Liu, Z., Zhang, C., Khodadadi-Jamayran, A., Dang, L., Han, X., Kim, K., ... &amp; Zhao, R. (2017). Canonical microRNAs enable differentiation, protect against DNA damage, and promote cholesterol biosynthesis in neural stem cells.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Stem cells and development</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>26</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(3), 177-188.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Majid, S., Dar, A. A., Saini, S., Yamamura, S., Hirata, H., Tanaka, Y., ... &amp; Dahiya, R. (2010). MicroRNA‐205&ndash;directed transcriptional activation of tumor suppressor genes in prostate cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>116</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(24), 5637-5649.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Matsui, M., Chu, Y., Zhang, H., Gagnon, K. T., Shaikh, S., Kuchimanchi, S., ... &amp; Janowski, B. A. (2013). Promoter RNA links transcriptional regulation of inflammatory pathway genes.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nucleic acids research</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>41</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(22), 10086-10109.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Pothof, J., Verkaik, N. S., Van Ijcken, W., Wiemer, E. A., Ta, V. T., Van Der Horst, G. T., ... &amp; Persengiev, S. P. (2009). MicroRNA‐mediated gene silencing modulates the UV‐induced DNA‐damage response.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>The EMBO journal</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>28</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(14), 2090-2099.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Sharma, V., &amp; Misteli, T. (2013). Non-coding RNAs in DNA damage and repair.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>FEBS letters</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>587</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(13), 1832-1839.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Suzuki, H. I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., &amp; Miyazono, K. (2009). Modulation of microRNA processing by p53.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>460</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(7254), 529-533.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Suzuki, H. I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., &amp; Miyazono, K. (2009). Modulation of microRNA processing by p53.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>460</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(7254), 529-533.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">van Jaarsveld, M. T., Wouters, M. D., Boersma, A. W., Smid, M., van IJcken, W. F., Mathijssen, R. H., ... &amp; Pothof, J. (2014). DNA damage responsive microRNAs misexpressed in human cancer modulate therapy sensitivity.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular oncology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>8</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(3), 458-468.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="color:#000000">van Jaarsveld MT, Wouters MD, Boersma AW, Smid M, van Ijcken WF, Mathijssen RH, Hoeijmakers JH, Martens JW, van Laere S, Wiemer EA, Pothof J. (2014) .DNA damage responsive microRNAs misexpressed in human cancer modulate therapy sensitivity. Mol Oncol. 8(3), 458-68.</span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Wan, G., Mathur, R., Hu, X., Zhang, X., &amp; Lu, X. (2011). miRNA response to DNA damage.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Trends in biochemical sciences</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>36</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(9), 478-484.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Wan, G., Zhang, X., Langley, R. R., Liu, Y., Hu, X., Han, C., ... &amp; Lu, X. (2013). DNA-damage-induced nuclear export of precursor microRNAs is regulated by the ATM-AKT pathway.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell reports</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>3</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(6), 2100-2112.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Wang, J., &amp; Li, L. C. (2012). Small RNA and its application in andrology and urology.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Translational andrology and urology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>1</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 33.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Wang, Y., &amp; Taniguchi, T. (2013). MicroRNAs and DNA damage response: implications for cancer therapy.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell cycle</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>12</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 32-42.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Wei, W., Ba, Z., Gao, M., Wu, Y., Ma, Y., Amiard, S., ... &amp; Qi, Y. (2012). A role for small RNAs in DNA double-strand break repair.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>149</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 101-112.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Yang, Y., Ahn, Y. H., Gibbons, D. L., Zang, Y., Lin, W., Thilaganathan, N., ... &amp; Kurie, J. M. (2011). The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200&ndash;dependent pathway in mice.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>The Journal of clinical investigation</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>121</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(4), 1373-1385.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Zhang, X., Wan, G., Berger, F. G., He, X., &amp; Lu, X. (2011). The ATM kinase induces microRNA biogenesis in the DNA damage response.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular cell</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>41</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(4), 371-383.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Zhang, X., Wan, G., Berger, F. G., He, X., &amp; Lu, X. (2011). The ATM kinase induces microRNA biogenesis in the DNA damage response.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular cell</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>41</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(4), 371-383.</span></span></span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <p>&nbsp;</p>
  • <h4><a href="/events/1981">Event: 1981: Decreased SIRT1 expression</a></h4>
  • <h5>Short Name: Decrease,SIRT1(sirtuin 1) levels</h5>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/443">Aop:443 - DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Stressors</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Name</th></tr>
  • </thead>
  • <tbody>
  • <tr><td>Ethyl alcohol</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Cellular</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>human and other cells in culture</td>
  • <td>human and other cells in culture</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>mice</td>
  • <td>Mus sp.</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Adult, reproductively mature</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Female</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Decreased SIRT1 expression &nbsp;is known to be highly conserved throughout evolution and is present from humans to invertebrates.</span></span></span></p>
  • <h4>Key Event Description</h4>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><strong><span style="font-size:12.0000pt"><strong>Biological state:</strong></span></strong>&nbsp;</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#3e3d40">Mammalian SIRTs include seven proteins (SIRT1-7) with deacetylase activity belonging to the class III histone deacetylase family. SIRTs share homology with the yeast deacetylase Sir2, and have different sequences and lengths in both their N- and C-terminal domains (</span></span>Carafa, V. et al 2012</span><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#3e3d40">). Expressed from bacteria to humans (</span></span></span><span style="font-size:12.0000pt">Vaquero, A. 2009<span style="background-color:#ffffff"><span style="color:#3e3d40">), SIRTs target histone and non-histone proteins.</span></span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="font-size:12.0000pt"><span style="color:#3e3d40">Localization of SIRTs is restricted to mitochondria, cytoplasm and nucleus &nbsp;&nbsp;&nbsp;&nbsp;The location of SIRT1, SIRT6, and SIRT7 &nbsp;is predominantly in the nucleus, &nbsp;while SIRT2 in the cytosol, and SIRT3, SIRT4, and SIRT5 are in the mitochondria. &nbsp;Depending on their role in regulating different pathways, &nbsp;SIRTs relocalize under different conditions such as &nbsp;cell cycle phase, tissue type, developmental stage, stress condition, and metabolic status which has been documented in the literature. (</span>McGuinness, D. et al 2011</span><span style="font-size:12.0000pt"><span style="color:#3e3d40">). &nbsp;As per Mitchishita et al, SIRT1, SIRT2, and SIRT7 are often found in both the nucleus and cytoplasm (</span></span><span style="font-size:12.0000pt">Michishita, E et al 2005<span style="color:#3e3d40">).</span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="font-size:12.0000pt"><span style="color:#3e3d40">&nbsp;Cellular pathways &nbsp;like DNA repair, transcriptional regulation, metabolism, aging, and senescence are modulated by Sirtuins. This has &nbsp;created &nbsp;sufficient interest with Sirtuins as target in cancer research as the above mentioned functions are involved in initiation and progression of cancer. Evidence have suggested the association of SIRTs with metabolism-associated TFs, MYC and hypoxia inducible factor-1 (HIF-1), &nbsp;in terms of &nbsp;energy metabolic reprogramming.(</span>&nbsp;Zwaans, B. M. et al 2014<span style="color:#3e3d40">)</span></span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="color:#3e3d40">&nbsp;&nbsp;The biological effect of SIRTs in cancer is either tumor suppression &nbsp;or tumor promoter (oncogenes) action by altering the cell proliferation, differentiation, and death which in turn depends on cell context and experimental conditions. &nbsp;&nbsp;These two totally opposite function of SIRTs on cancer cell is remains a highly debated and controversial topic. Whether SIRTs act as tumor suppressors or promoters depends on (i) their &nbsp;The different expression levels of SIRTS in tumors and its effects on cell cycle, cell growth, &nbsp;death, their action on specific proto-oncogene and onco-suppressor proteins will determine SIRTs role as &nbsp;tumor suppressor or tumor promoters &nbsp;(</span></span>Deng, C. X. 2009<span style="background-color:#ffffff"><span style="color:#3e3d40">).</span></span></span></span></span></p>
  • <h2><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:18pt"><strong><strong><span style="font-size:12.0000pt"><span style="color:#020202"><strong>Sirtuin Reactions</strong></span></span></strong></strong></span></span></h2>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="font-size:12.0000pt"><span style="color:#3e3d40">The NAD+-dependent deacetylation is well known enzymatic reaction catalyzed by SIRTs. Deacetylation reaction begins with amide cleavage from NAD+&nbsp;with the formation of nicotinamide and an intermediate of reaction, O-ADP-ribose. This intermediate formed is necessary for the deacetylation process by which SIRTs catalyze the transfer of one acetyl group from a lysine to O-ADP-ribose moiety to form&nbsp;</span></span><em><span style="font-size:12.0000pt"><span style="color:#3e3d40">O</span></span></em><span style="font-size:12.0000pt"><span style="color:#3e3d40">-acetyl-ADP-ribose and the deacetylated lysine product. This reaction requires a mole equivalent of NAD+&nbsp;per acetyl group removed and is controlled by the cellular [NAD]/[NADH] ratio (</span></span><span style="font-size:12.0000pt">Sauve, A. A. 2010 and Shi, Y. et al 2013<span style="color:#3e3d40">).</span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="font-size:12.0000pt"><span style="color:#3e3d40">Among the SIRTs family, only SIRT1, SIRT2, and SIRT3 possess a robust deacetylase activity even though SIRT enzymes are primarily known as protein deacetylases. SIRT4, SIRT5, SIRT6, and SIRT7) exhibit a weak or no detectable deacetylation activity at all.Through these reactions, SIRTs are able to regulate several key cellular processes (</span>Jiang, H., et al 2013 and Zhang, S. et al 2017<span style="color:#3e3d40">).</span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><strong><span style="font-size:12.0000pt"><strong>Biological compartments:</strong></span></strong>&nbsp;</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Regulation of gene expression takes place in the cell, subcellular site being nucleus.</span></span></span></p>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><strong><span style="font-size:12.0000pt"><strong>General role in biology:</strong></span></strong>&nbsp;</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Silent Inflammation Regulator 2 (SIR2) proteins belong to the &nbsp;family of histone deacetylases (HDACs) that catalyze deacetylation of both histone and non- histone lysine residues.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Mammalian sirtuins (SIRT1-7) are involved in &nbsp;diverse biological processes including energy metabolism, &nbsp;lifespan and health span regulation (Longo VD et al 2006). Mammalian sirtuins possess will bring about an array of biological functions through its enzymatic activity such as &nbsp;histone deacetylase, mono-ADP-ribosyltransferase, desuccinylase, demalonylase, demyristoylase, and depalmitoylase activity (Michan S et al 2007). SIRT1 located &nbsp;in the nucleus play an important role in genomic stability, telomere maintenance, and cell survival (Chen J et al 2011 and, Haigis MC et al 2006). </span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Among the 7 SIRTs, SIRT1 is the largest in terms of total DNA and amino acid sequence studied sirtuin [Fang, Y. and M.B. Nicholl 2011]. SIRT1, a class 3 histone deacetylase, is implicated in the modulation of apoptosis, senescence, proliferation, and aging. It&rsquo;s actions arebrought about by cellular nicotinamide adenosine dinucleotide (NAD+) which acts as a cofactor for deacetylation reactivity. The liberated nicotinamide from NAD+, generates a &nbsp;novel metabolite o-acetyl-ADP-ribose . SIRT1 can mediate &nbsp;the actions at translational level. Various mechanisms have been &nbsp;proposed to be &nbsp;involved in dysregulation of SIRT1 in cancer cells &nbsp;[Yao, C., et al.2016]. In human breast, lung and prostate cancers SIRT1 is significantly elevated . It plays &nbsp;a role in tumorigenesis by anti-apoptotic activity through oncogene and epigenetic regulator action.[ Saunders, L. and E. Verdin 2007]. SIRT1 deacetylates pro-apoptotic proteins such as p53 and promotes cell survival under genotoxic and oxidative stresses [Kojima, K., et al 2010]. It&rsquo;s critical role in multiple aspects of resistance to anti-cancer drugs is also well documented [Duan, K., et al 2015]. Therefore, SIRT1 overexpression is associated with the subsequent higher level of tumor cell proliferation, invasion, and migration [Wang, X., et al 2016].</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">SIRT1 expression is increased in human colon cancer, acute myeloid leukemia, and some skin can- cers (Bradbury, C. A et al 2005, Hida, Y. et al 2007, Huffman, D. M. et al 2007 and Stunkel, W.2007). SIRT1 , by interacting with and inhibiting p53 &nbsp;may act as tumor promoter (van Leeuwen, I., and Lain, S. 2009). Repression of tumor suppression protein expression and DNA repair protein ,are other roles of &nbsp;SIRT1 in cancer cells. &nbsp;In colon cancer , &nbsp;SIRT1 limits &beta;-catenin signaling while in breast cancer it interacts with &nbsp;BRCA1 signaling . However it has been observed that &nbsp;SIRT1 expression is decreased in &nbsp;ovarian cancer, glioblastoma, and bladder carcinoma (Deng, C. X. 2009). &nbsp;In these cancers , SIRT1 might serve as a tumor suppressor by blocking oncogenic pathways. Thus SIRT1 can serve as a tumor promoter or tumor suppressor, depending on the oncogenic pathways specific to particular tumors.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">In hepatocellular carcinoma , SIRT1 was overexpressed in HCC cells and tissues, and significantly promoted the migration and invasion ability of HCC cells by inducing the epithelial and mesenchymal transition[Hao C et al 2014]. This in vivo study &nbsp;also supported the oncogenic functions of SIRT1 in enhancing metastasis[Hao C et al 2014]. Bae et al [Bae HJ et al 2014] found that knockdown of SIRT1 inhibited cell growth by transcriptional deregulation of cell cycle proteins, leading to hypophosphorylation of pRb, which inactivated E2F/ DP1 target gene transcription, and thereby caused the G1/S cell cycle arrest. In addition, miR29c was identified as a suppressor of SIRT1 by comprehensive miRNA profiling and ectopic miR29c expression recapitulated SIRT1 knockdown effects in HCC cells [Bae HJ et al 2014]. &nbsp;To contradict the above findings, &nbsp;Zhang et al [Zhang ZY et al 2015] reported that SIRT1 has anticarcinogenic effects in HCC via the AMPK mammalian target of rapamycin (mTOR) pathway. They evaluated the relationship between p53 mutations and activation of SIRT1 in 252 patients with hepatitis B virus positive HCC and found that activated SIRT1 was associated with a longer recurrence free survival in HCC tissues harbouring mutant p53. &nbsp;He reported that inhibition of SIRT1 increased cell growth, bearing mutated p53, by suppressing AMPK activity and enhancing mTOR activity.The conflicting results from different published data &nbsp;indicated that SIRT1 is multifunctional gene and its biological features are left unsolved.</span></span></span></p>
  • <p><span style="color:#3e3d40; font-family:Arial,Helvetica,sans-serif; font-size:12pt">These above evidence indicates the involvement of SIRTs in regulating three important tumor processes: epithelial-to-mesenchymal transition (EMT), invasion, and metastasis. Many SIRTs are responsible for cellular metabolic reprogramming and drug resistance by inactivating cell death pathways and promoting uncontrolled proliferation. </span><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:12pt">These observations are </span><span style="color:#3e3d40; font-family:Arial,Helvetica,sans-serif; font-size:12pt">&nbsp;for the future development of novel tailored SIRT-based cancer therapies.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt"><span style="color:#3e3d40">Wang et al showed that SIRT1 expression was increased in several cancer cell lines, and is generally associated with poor prognosis and overall survival (</span>Wang, C., et al 2017</span><span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt"><span style="color:#3e3d40">). Vaziri et al reported that SIRT1 interacted &nbsp;with P53, triggering its deacetylation in Lys382 residue, and determined a block of all P53-dependent pathways, leading to uncontrolled cell cycle and inactivation of the apoptotic process (</span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt">Vaziri, H., et al 2011<span style="color:#3e3d40">).</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12pt"><span style="font-size:12.0000pt"><span style="color:#3e3d40">SIRT1 has a function in metastasis and invasiveness in several cancers that has been reported in several studies. Among them ,the deacetylation of many proteins involved in tumor suppressor processes or DNA damage repair, and the inactivation of specific pathways support the role of SIRT1 as a tumor promoter. The role of &nbsp;SIRT1 &nbsp;in the initiation, promotion, and progression of several malignant tumors including prostate cancer (</span>Jung-Hynes, B. et al 2009</span><span style="font-size:12.0000pt"><span style="color:#3e3d40">), breast cancer (</span></span><span style="font-size:12.0000pt">Jin, X., et al 2018</span><span style="font-size:12.0000pt"><span style="color:#3e3d40">), lung cancer (</span></span><span style="font-size:12.0000pt">Han, L. et al 2013</span><span style="font-size:12.0000pt"><span style="color:#3e3d40">) and gastric cancer (</span></span><span style="font-size:12.0000pt">Han, L. et al 2013</span><span style="font-size:12.0000pt"><span style="color:#3e3d40">) are well documented.&nbsp;Wilking el al showed in his in vitro experiments that the inhibition of SIRT1 by treatment with small molecule SIRT1 inhibitors determines a significant decrease in cell growth, proliferation and viability (</span></span><span style="font-size:12.0000pt">Wilking, M. J., et al 2014<span style="color:#3e3d40">).</span></span></span></span></p>
  • <h4>How it is Measured or Detected</h4>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:68px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:141px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Method/ measurement reference</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:77px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Reliability</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:71px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Strength of evidence</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:61px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Assay fit for purpose</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:102px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Repeatability/ reproducibility</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Direct measure</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Human tissues</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:141px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">qRT-PCR,Western blotting,Luciferase reporter assay H2,H4,H7,H8,H9</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Micro-array (Shen ZL et al 2016)</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:77px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:71px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Strong</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:61px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:102px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Human cell lines</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:141px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Micro-array, qRT-PCR,Western blotting,Luciferase reporter assay</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">(Guo S et al 2020,</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Bae HJ et al 2014,</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Zhou J et al 2017,</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Fu H et al 2018,</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Lian B et al 2018</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Guan Y et al 2017</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yang X et al 2014)</span></span></p>
  • <p>&nbsp;</p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:77px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:71px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Strong</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:61px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:102px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Mouse</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:141px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">qRT-PCR,Western blotting,Luciferase reporter assay,ELISA,cell culture</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Bai XZ et al 2018</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:77px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:71px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Moderate</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:61px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:102px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <h4>References</h4>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px; width:601px">
  • <tbody>
  • <tr>
  • <td style="background-color:#ffffff; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:601px">
  • <p>&nbsp;</p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:601px">
  • <table cellspacing="0" class="Table" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px; margin-left:9px; margin-right:9px; width:703px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Bae, H. J., Noh, J. H., Kim, J. K., Eun, J. W., Jung, K. H., Kim, M. G., ... &amp; Nam, S. W. (2014). MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncogene</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>33</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(20), 2557-2567.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Bae, H. J., Noh, J. H., Kim, J. K., Eun, J. W., Jung, K. H., Kim, M. G., ... &amp; Nam, S. W. (2014). MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncogene</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>33</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(20), 2557-2567.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Bai, X. Z., Zhang, J. L., Liu, Y., Zhang, W., Li, X. Q., Wang, K. J., ... &amp; Hu, D. H. (2018). MicroRNA-138 aggravates inflammatory responses of macrophages by targeting SIRT1 and regulating the NF-&kappa;B and AKT pathways.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cellular Physiology and Biochemistry</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>49</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(2), 489-500.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Bradbury, C. A., Khanim, F. L., Hayden, R., Bunce, C. M., White, D. A., Drayson, M. T., ... &amp; Turner, B. M. (2005). Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Leukemia</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>19</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(10), 1751-1759.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Carafa, V., Nebbioso, A., &amp; Altucci, L. (2012). Sirtuins and disease: the road ahead.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Frontiers in pharmacology</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>3</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">, 4.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Chen, J., Zhang, B., Wong, N., Lo, A. W., To, K. F., Chan, A. W., ... &amp; Ko, B. C. (2011). Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer research</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>71</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(12), 4138-4149.</span></span></span><span style="font-size:12.0000pt"><span style="color:#000000">. </span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Deng, C. X. (2009). SIRT1, is it a tumor promoter or tumor suppressor?.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>International journal of biological sciences</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>5</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(2), 147.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Duan, K., Ge, Y. C., Zhang, X. P., Wu, S. Y., Feng, J. S., Chen, S. L., ... &amp; Fu, C. H. (2015). miR-34a inhibits cell proliferation in prostate cancer by downregulation of SIRT1 expression.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncology letters</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>10</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(5), 3223-3227.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Fang, Y., &amp; Nicholl, M. B. (2011). Sirtuin 1 in malignant transformation: friend or foe?.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer letters</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>306</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(1), 10-14.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Fu, H., Song, W., Chen, X., Guo, T., Duan, B., Wang, X., ... &amp; Zhang, C. (2018). MiRNA-200a induce cell apoptosis in renal cell carcinoma by directly targeting SIRT1.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular and cellular biochemistry</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>437</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(1), 143-152.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Guan, Y., Rao, Z., &amp; Chen, C. (2018). miR-30a suppresses lung cancer progression by targeting SIRT1.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncotarget</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>9</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(4), 4924.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Guo, S., Ma, B., Jiang, X., Li, X., &amp; Jia, Y. (2020). Astragalus polysaccharides inhibits tumorigenesis and lipid metabolism through miR-138-5p/SIRT1/SREBP1 pathway in prostate cancer.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Frontiers in Pharmacology</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>11</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">, 598.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Haigis, M. C., &amp; Guarente, L. P. (2006). Mammalian sirtuins&mdash;emerging roles in physiology, aging, and calorie restriction.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Genes &amp; development</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>20</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(21), 2913-2921.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Han, L., Liang, X. H., Chen, L. X., Bao, S. M., &amp; Yan, Z. Q. (2013). SIRT1 is highly expressed in brain metastasis tissues of non-small cell lung cancer (NSCLC) and in positive regulation of NSCLC cell migration.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>International journal of clinical and experimental pathology</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>6</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(11), 2357.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Hao, C., Zhu, P. X., Yang, X., Han, Z. P., Jiang, J. H., Zong, C., ... &amp; Wei, L. X. (2014). Overexpression of SIRT1 promotes metastasis through epithelial-mesenchymal transition in hepatocellular carcinoma.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>BMC cancer</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>14</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(1), 1-10.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Hida, Y., Kubo, Y., Murao, K., &amp; Arase, S. (2007). Strong expression of a longevity-related protein, SIRT1, in Bowen&rsquo;s disease.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Archives of dermatological research</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>299</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(2), 103-106.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Huffman, D. M., Grizzle, W. E., Bamman, M. M., Kim, J. S., Eltoum, I. A., Elgavish, A., &amp; Nagy, T. R. (2007). SIRT1 is significantly elevated in mouse and human prostate cancer.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer research</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>67</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(14), 6612-6618.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Jiang, G., Wen, L., Zheng, H., Jian, Z., &amp; Deng, W. (2016). miR</span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">‐</span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">204</span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">‐</span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">5p targeting SIRT1 regulates hepatocellular carcinoma progression.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell biochemistry and function</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>34</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(7), 505-510.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Jiang, H., Khan, S., Wang, Y., Charron, G., He, B., Sebastian, C., ... &amp; Lin, H. (2013). SIRT6 regulates TNF-&alpha; secretion through hydrolysis of long-chain fatty acyl lysine.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>496</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(7443), 110-113.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Jin, X., Wei, Y., Xu, F., Zhao, M., Dai, K., Shen, R., ... &amp; Zhang, N. (2018). SIRT1 promotes formation of breast cancer through modulating Akt activity.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of Cancer</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>9</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(11), 2012.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Jung-Hynes, B., Nihal, M., Zhong, W., &amp; Ahmad, N. (2009). Role of sirtuin histone deacetylase SIRT1 in prostate cancer: a target for prostate cancer management via its inhibition?.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of Biological Chemistry</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>284</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(6), 3823-3832.</span></span></span><span style="font-size:12.0000pt"><span style="color:#000000">.</span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Kojima, K., Fujita, Y., Nozawa, Y., Deguchi, T., &amp; Ito, M. (2010). MiR</span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">‐</span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">34a attenuates paclitaxel</span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">‐</span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">resistance of hormone</span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">‐</span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">refractory prostate cancer PC3 cells through direct and indirect mechanisms.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>The Prostate</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>70</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(14), 1501-1512.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Lian, B., Yang, D., Liu, Y., Shi, G., Li, J., Yan, X., ... &amp; Zhang, R. (2018). miR-128 targets the SIRT1/ROS/DR5 pathway to sensitize colorectal cancer to TRAIL-induced apoptosis.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cellular Physiology and Biochemistry</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>49</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(6), 2151-2162.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Longo, V. D., &amp; Kennedy, B. K. (2006). Sirtuins in aging and age-related disease.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>126</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(2), 257-268.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Luo, J., Chen, P., Xie, W., &amp; Wu, F. (2017). MicroRNA-138 inhibits cell proliferation in hepatocellular carcinoma by targeting Sirt1.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncology reports</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>38</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(2), 1067-1074.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">McGuinness, D., McGuinness, D. H., McCaul, J. A., &amp; Shiels, P. G. (2011). Sirtuins, bioageing, and cancer.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of aging research</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>2011</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Michan, S., &amp; Sinclair, D. (2007). Sirtuins in mammals: insights into their biological function.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Biochemical Journal</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>404</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(1), 1-13.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C., &amp; Horikawa, I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular biology of the cell</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>16</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(10), 4623-4635.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Saunders, L. R., &amp; Verdin, E. (2007). Sirtuins: critical regulators at the crossroads between cancer and aging.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncogene</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>26</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(37), 5489-5504.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Sauve, A. A. (2010). Sirtuin chemical mechanisms.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>1804</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(8), 1591-1603.</span></span></span><span style="font-size:12.0000pt"><span style="color:#000000">.</span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Shen, Z. L., Wang, B., Jiang, K. W., Ye, C. X., Cheng, C., Yan, Y. C., ... &amp; Wang, S. (2016). Downregulation of miR-199b is associated with distant metastasis in colorectal cancer via activation of SIRT1 and inhibition of CREB/KISS1 signaling.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncotarget</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>7</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(23), 35092.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Shi, Y., Zhou, Y., Wang, S., &amp; Zhang, Y. (2013). Sirtuin deacetylation mechanism and catalytic role of the dynamic cofactor binding loop.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>The journal of physical chemistry letters</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>4</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(3), 491-495.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Shuang, T., Wang, M., Zhou, Y., &amp; Shi, C. (2015). Over-expression of Sirt1 contributes to chemoresistance and indicates poor prognosis in serous epithelial ovarian cancer (EOC).&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Medical oncology</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>32</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(12), 1-7.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">St&uuml;nkel, W., Peh, B. K., Tan, Y. C., Nayagam, V. M., Wang, X., Salto</span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">‐</span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Tellez, M., ... &amp; Wood, J. (2007). Function of the SIRT1 protein deacetylase in cancer.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Biotechnology Journal: Healthcare Nutrition Technology</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>2</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(11), 1360-1368.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Tian, Z., Jiang, H., Liu, Y., Huang, Y., Xiong, X., Wu, H., &amp; Dai, X. (2016). MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Experimental cell research</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>343</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(2), 135-147.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">van Leeuwen, I., &amp; Lain, S. (2009). Sirtuins and p53.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Advances in cancer research</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>102</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">, 171-195.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Vaquero, A. (2009). The conserved role of sirtuins in chromatin regulation.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>International Journal of Developmental Biology</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>53</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(2-3), 303-322.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Vaziri, H., Dessain, S. K., Eaton, E. N., Imai, S. I., Frye, R. A., Pandita, T. K., ... &amp; Weinberg, R. A. (2001). hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>107</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(2), 149-159.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Wang, C., Yang, W., Dong, F., Guo, Y., Tan, J., Ruan, S., &amp; Huang, T. (2017). The prognostic role of Sirt1 expression in solid malignancies: a meta-analysis.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncotarget</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>8</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(39), 66343.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Wang, X., Yang, B., &amp; Ma, B. (2016). The UCA1/miR-204/Sirt1 axis modulates docetaxel sensitivity of prostate cancer cells.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer chemotherapy and pharmacology</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>78</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(5), 1025-1031.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Wilking, M. J., Singh, C., Nihal, M., Zhong, W., &amp; Ahmad, N. (2014). SIRT1 deacetylase is overexpressed in human melanoma and its small molecule inhibition imparts anti-proliferative response via p53 activation.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Archives of biochemistry and biophysics</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>563</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">, 94-100.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Yan, X., Liu, X., Wang, Z., Cheng, Q., Ji, G., Yang, H., ... &amp; Pei, X. (2019). MicroRNA4865p functions as a tumor suppressor of proliferation and cancer stemlike cell properties by targeting Sirt1 in liver cancer.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncology reports</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>41</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(3), 1938-1948.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Yang, X., Yang, Y., Gan, R., Zhao, L., Li, W., Zhou, H., ... &amp; Meng, Q. H. (2014). Down-regulation of mir-221 and mir-222 restrain prostate cancer cell proliferation and migration that is partly mediated by activation of SIRT1.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>PloS one</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>9</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(6), e98833.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Yao, C., Liu, J., Wu, X., Tai, Z., Gao, Y., Zhu, Q., ... &amp; Gao, S. (2016). Reducible self-assembling cationic polypeptide-based micelles mediate co-delivery of doxorubicin and microRNA-34a for androgen-independent prostate cancer therapy.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of Controlled Release</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>232</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">, 203-214.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12.0000pt"><span style="color:#000000">Zhang S, Zhang D, Yi C, Wang Y, Wang H, Wang J. (2016). MicroRNA-22 functions as a tumor suppressor by targeting SIRT1 in renal cell carcinoma. Oncol Rep. 35(1), 559-67.&nbsp;</span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Zhang, Z. Y., Hong, D., Nam, S. H., Kim, J. M., Paik, Y. H., Joh, J. W., ... &amp; Kim, S. J. (2015). SIRT1 regulates oncogenesis via a mutant p53-dependent pathway in hepatocellular carcinoma.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of hepatology</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>62</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(1), 121-130.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Zhang, S., Huang, S., Deng, C., Cao, Y., Yang, J., Chen, G., ... &amp; Zou, X. (2017). Co-ordinated overexpression of SIRT1 and STAT3 is associated with poor survival outcome in gastric cancer patients.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncotarget</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>8</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(12), 18848.</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:none; border-left:none; border-right:none; border-top:none; vertical-align:center; width:702px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Zhou, J., Zhou, W., Kong, F., Xiao, X., Kuang, H., &amp; Zhu, Y. (2017). microRNA34a overexpression inhibits cell migration and invasion via regulating SIRT1 in hepatocellular carcinoma Corrigendum in/10.3892/ol. 2019.11048.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncology letters</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>14</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(6), 6950-6954.</span></span></span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Zwaans, B. M., &amp; Lombard, D. B. (2014). Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Disease models &amp; mechanisms</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>7</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(9), 1023-1032.</span></span></span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <p>&nbsp;</p>
  • <h4><a href="/events/1172">Event: 1172: Increased activation, Nuclear factor kappa B (NF-kB)</a></h4>
  • <h5>Short Name: Increased activation, Nuclear factor kappa B (NF-kB)</h5>
  • <h4>Key Event Component</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Process</th>
  • <th scope="col">Object</th>
  • <th scope="col">Action</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>regulation of I-kappaB kinase/NF-kappaB signaling</td>
  • <td></td>
  • <td>increased</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/382">Aop:382 - Angiotensin II type 1 receptor (AT1R) agonism leading to lung fibrosis</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/377">Aop:377 - Dysregulated prolonged Toll Like Receptor 9 (TLR9) activation leading to Multi Organ Failure involving Acute Respiratory Distress Syndrome (ARDS)</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/319">Aop:319 - Binding to ACE2 leading to lung fibrosis</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/443">Aop:443 - DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/622">Aop:622 - Calcineurin inhibitor induced nephrotoxicity leading to kidney failure</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Stressors</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Name</th></tr>
  • </thead>
  • <tbody>
  • <tr><td>Reactive oxygen species</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Cellular</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Cell term</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Cell term</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>epithelial cell</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Organ term</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Organ term</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>tissue</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Homo sapiens</td>
  • <td>Homo sapiens</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Not Otherwise Specified</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Mixed</td>
  • <td>Not Specified</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p>The ROS directly influences NF-&kappa;B signalling, resulting in differential production of cytokines and chemokines&nbsp;(McKay and Cidlowski, 1999). NIn accordance with the OECD AOP Handbook, the pathway begins with increased levels of reactive oxygen species (ROS), serving as the Molecular Initiating Event (MIE), which subsequently triggers the Activation of the NF-&kappa;B Signaling Pathway . This activation, in turn, directly influences the expression of genes involved in the Differential Production of Cytokines and Chemokines , culminating in the regulation of Pro-Inflammatory Responses Transcriptionally Mediated by NF-&kappa;B (. The resultant exaggerated and dysregulated pro-inflammatory response contributes to chronic inflammation and tissue damage, representing the Adverse Outcome (AO). This sequence of events is underpinned by the works of McKay and Cidlowski (1999) and aligns with the guidelines set forth in the OECD AOP Handbook.F-&kappa;B regulates pro-inflammatory responses that are transcriptionally mediated by NF‑&kappa;B.</p>
  • <h4>Key Event Description</h4>
  • <p>The NF-kB pathway consists of a series of events where the transcription factors of the NF-kB family play a key role. The proinflammatory cytokine&nbsp;(IL-1beta) can be activated by NF-kB , including Reactive Oxygen Species produced by&nbsp;&nbsp;NADPH oxidase&nbsp;(NOX). Upon pathway activation, the IKK complex will be phosphorylated, which in turn phosphorylates IkBa.&nbsp;There, this transcription factor can express pro-inflammatory and pro-fibrotic genes.&nbsp;This can be achieved by ROS,&nbsp;IKK enhancer or nuclear translocation enhancer.&nbsp;</p>
  • <h4>How it is Measured or Detected</h4>
  • <p>NF-kB transcriptional activity: Beta lactamase reporter gene assay (Miller et al. 2010). NF-kB transcription: Lentiviral NF-kB GFP reporter with flow cytometry (Moujalled et al. 2012)</p>
  • <p>NF-&kappa;B translocation: RelA-GFP reporter assay (Wink et al 2017)</p>
  • <p>I&kappa;Ba phosphorylation: Western blotting (Miller et al. 2010)</p>
  • <p>NF-&kappa;B p65 (Total/Phospho) ELISA</p>
  • <p>ELISA for IL-6, IL-8, and Cox</p>
  • <h4>References</h4>
  • <p>McKay LI, Cidlowski JA. Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. Endocr Rev. 1999 Aug;20(4):435-59.</p>
  • <p>Miller SC, Huang R, Sakamuru S, Shukla SJ, Attene-Ramos MS, Shinn P, Van Leer D, Leister W, Austin CP, Xia M. Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem Pharmacol. 2010 May 1;79(9):1272-80.</p>
  • <p>Moujalled DM, Cook WD, Lluis JM, Khan NR, Ahmed AU, Callus BA, Vaux DL. In mouse embryonic fibroblasts, neither caspase-8 nor cellular FLICE-inhibitory protein (FLIP) is necessary for TNF to activate NF-&kappa;B, but caspase-8 is required for TNF to cause cell death, and induction of FLIP by NF-&kappa;B is required to prevent it. Cell Death Differ. 2012 May;19(5):808-15.</p>
  • <p>Wink S, Hiemstra S, Herpers B, van de Water B. High-content imaging-based BAC-GFP toxicity pathway reporters to assess chemical adversity liabilities. Arch Toxicol. 2017 Mar;91(3):1367-1383.</p>
  • <h4><a href="/events/112">Event: 112: Antagonism, Estrogen receptor</a></h4>
  • <h5>Short Name: Antagonism, Estrogen receptor</h5>
  • <h4>Key Event Component</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Process</th>
  • <th scope="col">Object</th>
  • <th scope="col">Action</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>estrogen receptor activity</td>
  • <td>estrogen receptor</td>
  • <td>decreased</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/30">Aop:30 - Estrogen receptor antagonism leading to reproductive dysfunction</a></td>
  • <td>MolecularInitiatingEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/443">Aop:443 - DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/522">Aop:522 - Estrogen antagonism leading to increased risk of autism-like behavior</a></td>
  • <td>MolecularInitiatingEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/595">Aop:595 - Emerging OPFRS reproductive outcome pathway</a></td>
  • <td>MolecularInitiatingEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Molecular</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Cell term</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Cell term</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>hepatocyte</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <p><strong>Taxonomic applicability</strong>: Steroid receptors, including ER are thought to have evolved in the chordate lineage (Baker 1997, 2003; Thornton 2001). An ER ortholog has been isolated from a mollusk species, but no ER orthologs have been detected in arthropods or nematodes (Thornton et al. 2003). Broadly speaking, most vertebrates can be expected to have functional ERs, while most invertebrates do not, although there may be exceptions within the mollusk lineage and evolutionarily-related organisms.</p>
  • <h4>Key Event Description</h4>
  • <p><strong>Site of action</strong>: The site of action for the molecular initiating event is the liver (hepatocytes).</p>
  • <p><strong>Responses at the macromolecular level</strong>: Estrogen receptor antagonists have been shown to interact with the ligand binding domain of ERs. However, those interactions occur at different contact sites than those of estrogen agonists, leading to a different conformation in the transactivation domain (Brzozowski et al. 1997; Katzenellenbogen 1996).</p>
  • <p><strong>Characterization of chemical properties</strong>: Two broad categories of ER antagonists have been described. Type I, like tamoxifen act as mixed agonists and antagonists. Type II, like ICI164384 are pure antagonists (Katzenellenbogen 1996). Due to their potential utility for treating estrogen-dependent breast cancers and other estrogen-related disease states as well as concerns regarding endocrine disruption, there is an extensive body of literature on the identification and design of chemical structures that act as ER antagonists (e.g., (Brooks et al. 1987; Brooks and Skafar 2004; Lloyd et al. 2006; Sodero et al. 2012; Vedani et al. 2012; Wang et al. 2006).</p>
  • <h4>How it is Measured or Detected</h4>
  • <ul>
  • <li>The BG1luc estrogen receptor transactivation test method for identifying estrogen receptor agonists and antagonists (OECD Test Guideline 457) has been validated by the National Toxicology Program Interagency Center for Evaluation of Alternative Toxicological Methods (NICEATM) and Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) as an appropriate assay for detecting ER antagonism. (OECD, 2012b).</li>
  • <li>Other human ER-based transactivation assays that have been used to detect ER&alpha; antagonism include the T47D-Kbluc assay (Wilson et al. 2004); ER&alpha; CALUX assay (van der Burg et al. 2010); MELN assay (Witters et al. 2010); and the yeast estrogen screen (YES; (De Boever et al. 2001)). Each of these assays have undergone some level of validation.</li>
  • <li>In aquatic ecotoxicology, vitellogenin synthesis in primary fish liver cells and liver slices has also been used to screen for anti-estrogenic activity (e.g., (Bickley et al. 2009; Navas and Segner 2006; Schmieder et al. 2000; Schmieder et al. 2004; Sun et al. 2010). Although these approaches have generally not been subject to as much formal validation as human ER-based transactivation assays, in the case of fish-specific AOPs linked to this key event, these measures of anti-estrogenicity may be more directly relevant to predicting other key events in the pathway.</li>
  • </ul>
  • <h4>References</h4>
  • <ul>
  • <li>Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, et al. 1997. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389:753-758.</li>
  • <li>Katzenellenbogen B. 1996. Estrogen receptors: Bioactivities and interactions with cell signaling pathways. Biology of Reproduction 54:287-293.</li>
  • <li>Brooks SC, Wappler NL, Corombos JD, Doherty LM, Horwitz JP. 1987. Estrogen structure-fuction relationships. Berlin:Walter de Gruyter &amp; Co., 443-466.</li>
  • <li>Brooks SC, Skafar DF. 2004. From ligand structure to biological activity: Modified estratrienes and their estrogenic and antiestrogenic effects in mcf-7 cells. Steroids 69:401-418.</li>
  • <li>Lloyd DG, Smith HM, O&#39;Sullivan T, Knox AS, Zisterer DM, Meegan MJ. 2006. Antiestrogenically active 2-benzyl-1,1-diarylbut-2-enes: Synthesis, structure-activity relationships and molecular modeling study for flexible estrogen receptor antagonists. Medicinal chemistry 2:147-168.</li>
  • <li>Sodero AC, Romeiro NC, da Cunha EF, de Oliveira Magalhaaes U, de Alencastro RB, Rodrigues CR, et al. 2012. Application of 4d-qsar studies to a series of raloxifene analogs and design of potential selective estrogen receptor modulators. Molecules 17:7415-7439.</li>
  • <li>Vedani A, Dobler M, Smiesko M. 2012. Virtualtoxlab - a platform for estimating the toxic potential of drugs, chemicals and natural products. Toxicology and applied pharmacology 261:142-153.</li>
  • <li>Wang CY, Ai N, Arora S, Erenrich E, Nagarajan K, Zauhar R, et al. 2006. Identification of previously unrecognized antiestrogenic chemicals using a novel virtual screening approach. Chemical research in toxicology 19:1595-1601.</li>
  • <li>Denny JS, Tapper MA, Schmieder PK, Hornung MW, Jensen KM, Ankley GT, et al. 2005. Comparison of relative binding affinities of endocrine active compounds to fathead minnow and rainbow trout estrogen receptors. Environmental toxicology and chemistry / SETAC 24:2948-2953.</li>
  • <li>Lee HK, Kim TS, Kim CY, Kang IH, Kim MG, Jung KK, et al. 2012. Evaluation of in vitro screening system for estrogenicity: Comparison of stably transfected human estrogen receptor-alpha transcriptional activation (oecd tg455) assay and estrogen receptor (er) binding assay. The Journal of toxicological sciences 37:431-437.</li>
  • <li>Rider CV, Hartig PC, Cardon MC, Lambright CR, Bobseine KL, Guillette LJ, Jr., et al. 2010. Differences in sensitivity but not selectivity of xenoestrogen binding to alligator versus human estrogen receptor alpha. Environmental toxicology and chemistry / SETAC 29:2064-2071.</li>
  • <li>OECD. 2012b. Test no. 457: Bg1luc estrogen receptor transactivation test method for identifying estrogen receptor agonists and antagonists:OECD Publishing.</li>
  • <li>Wilson VS, Bobseine K, Gray LE, Jr. 2004. Development and characterization of a cell line that stably expresses an estrogen-responsive luciferase reporter for the detection of estrogen receptor agonist and antagonists. Toxicological sciences&nbsp;: an official journal of the Society of Toxicology 81:69-77.</li>
  • <li>van der Burg B, Winter R, Weimer M, Berckmans P, Suzuki G, Gijsbers L, et al. 2010. Optimization and prevalidation of the in vitro eralpha calux method to test estrogenic and antiestrogenic activity of compounds. Reproductive toxicology 30:73-80.</li>
  • <li>Witters H, Freyberger A, Smits K, Vangenechten C, Lofink W, Weimer M, et al. 2010. The assessment of estrogenic or anti-estrogenic activity of chemicals by the human stably transfected estrogen sensitive meln cell line: Results of test performance and transferability. Reproductive toxicology 30:60-72.</li>
  • <li>De Boever P, Demare W, Vanderperren E, Cooreman K, Bossier P, Verstraete W. 2001. Optimization of a yeast estrogen screen and its applicability to study the release of estrogenic isoflavones from a soygerm powder. Environmental health perspectives 109:691-697.</li>
  • <li>Bickley LK, Lange A, Winter MJ, Tyler CR. 2009. Evaluation of a carp primary hepatocyte culture system for screening chemicals for oestrogenic activity. Aquatic toxicology 94:195-203.</li>
  • <li>Navas JM, Segner H. 2006. Vitellogenin synthesis in primary cultures of fish liver cells as endpoint for in vitro screening of the (anti)estrogenic activity of chemical substances. Aquatic toxicology 80:1-22.</li>
  • <li>Schmieder P, Tapper M, Linnum A, Denny J, Kolanczyk R, Johnson R. 2000. Optimization of a precision-cut trout liver tissue slice assay as a screen for vitellogenin induction: Comparison of slice incubation techniques. Aquatic toxicology 49:251-268.</li>
  • <li>Schmieder PK, Tapper MA, Denny JS, Kolanczyk RC, Sheedy BR, Henry TR, et al. 2004. Use of trout liver slices to enhance mechanistic interpretation of estrogen receptor binding for cost-effective prioritization of chemicals within large inventories. Environmental science &amp; technology 38:6333-6342.</li>
  • <li>Sun L, Wen L, Shao X, Qian H, Jin Y, Liu W, et al. 2010. Screening of chemicals with anti-estrogenic activity using in vitro and in vivo vitellogenin induction responses in zebrafish (danio rerio). Chemosphere 78:793-799.</li>
  • <li>Baker ME. 1997. Steroid receptor phylogeny and vertebrate origins. Molecular and cellular endocrinology 135:101-107.</li>
  • <li>Baker ME. 2003. Evolution of adrenal and sex steroid action in vertebrates: A ligand-based mechanism for complexity. BioEssays&nbsp;: news and reviews in molecular, cellular and developmental biology 25:396-400.</li>
  • <li>Thornton JW. 2001. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proceedings of the National Academy of Sciences of the United States of America 98:5671-5676.</li>
  • <li>Thornton JW, Need E, Crews D. 2003. Resurrecting the ancestral steroid receptor: Ancient origin of estrogen signaling. Science 301:1714-1717.</li>
  • </ul>
  • <h4><a href="/events/1457">Event: 1457: Epithelial Mesenchymal Transition</a></h4>
  • <h5>Short Name: EMT</h5>
  • <h4>Key Event Component</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Process</th>
  • <th scope="col">Object</th>
  • <th scope="col">Action</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>epithelial to mesenchymal transition</td>
  • <td>Epithelial cell</td>
  • <td>occurrence</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/241">Aop:241 - Latent Transforming Growth Factor beta1 activation leads to pulmonary fibrosis</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/206">Aop:206 - Peroxisome proliferator-activated receptors γ inactivation leading to lung fibrosis</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/280">Aop:280 - α-diketone-induced bronchiolitis obliterans</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/347">Aop:347 - Toll-like receptor 4 activation and peroxisome proliferator-activated receptor gamma inactivation leading to pulmonary fibrosis</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/414">Aop:414 - Aryl hydrocarbon receptor activation leading to lung fibrosis through TGF-β dependent fibrosis toxicity pathway</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/415">Aop:415 - Aryl hydrocarbon receptor activation leading to lung fibrosis through IL-6 toxicity pathway</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/443">Aop:443 - DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/298">Aop:298 - Increases in cellular reactive oxygen species and chronic reactive oxygen species leading to human treatment-resistant gastric cancer</a></td>
  • <td><a href="/aops/298">Aop:298 - Increase in reactive oxygen species (ROS) leading to human treatment-resistant gastric cancer</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/452">Aop:452 - Adverse outcome pathway of PM-induced respiratory toxicity</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/474">Aop:474 - Succinate dehydrogenase inactivation leads to cancer by promoting EMT</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Cellular</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Cell term</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Cell term</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>epithelial cell</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Organ term</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Organ term</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>organ</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>humans</td>
  • <td>Homo sapiens</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Not Otherwise Specified</td>
  • <td>Not Specified</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>Not Specified</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p style="text-align:left">The key event&nbsp;is applicaple in <em>Homo sapiens</em>:</p>
  • <ul>
  • <li style="text-align:left"><span style="font-size:10.5pt"><span style="color:black"><span style="font-family:游明朝,serif"><span style="font-size:12pt"><span style="font-family:&quot;MS Pゴシック&quot;,sans-serif">Wnt5a expression leads to epithelial-mesenchymal transition (EMT) and metastasis in non-small-cell lung cancer in&nbsp;<em>Homo sapiens</em>&nbsp;(Wang et al., 2017).</span></span></span></span></span></li>
  • <li style="text-align:left"><span style="font-size:10.5pt"><span style="color:black"><span style="font-family:游明朝,serif"><span style="font-size:12pt"><span style="font-family:&quot;MS Pゴシック&quot;,sans-serif">WNT2 expression lead to EMT induction in&nbsp;<em>Homo sapiens</em>&nbsp;(Zhou et al., 2016).</span></span></span></span></span></li>
  • <li style="text-align:left"><span style="font-size:10.5pt"><span style="color:black"><span style="font-family:游明朝,serif"><span style="font-size:12pt"><span style="font-family:&quot;MS Pゴシック&quot;,sans-serif">EMT is induced in cancer and involved in cancer metastasis in&nbsp;<em>Homo sapiens</em>&nbsp;(Suarez-Carmona, Lesage, Cataldo, &amp; Gilles, 2017) (Du &amp; Shim, 2016).</span></span></span></span></span></li>
  • </ul>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Regulation of miRNA expression by DNA replication,damage and repair responses,transcription and translation has been proved in animals like mice,canine and cell line experiments.</span></span></p>
  • <h4>Key Event Description</h4>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;MS Pゴシック&quot;,sans-serif"><span style="color:#000000"><span style="color:black">Epithelial-mesenchymal transition (EMT) is a phenomenon in which the cells transit from epithelial-like into mesenchymal-like phenotypes (Huan et al., 2022; Tanabe, 2017; Tanabe et al., 2015). In cancer, cells exhibiting EMT features contribute to metastasis and drug resistance.</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;MS Pゴシック&quot;,sans-serif"><span style="color:#000000"><span style="color:black">It is known that D-2-hydroxyglurate induces EMT&nbsp;(Guerra et al., 2017; Jia et al., 2018; Mishra et al., 2018; Sciacovelli &amp; Frezza, 2017). D-2-hydroxyglurate, an inhibitor of Jumonji-family histone demethylase, increased the trimethylation of histone H3 lysine 4 (H3K4) in the promoter region of the zinc finger E-box-binding homeobox 1 (ZEB1), followed by the induction of EMT&nbsp;(Colvin et al., 2016).</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;MS Pゴシック&quot;,sans-serif"><span style="color:#000000"><span style="color:black">Wnt5a induces EMT and metastasis in non-small-cell lung cancer&nbsp;(Wang et al., 2017).</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;MS Pゴシック&quot;,sans-serif"><span style="color:#000000"><span style="color:black">EMT is related to Wnt/beta-catenin signaling and is important for treatment-resistant cancer (Tanabe et al., 2016).</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;MS Pゴシック&quot;,sans-serif"><span style="color:#000000"><span style="color:black">TGFbeta induces EMT&nbsp;(Wendt et al., 2010).</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;MS Pゴシック&quot;,sans-serif"><span style="color:#000000"><span style="color:black">ZEB is one of the critical transcription factors for EMT regulation (Zhang et al., 2015).</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;MS Pゴシック&quot;,sans-serif"><span style="color:#000000"><span style="color:black">SNAI1 (Snail) is an important transcription factor for cell differentiation and survival. The phosphorylation and nuclear localization of Snail1 induced by Wnt signaling pathways are critical for the regulation of EMT (Kaufhold &amp; Bonavida, 2014).</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;MS Pゴシック&quot;,sans-serif"><span style="color:#000000"><span style="color:black">Transcription factors SNAI1 and TWIST1 induce EMT&nbsp;(Hodge et al., 2018)&nbsp;(Mani et al., 2008).</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;MS Pゴシック&quot;,sans-serif"><span style="color:#000000"><span style="color:black">It is suggested that Sp1, a transcription factor involved in cell growth and metastasis, is induced by cytochrome P450 1B1 (CYP1B1), and promotes EMT, which leads to cell proliferation and metastasis (Kwon et al., 2016).</span></span></span></span></p>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; width:601px">
  • <tbody>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:601px">
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="color:black">Biological state</span></strong></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">An epithelial-mesenchymal transition (EMT) is a biologic process in which epithelial cells are polarized, interact through their basal surface with basement membrane, and undergo biochemical changes to assume a mesenchymal cell phenotype. </span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">This phenotypic transformation has various characters such as enhanced migratory capacity, high invasiveness, elevated resistance to apoptosis, and greatly increased production of ECM components (Kalluri,&nbsp; R.,&nbsp; and&nbsp; Neilson,&nbsp; E.G.&nbsp; 2003). The completion of an EMT is signalled by the degradation of the underlying basement membrane and the formation of a mesenchymal cell that can migrate away from the epithelial layer in which it originated.</span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">&nbsp;EMT has a number of distinct molecular processes like activation of transcription factors, expression of specific cell surface proteins, reorganization and expression of cytoskeletal proteins, production of ECM-degrading enzymes, and changes in the expression of specific microRNAs. These factors are used as biomarkers to demonstrate the passage of a&nbsp; cell through an EMT. </span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="color:black">Biological compartment </span></strong></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Cellular</span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="color:black">Role in General Biology:</span></strong></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Excessive proliferation of epithelial cells and angiogenesis mark the initiation and early growth of primary epithelial cancers. (Hanahan, D., and Weinberg, R.A. 2000). The subsequent acquisition of invasiveness, initially manifest by invasion through the basement membrane, is thought&nbsp; to herald the onset of the last stages of the multi-step process that&nbsp; leads eventually to metastatic dissemination, with life-threatening&nbsp; consequences. &nbsp;There has been an intense research going on in the genetic controls and biochemical mechanisms underlying the acquisition of the invasive phenotype and the subsequent systemic spread of the cancer cell. &nbsp;Activation of an EMT program has been proposed as the critical mechanism for the acquisition of malignant phenotypes by epithelial cancer cells (Thiery, J.P. 2002).</span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">&nbsp;Pre-clinical experiments such as mice models and cell culture experiments&nbsp; has demonstrated &nbsp;that carcinoma cells can acquire a mesenchymal phenotype and express mesenchymal markers such as </span><span style="color:black">&alpha;</span><span style="color:black">-SMA, FSP1, vimentin,&nbsp; and desmin (Yang,&nbsp; J.,&nbsp; and&nbsp; Weinberg,&nbsp; R.A.&nbsp; 2008). These cells &nbsp;are seen at the invasive front&nbsp; of primary tumors and are considered to be the cells that eventually&nbsp; enter into subsequent steps of the invasion-metastasis cascade, i.e.,&nbsp; intravasation, transport through the circulation, extravasation, formation of micro metastases, and ultimately colonization (the growth&nbsp; of small colonies into macroscopic metastases) (Thiery, J.P. 2002, Fidler, I.J., and Poste, G. 2008, Brabletz, T., et al. 2001).</span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">An&nbsp; apparent&nbsp; paradox&nbsp; comes&nbsp; from&nbsp; the&nbsp; observation&nbsp; that&nbsp; the&nbsp; EMT-derived migratory cancer cells typically establish secondary colonies at distant sites that resemble, at the histopathological &nbsp;level, the primary tumor from which they arose; accordingly,&nbsp; they no longer exhibit the mesenchymal phenotypes ascribed to&nbsp; metastasizing&nbsp; carcinoma&nbsp; cells.&nbsp; Reconciling this behaviour with the proposed role of EMT as a facilitator of metastatic dissemination requires the additional notion that metastasizing cancer cells must shed their mesenchymal phenotype via a MET during&nbsp; the course of secondary tumor formation (Zeisberg, M et al 2005). The tendency of&nbsp; disseminated cancer cells to undergo EMT likely reflects the local&nbsp; microenvironments that they encounter after extravasation into&nbsp; the parenchyma of a distant organ, quite possibly the absence of&nbsp; the heterotypic signals they experienced in the primary tumor that&nbsp; were responsible for inducing the EMT in the first place (Thiery, J.P. 2002, Jechlinger, M et al 2002, Bissell, M.J et al 2002). These evidences indicate that induction of an EMT is likely to be a centrally important mechanism for the progression of carcinomas to a metastatic stage and implicates MET during the subsequent colonization process. However, many steps of this mechanistic model still require direct experimental validation. It remains unclear at present whether these phenomena and molecular mechanisms relate to and explain the metastatic dissemination of non-epithelial cancer cells.</span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">The entire spectrum of signaling agents that contribute to EMTs of carcinoma cells remains unclear. One &nbsp;theory suggests that &nbsp;the genetic and epigenetic alterations undergone by cancer cells during the course of primary tumor formation render them especially responsive to EMT-inducing heterotypic signals originating in the tumor-associated stroma. Oncogenes induce senescence, and recent studies suggest that cancer cell EMTs may also play a role in preventing senescence induced by oncogenes, thereby facilitating subsequent aggressive dissemination (Smit, M.A., and Peeper, D.S. 2008, Ansieau, S., et al. 2008, Weinberg, R.A. 2008).&nbsp; In&nbsp; the case of many carcinomas, EMT-inducing signals emanating&nbsp; from the tumor-associated stroma, notably HGF, EGF, PDGF,&nbsp; and TGF-</span><span style="color:black">&beta;</span><span style="color:black">, appear to be responsible for the induction or functional&nbsp; activation&nbsp; in&nbsp; cancer&nbsp; cells&nbsp; of&nbsp; a&nbsp; series&nbsp; of&nbsp; EMT-inducing&nbsp; transcription factors, notably Snail, Slug, zinc finger E-box binding homeobox 1 (ZEB1), Twist, Goosecoid, and FOXC2 (Thiery, J.P. 2002, Jechlinger, M&nbsp; et al 2002, Shi, Y., and Massague, J. 2003, Niessen, K., et al. 2008, Medici, D et al 2008, Kokudo,&nbsp; T.,&nbsp; et&nbsp; al.&nbsp; 2008). Once expressed and activated, each of these transcription factors can act pleiotropically to choreograph the complex EMT program, more often than not with the help of other members of this cohort of transcription factors. The actual implementation by these cells of their EMT program depends on a series of&nbsp; intracellular signaling networks involving, among other signal- transducing&nbsp; proteins,&nbsp; ERK,&nbsp; MAPK,&nbsp; PI3K,&nbsp; Akt,&nbsp; Smads,&nbsp; RhoB,&nbsp; </span><span style="color:black">&beta;</span><span style="color:black">-catenin, lymphoid enhancer binding factor (LEF), Ras, and c-Fos&nbsp; as well as cell surface proteins such as </span><span style="color:black">&beta;</span><span style="color:black">4 integrins, </span><span style="color:black">&alpha;</span><span style="color:black">5</span><span style="color:black">&beta;</span><span style="color:black">1 integrin, and </span><span style="color:black">&alpha;</span><span style="color:black">V</span><span style="color:black">&beta;</span><span style="color:black">6 integrin (Tse,&nbsp; J.C.,&nbsp; and&nbsp; Kalluri,&nbsp; R.&nbsp; 2007). Activation of EMT programs is also facilitated by the disruption of cell-cell adherens junctions and the cell-ECM adhesions mediated by integrins (Yang,&nbsp; J.,&nbsp; and&nbsp; Weinberg,&nbsp; R.A.&nbsp; 2008, Weinberg, R.A. 2008, Gupta, P.B&nbsp; et al 2005, Yang,&nbsp; J et al 2006, Mani, S.A., et al. 2007, Mani, S.A., et al. 2008, Hartwell, K.A., et al. 2006, Taki, M et al 2006)..</span></span></span></p>
  • <p>&nbsp;</p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <h4>How it is Measured or Detected</h4>
  • <p>Loss of <a href="https://en.wikipedia.org/wiki/E-cadherin">E-cadherin</a> and cell polarity is considered to be a fundamental event in epithelial-mesenchymal transition. The simultaneous expression of epithelial (e.g. E-cadherin) and mesenchymal markers (e.g. N-cadherin and vimentin) within the airway epithelium are indicative for ongoing transition (Borthwick et al. 2009, 2010).</p>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; width:586px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:58px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Method/ measurement referenc</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:73px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Reliability</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Strength of evidence</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Assay fit for purpose</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:102px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Repeatability/ reproducibility</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Direct measure</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:58px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Human cell line</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">qRT-PCR,cell viability assay,</span></span></p>
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Western blotting,EdU incorporation assay</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; vertical-align:top; width:73px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">+</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Strong</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Yes </span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; vertical-align:top; width:102px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Yes </span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:58px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Human</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">IHC,micro array,qPCR, SNP array</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; vertical-align:top; width:73px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">+</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Moderate</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Yes </span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; vertical-align:top; width:102px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Yes </span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <ul>
  • <li style="text-align:left"><span style="font-size:10.5pt"><span style="color:black"><span style="font-family:游明朝,serif"><span style="font-size:12pt"><span style="font-family:&quot;MS Pゴシック&quot;,sans-serif">EMT can be detected by immunostaining with pro-surfactant protein-C (pro-SPC) and N-cadherin in idiopathic pulmonary fibrosis (IPF) lung&nbsp;<em>in vivo</em>&nbsp;(Kim et al., 2006).</span></span></span></span></span></li>
  • <li style="text-align:left"><span style="font-size:10.5pt"><span style="color:black"><span style="font-family:游明朝,serif"><span style="font-size:12pt"><span style="font-family:&quot;MS Pゴシック&quot;,sans-serif">EMT can be detected by immunostaining with vimentin in lung alveola&nbsp;<em>in vivo</em>&nbsp;(Kim et al., 2006).</span></span></span></span></span></li>
  • <li style="text-align:left"><span style="font-size:10.5pt"><span style="color:black"><span style="font-family:游明朝,serif"><span style="font-size:12pt"><span style="font-family:&quot;MS Pゴシック&quot;,sans-serif">EMT can be detected as the increased level of the transcription factors, zinc finger E-box-binding homeobox (ZEB), Twist and Snail (Huang et al., 2022).</span></span></span></span></span></li>
  • </ul>
  • <p>&nbsp;</p>
  • <h4>References</h4>
  • <p>Borthwick, L. A., Parker, S. M., Brougham, K. A., Johnson, G. E., Gorowiec, M. R., Ward, C., &hellip; Fisher, A. J. (2009). Epithelial to mesenchymal transition (EMT) and airway remodelling after human lung transplantation. <em>Thorax</em>, <em>64</em>(9), 770&ndash;777. <a href="https://doi.org/10.1136/thx.2008.104133"><u>https://doi.org/10.1136/thx.2008.104133</u></a></p>
  • <p>Borthwick, L. A., McIlroy, E. I., Gorowiec, M. R., Brodlie, M., Johnson, G. E., Ward, C., &hellip; Fisher, A. J. (2010). Inflammation and epithelial to mesenchymal transition in lung transplant recipients: Role in dysregulated epithelial wound repair. <em>American Journal of Transplantation</em>, <em>10</em>(3), 498&ndash;509. <a href="https://doi.org/10.1111/j.1600-6143.2009.02953.x"><u>https://doi.org/10.1111/j.1600-6143.2009.02953.x</u></a></p>
  • <p>Al Saleh, S., Al Mulla, F., &amp; Luqmani, Y. A. (2011). Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells. PloS one, 6(6), e20610.</p>
  • <p>Bissell, M. J., Radisky, D. C., Rizki, A., Weaver, V. M., &amp; Petersen, O. W. (2002). The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation, 70(9-10), 537-546.</p>
  • <p>Bouris, P., Skandalis, S. S., Piperigkou, Z., Afratis, N., Karamanou, K., Aletras, A. J., ... &amp; Karamanos, N. K. (2015). Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix Biology, 43, 42-60.</p>
  • <p>Brabletz, T., Jung, A., Reu, S., Porzner, M., Hlubek, F., Kunz-Schughart, L. A., ... &amp; Kirchner, T. (2001). Variable &beta;-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences, 98(18), 10356-10361.</p>
  • <p>Brabletz, T., Jung, A., Reu, S., Porzner, M., Hlubek, F., Kunz-Schughart, L. A., ... &amp; Kirchner, T. (2001). Variable &beta;-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences, 98(18), 10356-10361.</p>
  • <p>Colvin, H., Nishida, N., Konno, M., Haraguchi, N., Takahashi, H., Nishimura, J., . . . Ishii, H. (2016). Oncometabolite D-2-Hydroxyglurate Directly Induces Epithelial-Mesenchymal Transition and is Associated with Distant Metastasis in Colorectal Cancer.&nbsp;Sci Rep, 6, 36289. doi:10.1038/srep36289</p>
  • <p>Du, B., &amp; Shim, J. S. (2016). Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer.&nbsp;Molecules, 21(7). doi:10.3390/molecules21070965</p>
  • <p>Fang, C. X., Ma, C. M., Jiang, L., Wang, X. M., Zhang, N., Ma, J. N., . . . Zhao, Y. D. (2018). p38 MAPK is Crucial for Wnt1- and LiCl-Induced Epithelial Mesenchymal Transition.&nbsp;Curr Med Sci, 38(3), 473-481. doi:10.1007/s11596-018-1903-4</p>
  • <p>Fidler, I. J., &amp; Poste, G. (2008). The &ldquo;seed and soil&rdquo; hypothesis revisited. The lancet oncology, 9(8), 808.</p>
  • <p>Guerra, F., Guaragnella, N., Arbini, A. A., Bucci, C., Giannattasio, S., &amp; Moro, L. (2017).&nbsp;Mitochondrial Dysfunction: A Novel Potential Driver of Epithelial-to-Mesenchymal Transition in Cancer.&nbsp;<em>Front Oncol, 7</em>, 295. doi:10.3389/fonc.2017.00295</p>
  • <p>Gupta, P. B., Mani, S., Yang, J., Hartwell, K., &amp; Weinberg, R. A. (2005, January). The evolving portrait of cancer metastasis. In Cold Spring Harbor symposia on quantitative biology (Vol. 70, pp. 291-297). Cold Spring Harbor Laboratory Press.</p>
  • <p>Hanahan, D., and Weinberg, R.A. (2000). The hall- marks of cancer. Cell. 100:57&ndash;70.</p>
  • <p>Hartwell, K. A., Muir, B., Reinhardt, F., Carpenter, A. E., Sgroi, D. C., &amp; Weinberg, R. A. (2006). The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proceedings of the National Academy of Sciences, 103(50), 18969-18974.</p>
  • <p>Jechlinger, M., Gr&uuml;nert, S., &amp; Beug, H. (2002). Mechanisms in epithelial plasticity and metastasis: insights from 3D cultures and expression profiling. Journal of mammary gland biology and neoplasia, 7(4), 415-432.</p>
  • <p>Hodge, D. Q., Cui, J., Gamble, M. J., &amp; Guo, W. (2018). Histone Variant MacroH2A1 Plays an Isoform-Specific Role in Suppressing Epithelial-Mesenchymal Transition.&nbsp;Sci Rep, 8(1), 841. doi:10.1038/s41598-018-19364-4</p>
  • <p>Huan, Z., Zhang, Z., Zhou, C., Liu, L., Huang, C. (2022). Epithelial-mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm. 2022 May 18;3(2):e144. doi: 10.1002/mco2.144</p>
  • <p>Jia, D., Park, J. H., Jung, K. H., Levine, H., &amp; Kaipparettu, B. A. (2018). Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States.&nbsp;<em>Cells, 7</em>(3). doi:10.3390/cells7030021</p>
  • <p>Kalluri, R., &amp; Neilson, E. G. (2003). Epithelial-mesenchymal transition and its implications for fibrosis. The Journal of clinical investigation, 112(12), 1776-1784.</p>
  • <p>Kaufhold, S., &amp; Bonavida, B. (2014). Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention.&nbsp;J Exp Clin Cancer Res, 33, 62. doi:10.1186/s13046-014-0062-0</p>
  • <p>Kim, K. K., Kugler, M. C., Wolters, P. J., Robillard, L., Galvez, M. G., Brumwell, A. N., . . . Chapman, H. A. (2006). Alveolar epithelial cell mesenchymal transition develops&nbsp;in vivo&nbsp;during pulmonary fibrosis and is regulated by the extracellular matrix.&nbsp;PNAS, 103(35), 13180-13185. doi:10.1073/pnas.0605669103</p>
  • <p>Kwon, Y. J., Baek, H. S., Ye, D. J., Shin, S., Kim, D., &amp; Chun, Y. J. (2016). CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/beta-Catenin Signaling via Sp1 Upregulation.&nbsp;<em>PLoS One, 11</em>(3), e0151598. doi:10.1371/journal.pone.0151598</p>
  • <p>Kokudo, T., Suzuki, Y., Yoshimatsu, Y., Yamazaki, T., Watabe, T., &amp; Miyazono, K. (2008). Snail is required for TGF&beta;-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells. Journal of cell science, 121(20), 3317-3324.</p>
  • <p>Lin, H. Y., Liang, Y. K., Dou, X. W., Chen, C. F., Wei, X. L., Zeng, D., ... &amp; Zhang, G. J. (2018). Notch3 inhibits epithelial&ndash;mesenchymal transition in breast cancer via a novel mechanism, upregulation of GATA-3 expression. Oncogenesis, 7(8), 1-15.</p>
  • <p>Liu, Y., Liu, R., Fu, P., Du, F., Hong, Y., Yao, M., ... &amp; Zheng, S. (2015). N1-Guanyl-1, 7-diaminoheptane sensitizes estrogen receptor negative breast cancer cells to doxorubicin by preventing epithelial-mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2 activation. Cellular Physiology and Biochemistry, 36(6), 2494-2503.</p>
  • <p>Mani, S. A., Yang, J., Brooks, M., Schwaninger, G., Zhou, A., Miura, N., ... &amp; Weinberg, R. A. (2007). Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proceedings of the National Academy of Sciences, 104(24), 10069-10074.</p>
  • <p>Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., ... &amp; Weinberg, R. A. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704-715.</p>
  • <p>Medici, D., Hay, E. D., &amp; Olsen, B. R. (2008). Snail and Slug promote epithelial-mesenchymal transition through &beta;-catenin&ndash;T-cell factor-4-dependent expression of transforming growth factor-&beta;3. Molecular biology of the cell, 19(11), 4875-4887.</p>
  • <p>Mishra, P., Tang, W., Putluri, V., Dorsey, T. H., Jin, F., Wang, F., . . . Ambs, S. (2018). ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming.&nbsp;<em>J Clin Invest, 128</em>(1), 323-340. doi:10.1172/JCI93815</p>
  • <p>Niessen, K., Fu, Y., Chang, L., Hoodless, P. A., McFadden, D., &amp; Karsan, A. (2008). Slug is a direct Notch target required for initiation of cardiac cushion cellularization. The Journal of cell biology, 182(2), 315-325.</p>
  • <p>Sciacovelli, M., &amp; Frezza, C. (2017). Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer.&nbsp;<em>FEBS J, 284</em>(19), 3132-3144. doi:10.1111/febs.14090</p>
  • <p>Shi, Y., &amp; Massagu&eacute;, J. (2003). Mechanisms of TGF-&beta; signaling from cell membrane to the nucleus. cell, 113(6), 685-700.</p>
  • <p>Smit, M. A., &amp; Peeper, D. S. (2008). Deregulating EMT and senescence: double impact by a single twist. Cancer cell, 14(1), 5-7.</p>
  • <p>Suarez-Carmona, M., Lesage, J., Cataldo, D., &amp; Gilles, C. (2017). EMT and inflammation: inseparable actors of cancer progression.&nbsp;Mol Oncol, 11(7), 805-823. doi:10.1002/1878-0261.12095</p>
  • <p>Sun, J., Yang, X., Zhang, R., Liu, S., Gan, X., Xi, X., . . . Sun, Y. (2017). GOLPH3 induces epithelial-mesenchymal transition via Wnt/beta-catenin signaling pathway in epithelial ovarian cancer.&nbsp;Cancer Med, 6(4), 834-844. doi:10.1002/cam4.1040</p>
  • <p>Taki, M., Verschueren, K., Yokoyama, K., Nagayama, M., &amp; Kamata, N. (2006). Involvement of Ets-1 transcription factor in inducing matrix metalloproteinase-2 expression by epithelial-mesenchymal transition in human squamous carcinoma cells. International journal of oncology, 28(2), 487-496.</p>
  • <p>Tanabe, S. (2017). Molecular markers and networks for cancer and stem cells.&nbsp;J Embryol Stem Cell Res, 1(1).</p>
  • <p>Tanabe, S., Kawabata, T., Aoyagi, K., Yokozaki, H., &amp; Sasaki, H. (2016). Gene expression and pathway analysis of CTNNB1 in cancer and stem cells.&nbsp;World J Stem Cells, 8(11), 384-395. doi:10.4252/wjsc.v8.i11.384</p>
  • <p>Tanabe, S., Komatsu, M., Kazuhiko, A., Yokozaki, H., &amp; Sasaki, H. (2015). Implications of epithelial-mesenchymal transition in gastric cancer.&nbsp;Translational Gastrointestinal Cancer, 4(4), 258-264</p>
  • <p>Thiery, J. P. (2002). Epithelial&ndash;mesenchymal transitions in tumour progression. Nature reviews cancer, 2(6), 442-454.</p>
  • <p>Tse, J. C., &amp; Kalluri, R. (2007). Mechanisms of metastasis: epithelial‐to‐mesenchymal transition and contribution of tumor microenvironment. Journal of cellular biochemistry, 101(4), 816-829.</p>
  • <p>Wang, B., Tang, Z., Gong, H., Zhu, L., &amp; Liu, X. (2017).&nbsp;Wnt5a promotes epithelial-to-mesenchymal transition and metastasis in non-small-cell lung cancer.&nbsp;<em>Biosci Rep, 37</em>(6). doi:10.1042/BSR20171092</p>
  • <p>Weinberg, R. A. (2008). Twisted epithelial&ndash;mesenchymal transition blocks senescence. Nature cell biology, 10(9), 1021-1023.</p>
  • <p>Wendt, M. K., Smith, J. A., &amp; Schiemann, W. P. (2010). Transforming growth factor-beta-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression.&nbsp;<em>Oncogene, 29</em>(49), 6485-6498. doi:10.1038/onc.2010.377</p>
  • <p>Wik, E., R&aelig;der, M. B., Krakstad, C., Trovik, J., Birkeland, E., Hoivik, E. A., ... &amp; Salvesen, H. B. (2013). Lack of estrogen receptor-&alpha; is associated with epithelial&ndash;mesenchymal transition and PI3K alterations in endometrial carcinoma. Clinical Cancer Research, 19(5), 1094-1105.</p>
  • <p>Yang, J., &amp; Weinberg, R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental cell, 14(6), 818-829.</p>
  • <p>Yang, J., Mani, S. A., &amp; Weinberg, R. A. (2006). Exploring a new twist on tumor metastasis. Cancer research, 66(9), 4549-4552.</p>
  • <p>Ye, Y., Xiao, Y., Wang, W., Yearsley, K., Gao, J. X., Shetuni, B., &amp; Barsky, S. H. (2010). ER&alpha; signaling through slug regulates E-cadherin and EMT. Oncogene, 29(10), 1451-1462.</p>
  • <p>Zeisberg, M., Shah, A. A., &amp; Kalluri, R. (2005). Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. Journal of Biological Chemistry, 280(9), 8094-8100.</p>
  • <p>Zeng, Q., Zhang, P., Wu, Z., Xue, P., Lu, D., Ye, Z., ... &amp; Yan, X. (2014). Quantitative proteomics reveals ER-&alpha; involvement in CD146-induced epithelial-mesenchymal transition in breast cancer cells. Journal of proteomics, 103, 153-169.</p>
  • <p>Zhang, P., Sun, Y., &amp; Ma, L. (2015). ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance.&nbsp;<em>Cell Cycle, 14</em>(4), 481-487. doi:10.1080/15384101.2015.1006048</p>
  • <p>Zhou, Y., Huang, Y., Cao, X., Xu, J., Zhang, L., Wang, J., . . . Zheng, M. (2016). WNT2 Promotes Cervical Carcinoma Metastasis and Induction of Epithelial-Mesenchymal Transition.&nbsp;<em>PLoS One, 11</em>(8), e0160414. doi:10.1371/journal.pone.0160414</p>
  • <h3>List of Adverse Outcomes in this AOP</h3>
  • <h4><a href="/events/1982">Event: 1982: metastatic breast cancer</a></h4>
  • <h5>Short Name: Metastasis, Breast Cancer</h5>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/443">Aop:443 - DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/439">Aop:439 - Activation of the AhR leading to metastatic breast cancer </a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Stressors</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Name</th></tr>
  • </thead>
  • <tbody>
  • <tr><td>Ethyl alcohol</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Organ</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>human and other cells in culture</td>
  • <td>human and other cells in culture</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>human</td>
  • <td>Homo sapiens</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Adult</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Mixed</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">Increased metastasis of cancerous cells &nbsp;is known to be highly conserved throughout evolution and is present from humans to invertebrates.</span></span></span></span></p>
  • <h4>Key Event Description</h4>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Processs: metastasis of cancer cells&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Object:metastasis&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;Process:Increased</span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><strong><span style="font-size:11.0000pt"><span style="font-family:Calibri"><strong>Biological state:</strong></span></span></strong>&nbsp;</span></span></p>
  • <p>Metastasis, the process by which cancer cells spread from their site of origin to distant organs or tissues, is a complex and multifaceted biological phenomenon that poses a significant challenge in cancer management. Cancer metastasis represents a critical stage in the progression of the disease, often leading to poorer patient outcomes and decreased survival rates. Understanding the molecular and cellular mechanisms underlying metastasis is crucial for developing effective therapeutic strategies to combat advanced-stage cancers.</p>
  • <p>At the biological level, metastasis involves a series of sequential steps that cancer cells must undergo to successfully disseminate and colonize distant sites within the body. These steps include local invasion of surrounding tissues by cancer cells, intravasation into nearby blood or lymphatic vessels, survival and transport through the circulation, extravasation into distant tissues, and establishment of secondary tumors through proliferation and angiogenesis. Each of these steps is regulated by a complex interplay of genetic, epigenetic, and microenvironmental factors that influence the invasive and migratory properties of cancer cells.</p>
  • <p>The metastatic process is driven by a variety of molecular alterations that confer cancer cells with the ability to invade and metastasize. Key molecular mechanisms implicated in metastasis include dysregulated signaling pathways involved in cell adhesion, motility, and invasion, as well as genetic mutations and epigenetic modifications that promote tumor progression and metastatic spread. For example, alterations in genes encoding cell adhesion molecules such as E-cadherin, integrins, and cadherins can disrupt cell-cell and cell-matrix interactions, facilitating the detachment and dissemination of cancer cells from the primary tumor site.</p>
  • <p>Furthermore, the tumor microenvironment plays a critical role in regulating the metastatic behavior of cancer cells. Stromal cells, immune cells, and extracellular matrix components within the tumor microenvironment interact dynamically with cancer cells to modulate their invasive and migratory properties. Additionally, factors such as hypoxia, inflammation, and angiogenesis contribute to the formation of a pro-metastatic niche that supports the survival and outgrowth of disseminated cancer cells at distant sites.</p>
  • <p>In summary, metastasis is a complex biological process driven by genetic, molecular, and microenvironmental factors that enable cancer cells to spread and establish secondary tumors in distant organs or tissues. Understanding the underlying mechanisms of metastasis is essential for the development of targeted therapies aimed at disrupting key molecular pathways involved in this process, ultimately improving outcomes for patients with advanced-stage cancers.</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><strong><span style="font-size:11.0000pt"><span style="font-family:Calibri"><strong>Biological compartment </strong></span></span></strong></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Organs,Cellular</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><strong><span style="font-size:11.0000pt"><span style="font-family:Calibri"><strong>Role in general biology</strong></span></span></strong></span></span></p>
  • <p>Metastasis, although primarily studied in the context of cancer biology, also has relevance in general biology as it reflects fundamental biological processes such as cell migration, invasion, and tissue remodeling. Understanding these processes not only sheds light on cancer progression but also provides insights into various physiological and pathological phenomena in multicellular organisms.</p>
  • <p>1. Cell Migration: Cell migration is a fundamental process in various biological contexts, including embryonic development, wound healing, and immune responses. Metastasis involves the migration of cancer cells from the primary tumor to distant sites within the body, exploiting mechanisms similar to those used by normal cells during migration. Studying cancer metastasis can provide valuable insights into the molecular mechanisms underlying cell migration, including changes in cytoskeletal dynamics, cell adhesion, and signaling pathways that regulate cell motility.</p>
  • <p>2. Invasion and Extravasation: Cancer metastasis requires cancer cells to invade surrounding tissues, intravasate into blood or lymphatic vessels, survive in the circulation, and extravasate into distant tissues. These processes involve complex interactions between cancer cells and the surrounding microenvironment, including extracellular matrix components, immune cells, and stromal cells. Understanding the mechanisms of invasion and extravasation in cancer metastasis can provide insights into how cells navigate and interact with their microenvironment under physiological and pathological conditions.</p>
  • <p>3. Tissue Remodeling and Angiogenesis: Metastatic tumors undergo extensive tissue remodeling and angiogenesis to establish secondary growths at distant sites. This process involves the degradation of extracellular matrix components, the recruitment of blood vessels, and the formation of a supportive microenvironment for tumor growth. Similar processes occur during normal physiological events such as tissue repair and regeneration. By studying metastasis, researchers can gain insights into the molecular mechanisms underlying tissue remodeling and angiogenesis, which are critical for understanding various biological processes beyond cancer.</p>
  • <p>4. Cell-Cell and Cell-Matrix Interactions: Metastasis involves dynamic interactions between cancer cells and neighboring cells, as well as with components of the extracellular matrix. These interactions influence cell adhesion, migration, and invasion, and are mediated by various cell adhesion molecules, receptors, and signaling pathways. Understanding the mechanisms of cell-cell and cell-matrix interactions in metastasis can provide insights into how cells communicate and coordinate their behavior in different biological contexts, including embryonic development, tissue homeostasis, and disease processes.</p>
  • <p>In conclusion, while metastasis is a hallmark of cancer progression, it also reflects fundamental biological processes that are relevant in general biology. Studying metastasis not only advances our understanding of cancer biology but also provides insights into various physiological and pathological phenomena involving cell migration, invasion, tissue remodeling, and intercellular interactions.</p>
  • <h4>How it is Measured or Detected</h4>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px; margin-left:9px; margin-right:9px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:134px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:304px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Method/ measurement reference</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Reliability</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strength of evidence</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Assay fit for purpose</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Repeatability/ reproducibility</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Direct measure</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:134px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Cell line,humans,Human cell line studies</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:304px">
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">qRT-PCR,,Luciferase reporter assay ,immunoblotting,immunoprecipitation,cell invasion assay,cell migration assay, bioluminesence imaging,wound healing assay,Wound scratch &amp; Transwell assay, Microarray,Immunofluorescence, Immunohistochemistry,</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">+</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strong</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <h4>Regulatory Significance of the AO</h4>
  • <p>The Adverse Outcome Pathway (AOP) holds substantial regulatory significance as a structured framework for understanding and predicting the biological sequence of events leading from DNA damage&nbsp;to a metastatic breast cancer. By elucidating the causal relationships between key events along the pathway, AOP&nbsp;offer a comprehensive understanding of toxicological mechanisms and provide a basis for informed decision-making in risk assessment and regulatory decision-making. AOPs facilitate the integration of diverse scientific data, enabling regulators to evaluate the potential impact of chemical exposures on human health and the environment. These pathways empower the development of targeted testing strategies, alternative methods, and safer chemical design, ultimately enhancing the efficiency and accuracy of risk assessment and regulatory policies.</p>
  • <p>Metastasis, the process by which cancer cells spread from the primary tumor to distant sites in the body, holds significant regulatory importance in cancer biology and beyond. Understanding the regulatory mechanisms underlying metastasis is crucial for developing effective therapeutic strategies and improving patient outcomes. Here are some key aspects of its regulatory significance:</p>
  • <p>1. Therapeutic Target Identification: Regulatory pathways governing metastasis represent potential targets for therapeutic intervention. By elucidating the signaling networks and molecular drivers involved in metastatic processes such as cell migration, invasion, and angiogenesis, researchers can identify druggable targets for the development of anti-metastatic therapies. Targeting these pathways can potentially inhibit the spread of cancer cells and prevent the formation of secondary tumors, thereby improving patient survival and quality of life.</p>
  • <p>2. Biomarker Discovery: Metastasis-specific biomarkers have diagnostic, prognostic, and therapeutic implications. Regulatory molecules or genetic signatures associated with metastatic potential can serve as biomarkers for predicting patient outcomes, stratifying patients for personalized treatment approaches, and monitoring disease progression. Biomarker discovery efforts aim to identify molecular signatures indicative of metastatic propensity, enabling early detection of metastasis and guiding treatment decisions.</p>
  • <p>3. Therapeutic Resistance Mechanisms: Metastatic tumors often exhibit resistance to conventional therapies, posing a significant clinical challenge. Regulatory mechanisms underlying therapy resistance in metastatic cancer cells, such as alterations in drug efflux pumps, DNA repair pathways, and apoptotic signaling, need to be elucidated. Understanding these resistance mechanisms can inform the development of novel therapeutic strategies to overcome drug resistance and improve treatment efficacy in metastatic cancer patients.</p>
  • <p>4. Microenvironment Modulation: The tumor microenvironment plays a crucial role in regulating metastasis by providing a supportive niche for cancer cell survival, proliferation, and dissemination. Regulatory factors within the tumor microenvironment, including stromal cells, immune cells, extracellular matrix components, and signaling molecules, influence metastatic progression. Targeting the tumor microenvironment to disrupt pro-metastatic signaling pathways or enhance anti-tumor immune responses represents a promising therapeutic approach to inhibit metastasis and improve treatment outcomes.</p>
  • <p>5. Epigenetic Regulation: Epigenetic alterations, such as DNA methylation, histone modifications, and non-coding RNA dysregulation, contribute to metastatic phenotypes by modulating gene expression programs associated with cell motility, invasion, and metastatic colonization. Understanding the epigenetic regulatory mechanisms driving metastasis can provide insights into novel therapeutic targets and strategies for epigenetic therapy in metastatic cancer.</p>
  • <p>In summary, metastasis exerts significant regulatory influence on cancer progression and treatment response. Elucidating the molecular and cellular regulatory mechanisms governing metastasis is essential for the development of targeted therapies, biomarker-driven treatment strategies, and interventions to overcome therapeutic resistance. By targeting metastasis-specific pathways and processes, researchers aim to improve patient outcomes and ultimately reduce the morbidity and mortality associated with metastatic cancer.</p>
  • <h4>References</h4>
  • <table cellspacing="0" class="Table" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px; width:1124px">
  • <tbody>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:center; width:1124px">
  • <p>&nbsp;</p>
  • <p>1. Hanahan, D., &amp; Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646-674.</p>
  • <p>2. Lambert, A. W., Pattabiraman, D. R., &amp; Weinberg, R. A. (2017). Emerging biological principles of metastasis. Cell, 168(4), 670-691.</p>
  • <p>3. Steeg, P. S. (2016). Targeting metastasis. Nature Reviews Cancer, 16(4), 201-218.</p>
  • <p>4. Valastyan, S., &amp; Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147(2), 275-292.</p>
  • <p>5. Massagu&eacute;, J., &amp; Obenauf, A. C. (2016). Metastatic colonization by circulating tumour cells. Nature, 529(7586), 298-306.</p>
  • <p>6. Psaila, B., &amp; Lyden, D. (2009). The metastatic niche: adapting the foreign soil. Nature Reviews Cancer, 9(4), 285-293.</p>
  • <p>7. Leung, E. L., Fiscus, R. R., Tung, J. W., Tin, V. P., Cheng, L. C., Sihoe, A. D., ... &amp; Wong, M. P. (2010). Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One, 5(11), e14062.</p>
  • <p>8. Joyce, J. A., &amp; Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews Cancer, 9(4), 239-252.</p>
  • <p>9. Chaffer, C. L., &amp; Weinberg, R. A. (2011). A perspective on cancer cell metastasis. Science, 331(6024), 1559-1564.</p>
  • <p>10. Nguyen, D. X., Bos, P. D., &amp; Massagu&eacute;, J. (2009). Metastasis: from dissemination to organ-specific colonization. Nature Reviews Cancer, 9(4), 274-284.</p>
  • </td>
  • </tr>
  • <tr>
  • <td style="background-color:#eaf1dd; border-bottom:none; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:center; width:1124px">
  • <p>&nbsp;</p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <h2>Appendix 2</h2>
  • <h2>List of Key Event Relationships in the AOP</h2>
  • <div id="evidence_supporting_links">
  • <h3>List of Adjacent Key Event Relationships</h3>
  • <div>
  • <h4><a href="/relationships/2608">Relationship: 2608: Increased, DNA damage and mutation leads to Inadequate DNA repair</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/443"> DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>adjacent</td>
  • <td>High</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>rat</td>
  • <td>Rattus norvegicus</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>mouse</td>
  • <td>Mus musculus</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Not Otherwise Specified</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Female</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">In any eukaryotic or prokaryotic cell, oxidative DNA damage can develop and overwhelm the cell&#39;s repair processes. This KER has been seen in mammalian cells, yeast, and bacteria, among other places.</span></span></span></span></p>
  • <h4>Key Event Relationship Description</h4>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Upstream event: Increased, DNA damage and mutation</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Downstream event: DNA repair mechanism, Reduced</span></span></span></span></p>
  • <p>The Key Event Relationship (KER) described involves a cascade of events related to DNA integrity and repair. The upstream event entails &quot;Increased DNA damage and mutation,&quot; wherein exposure to various genotoxic agents leads to the accumulation of DNA lesions and mutations. These genetic alterations can arise from factors like chemical exposure, radiation, or other external agents.</p>
  • <p>The downstream event in this KER is the &quot;Reduced DNA repair mechanism.&quot; As a response to increased DNA damage and mutations, the cellular machinery responsible for DNA repair mechanisms becomes compromised or less effective. The cell&#39;s ability to identify and rectify DNA lesions and mutations is hindered, potentially due to the overwhelming load of damage or the inefficiency of repair pathways.</p>
  • <p>Together, this KER illustrates a cause-and-effect relationship wherein heightened DNA damage and mutations contribute to a reduction in the cell&#39;s DNA repair mechanisms. This sequence of events highlights the delicate balance between damage induction and repair processes within the cell, emphasizing the importance of understanding these interactions for maintaining genomic stability and preventing the accumulation of detrimental mutations.</p>
  • <h4>Evidence Supporting this KER</h4>
  • <ul>
  • <li><span style="font-size:11.0000pt"><span style="font-family:Calibri">DNA damage leading to inadequate repair mechanisms :</span></span></li>
  • </ul>
  • <p>&nbsp;</p>
  • <ul>
  • <li><span style="font-size:11.0000pt"><span style="font-family:Calibri">As a result of DNA damage, DNA repair activities change. A variety of genotoxic agents, such as N-nitrosodimethylamine, aflatoxin B1, and 2-acetylaminofluorene induce the protein, O6-Alkylguanine-DNA alkyltransferase (ATase), which is responsible for repair of DNA alkylation damage in rats (O&rsquo;Connor, 1989; Chinnasamy et al.,1996). Grombacher and Kaina (1996) reported an increased &nbsp;human ATase mRNA expression &nbsp;by alkylating agents like N-methyl-N&prime;-nitro-N-nitrosoguanidine and methyl methanesulphonate and by ionizing radiation via the induction of the ATase promoter. ATase mRNA expression &nbsp;was increased in response to treatment with 2-acetylaminofluorene in rat liver (Potter et al., 1991; Chinnasamy et al., 1996). In another study, it was demonstrated that ATase gene induction is p53 gene-dependent: ATase activity was induced in mouse tissues following &gamma;-irradiation in p53 wild type mice, but not in p53 null animals (Rafferty et al., 1996).</span></span></li>
  • <li><span style="font-size:11.0000pt"><span style="font-family:Calibri">Alkylating agents and X-rays also induce DNA glycosylase, alkylpurine-DNA-N-glycosylase (APNG) &nbsp;(Lefebvre et al., 1993; Mitra and Kaina, 1993).</span></span></li>
  • <li><span style="font-size:11.0000pt"><span style="font-family:Calibri">As a consequence of these and other observations, there is considerable interest in investigating DNA repair modulation as a possible risk factor in carcinogenesis.</span></span></li>
  • </ul>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • <ul>
  • <li><span style="font-size:11.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Segoe UI'"><span style="color:#212529">Due to low levels of reactive oxygen species (ROS) and other free radicals generated by endogenous redox reactions, oxidative DNA lesions are present in the cell at steady state.</span></span></span></span></li>
  • <li><span style="font-size:11.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Segoe UI'"><span style="color:#212529">The most important oxidative DNA lesions include 7, 8-dihydro-8oxo-deoxyGuanine (8-oxo-dG), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FaPydG), and thymidine glycol (Tg). </span></span></span></span></li>
  • <li><span style="font-size:11.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Segoe UI'"><span style="color:#212529">Under homeostatic settings, cells can control the amount of free radicals in the environment and quickly repair oxidised DNA bases with basal repair mechanisms, preventing irreparable damage (Swenberg et al., 2011). Oxidative DNA lesions are mainly repaired by base excision repair (BER) initiated by DNA glycosylases such as oxoguanine glycosylase 1 (OGG1), endonuclease III homologue 1 (NTH1), and Nei-like DNA glycosylases (NEIL 1/2), which detect and remove damaged bases. </span></span></span></span></li>
  • <li><span style="font-size:11.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Segoe UI'"><span style="color:#212529">Endonucleases or lyases cleave abasic sites, resulting in transitory single-strand breaks (SSB) that can be repaired in either short-patch or long-patch fashion. To a lesser extent, nucleotide excision repair (NER) is involved in repairing oxidised bases. (Shafirovich et al., 2016). </span></span></span></span></li>
  • <li><span style="font-size:11.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Segoe UI'"><span style="color:#212529">Increased levels of free radicals or exposure to oxidising agents can increase the number of oxidative DNA lesions and overload repair mechanisms, lowering repair quality. If the repair mechanisms are weakened, oxidative lesions might build up (insufficient repair), resulting in erroneous base pairing during replication or incomplete repair (indicated by accumulation of repair intermediates) (Markkanen et al., 2017).</span></span></span></span></li>
  • </ul>
  • <strong>Biological Plausibility</strong>
  • <p><span style="font-size:12pt"><span style="background-color:#ffffff"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">BER and, to a lesser extent, NER are used to repair oxidative DNA damage. Previous research has found thresholded dose-response curves in oxidative DNA damage and attributed these findings to a lack of repair capability at the curve&#39;s inflection point (Gagne et al., 2012; Seager et al., 2012). Following chemical exposures, in vivo, a rise and buildup of oxidative DNA lesions was seen despite the activation of BER, suggesting poor repair of oxidative DNA lesions beyond a certain level(Ma et al., 2008).</span></span></span></span></span></span></p>
  • <p><span style="font-size:12pt"><span style="background-color:#ffffff"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">OGG1 and NTH1, the glycosylases that initiate the BER of 8-oxo-dG and thymine glycol (Tg) lesions, respectively, are bifunctional, containing both glycosylase and lyase activities. By cleaving the glycosidic link, the glycosylase eliminates the oxidised guanine and creates an apurinic site.The lyase then cleaves the phosphodiester bond 5&rsquo; to the AP site; a transient SSB is created for further processing in BER (Delaney et al., 2012). Abasic sites created by OGG1 and other glycosylases are also processed by apuric/apyrimidinic endonucleases (APE1) to create the 5&rsquo; nick (Allgayer et al., 2016).</span></span></span></span></span></span></p>
  • <p><span style="font-size:12pt"><span style="background-color:#ffffff"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">Previous research has shown that an imbalance in any of the BER&#39;s several phases might result in an accumulation of repair intermediates and failed repair. Given that OGG1 is slower than other glycosylases in releasing its catalytic product, a disproportionate rise in oxidative DNA lesions compared to the quantity of accessible OGG1 is highly likely to result in an imbalance between lesions and the BER initiating step (Brenerman et al., 2014). As a result, oxidative lesions would begin to accumulate. Furthermore, overexpression of OGG1 and NTH1 has been linked to the accumulation of SSB, suggesting that the unbalanced lyase activity causes an excess of SSB intermediates(Yang et al., 2004; Yoshikawa et al., 2015; Wang et al., 2018).&nbsp;</span></span></span></span></span></span></p>
  • <p><span style="font-size:12pt"><span style="background-color:#ffffff"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">Increases in oxidative lesions may result in more lesions and repair intermediates being produced in close proximity. Previous research on mammalian cell extracts has shown that when oxidative damages occur in parallel or opposite each other, repair effectiveness is reduced.OGG1 showed reduced binding to 8-oxo-dG near an AP site incision. Furthermore, the OGG1-8-oxo-dG complex has been observed to hinder the repair of neighbouring AP site incision, delaying the completion of BER; It&#39;s been claimed that this interaction between BER enzymes causes a buildup of oxidative lesions and repair intermediates(Pearson et al., 2004; Budworth et al., 2005; Bellon et al., 2009; Yoshikawa et al., 2015; Sharma et al., 2016).</span></span></span></span></span></span></p>
  • <p><span style="font-size:12pt"><span style="background-color:#ffffff"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">If oxidative lesions persist in the genome due to insufficient repair, incorrect base insertion opposite unrepaired oxidative DNA lesions may occur during replication. This is a well-established event. For example, 8-oxo-dG and FaPydG, the two most prominent oxidative DNA lesions, are able to form base pairs with dATP, giving rise to G:C&rarr;T:A transversions after subsequent DNA synthesis (Freudenthal et al., 2013; Gehrke et al., 2013; Markkanen, 2017). Replicative DNA polymerases such as DNA polymerase &alpha;, &delta;, and &epsilon; (pol &alpha;, &delta;, &epsilon;) have a poor ability to extend the DNA strand past 8-oxo-dG:dCTP base pairs and may cause replication to stall or incorrectly insert dATP opposite 8-oxo-dG (Hashimoto et al., 2004; Markkanen et al., 2012). In stalled replication forks, repair polymerases may be recruited to perform translesion DNA synthesis (TLS). Human Y-family DNA polymerases (Rev 1, pol &kappa;, &iota;, and &eta;) are DNA repair polymerases mainly involved in TLS in stalled replication forks. However, TLS is not free of error and its accuracy differs for each repair polymerase. For example, it is known that pol &kappa; and &eta; perform TLS across 8-oxo-dG and preferentially insert dATP opposite the lesion, generating G:C&rarr;T:A transversions. The error-prone nature of bypassing unrepaired oxidative lesions has been described in many previous studies and reviews (Greenberg, 2012; Maddukuri et al., 2014; Taggart et al., 2014; Shah et al., 2018).</span></span></span></span></span></span></p>
  • <p><span style="font-size:12pt"><span style="background-color:#ffffff"><span style="font-family:&quot;Times New Roman&quot;"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">Repair by OGG1 requires 8-oxo-dG:dC base pairing, thus, it is unable to repair 8-oxo-dG:dA mispairing in newly synthesized strands. The repair of 8-oxo-dG:dA base pairs post-replication is performed by MUT Y homologue, MYH, an adenine DNA glycosylase. However, the removal of dA instead of the damaged guanine may lead to futile cycles of BER because: 1) another dA is often inserted opposite the lesion, or 2) BER ligases have a poor ability of ligating the 3&rsquo;end of dC opposite 8-oxo-dG (Hashimoto et al., 2004; Caglayan and Wilson, 2015). Accumulated 8-oxo-dG may be more resistant to repair post-replication due to this futile BER.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <strong>Empirical Evidence</strong>
  • <p><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><u><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529"><u>In vitro studies demonstrating dose and temporal concordance, or essentiality</u></span></span></span></u></span></span></span></p>
  • <ul>
  • <li style="list-style-type:none">
  • <ul style="list-style-type:circle">
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">Human normal hepatocytes (HL-7702) were subjected to escalating doses of N,N-dimethylformamide for 24 hours (C. Wang et al., 2016)</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">At all concentrations, a concentration-dependent increase in ROS was detected; the rise was statistically significant when compared to control (6.4, 16, 40, 100 mM)</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">Until the highest two concentrations (40 and 100 mM), no significant rise in 8-oxodG was seen, indicating inadequate repair at these dosages.</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">Excision repair genes (XRCC2 and XRCC3) were considerably up-regulated at 6.4 and 16 mM, well below the doses that significantly produced 8-oxodG, indicating that adequate DNA repair was possible at these low concentrations.</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">These findings show that repair is competent at low concentrations (removing 8-oxodG quickly), but that repair is swamped (i.e., insufficient) at larger doses, where 8-oxodG greatly increases.</span></span></span></span></span></span></li>
  • </ul>
  • </li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">AS52 Chinese hamster ovary cells (wild type and OGG1-overexpressing) were exposed to varying doses of ultraviolet A (UVA) radiation (Dahle et al., 2008)</span></span></span></span></span></span>
  • <ul style="list-style-type:circle">
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">Formamidopyrimidine glycosylase (Fpg)-sensitive sites were quantified using alkaline elution after increasing repair times (0, 1, 2, 3, 4 h) following 100 kJ/m</span></span></span><sup><span style="font-size:9.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">2</span></span></span></sup><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">&nbsp;UVA irradiation</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">OGG1-overexpressing AS52 cells (OGG1+): Fpg-sensitive sites reduced to 71% within half an hour and down to background levels at 4h</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">Wild type AS52 cells: at 4h, 70% of the Fpg-sensitive sites remained, indicating accumulation of oxidative lesions</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">Mutations in the&nbsp;</span></span></span><em><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529"><em>Gpt</em></span></span></span></em><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">&nbsp;gene was quantified in both wild type and OGG1+ cells by sequencing after 13-15 days following 400 kJ/m</span></span></span><sup><span style="font-size:9.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">2&nbsp;</span></span></span></sup><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">UVA irradiation</span></span></span></span></span></span>
  • <ul style="list-style-type:square">
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">G:C&rarr;T:A mutations in UVA-irradiated OGG1+ cells were completely eliminated (thus, repair was sufficient when repair overexpressed).</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">G:C&rarr;T:A mutation frequency in wild type cells increased from 1.8 mutants/million cells to 3.8 mutants/million cells following irradiation &ndash; indicating incorrect repair or lack of repair of accumulated 8-oxo-dG.</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">The importance of 8-oxo-dG production in oxidative DNA damage-induced G to T transversion mutations is further demonstrated by the above result.</span></span></span></span></span></span></li>
  • </ul>
  • </li>
  • </ul>
  • </li>
  • </ul>
  • <ul>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">HL-60 human leukemia cells were irradiated with X-rays at a rate of 0.5 Gy/min for increasing durations (i.e., increasing doses). 8-OHdG levels were quantified by HPLC as number of 8-OHdG per 10</span></span></span><sup><span style="font-size:9.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">6</span></span></span></sup><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">&nbsp;deoxyguanosine (Li et al., 2013)</span></span></span></span></span></span>
  • <ul style="list-style-type:circle">
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">No increase in 8-OHdG was observed up to 2 Gy (sufficient repair at low doses), above which the level of lesions increased linearly up to 20 Gy (insufficient repair)</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">In the same study described below, a thresholded dose-response curve, indicating of overwhelmed repair processes, was also seen in mouse liver.</span></span></span></span></span></span></li>
  • </ul>
  • </li>
  • </ul>
  • <p><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><u><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529"><u>In vivo studies demonstrating dose concordance</u></span></span></span></u></span></span></span></p>
  • <ul>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">Two groups of 5-week-old C57BL/6J mice were exposed to increasing doses of X-rays at a rate of 0.5 Gy/min (200 kV, 12 mA). The livers of one group of mice were obtained immediately after exposure, while urine samples were collected over the course of 24 hours after irradiation in the second group of mice(Li et al., 2013).</span></span></span></span></span></span>
  • <ul style="list-style-type:circle">
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">The amount of 8-OHdG in mouse liver DNA was measured by HPLC and &nbsp;expressed as 8-OHdG per 10</span></span></span><sup><span style="font-size:9.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">6</span></span></span></sup><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">&nbsp;deoxyguanosine</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">Between 0 and 0.5 Gy, no increase in lesions was observed</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">Between 0.5 and 30 Gy, a linear dose-response in 8-OHdG was observed</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">The thresholded dose-response curve was concordant in the urine samples; no increase in urinary 8-OHdG (8-OHdG/creatinine (ng/mg)) was observed between 0 and 0.1 Gy but between 0.1 and 5 Gy, the number of lesions increased linearly with dose</span></span></span></span></span></span></li>
  • </ul>
  • </li>
  • </ul>
  • <ul>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">For 30 days, male Sprague-Dawley rats were fed 0.5 mmol aniline/kg/day. Spleen tissues were used to acquire genomic DNA, nuclear extracts, and mitochondrial extracts (Ma et al., 2008).</span></span></span></span></span></span>
  • <ul style="list-style-type:circle">
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">8-OHdG was measured on digested genomic DNA using an enzyme-linked immunosorbent assay (ELISA). The number of lesions in aniline-fed rats was 2.8 times higher than in control rats.</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="background-color:#ffffff"><span style="font-family:'Open Sans'"><span style="color:#252525">OGG1&nbsp;activity&nbsp;</span></span></span><span style="background-color:#ffffff"><span style="font-family:'Open Sans'">was&nbsp;measured&nbsp;</span></span><span style="background-color:#ffffff"><span style="font-family:'Open Sans'"><span style="color:#252525">in&nbsp;both&nbsp;nuclear&nbsp;and&nbsp;mitochondrial&nbsp;extracts&nbsp;of&nbsp;aniline-treated&nbsp;rats,&nbsp;</span></span></span><span style="background-color:#ffffff"><span style="font-family:'Open Sans'">with</span></span>&nbsp;<span style="background-color:#ffffff"><span style="font-family:'Open Sans'"><span style="color:#252525">a&nbsp;1.32-fold&nbsp;and&nbsp;1.15-fold&nbsp;increase&nbsp;in&nbsp;enzyme&nbsp;activity&nbsp;(both&nbsp;significant;&nbsp;p0.05</span></span></span><span style="background-color:#ffffff"><span style="font-family:'Open Sans'">)&nbsp;seen&nbsp;in&nbsp;the&nbsp;corresponding&nbsp;extracts.</span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">Western blotting was used to assess the OGG1 enzyme content in the extracts; the increase in OGG1 content in aniline-treated rats was consistent with the OGG1 activity assay.</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">The amount of 8-OHdG rose despite an increase in OGG1 enzyme concentration and activity.</span></span></span></span></span></span></li>
  • </ul>
  • </li>
  • </ul>
  • <ul>
  • <li style="list-style-type:none">
  • <ul style="list-style-type:circle">
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">These findings show that because 8-oxodG adducts are rapidly eliminated, repair is sufficient at low doses. 8-oxo-dG begins to significantly increase at larger concentrations, indicating that repair is being overwhelmed (i.e., insufficient).</span></span></span></span></span></span></li>
  • </ul>
  • </li>
  • </ul>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Segoe UI'"><span style="color:#212529">Despite the fact that OGG1&#39;s dual activity as a glycosylase and lyase has been widely acknowledged and proved experimentally, investigations suggest that apurinic endonuclease 1 is primarily responsible for the cleavage of phosphodiester link 5&#39; to the lesion (APE1)&nbsp;(Allgayer et al., 2016; R. Wang et al., 2018).</span></span></span></span>&nbsp;<span style="font-size:11.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Segoe UI'"><span style="color:#212529">In rare circumstances, APE1 may be the primary driver of BER intermediate buildup. According to some research, OGG1 is involved in the repair of non-transcribed strands but isn&#39;t essential for transcription-coupled 8-oxo-dG repair.; Le Page et al. reported efficient repair of 8-oxo-dG in the transcribed sequence in&nbsp;</span></span></span></span><em><span style="background-color:#ffffff"><span style="font-family:'Segoe UI'"><span style="color:#212529"><em>Ogg1</em></span></span></span></em><span style="font-size:11.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Segoe UI'"><span style="color:#212529">&nbsp;knockout mouse cells&nbsp;(Le Page et al., 2000). Furthermore, the repair of 8-oxo-dG is influenced by the sequences surrounding it; the location of the lesions may have a negative impact on repair effectiveness. (Pastoriza-Gallego et al., 2007). We note that the study by Allgayer et al. was investigating the fate and effect of 8-oxo-dG during transcription; repair mechanism may vary by situation and availability of repair enzymes at the time.</span></span></span></span></span></span></p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <p><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">The specific relationship between oxidative DNA lesions and when repair is regarded insufficient has yet to be determined; this relationship will most likely differ between cell types and tissues, making it difficult to define. There are computational models of 8-oxo-dG repair kinetics.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">To explore the rate of clearance of BER repair intermediates, Sokhansanj and Wilson III [2004] used a quantitative model of BER and a literature estimate for the rate of generation of endogenous 8-oxo-dG (Sokhansanj and Wilson III, 2004).</span></span></span></span></span></span></p>
  • <ul>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">The OGG1, AP lyases, polymerases, and ligases activities were incorporated in the BER model, which used Michaelis-Menten enzyme kinetics.</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">The model assumed that endogenous oxidative lesions formed at a rate of 500 8-oxo-dG/day.</span></span></span></span></span></span>
  • <ul style="list-style-type:circle">
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">Based on the information above, it was calculated that after a sudden increase in 8-oxo-dG to 20,000 8-oxo-dG/cell, the total amount of repair intermediates would revert to baseline in 4000 seconds (less than 1 hour)</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">This model also assumed that OGG1 was available in excess</span></span></span></span></span></span></li>
  • </ul>
  • </li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">The glycosylase reaction kinetics of OGG1 (a bifunctional glycosylase/lyase) were reported to increase when APE1 (AP site endonuclease) was present. It&#39;s thought to be because the two enzymes work together.</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">When OGG1 kinetics were reduced by tenfold, 8-oxo-dG increased tenfold, while no other repair intermediates increased.</span></span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Segoe UI'"><span style="color:#212529">Quantitative understanding is represented as below;</span></span></span></span></span></span></li>
  • <li>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:54px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:158px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Method/ measurement reference</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Reliability</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strength of evidence</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Assay fit for purpose</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Repeatability/ reproducibility</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Direct measure</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:54px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Rat</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:158px">
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Quantification of ATase activity &ndash; BSA method</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">APNG assay,</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">OXOG glycosylase activity assay,</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Western immunoblotting,</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Immunohistochemical detection of ATase (Kotova et al.,2013)</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strong</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:54px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Rat cell line</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:158px">
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Flow cytometric micronucleus assay,</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Cell cycle analysis,</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Replication fork elongation assay,</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Cytotoxicity assay,</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Recombination assay, (Panida et al.,2001)</span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strong</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:54px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">mouse</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:158px">
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">FISH karyotyping,</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Invivo point mutation assay,</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Whole genome sequencing of HSC clones (Garayacoechea et al.,2012)</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strong</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • </li>
  • </ul>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Linear increase in DNA damage was noted following exposure to the stressor.</span></span></span></span></p>
  • <strong>Time-scale</strong>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Changes were noted within 24 hours of treatment with the stressor, however after withdrawl of the stressor, persisted for 3-4 weeks.</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#eff2f7"><span style="font-family:Merriweather"><span style="color:#2a2a2a">The acute ethanol dose significantly inhibited&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#eff2f7"><span style="font-family:Merriweather"><span style="color:#2a2a2a"><em>O</em></span></span></span></span></em><sup><span style="font-size:11.0000pt"><span style="background-color:#eff2f7"><span style="font-family:'Source Sans Pro'"><span style="color:#2a2a2a">6</span></span></span></span></sup><span style="font-size:11.5000pt"><span style="background-color:#eff2f7"><span style="font-family:Merriweather"><span style="color:#2a2a2a">-alkylguanine-DNA alkyltransferase (ATase) activity by 21&ndash;32% throughout the 24-h post-treatment period and this was confirmed by immunohistochemical detection of the ATase protein in hepatic nuclei. Twelve hours after the ethanol treatment, the activities of the DNA glycosylases, alkylpurine-DNA-</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#eff2f7"><span style="font-family:Merriweather"><span style="color:#2a2a2a"><em>N</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#eff2f7"><span style="font-family:Merriweather"><span style="color:#2a2a2a">-glycosylase (APNG) and 8-oxoguanine-DNA glycosylase (OXOG glycosylase) were each increased by ~44%. In contrast, when given chronically via the liquid diet, ethanol initially had no effect on ATase activity, but after 4 weeks ATase activity was increased by 40%. Following ethanol withdrawal, ATase activity remained elevated for at least 12 h, but, by 24 h, the activity had fallen to the uninduced control level. DNA glycosylase activities were again affected differently. After 1 week of dietary ethanol exposure, there was no effect on APNG activity but it was inhibited by 19% at 4 weeks. OXOG glycosylase activity, on the other hand, was increased by 53% after 1 week, but decreased by 40% after 4 weeks.&nbsp;</span></span></span></span></span></span></p>
  • <strong>Known modulating factors</strong>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">DNA repair mechanism depends on the cell type,age of the cell and extra cellular environment.</span></span></span></span></p>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <p>N<span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">ot found to the best of our knowledge.</span></span></span></span></p>
  • <h4>References</h4>
  • <p>&nbsp;</p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Allgayer, J., Kitsera, N., Bartelt, S., Epe, B., &amp; Khobta, A. (2016). Widespread transcriptional gene inactivation initiated by a repair intermediate of 8-oxoguanine.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Nucleic acids research</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>44</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(15), 7267-7280.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Bellon, S., Shikazono, N., Cunniffe, S., Lomax, M., &amp; O&rsquo;Neill, P. (2009). Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Nucleic acids research</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>37</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(13), 4430-4440.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Brenerman, B. M., Illuzzi, J. L., &amp; Wilson III, D. M. (2014). Base excision repair capacity in informing healthspan.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Carcinogenesis</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>35</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(12), 2643-2652.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Budworth, H., Matthewman, G., O&#39;Neill, P., &amp; Dianov, G. L. (2005). Repair of tandem base lesions in DNA by human cell extracts generates persisting single-strand breaks.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Journal of molecular biology</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>351</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(5), 1020-1029.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">&Ccedil;ağlayan, M., &amp; Wilson, S. H. (2015). Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>DNA repair</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>35</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">, 85-89.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Chinnasamy, N., Rafferty, J. A., Margison, G. P., O&#39;CONNOR, P. J., &amp; Elder, R. H. (1997). Induction of O 6-alkylguanine-DNA-alkyltransferase in the hepatocytes of rats following treatment with 2-acetylaminofluorene.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>DNA and cell biology</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>16</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), 493-500.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Dahle, J., Brunborg, G., Svendsrud, D. H., Stokke, T., &amp; Kvam, E. (2008). Overexpression of human OGG1 in mammalian cells decreases ultraviolet A induced mutagenesis.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Cancer letters</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>267</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(1), 18-25.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Delaney, S., Jarem, D. A., Volle, C. B., &amp; Yennie, C. J. (2012). Chemical and biological consequences of oxidatively damaged guanine in DNA.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Free radical research</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>46</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), 420-441.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Freudenthal, B. D., Beard, W. A., &amp; Wilson, S. H. (2013). DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Nucleic acids research</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>41</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(3), 1848-1858.</span></span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gagn&eacute;, J. P., Rouleau, M., &amp; Poirier, G. G. (2012). PARP-1 activation&mdash;bringing the pieces &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;together.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Science</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>336</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(6082), 678-679.</span></span></span></span></span></span></p>
  • <p><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Garaycoechea, J. I., Crossan, G. P., Langevin, F., Daly, M., Arends, M. J., &amp; Patel, K. J. (2012). Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Nature</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>489</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(7417), 571-575.</span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Gehrke, T. H., Lischke, U., Gasteiger, K. L., Schneider, S., Arnold, S., M&uuml;ller, H. C., ... &amp; Carell, T. (2013). Unexpected non-Hoogsteen&ndash;based mutagenicity mechanism of FaPy-DNA lesions.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Nature chemical biology</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>9</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(7), 455-461.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Greenberg, M. M. (2012). The formamidopyrimidines: purine lesions formed in competition with 8-oxopurines from oxidative stress.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Accounts of chemical research</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>45</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), 588-597.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">GROMBACHER, T., &amp; KAINA, B. (1996). Isolation and analysis of inducibility of the rat N-methylpurine-DNA glycosylase promoter.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>DNA and cell biology</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>15</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(7), 581-588.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Hashimoto, K., Tominaga, Y., Nakabeppu, Y., &amp; Moriya, M. (2004). Futile short-patch DNA base excision repair of adenine: 8-oxoguanine mispair.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Nucleic acids research</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>32</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(19), 5928-5934.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Kotova, N., Vare, D., Schultz, N., Gradecka Meesters, D., Stępnik, M., Graw&eacute;, J., ... &amp; Jenssen, D. (2013). Genotoxicity of alcohol is linked to DNA replication-associated damage and homologous recombination repair.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Carcinogenesis</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>34</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(2), 325-330.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Le Page, F., Klungland, A., Barnes, D. E., Sarasin, A., &amp; Boiteux, S. (2000). Transcription coupled repair of 8-oxoguanine in murine cells: the ogg1 protein is required for repair in nontranscribed sequences but not in transcribed sequences.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Proceedings of the National Academy of Sciences</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>97</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(15), 8397-8402.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">LEFEBVRE, P., ZAK, P., &amp; LAVAL, F. (1993). Induction of O6-methylguanine-DNA-methyltransferase and N3-methyladenine-DNA-glycosylase in human cells exposed to DNA-damaging agents.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>DNA and cell biology</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>12</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(3), 233-241.</span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Li, Y. S., Song, M. F., Kasai, H., &amp; Kawai, K. (2013). Generation and threshold level of 8-OHdG as oxidative DNA damage elicited by low dose ionizing radiation.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Genes and Environment</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Ma, H., Wang, J., Abdel-Rahman, S. Z., Boor, P. J., &amp; Khan, M. F. (2008). Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Toxicology and applied pharmacology</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>233</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(2), 247-253.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Maddukuri, L., Ketkar, A., Eddy, S., Zafar, M. K., &amp; Eoff, R. L. (2014). The Werner syndrome protein limits the error-prone 8-oxo-dG lesion bypass activity of human DNA polymerase kappa.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Nucleic acids research</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>42</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(19), 12027-12040.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Markkanen, E. (2017). Not breathing is not an option: How to deal with oxidative DNA damage.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>DNA repair</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>59</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">, 82-105.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Mitra, S., &amp; Kaina, B. (1993). Regulation of repair of alkylation damage in mammalian genomes.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Progress in nucleic acid research and molecular biology</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>44</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">, 109-142.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">O&rsquo;Connor, P. J. (1989). Towards a role for promutagenic lesions in carcinogenesis. In&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>DNA repair mechanisms and their biological implications in mammalian cells</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">&nbsp;(pp. 61-71). Springer, Boston, MA.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Navasumrit, P., Margison, G. P., &amp; O&#39;Connor, P. J. (2001). Ethanol modulates rat hepatic DNA repair functions.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Alcohol and Alcoholism</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>36</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(5), 369-376.</span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Pearson, C. G., Shikazono, N., Thacker, J., &amp; O&rsquo;Neill, P. (2004). Enhanced mutagenic potential of 8</span></span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Cambria Math'"><span style="color:#222222"><span style="font-family:Cambria Math">‐</span></span></span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">oxo</span></span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Cambria Math'"><span style="color:#222222"><span style="font-family:Cambria Math">‐</span></span></span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">7, 8</span></span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Cambria Math'"><span style="color:#222222"><span style="font-family:Cambria Math">‐</span></span></span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">dihydroguanine when present within a clustered DNA damage site.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Nucleic acids research</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>32</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(1), 263-270.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Potter, P. M., Rafferty, J. A., Cawkwell, L., Wilkinson, M. C., Cooper, D. P., O&#39;Connor, P. J., &amp; Margison, G. P. (1991). Isolation and cDNA cloning of a rat; O 6-alkyllguanine-DNA-alkyltransferase gene, molecelar analysis of expression in rat liver.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Carcinogenesis</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>12</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), 727-733.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Rafferty, J. A., Clarke, A. R., Sellappan, D., Koref, M. S., Frayling, I. M., &amp; Margison, G. P. (1996). Induction of murine O6-alkylguanine-DNA-alkyltransferase in response to ionising radiation is p53 gene dose dependent.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Oncogene</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>12</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(3), 693-697.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Seager, A. L., Shah, U. K., Mikhail, J. M., Nelson, B. C., Marquis, B. J., Doak, S. H., ... &amp; Jenkins, G. J. (2012). Pro-oxidant induced DNA damage in human lymphoblastoid cells: homeostatic mechanisms of genotoxic tolerance.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Toxicological Sciences</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>128</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(2), 387-397.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Shafirovich, V., Kropachev, K., Anderson, T., Liu, Z., Kolbanovskiy, M., Martin, B. D., ... &amp; Geacintov, N. E. (2016). Base and nucleotide excision repair of oxidatively generated guanine lesions in DNA.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Journal of Biological Chemistry</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>291</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(10), 5309-5319.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Shah, A., Gray, K., Figg, N., Finigan, A., Starks, L., &amp; Bennett, M. (2018). Defective base excision repair of oxidative DNA damage in vascular smooth muscle cells promotes atherosclerosis.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Circulation</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>138</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(14), 1446-1462.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Sharma, V., Collins, L. B., Chen, T. H., Herr, N., Takeda, S., Sun, W., ... &amp; Nakamura, J. (2016). Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Oncotarget</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>7</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(18), 25377.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Sokhansanj, B. A., &amp; Wilson III, D. M. (2004). Oxidative DNA damage background estimated by a system model of base excision repair.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Free Radical Biology and Medicine</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>37</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(3), 422-427.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Swenberg, J. A., Lu, K., Moeller, B. C., Gao, L., Upton, P. B., Nakamura, J., &amp; Starr, T. B. (2011). Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Toxicological sciences</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>120</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(suppl_1), S130-S145.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Taggart, D. J., Fredrickson, S. W., Gadkari, V. V., &amp; Suo, Z. (2014). Mutagenic potential of 8-oxo-7, 8-dihydro-2&prime;-deoxyguanosine bypass catalyzed by human Y-family DNA polymerases.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Chemical research in toxicology</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>27</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(5), 931-940.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Wang, C., Yang, J., Lu, D., Fan, Y., Zhao, M., &amp; Li, Z. (2016). Oxidative stress</span></span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Cambria Math'"><span style="color:#222222"><span style="font-family:Cambria Math">‐</span></span></span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">related DNA damage and homologous recombination repairing induced by N, N</span></span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Cambria Math'"><span style="color:#222222"><span style="font-family:Cambria Math">‐</span></span></span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">dimethylformamide.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Journal of Applied Toxicology</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>36</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(7), 936-945.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Wang, R., Li, C., Qiao, P., Xue, Y., Zheng, X., Chen, H., ... &amp; Ba, X. (2018). OGG1-initiated base excision repair exacerbates oxidative stress-induced parthanatos.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Cell death &amp; disease</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>9</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(6), 1-15.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Yang, N., Galick, H., &amp; Wallace, S. S. (2004). Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>DNA repair</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>3</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(10), 1323-1334.</span></span></span></span></span></span></span></p>
  • <p style="margin-left:30px"><span style="font-size:11pt"><span style="background-color:#ffffff"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Yoshikawa, Y., Yamasaki, A., Takatori, K., Suzuki, M., Kobayashi, J., Takao, M., &amp; Zhang-Akiyama, Q. M. (2015). Excess processing of oxidative damaged bases causes hypersensitivity to oxidative stress and low dose rate irradiation.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Free radical research</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>49</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(10), 1239-1248.</span></span></span></span></span></span></span></p>
  • </div>
  • <div>
  • <h4><a href="/relationships/164">Relationship: 164: Inadequate DNA repair leads to Increase, Mutations</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/15">Alkylation of DNA in male pre-meiotic germ cells leading to heritable mutations</a></td>
  • <td>adjacent</td>
  • <td>High</td>
  • <td>Moderate</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/141">Alkylation of DNA leading to cancer 2</a></td>
  • <td>adjacent</td>
  • <td>High</td>
  • <td>Moderate</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/139">Alkylation of DNA leading to cancer 1</a></td>
  • <td>non-adjacent</td>
  • <td>High</td>
  • <td>Moderate</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/296">Oxidative DNA damage leading to chromosomal aberrations and mutations</a></td>
  • <td>adjacent</td>
  • <td>High</td>
  • <td>Low</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/272">Deposition of energy leading to lung cancer</a></td>
  • <td>adjacent</td>
  • <td>Moderate</td>
  • <td>Moderate</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/397">Bulky DNA adducts leading to mutations</a></td>
  • <td>adjacent</td>
  • <td></td>
  • <td></td>
  • </tr>
  • <tr>
  • <td><a href="/aops/443"> DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>adjacent</td>
  • <td>High</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/478">Deposition of energy leading to occurrence of cataracts</a></td>
  • <td>adjacent</td>
  • <td>High</td>
  • <td>Low</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>mouse</td>
  • <td>Mus musculus</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>human</td>
  • <td>Homo sapiens</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>rat</td>
  • <td>Rattus norvegicus</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>All life stages</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">This KER is plausible in all life stages, sexes, and organisms with DNA. The majority of the evidence is from in vivo adult mice and male human, and mice in vitro models.&nbsp;</span></span></p>
  • <p><span style="font-size:12px">All organisms, from prokaryotes to eukaryotes, have DNA repair systems. Indeed, much of the empirical evidence on the fundamental principles described in this KER are derived from prokaryotic models. DNA adducts can occur in any cell type with DNA, and may or may not be repaired, leading to mutation. While there are differences among DNA repair systems across eukaryotic taxa, all species develop mutations following excessive burdens of DNA lesions like DNA adducts. Theoretically, any sexually reproducing organism (i.e., producing gametes) can also acquire DNA lesions that may or may not be repaired, leading to mutations in gametes.</span></p>
  • <h4>Key Event Relationship Description</h4>
  • <p>The described Key Event Relationship (KER) outlines a sequence of events related to DNA repair and its consequences. The upstream event is characterized by &quot;Inadequate DNA repair,&quot; indicating that the cellular mechanisms responsible for repairing DNA damage are compromised or insufficient. This could result from various factors, such as genetic mutations, environmental exposures, or other cellular processes.</p>
  • <p>The downstream event in this KER is an &quot;Increase in Mutations.&quot; As a consequence of inadequate DNA repair, the accumulation of unrepaired or incorrectly repaired DNA damage can lead to an elevated rate of mutations in the genome. These mutations can involve changes in the DNA sequence, structure, or arrangement, which may have various implications for cellular function, including potential disruptions to normal processes and pathways.</p>
  • <p>This KER highlights the critical role of DNA repair mechanisms in maintaining genomic stability and preventing the buildup of mutations that can contribute to various biological outcomes, including disease development and other adverse effects.</p>
  • <p><span style="font-size:12px">Insufficient repair results in the retention of damaged DNA that is then used as a template during DNA replication. During replication of damaged DNA, incorrect nucleotides may be inserted, and upon replication these become &lsquo;fixed&rsquo; in the cell. Further replication propagates the mutation to additional cells.</span></p>
  • <p><span style="font-size:12px">For example, it is well established that replication of alkylated DNA can cause insertion of an incorrect base in the DNA duplex (i.e., mutation). Replication of non-repaired O4 thymine alkylation leads primarily to A:T&rarr;G:C transitions. Retained O6 guanine alkylation causes primarily G:C&rarr;A:T transitions.</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">For repairing DNA double strand breaks (DSBs), non-homologous end joining (NHEJ) is one of the repair mechanisms used in human somatic cells (Petrini et al., 1997; Mao et al., 2008). However, this mechanism is error-prone and may create mutations during the process of DNA repair (Little, 2000). NHEJ is considered error-prone because it does not use a homologous template to repair the DSB. The NHEJ mechanism involves many proteins that work together to bridge the DSB gap by overlapping single-strand termini that are usually less than 10 nucleotides long (Anderson, 1993; Getts &amp; Stamato, 1994; Rathmell &amp; Chu, 1994). Inherent in this process is the introduction of errors that may result in mutations such as insertions, deletions, inversions, or translocations.</span></span></p>
  • <p>Furthermore, other repair mechanisms such as a loss in the mismatch repair (MMR) system can lead to a buildup of errors such as base-base mismatches and insertion-deletion errors in repetitive DNA sequences which are known as microsatellites. This could occur if an MMR gene (e.g. MLH1, PMS2) is inactivated through mutations or epigenetic silencing (Wang et al., 2022).&nbsp;</p>
  • <h4>Evidence Supporting this KER</h4>
  • <p><span style="font-size:12px">Overall Weight of Evidence: High&nbsp;</span></p>
  • <strong>Biological Plausibility</strong>
  • <p><span style="font-size:12px">If DNA repair is able to correctly and efficiently repair DNA lesions introduced by a genotoxic stressor, then no increase in mutation frequency will occur.</span></p>
  • <p><span style="font-size:12px">For example, for alkylated DNA, efficient removal by O<sup>6</sup>-alkylguanine DNA alkyltransferase will result in no increases in mutation frequency. However, above a certain dose AGT becomes saturated and is no longer able to efficiently remove the alkyl adducts. Replication of O-alkyl adducts leads to mutation. The evidence demonstrating that replication of unrepaired O-alkylated DNA causes mutations is extensive in somatic cells and has been reviewed (Basu and Essigmann 1990; Shrivastav et al. 2010); specific examples are given below.</span></p>
  • <p><span style="font-size:12px">It is important to note that not all DNA lesions will cause mutations. It is well documented that many are bypassed error-free. For example, N-alkyl adducts can quite readily be bypassed error-free with no increase in mutations (Philippin et al., 2014).</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif"><strong>Inadequate repair of DSB</strong></span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Collective data from tumors and tumor cell lines has emerged that suggests that DNA repair mechanisms may be error-prone (reviewed in Sishc et al., 2017) (Sishc &amp; Davis, 2017). &nbsp;NHEJ, the most common pathway used to repair DSBs, has been described as error-prone. The error-prone nature of NHEJ, however, is thought to be dependent on the structure of the DSB ends being repaired, and not necessarily dependent on the NHEJ mechanism itself (B&eacute;termier et al., 2014). Usually when perfectly cohesive ends are formed as a result of a DSB event, ligase 4 (LIG4) will have limited end processing to perform, thereby keeping ligation errors to a minimum (Waters et al., 2014). When the ends are difficult to ligate, however, the resulting repair may not be completed properly; this often leads to point mutations and other chromosomal rearrangements. It has been shown that approximately 25 - 50% of DSBs are misrejoined after exposure to ionizing radiation (L&ouml;brich et al., 1998; Kuhne et al., 2000; Lobrich et al., 2000). Defective repair mechanisms can increase sensitivity to agents that induce DSBs and lead eventually to genomic instability (reviewed in Sishc et al., (2017)).</span></span></p>
  • <p><span style="font-size:12px">Activation of mutagenic DNA repair pathways to withstand cellular or replication stress either from endogenous or exogenous sources can promote cellular viability, albeit at a cost of increased genome instability and mutagenesis (Fitzgerald et al., 2017). These salvage DNA repair pathways including, Break-induced Replication (BIR) and Microhomology-mediated Break-induced Replication (MMBIR). BIR repairs one-ended DSBs and has been extensively studied in yeast as well as in mammalian systems. BIR and MMBIR are linked with heightened levels of mutagenesis, chromosomal rearrangements and ensuing genome instability (Deem et al., 2011; Sakofsky et al., 2015; Saini et al., 2017; Kramara et al., 2018). In mammalian genomes BIR-like synthesis has been proposed to be involved in late-stage Mitotic DNA Synthesis (MiDAS) that predominantly occurs at so-called Common Fragile Sites (CFSs) and maintains telomere length under s conditions of replication stress that serve to promote cell viability (Minocherhomji et al., 2015; Bhowmick et al., 2016; Dilley et al., 2016).&nbsp;&nbsp;&nbsp;&nbsp;</span>&nbsp;&nbsp;&nbsp;</p>
  • <strong>Empirical Evidence</strong>
  • <p><strong>I<span style="font-size:12px">NSUFFICIENT REPAIR OF ALKYLATED DNA</span></strong></p>
  • <p><span style="font-size:12px">Evidence in somatic cells</span></p>
  • <p><span style="font-size:12px">Empirical evidence to support this KER is primarily from studies in which synthetic oligonucleotides containing well-characterized DNA lesions were genetically engineered in viral or plasmid genomes and subsequently introduced into bacterial or mammalian cells. Mutagenicity of each lesion is ascertained by sequencing, confirming that replication of alkylated DNA (i.e., unrepaired DNA) causes mutations in addition to revealing the important DNA repair pathways and polymerases involved in the process. For example, plasmids containing O6-methyl or O6-ethylguanine were introduced into AGT deficient or normal Chinese hamster ovary cells (Ellison et al. 1989). Following replication, an increase in mutant fraction to 19% for O6-methylguanine and 11% for O6-ethylguanine adducts was observed in AGT deficient cells versus undetectable levels for control plasmids. The relationship between input of alkylated DNA versus recovered mutant fractions revealed that a large proportion of alkyl adducts were converted to mutations in the AGT deficient cells (relationship slightly sublinear, with more adducts than mutations). The primary mutation occurring was G:C-A:T transitions. The results indicate that replication of the adducted DNA caused mutations and that this was more prevalent with reduced repair capacity. The number of mutations measured is less than the unrepaired alkyl adducts transfected into cells, supporting that insufficient repair occurs prior to mutation. Moreover, the alkyl adducts occur prior to mutation formation, demonstrating temporal concordance.</span></p>
  • <p><span style="font-size:12px">Various studies in cultured cells and microorganisms have shown that the expression of O<sup>6</sup>-methylguanine DNA methyltransferase (AGT/MGMT) (repair machinery &ndash; i.e., decrease in&nbsp;DNA strand breaks) greatly reduces the incidence of mutations caused by exposure to methylating agents such as MNU and MNNG (reviewed in Kaina et al. 2007; Pegg 2011). Thomas et al. (2013) used O6-benzylguanine to specifically inhibit MGMT activity in AHH-1 cells. Inhibition was carried out for one hour prior to exposure to MNU, a potent alkylating agent. Inactivation of MGMT resulted in increased MNU-induced HPRT (hypoxanthine-guanine phosphoribosyltransferase) mutagenesis and shifted the concentrations at which induced mutations occurred to the left on the dose axis (10 fold reduction of the lowest observed genotoxic effect level from 0.01 to 0.001 &micro;g/ml). The ratio of mutants recovered in DNA repair deficient cells was 3-5 fold higher than repair competent cells at concentrations below 0.01 &micro;g/ml, but was approximately equal at higher concentrations, indicating that repair operated effectively to a certain concentration. Only at this concentration (above 0.01 &micro;g/ml when repair machinery is overwhelmed and repair becomes deficient) do the induced mutations in the repair competent cells approach those of repair deficient. Thus, induced mutation frequencies in wild type cells are suppressed until repair is overwhelmed for this alkylating agent. The mutations prevented by MGMT are predominantly G:C-A:T transitions caused by O6-methylguanine.</span></p>
  • <p><br />
  • <span style="font-size:12px">Evidence in germ cells</span></p>
  • <p><span style="font-size:12px">That saturation of repair leads to mutation in spermatogonial cells is supported by work using the OECD TG488 rodent mutation reporter assay in sperm. A sub-linear dose-response was found using the lacZ MutaMouse assay in sperm exposed as spermatogonial stem cells, though the number of doses was limited (van Delft and Baan 1995). This is indirect evidence that repair occurs efficiently at low doses and that saturation of repair causes mutations at high doses. Lack of additional data motivated a dose-response study using the MutaMouse model following both acute and sub-chronic ENU exposure by oral gavage (O&rsquo;Brien et al. 2015). The results indicate a linear dose-response for single acute exposures, but a sub-linear dose-response occurs for lower dose sub-chronic (28 day) exposures, during which mutation was only observed to occur at the highest dose. This is consistent with the expected pattern for dose-response based on the hypothetical&nbsp;AOP. Thus, this sub-linear curve for mutation at low doses following sub-chronic ENU exposure suggests that DNA repair in spermatogonia is effective in preventing mutations until the process becomes overwhelmed at higher doses.</span></p>
  • <p><span style="font-size:12px">Mutation spectrum: Following exposure to alkylating agents, the most mutagenic adducts to DNA in pre-meiotic male germ cells include O6-ethylguanine, O4-ethylthymine and O2-ethylthymine (Beranek 1990; Shelby and Tindall 1997). Studies on sperm samples collected post-ENU exposure in transgenic rodents have shown that 70% of the observed mutations are at A:T sites (Douglas et al. 1995). The mutations observed at G:C base pairs are almost exclusively G:C-A:T transitions, presumably resulting from O6-ethylguanine. It is proposed that the prevalence of mutations at A:T basepairs is the result of efficient removal of O6-alkylguanine by AGT in spermatogonia, which is consistent with observation in human somatic cells (Bronstein et al. 1991; Bronstein et al. 1992). This results in the majority of O6-ethylguanine adducts being removed, leaving O4- and O2-ethylthymine lesions to mispair during replication. Thus, lack of repair predominantly at thymines and guanines at increasing doses leads to mutations in these nucleotides, consistent with the concordance expected between diminished repair capabilities at these adducts and mutation induction (i.e., concordance relates to seeing these patterns across multiple studies, species and across the data in germ cells and offspring).</span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:12px"><u>Inadequate repair of oxidative DNA lesions: In vitro studies</u></span></p>
  • <ul>
  • <li><span style="font-size:12px">AS52 Chinese hamster ovary cells (wild type and OGG1-overexpressing) were exposed to kJ/m<sup>2 </sup>UVA radiation (Dahle et al., 2008).</span>
  • <ul style="list-style-type:circle">
  • <li><span style="font-size:12px">Mutations in the gpt gene were quantified in both wild type and OGG1+ cells by sequencing after 13-15 days following 400 kJ/m<sup>2 </sup>UVA irradiation</span>
  • <ul>
  • <li><span style="font-size:12px">G:C-A:T mutations in UVA-irradiated OGG1+ cells were completely eliminated</span></li>
  • <li><span style="font-size:12px">G:C-A:T mutation frequency in wild type cells increased from 1.8 mutants/million cells to 3.8 mutants/million cells following irradiation &ndash; indicating incorrect repair or lack of repair of accumulated 8-oxo-dG</span></li>
  • <li><span style="font-size:12px">Elevated levels of OGG1 was able to prevent G:C-A:T mutations, while the OGG1 levels in wild type cells was insufficient, leading to an increase in mutants (demonstrates inadequate repair leading to mutations)</span></li>
  • </ul>
  • </li>
  • </ul>
  • </li>
  • <li><span style="font-size:12px">Xeroderma pigmentosum complementation group A (XPA) knockout (KO) and wild type TSCER122 human lymphoblastoid cells were transfected with TK gene-containing vectors with no adduct, a single 8-oxo-dG, or two 8-oxo-dG adducts in tandem (Sassa et al., 2015).</span>
  • <ul style="list-style-type:circle">
  • <li><span style="font-size:12px">XPA is a key protein in nucleotide excision repair (NER) that acts as a scaffold in the assembly the repair complex.</span></li>
  • <li><span style="font-size:12px">Mutation frequency was determined by the number of TK-revertant colonies</span></li>
  • <li><span style="font-size:12px">Control vector induced a mutation frequency of 1.3% in both WT and XPA KO</span></li>
  • <li><span style="font-size:12px">Two 8-oxo-dG in tandem on the transcribed strand were most mutagenic in XPA KO, inducing 12% mutant frequency compared to 7% in WT</span></li>
  • <li><span style="font-size:12px">For both XPA KO and WT, G:C-A:T transversion due to 8-oxo-dG was the most predominant point mutation in the mutants&nbsp;</span></li>
  • <li><span style="font-size:12px">The lack of a key factor in NER leading to increased 8-oxo-dG-induced transversions demonstrates insufficient repair leading to increase in mutations&nbsp;</span></li>
  • </ul>
  • </li>
  • </ul>
  • <p>&nbsp;</p>
  • <p><span style="font-size:12px"><u>Inadequate repair of oxidative DNA lesions: In vivo studies in mice</u></span></p>
  • <ul>
  • <li><span style="font-size:12px">Spontaneous mutation frequencies in the liver of Ogg1-deficient (-/-) Big Blue mice was measured at 10 weeks of age (Klungland et al., 1999).</span>
  • <ul style="list-style-type:circle">
  • <li><span style="font-size:12px">Mutation frequencies were 2- to 3-fold higher in the <em>Ogg1</em>-/- mice than in wild type</span></li>
  • <li><span style="font-size:12px">Of the 16 base substitutions detected in <em>Ogg1</em> -/- mutant plaques analyzed by sequencing, 10 indicated G:C-A:T transversions consistent with the known spectrum of mutation</span></li>
  • <li><span style="font-size:12px">The results support that insufficient repair of oxidized bases leads to mutation.</span></li>
  • </ul>
  • </li>
  • <li><span style="font-size:12px"><em>Ogg1 </em>knockout (<em>Ogg1</em>-/-) in C57BL/6J mice resulted in 4.2-fold and 12-fold increases in the amount of 8-oxo-dG in the liver compared to wild type at 9 and 14 weeks of age, respectively (Minowa et al., 2000).</span>
  • <ul style="list-style-type:circle">
  • <li><span style="font-size:12px">In these mice, there was an average of 2.3-fold increase in mutation frequencies in the liver (measured between 16-20 weeks)</span>
  • <ul>
  • <li><span style="font-size:12px">57% of the observed base substitutions were G:C-A:T transversions, while 35% in wild type mice corresponded to this transversion.</span></li>
  • <li><span style="font-size:12px">Approximately 70% of the increase in mutation frequency was due to G to T transversions.</span></li>
  • </ul>
  • </li>
  • <li><span style="font-size:12px">Concordantly, KBrO3 treatment resulted in a 2.9-fold increase in mutation frequency in the kidney of <em>Ogg1 </em>-/- mice compared to KBrO3-treated wild type (Arai et al., 2002).</span>
  • <ul>
  • <li><span style="font-size:12px">G:C-A:T transversions made up 50% of the base substitutions in the <em>Ogg1-/- </em>mice.</span></li>
  • </ul>
  • </li>
  • <li><span style="font-size:12px">Heterozygous <em>Ogg1 </em>mutants (<em>Ogg1</em>+/-) retained the original repair capacity, where no increase in 8-oxo-dG lesions was observed in the liver at 9 and 14 weeks (Minowa et al., 2000).</span>
  • <ul>
  • <li><span style="font-size:12px">This observation was consistent even after KBrO3 treatment of the mice (Arai et al., 2002).</span></li>
  • </ul>
  • </li>
  • <li><span style="font-size:12px">From these results, we can infer that OGG1 proteins are present in excess and that one functional copy of the gene is sufficient in addressing endogenous and, to a certain degree, chemical-induced oxidative DNA lesions.</span></li>
  • </ul>
  • </li>
  • </ul>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif"><strong><u>Inadequate Repair of </u><u>DSB</u></strong></span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Empirical data obtained for this KER moderately supports the idea that inadequate DNA repair increases the frequency of mutations.&nbsp;The evidence presented below related to the inadequate repair of DSBs is summarized in table 5, <a href="https://docs.google.com/spreadsheets/d/1iehBBqhFFSOhgis-0U3tasQwJ50bZJPVmenWUiR4vmA/edit?usp=sharing" target="_blank">here (click link)</a>. The review article by Sishc &amp; Davis (2017) provides an overview of NHEJ mechanisms with a focus on the inherently error-prone nature of DSB repair mechanisms, particularly when core proteins of NHEJ are knocked-out. </span>Although NHEJ is predominantly the preferred repair mechanism throughout the cell cycle, homologous recombination (HR) and single-stranded annealing (SSA) are favored during the S and G2 phases in scenarios where the NHEJ repair pathway is inhibited. The absence of HR leading to an increase in SSA activity is still a matter to debate (Ceccaldi et al., 2016).</span>&nbsp;<span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Another review also provides an overview of DSB induction, the repair process and how mutations may result, as well as the biological relevance of misrepaired or non-repaired DNA damage (Sage &amp; Shikazono, 2017).</span></span></p>
  • <p><br />
  • <span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif"><u><strong>Dose and Incidence Concordance</strong></u></span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">There is evidence in the literature suggesting a dose/incidence concordance between inadequate DNA repair and increases in mutation frequencies. Evidence presented below related to the dose-response of mutation frequencies is summarized in table 2, <a href="https://docs.google.com/spreadsheets/d/1iehBBqhFFSOhgis-0U3tasQwJ50bZJPVmenWUiR4vmA/edit?usp=sharing" target="_blank">here (click link)</a>. In response to increasing doses from a radiation stressor, dose-dependent increases in both measures of inadequate DNA repair and mutation frequency have been found. In an analysis that amalgamated results from several different studies conducted using in vitro cell-lines, the rate of DSB misrepair was revealed to increase in a dose-dependent fashion from 0 - 80 Gy, with the mutation rate also similarly increasing from 0 - 6 Gy (Mcmahon et al., 2016). Additionally, using a plant model, it was shown that increasing radiation dose from 0 - 10 Gy resulted in increased DNA damage as a consequence of inadequate repair.&nbsp; Mutations were observed 2 - 3 weeks post-irradiation (Pt&aacute;cek et al., 2001). Moreover, increases in mutation densities were found in specific genomic regions of cancer samples (namely promoter DNAse I-hypersensitive sites (DHS) and 100 bp upstream of transcription start sites (TSS)) that were also found to have decreased DNA repair rates attributable to inadequate nucleotide excision repair (NER) (Perera et al., 2016).</span></span><br />
  • &nbsp;</p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Interestingly, mutation rates have been shown to increase as the required DNA repair becomes more complex. Upon completion of DSB repair in response to radiation and treatment with restriction enzymes, more mutations were found in cases where the ends were non-complementary and thus required more complex DNA repair (1 - 4% error-free) relative to cases where ends were complementary (34 - 38% error-free) (Smith et al., 2001).</span></span></p>
  • <p><span style="font-size:12px"><u><span style="font-family:arial,helvetica,sans-serif"><strong>Temporal Concordance</strong></span></u></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">There is evidence in the literature suggesting a time concordance between the initiation of DNA repair and the occurrence of mutations. For simple ligation events, mutations were not evident until 12 - 24 hours, whereas DSB repair was evident at 6 -12 hours. For complex ligation events, however, mutations and DSB repair were both evident at 12 - 24 hours. As the relative percent of DNA repair increased over time, the corresponding percent of error-free rejoining decreased over time in both ligation cases, suggesting that overall DNA repair fidelity decreases with time ((Smith et al., 2001).</span></span></p>
  • <p><span style="font-size:12px"><u><span style="font-family:arial,helvetica,sans-serif"><strong>Essentiality</strong></span></u></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Inadequate DNA repair has been found to increase mutations above background levels. There is evidence from knock-out/knock-down studies suggesting that there is a strong relationship between the adequacy of DNA repair and mutation frequency. In all examined cases, deficiencies in proteins involved in DNA repair resulted in altered mutation frequencies relative to wild-type cases. There were significant decreases in the frequency and accuracy of DNA repair in cell lines deficient in LIG4 (DNA ligase 4, a DNA repair protein) (Smith et al., 2003) and Ku80 (Feldmann et al., 2000). Rescue experiments performed with these two cell lines further confirmed that inadequate DNA repair was the cause of the observed decreases in repair frequency and accuracy (Feldmann et al., 2000; Smith et al., 2003). In primary Nibrin-deficient mouse fibroblasts, there was increased spontaneous DNA damage relative to wild-type controls, suggestive of inadequate DNA repair. Using the corresponding Nibrin-deficient and wild-type mice, in vivo mutation frequencies were also found to be elevated in the Nibrin-deficient animals (Wessendorf et al., 2014). Furthermore, mutation densities were differentially affected in specific genomic regions in cancer patients depending on their Xeroderma pigmentosum group C (XPC) gene status. Specifically, mutation frequencies were increased in XPC-wild-type patients at DNase I-hypersensitive site (DHS) promoters and 100 bp upstream of TSS relative to cancer patients lacking functional XPC (Perera et al., 2016). Lastly, in a study using WKT1 cells with less repair capacity, radiation exposure induced four times more mutations in these cells than in TK6 cell, which had a normal repair capacity (Amundson and Chen, 1996).&nbsp;</span></span></p>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p><span style="font-size:12px">Repair of alkylated DNA</span></p>
  • <p><span style="font-size:12px">There were no inconsistencies in the empirical data reviewed or in the literature relating to biological plausibility. Much of the support for this KER comes predominantly from data in somatic cells and in prokaryotic organisms. We note that all of the data in germ cells used in this KER are produced exclusively from ENU exposure. Data on other chemicals are required. We consider the overall weight of evidence of this KER to be strong because of the obvious biological plausibility of the KER, and documented temporal association and incidence concordance based on studies over-expressing and repressing DNA repair in somatic cells.</span></p>
  • <p><span style="font-size:12px">Repair of oxidative lesions</span></p>
  • <ul>
  • <li><span style="font-size:12px">Thresholded concentration-response curve of mutation frequency was observed in AHH-1 human lymphoblastoid cells after treatment with pro-oxidants (H<sub>2</sub>O<sub>2 </sub>and &nbsp;KBrO<sub>2</sub>) known to cause oxidative DNA damage (Seager et al., 2012), suggesting that cells are able to tolerate low levels of DNA damage using basal repair. However, increase in 8-oxo-dG lesions and up-regulation of DNA repair proteins were not observed under the same experimental condition.</span></li>
  • <li><span style="font-size:12px">Mutagenicity of oxidative DNA lesions other than 8-oxo-dG, such as FaPydG and thymidine glycol, has not been as extensively studied and there are mixed results regarding the mutagenic outcome of these lesions.</span></li>
  • </ul>
  • <p><span style="font-size:12px">Repair of double strand breaks&nbsp;</span></p>
  • <ul>
  • <li><span style="font-size:12px">One review paper found that DNA DSBs are repaired more efficiently at low dose (&le;0.1 Gy) compared to high dose (&gt;1 Gy) X-rays, but delayed mutation induction and genomic instability have also been demonstrated to occur at low doses (&lt;1 cGy) of ionizing radiation (Preston et al., 2013). &nbsp;</span></li>
  • </ul>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Overall</span></span></p>
  • <ul>
  • <li><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:12px">Mutation induction is stochastic, spontaneous, and dependent on the cell type as well as the individual&rsquo;s capability to repair efficiently (NRC, 1990; Pouget &amp; Mather, 2001).</span></span></li>
  • </ul>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <p><span style="font-size:12px">Thresholds for mutagenicity indicate that the response at low doses is modulated by the DNA repair machinery, which is effectively able to remove alkylated DNA at low doses [Gocke and Muller 2009; Lutz and Lutz 2009; Pozniak et al. 2009]. Kinetics of DNA repair saturation in somatic cells is described in Muller et al. [Muller et al. 2009].</span></p>
  • <p><span style="font-size:12px">For O-methyl adducts, once the primary repair process is saturated, in vitro data suggest that misreplication occurs almost every time a polymerase encounters a methylated guanine [Ellison et al. 1989; Singer et al. 1989]; however, it should be noted that this process can be modulated by flanking sequence. This conversion of adducts to mutations also appears to be reduced substantially in vivo [Ellison et al. 1989]. The probability of mutation will also depend on the type of adduct (e.g., O-alkyl adducts are more mutagenic than N-alkyl adducts; larger alkyl groups are generally more mutagenic, etc.). Overall, a substantive number of factors must be considered in developing a quantitative model.</span></p>
  • <p><span style="font-size:12px"><u>Inadequate repair of oxidative </u><u>lesions</u></span></p>
  • <p><span style="font-size:12px">The relationship between the quantity/activity of repair enzymes such as OGG1 in the cell and the quantity of oxidative lesions need to be better understood to define a threshold on the quantity of oxidative lesions exceeding basal repair capacity. Moreover, the proportion of oxidative lesions formed that lead to mutation versus strand breaks is not clearly understood.</span></p>
  • <p><span style="font-size:12px">Mutations resulting from oxidative DNA damage can occur via replicative polymerases and translesion synthesis (TLS) polymerases during replication, and during attempted repair. However, an in vitro study on TLS in yeast has shown that bypass of 8-oxo-dG by TLS polymerases during replication is approximately 94-95% accurate. Therefore, the mutagenicity of 8-oxo-dG and other oxidative lesions may depend on their abundance, not on a single lesion (Rodriguez et al., 2013). Applicability of this observation in mammalian cells needs further investigation. Information on the accuracy of 8-oxo-dG bypass in mammalian cells is limited.&nbsp; &nbsp; &nbsp;&nbsp;</span></p>
  • <p><span style="font-size:12px">The most notable example of mutation arising from inadequate repair of DNA oxidation is G to T transversion due to 8-oxo-dG lesions. Previous studies have demonstrated higher mutation frequency of this lesion compared to other oxidative lesions; for example, Tan et al. (1999) compared the mutation rate of 8-oxo-dG and 8-oxo-dA in COS-7 monkey kidney cells and reported that under similar conditions, 8-oxo-dG was observed to be four times more likely to cause base substitution (Tan et al., 1999).&nbsp;</span></p>
  • <p><span style="font-size:12px"><strong><u>Inadequate Repair of DSB</u></strong></span></p>
  • <p><span style="font-size:12px">Quantitative understanding of this linkage is derived from the studies that examined DSB misrepair rates or mutation rates in response to a radiation stressor.&nbsp; In general, combining results from these studies suggests that increased mutations can be predicted when DNA repair is inadequate. At a radiation dose of 10 Gy, the rate of DSB misrepair was found to be approximately 10 - 15% (Lobrich et al., 2000); this rate increased to 50 - 60% at a radiation exposure of 80 Gy (Kuhne et al., 2000; Lobrich et al., 2000; McMahon et al., 2016). For mutation rates in response to radiation across a variety of models and radiation doses, please refer to the example table below.</span></p>
  • <table border="1" cellpadding="1" cellspacing="1" style="height:158px; width:645px">
  • <tbody>
  • <tr>
  • <td style="text-align:center; width:150px"><span style="font-size:12px"><strong>Reference</strong></span></td>
  • <td style="text-align:center"><span style="font-size:12px"><strong>Summary</strong></span></td>
  • </tr>
  • <tr>
  • <td style="text-align:center"><span style="font-size:12px">Matuo et al., 2018</span></td>
  • <td><span style="font-size:12px">Yeast cells (saccharomyces cerevisiae) exposed to high LET cardbon ions (25 keV/um) and low LET carbon ions (13 keV/um) between 0-200 Gy induces a 24-fold increase overbaseline of mutations (high LET) and 11-fold increase over baseline mutations (low LET).</span></td>
  • </tr>
  • <tr>
  • <td style="text-align:center"><span style="font-size:12px">Nagashima et al., 2018</span></td>
  • <td><span style="font-size:12px">Hamster cells (GM06318-10) exposed to x-rays in the 0-1 Gy. Response of 19.0 &plusmn; 6.1 mutants per&nbsp;10<sup>9</sup> survivors.</span></td>
  • </tr>
  • <tr>
  • <td style="text-align:center"><span style="font-size:12px">Albertini et al., 1997</span></td>
  • <td><span style="font-size:12px">T-lymphcytes isolated from human peripheral blood exposed to low LET gamma-rays (0.5-5 Gy) and high LET radon gas (0-1 Gy). Response of 7.0x10<sup>-6</sup> mutants/Gy (Gamma-rays 0-2 Gy), 54x10<sup>-6</sup> mutants/Gy (Gamma-rays 2-4 Gy) and 63x10<sup>-6</sup> mutants/Gy (0-1 Gy).</span></td>
  • </tr>
  • <tr>
  • <td style="text-align:center"><span style="font-size:12px">Dubrova et al., 2002</span></td>
  • <td><span style="font-size:12px">Observation of paternal ESTR mutation rates in CBAH mice following exposure to acute low LET X-rays (0-1 Gy), chronic low LET gamma-rays (0-1 Gy) and chronic high LET neutrons (0-0.5 Gy). Modelled response of y = mx + C, values of (m,C): X-rays: (0.338, 0.111), Gamma-rays: (0.373&plusmn;0.082, 0.110), Neutrons: (1.135&plusmn;0.202, 0.136).</span></td>
  • </tr>
  • <tr>
  • <td style="text-align:center"><span style="font-size:12px">McMahon et al., 2016</span></td>
  • <td><span style="font-size:12px">Study of HPRT gene in Chinese hamster cells following exposure to radiation of 1-6 Gy. Observation of 0.2 mutations in HPRT gene per 10<sup>4</sup> cells and 0.1 point mutations per 10<sup>4</sup> cells (1 Gy). At 6 Gy, observation of 1.5 mutations in the HPRT gene per 10<sup>4</sup> cells and 0.4 point mutations per 10<sup>4</sup> cells.</span></td>
  • </tr>
  • </tbody>
  • </table>
  • <p>&nbsp;</p>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif"><strong><u>Inadequate Repair of DSB</u></strong></span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">There is evidence of a response-response relationship between inadequate DNA repair and increased frequency of mutations. When exposed to a radiation stressor, there was a positive relationship between the radiation dose and the DSB misrepair rate, and between the mutation rate and the radiation dose (Mcmahon et al., 2016). Similarly, there was a negative correlation found between NER and the mutation densities at specific genomic regions in cancer patients. Specifically, inadequate NER resulted in more mutations in the promoter DHS and the TSS, but normal NER at DHS flanking regions resulted in fewer mutations (Perera et al., 2016).</span></span></p>
  • <strong>Time-scale</strong>
  • <p><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:12px"><strong><span style="color:#0000cd"><u>I</u></span><u>nadequate Repair of DSB</u></strong></span></span></p>
  • <p><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:12px">Two studies were used to provide data regarding the time scale of DNA repair and the appearance of mutations. In a study using plants, DNA damage was evident immediately following radiation with 30 Gy of radiation; 50% of repairs were complete by 51.7 minutes, 80% by 4 hours, and repair was completed by 24 hours post-irradiation. Although no mutational analysis was performed during the period of repair, irradiated plants were found to have increased mutations when they were examined 2 - 3 weeks later (Pt&aacute;cek et al., 2001). Both DNA repair and mutation frequency were examined at the same time in a study comparing simple and complex ligation of linearized plasmids. In this study, repaired plasmids were first detected between 6 - 12 hours for simple ligation events and between 12 - 24 hours for more complex ligation events; this first period was when the most error-free rejoining occurred in both cases. After this initial period of repair until its completion at 48 hr, repair became increasingly more erroneous such that mutations were found in more than half of the repaired plasmids at 48 hr regardless of the type of required ligation (Smith et al., 2001).</span></span></p>
  • <strong>Known modulating factors</strong>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Not identified.</span></span></p>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Not identified.</span></span></p>
  • <h4>References</h4>
  • <p><span style="font-size:12px">Ainsbury, E. A. et al. (2016), &ldquo;Ionizing radiation induced cataracts: recent biological and mechanistic developments and perspectives for future research&rdquo;, Mutation research. Reviews in mutation research, Vol. 770, Elsevier B.V., https://doi.org/10.1016/j.mrrev.2016.07.010.&nbsp;&nbsp;&nbsp;&nbsp;</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Albertini, R.J. et al. (1997), &quot;Radiation Quality Affects the Efficiency of Induction and the Molecular Spectrum of HPRT Mutations in Human T Cells&quot;, 148(5 Suppl):S76-86.</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Amundson, S.A. &amp; D.J. Chen (1996), &quot;Ionizing Radiation-Induced Mutation of Human Cells With Different DNA Repair Capacities.&quot;, Adv. Space Res. 18(1-2):119-126.</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Anderson, C.W. 1993, &quot;DNA damage and the DNA-activated protein kinase.&quot;, Trends Biochem. Sci. 18(11):433&ndash;437. doi:10.1016/0968-0004(93)90144-C.</span></span></p>
  • <p><span style="font-size:12px">Arai, T., Kelly, V.P., Minowa, O., Noda, T., Nishimura, S. (2002), High accumulation of oxidative DNA damage, 8-hydroxyguanine, in Mmh/Ogg1 deficient mice by chronic oxidative stress, Carcinogenesis, 23:2005-2010.</span></p>
  • <p><span style="font-size:12px">Basu, A.K. and J.M. Essigmann (1990), &quot;Site-specific alkylated oligodeoxynucleotides: Probes for mutagenesis, DNA repair and the structure effects of DNA damage&quot;, <em>Mutation Research</em>, 233: 189-201.</span></p>
  • <p><span style="font-size:12px">Beranek, D.T. (1990), &quot;Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents&quot;, <em>Mutation Research</em>, 231(1): 11-30.</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">B&eacute;termier, M., P. Bertrand &amp; B.S. Lopez (2014), &quot;Is Non-Homologous End-Joining Really an Inherently Error-Prone Process?&quot;, PLoS Genet. 10(1). doi:10.1371/journal.pgen.1004086.</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Bhowmick, R., S. Minocherhomji &amp; I.D. Hickson (2016), &quot;RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress&quot;, Mol. Cell., 64(6):1117-1126.</span></span></p>
  • <p><span style="font-size:12px">Ceccaldi, R. et al. (2016), &ldquo;Repair Pathway Choices and Consequences at the Double-Strand Break.&rdquo; Trends in cell biology, Vol. 26/1, Elsevier, Amsterdam, https://doi.org/10.1016/j.tcb.2015.07.009&nbsp;</span></p>
  • <p><span style="font-size:12px">Dahle, J., Brunborg, G., Svendsrud, D., Stokke, T., Kvam, E. (2008), Overexpression of human OGG1 in mammalian cells decreases ultraviolet A induced mutagenesis, Cancer Lett, 267:18-25.</span></p>
  • <p><span style="font-size:12px">Deem, A. et al. (2011), &quot;Break-Induced Replication Is Highly Inaccurate&quot;, PLoS Biol., 9(2):e1000594, doi: 10.1371/journal.pbio.1000594.</span></p>
  • <p><span style="font-size:12px">Dilley, R.L. et al. (2016), &quot;Break-induced telomere synthesis underlies alternative telomere maintenance&quot;, Nature, 539:54-58.</span></p>
  • <p><span style="font-size:12px">Douglas, G.R., J. Jiao, J.D. Gingerich, J.A. Gossen and L.M. Soper (1995), &quot;Temporal and molecular characteristics of mutations induced by ethylnitrosourea in germ cells isolated from seminiferous tubules and in spermatozoa of lacZ transgenic mice&quot;, <em>Proc. Natl. Acad. Sci. USA</em>, 92(16): 7485-7489.</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Dubrova, Y.E. et al. (2002), &quot;Elevated Minisatellite Mutation Rate in the Post-Chernobyl Families from Ukraine.&quot;, Am. J. Hum. Genet. 71(4): 801-809.</span></span></p>
  • <p><span style="font-size:12px">Ellison, K.S., E. Dogliotti, T.D. Connors, A.K. Basu and J.M. Essigmann (1989), &quot;Site-specific mutagenesis by O6-alkyguanines located in the chromosomes of mammalian cells: Influence of the mammalian O6-alkylguanine-DNA alkyltransferase&quot;, <em>Proc. Natl. Acad. Sci. USA</em>, 86: 8620-8624.</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Feldmann, E. et al. (2000), &quot;DNA double-strand break repair in cell-free extracts from Ku80-deficient cells : implications for Ku serving as an alignment factor in non-homologous DNA end joining.&quot;, Nucleic Acids Res. 28(13):2585&ndash;2596.</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Fitzgerald, D.M., P.J. Hastings, and S.M. Rosenberg (2017), &quot;Stress-Induced Mutagenesis: Implications in Cancer and Drug Resistance&quot;, Ann. Rev. Cancer Biol., 1:119-140,&nbsp;doi: 10.1146/annurev-cancerbio-050216-121919.</span></span></p>
  • <p><span style="font-size:12px">Garrett, J et al. (2020), &ldquo;The protective effect of estrogen against radiation cataractogenesis is dependent upon the type of radiation&rdquo;, Radiation Research, Vol. 194/5, Radiation Research Society, United States, https://doi.org/10.1667/RADE-20-00015.1.&nbsp;</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Getts, R.C. &amp; T.D. Stamato (1994), &quot;Absence of a Ku-like DNA end binding activity in the xrs double-strand DNA repair-deficient mutant.&quot;, J. Biol. Chem. 269(23):15981&ndash;15984.</span></span></p>
  • <p><span style="font-size:12px">Gocke, E. and L. Muller (2009), &quot;In vivo studies in the mouse to define a threhold for the genotoxicity of EMS and ENU&quot;, <em>Mutat. Res.</em>, 678, 101-107.</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Gorbunova, V. (1997), &quot;Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions.&quot;, Nucleic Acids Res. 25(22):4650&ndash;4657. doi:10.1093/nar/25.22.4650.</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Hartlerode, A.J. &amp; R. Scully (2009), &quot;Mechanisms of double-strand break in somatic mammalian cells.&quot;, Biochem J. 423(2):157&ndash;168. doi:10.1042/BJ20090942.Mechanisms.</span></span></p>
  • <p><span style="font-size:12px">Kaina, B., M. Christmann, S. Naumann and W.P. Roos (2007), &quot;MGMT: Key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents&quot;, <em>DNA Repair</em>, 6: 1079&ndash;1099.</span></p>
  • <p><span style="font-size:12px">Klungland, A., Rosewell, I., Hollenbach, S., Larsen, E., Daly, G., Epe, B., Seeberg, E., Lindahl, T., Barnes, D. (1999), Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage, Proc Natl Acad Sci USA, 96:13300-13305.</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Kramara, J., B. Osia &amp; A. Malkova (2018), &quot;Break-Induced Replication: The Where, The Why, and The How&quot;, Trends Genet. 34(7):518-531, doi: 10.1016/j.tig.2018.04.002.</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Kuhne, M., K. Rothkamm &amp; M. </span></span>L&ouml;brich<span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">&nbsp;(2000), &quot;No dose-dependence of DNA double-strand break misrejoining following a -particle irradiation.&quot;, Int. J. Radiat. Biol. 76(7):891-900</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Lieber, M.R. (2008), &quot;The mechanism of human nonhomologous DNA End joining.&quot;, J Biol Chem. 283(1):1&ndash;5. doi:10.1074/jbc.R700039200.</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Little, J.B. (2000), &quot;Radiation carcinogenesis.&quot;, Carcinogenesis 21(3):397-404 doi:<a href="https://doi.org/10.1093/carcin/21.3.397" target="_blank">10.1093/carcin/21.3.397</a>.</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Lobrich, M. et al. (2000), &quot;Joining of Correct and Incorrect DNA Double-Strand Break Ends in Normal Human and Ataxia Telangiectasia Fibroblasts.&quot;, 68(July 1999):59&ndash;68. doi:DOI: 10.1002/(SICI)1098-2264(200001)27:1&lt;59::AID-GCC8&gt;3.0.CO;2-9.</span></span></p>
  • <p><span style="font-size:12px">Mao Z, Bozzella M, Seluanov A, Gorbunova V. 2008. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle. 7(18):2902&ndash;2906. doi:10.4161/cc.7.18.6679.</span></p>
  • <p><span style="font-size:12px">Matuo Y, Izumi Y, Furusawa Y, Shimizu K. 2018. Mutat Res Fund Mol Mech Mutagen Biological e ff ects of carbon ion beams with various LETs on budding yeast Saccharomyces cerevisiae. Mutat Res Fund Mol Mech Mutagen. 810(November 2017):45&ndash;51. doi:10.1016/j.mrfmmm.2017.10.003.</span></p>
  • <p><span style="font-size:12px">Mcmahon SJ, Schuemann J, Paganetti H, Prise KM. 2016. Mechanistic Modelling of DNA Repair and Cellular Survival Following Radiation-Induced DNA Damage. Nat Publ Gr.(April):1&ndash;14. doi:10.1038/srep33290.</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Minocherhomji, S. et al. (2015), &quot;Replication stress activates DNA repair synthesis in mitosis&quot;, Nature, 528(7581):286-290.</span></span></p>
  • <p><span style="font-size:12px">Minowa, O., Arai, T., Hirano, M., Monden, Y., Nakai, S., Fukuda, M., Itoh, M., Takano, H., Hippou, Y., Aburatani, H., Masumura, K., Nohmi, T., Nishimura, S., Noda, T. (2000), Mmh/Ogg1 gene inactivation results in accumulation of 8-hydroxyguanine in mice, Proc Natl Acad Sci USA, 97:4156-4161.</span></p>
  • <p><span style="font-size:12px">Muller, L., E. Gocke, T. Lave and T. Pfister (2009), &quot;Ethyl methanesulfonate toxicity in Viracept &ndash; A comprehensive human risk assessment based on threshold data for genotoxicity&quot;, <em>Toxicology Letters</em>, 190: 317-329.</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Nagashima, H. et al. (2018), &quot;Induction of somatic mutations by low-dose X-rays : the challenge in recognizing radiation-induced events.&quot;, J. Radiat. Res., Na 59(October 2017):11&ndash;17. doi:10.1093/jrr/rrx053.</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">NRC (1990), &quot;Health Effects of Exposure to Low Levels of Ionizing Radiation&quot;, (BEIR V).</span></span></p>
  • <p><span style="font-size:12px">O&#39;Brien, J.M., A. Williams, J. Gingerich, G.R. Douglas, F. Marchetti and C.L. Yauk CL. (2013), &quot;No evidence for transgenerational genomic instability in the F1 or F2 descendants of Muta&trade;Mouse males exposed to N-ethyl-N-nitrosourea&quot;, <em>Mutat. Res.</em>, 741-742:11-7</span></p>
  • <p><span style="font-size:12px">O&rsquo;Brien, J.M., M. Walker, A. Sivathayalan, G.R. Douglas, C.L. Yauk and F. Marchetti (2015), &quot;Sublinear response in lacZ mutant frequency of Muta&trade; Mouse spermatogonial stem cells after low dose subchronic exposure to N-ethyl-N-nitrosourea&quot;, Environ. Mol. Mutagen., 56(4): 347-55.</span></p>
  • <p><span style="font-size:12px">Pegg, A.E., (2011), &quot;Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools&quot;, <em>Chem. Res. Toxicol.</em>, 24(5): 618-639.</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Perera, D. et al. (2016), &quot;Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes.&quot;, Nature 532, 259-263.</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Petrini, J.H.J., D.A. Bressan &amp; M.S. Yao (1997), &quot;The RAD52 epistasis group in mammalian double strand break repair.&quot;, Semin Immunol. 9(3):181&ndash;188. doi:10.1006/smim.1997.0067</span></span></p>
  • <p><span style="font-size:12px">Philippin, G., J. Cadet, D. Gasparutto, G. Mazon, R.P. Fuchs (2014), &quot;Ethylene oxide and propylene oxide derived N7-alkylguanine adducts are bypassed accurately in vivo&quot;, <em>DNA Repair (Amst)</em>, 22:133-6.</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Pouget, J.P. &amp; S.J. Mather (2001), &quot;General aspects of the cellular response to low- and high-LET radiation.&quot;, Eur. J. Nucl. Med. 28(4):541&ndash;561. doi:10.1007/s002590100484</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Preston, R. et al. (2013), &ldquo;Uncertainties in estimating health risks associated with exposure to ionising radiation&rdquo;, Journal of Radiological Protection, Vol.33/3, IOP Publishing, Bristol, https://doi.org/10.1088/0952-4746/33/3/573.&nbsp;</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Pt&aacute;cek, O. et al. (2001), &quot;Induction and repair of DNA damage as measured by the Comet assay and the yield of somatic mutations in gamma-irradiated tobacco seedlings.&quot;, Mutat Res. 491(1-2):17&ndash;23</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Puchta, H. (2005), &quot;The repair of double-strand breaks in plants: Mechanisms and consequences for genome evolution.&quot;, J. Exp. Bot. 56(409):1&ndash;14. doi:10.1093/jxb/eri025</span></span></p>
  • <p><span style="font-size:12px">Pzoniak, A., L. Muller, M. Salgo, J.K. Jone, P. Larson and D. Tweats (2009), &quot;Elevated ethyl methansulfonate in nelfinavir mesylate (Viracept, Roche): overview&quot;, <em>Aids Research and Therapy</em>, 6: 18.</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,sans-serif">Rathmell, W.K. &amp; G. Chu (1994), &quot;Involvement of the Ku autoantigen in the cellular response to DNA double-strand breaks.&quot;, Proc. Natl. Acad. Sci. 91(16):7623&ndash;7627. doi:10.1073/pnas.91.16.7623</span></span></p>
  • <p><span style="font-size:12px">Rodriguez, G.P., Song, J.B., Crouse, G.F. (2013), In Vivo Bypass of 8-oxodG, PLoS Genetics, 9:e1003682.</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Sage, E. &amp; N. Shikazono (2017), &quot;Free Radical Biology and Medicine Radiation-induced clustered DNA lesions : Repair and mutagenesis ☆.&quot;, Free Radic. Biol. Med. 107(December 2016):125&ndash;135. doi:10.1016/j.freeradbiomed.2016.12.008</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Saini, N. et al. (2017), &quot;Migrating bubble during break-induced replication drives conservative DNA synthesis&quot;, Nature, 502:389-392.</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Sakofsky, C.J. et al. (2015), &quot;Translesion Polymerases Drive Microhomology-Mediated Break-Induced Replication Leading to Complex Chromosomal Rearrangements&quot;, Mol. Cell, 60:860-872.</span></span></p>
  • <p><span style="font-size:12px">Sassa, A., Kamoshita, N., Kanemaru, Y., Honma, M., Yasui, M. (2015), Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome, PLoS One, 10:e0142218.</span></p>
  • <p><span style="font-size:12px">Seager, A., Shah, U., Mikhail, J., Nelson, B., Marquis, B., Doak, S., Johnson, G., Griffiths, S., Carmichael, P., Scott, S., Scott, A., Jenkins, G. (2012), Pro-oxidant Induced DNA Damage in Human Lymphoblastoid Cells: Homeostatic Mechanisms of Genotoxic Tolerance, Toxicol Sci, 128:387-397.</span></p>
  • <p><span style="font-size:12px">Shelby, M.D. and K.R. Tindall (1997), &quot;Mammalian germ cell mutagenicity of ENU, IPMS and MMS, chemicals selected for a transgenic mouse collaborative study. Mutation Research 388(2-3):99-109.</span></p>
  • <p><span style="font-size:12px">Shrivastav, N., D. Li and J.M. Essignmann (2010), &quot;Chemical biology of mutagenesis and DNA repair: cellular response to DNA alkylation&quot;, <em>Carcinogenesis</em>, 31(1): 59-70.</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Shuman, S. &amp; M.S. Glickman (2007), &quot;Bacterial DNA repair by non-homologous end joining.&quot;, Nat. Rev. Microbiol. 5(11):852&ndash;861. doi:10.1038/nrmicro1768.</span></span></p>
  • <p><span style="font-size:12px">Singer, B., F. Chavez, M.F. Goodman, J.M. Essigman and M.K. Dosanjh (1989), &quot;Effect of 3&#39; flanking neighbors on kinetics of pairing of dCTP or dTTP opposite O6-methylguanine in a defined primed oligonucleotide when Escherichia coli DNA polymerase I is used&quot;, <em>Proc. Natl. Acad. Sci. USA</em>, 86(21): 8271-8274.</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Sishc-Brock J. &amp; A.J. Davis (2017), &quot;The role of the core non-homologous end joining factors in carcinogenesis and cancer.&quot;, Cancers (Basel). 9(7). doi:10.3390/cancers9070081.</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Smith, J. et al. (2001), &quot;The influence of DNA double-strand break structure on end-joining in human cells.&quot;, Nucleic Acids Res. 29(23):4783&ndash;4792</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Smith, J. et al. (2003), &quot;Impact of DNA ligase IV on the &reg; delity of end joining in human cells.&quot;, Nucleic Acids Res., 31(8):2157-67. doi:10.1093/nar/gkg317</span></span></p>
  • <p><span style="font-size:12px">Tan, X., Grollman, A., Shibutani, S. (1999), Comparison of the mutagenic properties of 8-oxo-7,8-dihydro-2&#39;-deoxyadenosine and 8-oxo-7,8-dihydro-2&#39;-deoxyguanosine DNA lesions in mammalian cells, Carcinogenesis, 20:2287-2292.</span></p>
  • <p><span style="font-size:12px">Thomas, A.D., G.J. Jenkins, B. Kaina, O.G. Bodger, K.H. Tomaszowski, P.D. Lewis, S.H. Doak and G.E. Johnson (2013), &quot;Influence of DNA repair on nonlinear dose-responses for mutation&quot;, <em>Toxicol. Sci.</em>, 132(1): 87-95.</span></p>
  • <p><span style="font-size:12px">van Delft, J.H. and R.A. Baan (1995), &quot;Germ cell mutagenesis in lambda lacZ transgenic mice treated with ethylnitrosourea; comparison with specific-locus test&quot;, <em>Mutagenesis</em>, 10(3): 209-214.</span></p>
  • <p><span style="font-size:12px">Wang, C. et al. (2022), &ldquo;Detecting mismatch repair deficiency in solid neoplasms: immunohistochemistry, microsatellite instability, or both?&rdquo;, Mod Pathol, 35, 1515&ndash;1528. https://doi.org/10.1038/s41379-022-01109-4&nbsp;</span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Waters, C.A. et al. (2014), &quot;The fidelity of the ligation step determines how ends are resolved during nonhomologous end joining.&quot;, Nat Commun. 5:1&ndash;11. doi:10.1038/ncomms5286.</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Wessendorf P. et al. (2014), &quot;Mutation Research / Fundamental and Molecular Mechanisms of Mutagenesis Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo.&quot;, Mutat. Res. - Fundam. Mol. Mech. Mutagen. 769:11&ndash;16. doi:10.1016/j.mrfmmm.2014.07.001.</span></span></p>
  • <p><span style="font-size:12px"><span style="font-family:arial,helvetica,sans-serif">Wilson, T.E. &amp; M.R. Lieber (1999), &quot;Efficient Processing of DNA Ends during Yeast Nonhomologous End Joining.&quot;, J. Biol. Chem. 274(33):23599&ndash;23609. doi:10.1074/jbc.274.33.23599.</span></span></p>
  • </div>
  • <div>
  • <h4><a href="/relationships/2609">Relationship: 2609: Increase, Mutations leads to Increase,miRNA levels</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/443"> DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>adjacent</td>
  • <td>Moderate</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>human and other cells in culture</td>
  • <td>human and other cells in culture</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>mice</td>
  • <td>Mus sp.</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Not Otherwise Specified</td>
  • <td>Not Specified</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Female</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Not specific through any particular life stage or gender.</span></span></span></p>
  • <h4>Key Event Relationship Description</h4>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Upstream event: increased, mutations</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Downstream event: increased miRNA</span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">The Key Event Relationship (KER) depicted involves a chain of events associated with genetic changes and molecular responses. The upstream event is characterized by &quot;Increase in Mutations,&quot; indicating a heightened occurrence of changes in the DNA sequence, structure, or arrangement. These mutations can arise from various factors, such as environmental exposures, errors during DNA replication, or DNA repair deficiencies.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">The downstream event in this KER is the &quot;Increase in miRNA levels.&quot; As a consequence of increased mutations, there is an elevation in the levels of microRNAs (miRNAs), which are small non-coding RNA molecules that play a role in regulating gene expression. The alterations in DNA resulting from mutations can influence the expression of miRNAs, leading to changes in their abundance.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">This KER suggests a potential link between genetic changes and miRNA regulation. It highlights the intricate molecular interactions within the cell, where mutations in the genome can impact miRNA expression patterns. Understanding this relationship contributes to a broader understanding of how genetic alterations can influence gene expression and cellular responses.</span></span></span></p>
  • <h4>Evidence Supporting this KER</h4>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Evidences suggest that&nbsp;transcription pathway for miRNAs is regulated in the DNA damage response&nbsp;(DDR). The tumour suppressor p53 is a well-known transcription factor that is activated in response to DNA damage and causes cell growth arrest, promotes apoptosis, inhibits angiogenesis, and mediates DNA repair (Meek et al., 2009). Global miRNA expression investigations identified the miRNA components of p53 transcriptional pathways and demonstrated that a cohort of miRNAs are up-regulated in a p53-dependent manner following DNA damage. The miR-34 family (miR-34a, miR-34b/c) was the first transcriptional target of p53 to be discovered. p53 directly transactivates miR-15a/16-1, miR-29, miR-107, miR-145, miR-192, miR-194, miR-215, and miR-605 in addition to the miR-34 family.</span></span></span></p>
  • <strong>Biological Plausibility</strong>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Various transcription factors regulate miRNA expression.The p53 protein also functions as a transcriptional repressor by binding to miRNA promoters and preventing the recruitment of transcriptional activators.For example, p53 prevents the TATA-binding protein from binding to the TAATA site in the promoter of the miR-17-92 cluster gene, suppressing transcription. Under hypoxic conditions, the miR-17-92 cluster is suppressed by a p53-dependent mechanism, making cells more susceptible to hypoxia-induced death (Yan et al.,2009). Cells can amplify the p53 signal by fine-tuning the p53 signalling pathway and the miRNA network, which improves cell sensitivity to external signals.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Other DNA damage-responsive transcription factors, such as NF-kB, E2F, and Myc, are also involved in miRNA &nbsp;transcription regulation. Both E2F and Myc promote miR-17-92 cluster transcription, which reduces E2F and Myc expression, establishing an autoregulatory negative feedback loop. Furthermore, Myc-induced miRNAs have an impact on cell proliferation and cell fate in Myc-mediated cells (Kim et al.,2010). Myc-induced miR-20a, for example, targets cdkn1a, a gene that encodes a negative regulator of cell-cycle progression, while Myc-induced miR-221 and miR-222 target the CDKN1b and CDKN1c genes, respectively, that trigger cell-cycle arrest. Little is currently known about how miRNA gene expression is transcriptionally regulated due to a lack of basic information about miRNA gene structure. Global prediction and verification of promoter regions of miRNA genes would allow us to further explore the functional interaction of transcriptional machinery and epigenetic miRNA regulation. p53 regulates miRNA maturation not only during transcription but also during processing of initial miRNA transcripts, resulting in crosstalk between the p53 network and the DDR&#39;s miRNA biogenesis machinery. Many p53-regulated miRNAs target proteins in the DDR, such as cell cycle progression and apoptosis, to affect the DDR.</span></span></span></p>
  • <strong>Empirical Evidence</strong>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">There are findings that strongly link the different elements of DNA damage and repair events to the expression of miRNA.</span></span></span></p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Zhang and coworkers examined genome-wide mature miRNA expression in Atm+/+ and Atm-/- littermate mouse embryonic fibroblasts to see how miRNAs are regulated in the DNA damage response (MEFs)(Zhang et al.,2011).</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">MEFs were given neocarzinostatin (NCS), a radiomimetic medication that causes DSBs (Ziv et al., 2006). Mouse miRNA microarray analysis was used to determine miRNA expression profile in each sample, which was done at several time points (0&ndash;24 hr). As many as 71 distinct miRNAs were found to be considerably (2-fold) upregulated in the NCS-treated Atm+/+ MEFs, but not in the corresponding Atm-/- MEFs, implying that DNA damage stress causes broad-spectrum changes in miRNA expression.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">The functioning of the Atm gene is required for the induction of these miRNAs. The DNA damage induction of these miRNAs was entirely eliminated when ATM was knocked out of the Atm-/- MEFs, implying that ATM is a critical regulator of KSRP activity in miRNA synthesis.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">To see if DNA damage enhances the transcription of these miRNAs, researchers used quantitative reverse-transcriptase PCR (RT-PCR) using primer sets built particularly for pri-miRNAs to look at the expression levels of primary miRNA transcripts (pri-mRNAs) in both Atm+/+ and Atm-/- MEFs. Regardless of ATM status, these pri-miRNAs did not show any significant induction or reduction (50 percent change) in transcription levels during the DNA damage response.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">The study used a pair of human fibroblast cell lines with proficient (GM0637) or deficient (GM9607) ATM to assess the levels of six representative mature miRNAs that were randomly selected out of the pool for both ATM- and KSRP-induced miRNAs to confirm that DNA damage-mediated miRNA induction in MEFs was not species specific.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Following NCS treatment, the levels of these miRNAs increased dramatically in ATM-proficient cells but not in ATM-deficient cells, matching the findings from MEFs. DNA damage was not induced by the control miR-218, which is not regulated by ATM or KSRP.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">After DNA damage, -KSRP was necessary for miRNA induction. When KSRP was knocked out, the induction of these miRNAs was significantly reduced, demonstrating a functional connection between KSRP and ATM in miRNA synthesis.</span></span></li>
  • </ul>
  • <p style="text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">According to Wan et al., regulatory RNA-binding proteins in the Drosha and Dicer complexes, such as DDX5 and KSRP, drive posttranscriptional processing of primary and precursor miRNAs after DNA damage. The findings show that nuclear export of pre-miRNAs is increased in an ATM-dependent manner after DNA damage. The ATM-activated AKT kinase phosphorylates Nup153, a main component of the nucleopore, resulting in enhanced interaction between Nup153 and Exportin-5 (XPO5) and increased nuclear export of pre-miRNAs. These findings demonstrate that DNA damage signalling is important for miRNA transport and maturation.</span></span></li>
  • </ul>
  • <p style="text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">To test the DNA-damage induction of miRNAs in human cells, researchers looked at mature miRNA expression in human fibroblast GM0637 cells treated with the radiomimetic drug neocarzinostatin (NCS) in the presence or absence of the ATM inhibitor KU55933.</span></span></li>
  • </ul>
  • <p style="text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">In agreement with previous reports showing that ATM-activated p53 and KSRP promote miRNA expression (Suzuki et al., 2009; Zhang et al., 2011), the study found 61 p53-dependent miRNAs and 29 KSRP-dependent miRNAs among the ATM-induced miRNAs.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">The study also examined </span><span style="font-size:11.0000pt">the levels of different forms of miRNAs (pri- miRNAs, pre-miRNAs, and mature miRNAs) selected from the ATM-induced miRNAs, including KSRP-dependent miRNAs (let-7a, 15a, 15b, 16, 125b, 21, 27b, 98, and 199a), p53- dependent miRNAs (34a), and KSRP/p53-independent miRNAs (181a, 382, and 338). </span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">As a control, miR-218, which is unaffected by DNA damage, was also included in the examination</span><span style="font-size:11.0000pt">.</span><span style="font-size:11.0000pt">&nbsp;With the exception of miR-34a, which is known to be transactivated by p53, there were no significant increases in expression of primary transcripts for these miRNAs following DNA damage. </span><span style="font-size:11.0000pt">-</span><span style="font-size:11.0000pt">These results suggest that DNA damage may promote posttranscriptional maturation of the miRNAs. </span></span></li>
  • </ul>
  • <p style="text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Neither KSRP nor p53 were required for the expression of miR-181a, miR-382, or miR-338. Stable knockdown of KSRP or p53 could not prevent their induction following DNA damage, but knockdown of ATM did, indicating that the increased miRNAs in the DDR are accounted for by another ATM-dependent mechanism. The miR-34a and miR-21 controls were reliant on p53 and KSRP, respectively.</span></span></li>
  • </ul>
  • <p style="text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">These findings imply that DNA damage may increase miRNA maturation after transcription. Neither KSRP nor p53 were required for the expression of miR-181a, miR-382, or miR-338. Stable knockdown of KSRP or p53 could not prevent their induction following DNA damage, but knockdown of ATM did, indicating that the increased miRNAs in the DDR are accounted for by another ATM-dependent mechanism. As previously observed (He et al., 2007; Trabucchi et al., 2009), the controls miR-34a and miR-21 were reliant on p53 and KSRP, respectively.</span></span></li>
  • </ul>
  • <p style="text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">A group of miRNAs is induced in an ATM-dependent way after DNA damage. Prior to NCS (500 ng/ml) treatment, human fibroblast GM0637 (ATM-proficient) cells were pretreated with ATM inhibitor KU55933 (10 mM) or DMSO. For microarray analysis, cells were taken 4 hours after NCS treatment.</span></span></li>
  • </ul>
  • <p style="text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">There was an increase in miRNA levels as well as a drop in miRNA levels.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">The miRNA expression profile from GM0637 cells treated with DMSO or ATM inhibitor was used to identify ATM-dependent (ATM-IN/Ctrl 0.67) and ATM-independent (ATM-IN/Ctrl &gt; 0.67) miRNAs.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Human Mammary Epithelial progenitor Cells (HMEpC) and Human Small Airway Epithelial progenitor Cells (HSAEpC) were cultivated. Cells were cultivated to population doubling 5 before being aliquoted and frozen in Promocell culture media, which contained 10% DMSO and 5% Human Serum Albumin (HSA, Octalbine). All tests used cells cultivated from a freshly thawed vial and expanded until population doubling was reached. Up to 16 population doublings, the HMEpC/HSAEpC maintained their proliferation characteristics (Jaarsveld et al,.2014)</span></span></li>
  • </ul>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">As previously stated, miRNA RT-qPCR expression analysis was performed on 8 normal breast tissue samples and 84 breast tumour tissue samples utilising microfluidic cards (A&amp;B TLDA arrays, Applied Biosystems) (Van der Auwera et al., 2010).</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">MiRNA microarray analysis was carried out on i.untreated and cisplatin/IR treated HMEpC and HSAEpC cells (4 replicates for each condition), (ii) 18 lung tumour tissue tissue samples and 14 adjacent &#39;normal&#39; lung tissue samples (representing NSCLC subtypes), and (iii) 52 breast cancer cell lines (Riaz et al., 2013) and 12 lung cancer cell lines. RNA Bee was used to isolate total &mdash;-RNA (Bio- Connect, the Netherlands). One mg&nbsp;of RNA was hybridised with an Exiqon LNATM-based probeset (versions 10 and 7 for cell lines and lung tissue, respectively), and spotted in duplicate on Nexterion E slides (Pothof et al., 2009).</span></span></li>
  • </ul>
  • <p style="margin-left:24px; text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">The severity of DNA damage determines the outcome of DDR </span><span style="font-size:11.0000pt">signalling</span><span style="font-size:11.0000pt">, i.e. repair and survival or apoptosis/senescence. Since there is evidence in the literature that all these branches within the DDR can be defective in cancer, conditions were established to identify miRNAs that are regulated upon DNA damage in general, independent of biological outcome.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">T</span><span style="font-size:11.0000pt">wo genotoxic therapeutic agents (cisplatin and IR) </span><span style="font-size:11.0000pt">were used </span><span style="font-size:11.0000pt">for which a dose</span><span style="font-size:11.0000pt">&nbsp;was determined</span><span style="font-size:11.0000pt">&nbsp;that allows for cellular recovery after DNA damage and a dose that induces primarily cell death or senescence.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">To define the conditions for recovery clonal survival assay</span><span style="font-size:11.0000pt">&nbsp;was used</span><span style="font-size:11.0000pt">, which determines the capacity of individual cells to recover and form colonies after DNA damage. </span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">0.25 mM cisplatin or 1.5 Gy IR</span><span style="font-size:11.0000pt">&nbsp;were chosen,</span><span style="font-size:11.0000pt">&nbsp;both resulting in a 50% reduction of HMEpC colony formation , thus 50% of all initially damaged cells can still grow out into a colony within 10 days. </span><span style="font-size:11.0000pt">--</span><span style="font-size:11.0000pt">As expected, these conditions activate the DDR and induce cell cycle arrest </span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Following that, a higher dose at which the cells suffer apoptosis following cisplatin treatment was determined using an MTT assay. HMEpC viability was reduced by 50% after 48 hours of treatment with 15 mM cisplatin, which was accompanied by lower cellular PARP1 levels, an apoptosis marker. It&#39;s worth noting that at this concentration, all cells will eventually die. In contrast to cisplatin, a high dose of IR caused cellular senescence rather than apoptosis, which has no effect on cellular viability as assessed by the MTT experiment.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">HMEpCs were treated with low and high doses of cisplatin and IR to characterise the miRNA response to DNA damage. Total RNA was isolated 6 hours, 12 hours, and 24 hours after the commencement of treatment for each genotoxic treatment and dose based on miRNA kinetics after DNA damage treatment (Pothof et al., 2009; Zhang et al., 2011). MiRNA profiling was carried out on 725 human miRNAs utilising miRNA arrays with Locked Nucleic Acid-based capture probes. Before normalisation, the reproducibility between biological replicates (n 14 4) was examined, revealing that the correlation between replicates was higher than that between non-replicates. After normalisation, condition-specific regulation of miRNAs was shown to be dependent on the kind of genotoxic stress and dose, as well as miRNAs that showed oppo-site regulation after IR and cisplatin treatment.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">G</span><span style="font-size:11.0000pt">eneral miRNA responders to DNA damage, i.e. significantly regulated miRNAs across all genotoxic conditions per time point</span><span style="font-size:11.0000pt">&nbsp;were focused.S</span><span style="font-size:11.0000pt">everal general DDR miRNAs </span><span style="font-size:11.0000pt">were identified </span><span style="font-size:11.0000pt">and most were regulated at 6 h and 12 h after treatment , which is in agreement with published miRNA expression kinetics after DNA damage (Pothof et al., 2009;). In conclusion, </span><span style="font-size:11.0000pt">the study could identify </span><span style="font-size:11.0000pt">&nbsp;several miRNAs that can be characterized as general responders to genotoxic cancer treatments in HMEpCs.</span></span></li>
  • </ul>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">In response to stressors like as ionising radiation, miRNAs are differently regulated. When exposed to IR, miRNA expression is frequently disrupted. Some miRNAs are induced by IR, while others are suppressed, a decision that is likely based on the target genes implicated. This figure summarises the miRNAs mentioned in this review whose expression changes in response to IR. Lists of miRNAs whose induction or repression has been detected are on the left and right, respectively. MiRNAs are in the middle, and both induction and repression have been found in many cell types. The centre contains the biggest group of miRNAs, demonstrating how diverse the miRNA profile can be from one cell type to the next. Bold miRNAs play a role in several parts of the DDR. </span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Induced miRNAs were reported by some studies (Cha et al.,2009;Chaudhary et al 201; Chaudhary et al 2012; Chaudhary et al 2013;Kwon et al.,2013;Mueller et al.,2013;Shin et al.,2009;Sokolov et al.,2012;Wagner et al.,2010),whereas repressed miRNAs are observed in some(Cha et al., 2009,Chaudhari et al.,2010).Both induction and repression of some miRNA were seen in different cell types and results are inconclusive (Cha et al.,2009;Chaudhary et al 201; Chaudhary et al 2012; Chaudhary et al 2013;Kwon et al.,2013;Mueller et al.,2013;Shin et al.,2009;Sokolov et al.,2012;Wagner et al.,2010; Kraemer et al., 2011; Moskwa et al.,2011;Niemoeller et al.,2011;Sokolov et al., 2012;Wagner et al.,2010).This inconsistency could be due to different doses of stressor.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">DNA damage response influences miRNA expression, at the same time miRNA can also influence DDR, cell cycle etc.The miR-34 family produces a cell-cycle arrest in the G1 phase and slows cell-cycle progression by targeting multiple cell cycle regulators when ectopically produced, implying tumor-suppressing potential. The miR-34 family, for example, specifically targets and inhibits cyclin-dependent kinase 4 (CDK4), CDK6, E2F3, Myc, and NMYC (Chang &nbsp;et al.,2007,He et al., 2007).</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">MiRNA expression can be influenced by DNA damage and mutation, but miRNA can also regulate DNA damage response and cell cycle.By suppressing the transcripts of numerous genes that govern cell-cycle checkpoints or metabolism, these p53-induced miRNAs contribute to cell-cycle arrest (Su et al.,2010;Georges et al.,2008;Hermeking et al.,2012;Klein et al., 2010; Liu et al.,2011; Suh et al.,2011). Wip1 phosphatase, a master inhibitor in the DDR that inhibits the activation and stability of p53, is targeted and repressed by miR-16 and miR-29, resulting in p53 induction (Ugalde et al.,2011; Zhang et al.,2010). Cellcycle arrest is induced by ectopic expression of miR-192/215, which targets a number of genes that regulate the G1/S and G2/M checkpoints (Bulavin et al.,2004).</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">The oncogene c-Myc is directly targeted by miR-145, implying that p53 suppresses cMyc activities through regulating miRNA expression (Sachdeva et al.,2009, Suh et al.,2011). p53-induced miRNAs, interestingly, influence p53 activity in a positive feedback loop (Han et al.,2012, Hermeking et al.,2012). SIRT1 acetylation and activation are increased when miR-34 inhibits it (Yamakuchi et al., 2008). Mdm2 expression is directly inhibited by miR-192, miR-194, miR-215, and MiR-605, while Wip1 is inhibited by miR-29, resulting in higher p53 levels and activity. (Braun et al.,2008, Pichiorri et al.,2010, Xiao et al., 2011).</span></span></span></p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">The below table gives the evidence for DNA damage responses influencing the expression of miRNA as well as miRNA expression influencing DNA damage response.</span></span></p>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px; width:586px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:57px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Method/ measurement reference</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Reliability</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Strength of evidence</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Assay fit for purpose</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Repeatability/ reproducibility</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Direct measure</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:57px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Human cell line</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Western blotting,clonal survival assay, FACs(Jaarsveld et al., 2014)</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">YEs</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Strong</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td rowspan="4" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:57px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Mice</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Free radic CyQuant cell Proliferation assay (Abdelfattah et al.,2018)</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Strong</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">RNA sequence analysis, Immuno staining, immunoblotting, Flowcytometry, COMET assay, qRT PCR(Liu et al., 2017)</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Strong</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Microarray (Zhang et al.,2011)</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Strong</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">qRT-PCR, RIP assay, Immunogold EM(Wan et al.,2013)</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:57px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Canine</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">micro array(Bulkowska et al., 2017)</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Strong</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Activity of pri-miR-218, pri-miR-16-1, pri-miR-21, and pri- miR-199a had significantly increased binding with Drosha (2.5- to 3.2-fold) after DNA damage (Zhang et al.,2011)</span></span></span></p>
  • <p>&nbsp;</p>
  • <strong>Time-scale</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">It has been noted that, within hours of DNA damage,miRNA expression were induced(Wan et al.,2013).</span></span></span></p>
  • <strong>Known modulating factors</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">miRNA expression profiles are influenced by a variety of DNA damaging stressors. Pothof et al. were the first to notice differences in miRNA expression in cell-cycle checkpoints and DNA repair in UV-treated cells (Pothof et al., 2009). Other DNA damaging agents, such as cisplatin, doxorubicin, IR, and NCS, were used to examine miRNA expression profiles in cells (Galluzzi et al., 2010, Saleh et al.,2011;Suzuki et al.,2009). Different levels of DNA damage appear to activate different groups of miRNAs, implying that miRNAs regulate the DDR through a mechanism that is dependent on the type and severity of the DNA damage.</span></span></span></p>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <p>Not specific ones available.</p>
  • <h4>References</h4>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Abdelfattah, N., Rajamanickam, S., Panneerdoss, S., Timilsina, S., Yadav, P., Onyeagucha, B. C., ... &amp; Rao, M. K. (2018). MiR-584-5p potentiates vincristine and radiation response by inducing spindle defects and DNA damage in medulloblastoma.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature communications</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>9</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(1), 1-19.</span></span></span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Braun, C. J., Zhang, X., Savelyeva, I., Wolff, S., Moll, U. M., Schepeler, T., ... &amp; Dobbelstein, M. (2008). p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer research</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>68</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(24), 10094-10104.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Bulkowska, M., Rybicka, A., Senses, K. M., Ulewicz, K., Witt, K., Szymanska, J., ... &amp; Krol, M. (2017). MicroRNA expression patterns in canine mammary cancer show significant differences between metastatic and non-metastatic tumours.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>BMC cancer</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>17</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(1), 1-17.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Bulavin, D. V., Phillips, C., Nannenga, B., Timofeev, O., Donehower, L. A., Anderson, C. W., ... &amp; Fornace, A. J. (2004). Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK&ndash;mediated activation of the p16 Ink4a-p19 Arf pathway.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature genetics</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>36</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(4), 343-350.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt">&nbsp;<span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Cha, H. J., Shin, S., Yoo, H., Lee, E. M., Bae, S., Yang, K. H., ... &amp; An, S. (2009). Identification of ionizing radiation-responsive microRNAs in the IM9 human B lymphoblastic cell line.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>International journal of oncology</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>34</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(6), 1661-1668.</span></span></span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:11pt">&nbsp;</span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Chaudhry, M. A., &amp; Omaruddin, R. A. (2012). Differential regulation of microRNA expression in irradiated and bystander cells.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular Biology</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>46</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(4), 569-578.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Chaudhry, M. A., Omaruddin, R. A., Brumbaugh, C. D., Tariq, M. A., &amp; Pourmand, N. (2013). Identification of radiation-induced microRNA transcriptome by next-generation massively parallel sequencing.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of radiation research</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>54</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(5), 808-822.</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:11pt">.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:11pt">&nbsp;</span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Chaudhry, M. A., Omaruddin, R. A., Kreger, B., De Toledo, S. M., &amp; Azzam, E. I. (2012). Micro RNA responses to chronic or acute exposures to low dose ionizing radiation.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular biology reports</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>39</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(7), 7549-7558.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Chaudhry, M. A., Sachdeva, H., &amp; Omaruddin, R. A. (2010). Radiation-induced micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>DNA and cell biology</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>29</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(9), 553-561.</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:11pt">.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Chang, T. C., Wentzel, E. A., Kent, O. A., Ramachandran, K., Mullendore, M., Lee, K. H., ... &amp; Mendell, J. T. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular cell</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>26</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(5), 745-752.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Galluzzi, L., Morselli, E., Vitale, I., Kepp, O., Senovilla, L., Criollo, A., ... &amp; Kroemer, G. (2010). miR-181a and miR-630 regulate cisplatin-induced cancer cell death.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer research</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>70</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(5), 1793-1803.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Georges, S. A., Biery, M. C., Kim, S. Y., Schelter, J. M., Guo, J., Chang, A. N., ... &amp; Chau, B. N. (2008). Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer research</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>68</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(24), 10105-10112.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Han, C., Wan, G., Langley, R. R., Zhang, X., &amp; Lu, X. (2012). Crosstalk between the DNA damage response pathway and microRNAs.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cellular and molecular life sciences</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>69</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(17), 2895-2906.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Han, C., Liu, Y., Wan, G., Choi, H. J., Zhao, L., Ivan, C., ... &amp; Lu, X. (2014). The RNA-binding protein DDX1 promotes primary microRNA maturation and inhibits ovarian tumor progression.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell reports</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>8</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(5), 1447-1460.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Hermeking, H. (2012). MicroRNAs in the p53 network: micromanagement of tumour suppression.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature reviews cancer</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>12</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(9), 613-626.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">He, L., He, X., Lim, L. P., De Stanchina, E., Xuan, Z., Liang, Y., ... &amp; Hannon, G. J. (2007). A microRNA component of the p53 tumour suppressor network.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>447</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(7148), 1130-1134.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Kim, J. W., Mori, S., &amp; Nevins, J. R. (2010). Myc-induced microRNAs integrate Myc-mediated cell proliferation and cell fate.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer research</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>70</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(12), 4820-4828.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., ... &amp; Dalla-Favera, R. (2010). The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer cell</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>17</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(1), 28-40.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Kraemer, A., Anastasov, N., Angermeier, M., Winkler, K., Atkinson, M. J., &amp; Moertl, S. (2011). MicroRNA-mediated processes are essential for the cellular radiation response.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Radiation research</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>176</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(5), 575-586.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Kwon, J. E., Kim, B. Y., Kwak, S. Y., Bae, I. H., &amp; Han, Y. H. (2013). Ionizing radiation-inducible microRNA miR-193a-3p induces apoptosis by directly targeting Mcl-1.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Apoptosis</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>18</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(7), 896-909.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Liu, M., Lang, N., Chen, X., Tang, Q., Liu, S., Huang, J., ... &amp; Bi, F. (2011). miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer letters</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>301</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(2), 151-160.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Liu, Z., Zhang, C., Khodadadi-Jamayran, A., Dang, L., Han, X., Kim, K., ... &amp; Zhao, R. (2017). Canonical microRNAs enable differentiation, protect against DNA damage, and promote cholesterol biosynthesis in neural stem cells.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Stem cells and development</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>26</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(3), 177-188.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Meek, D. W. (2009). Tumour suppression by p53: a role for the DNA damage response?.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature Reviews Cancer</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>9</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(10), 714-723.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Moskwa, P., Buffa, F. M., Pan, Y., Panchakshari, R., Gottipati, P., Muschel, R. J., ... &amp; Chowdhury, D. (2011). miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular cell</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>41</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(2), 210-220.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Mueller, A. C., Sun, D., &amp; Dutta, A. (2013). The miR-99 family regulates the DNA damage response through its target SNF2H.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncogene</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>32</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(9), 1164-1172.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Niemoeller, O. M., Niyazi, M., Corradini, S., Zehentmayr, F., Li, M., Lauber, K., &amp; Belka, C. (2011). MicroRNA expression profiles in human cancer cells after ionizing radiation.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Radiation oncology</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>6</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(1), 1-5.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Pichiorri, F., Suh, S. S., Rocci, A., De Luca, L., Taccioli, C., Santhanam, R., ... &amp; Croce, C. M. (2010). Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer cell</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>18</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(4), 367-381.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Pothof, J., Verkaik, N. S., Van Ijcken, W., Wiemer, E. A., Ta, V. T., Van Der Horst, G. T., ... &amp; Persengiev, S. P. (2009). MicroRNA‐</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">mediated gene silencing modulates the UV</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">‐</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">induced DNA</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">‐</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">damage response.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>The EMBO journal</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>28</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(14), 2090-2099.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Riaz, M., van Jaarsveld, M. T., Hollestelle, A., Prager-van der Smissen, W. J., Heine, A. A., Boersma, A. W., ... &amp; Martens, J. W. (2013). miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Breast cancer research</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>15</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(2), 1-17.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Shin, S., Cha, H. J., Lee, E. M., Lee, S. J., Seo, S. K., Jin, H. O., ... &amp; An, S. (2009). Alteration of miRNA profiles by ionizing radiation in A549 human non-small cell lung cancer cells.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>International journal of oncology</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>35</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(1), 81-86.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:11pt">&nbsp;</span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Sokolov, M. V., Panyutin, I. V., &amp; Neumann, R. D. (2012). Unraveling the global microRNAome responses to ionizing radiation in human embryonic stem cells.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>PloS one</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>7</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(2), e31028.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:11pt">&nbsp;</span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Su, X., Chakravarti, D., Cho, M. S., Liu, L., Gi, Y. J., Lin, Y. L., ... &amp; Flores, E. R. (2010). TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>467</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(7318), 986-990.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Suh, S. O., Chen, Y., Zaman, M. S., Hirata, H., Yamamura, S., Shahryari, V., ... &amp; Dahiya, R. (2011). MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Carcinogenesis</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>32</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(5), 772-778.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., ... &amp; Mo, Y. Y. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Proceedings of the National Academy of Sciences</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>106</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(9), 3207-3212.</span></span></span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Suh, S. O., Chen, Y., Zaman, M. S., Hirata, H., Yamamura, S., Shahryari, V., ... &amp; Dahiya, R. (2011). MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Carcinogenesis</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>32</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(5), 772-778.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Saleh, A. D., Savage, J. E., Cao, L., Soule, B. P., Ly, D., DeGraff, W., ... &amp; Simone, N. L. (2011). Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>PloS one</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>6</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(10), e24429.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Suzuki, H. I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., &amp; Miyazono, K. (2009). Modulation of microRNA processing by p53.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>460</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(7254), 529-533.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Ugalde, A. P., Ramsay, A. J., De La Rosa, J., Varela, I., Mari&ntilde;o, G., Cadi&ntilde;anos, J., ... &amp; L&oacute;pez‐</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Ot&iacute;n, C. (2011). Aging and chronic DNA damage response activate a regulatory pathway involving miR</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">‐</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">29 and p53.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>The EMBO journal</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>30</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(11), 2219-2232.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">van Jaarsveld, M. T., Wouters, M. D., Boersma, A. W., Smid, M., van IJcken, W. F., Mathijssen, R. H., ... &amp; Pothof, J. (2014). DNA damage responsive microRNAs misexpressed in human cancer modulate therapy sensitivity.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular oncology</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>8</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(3), 458-468.</span></span></span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Van der Auwera, I., Limame, R., Van Dam, P., Vermeulen, P. B., Dirix, L. Y., &amp; Van Laere, S. J. (2010). Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>British journal of cancer</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>103</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(4), 532-541.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Wan, G., Zhang, X., Langley, R. R., Liu, Y., Hu, X., Han, C., ... &amp; Lu, X. (2013). DNA-damage-induced nuclear export of precursor microRNAs is regulated by the ATM-AKT pathway.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell reports</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>3</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(6), 2100-2112.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Wagner-Ecker, M., Schwager, C., Wirkner, U., Abdollahi, A., &amp; Huber, P. E. (2010). MicroRNA expression after ionizing radiation in human endothelial cells.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Radiation oncology</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>5</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(1), 1-10.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Xiao, J., Lin, H., Luo, X., Luo, X., &amp; Wang, Z. (2011). miR‐</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">605 joins p53 network to form a p53: miR</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">‐</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">605: Mdm2 positive feedback loop in response to stress.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>The EMBO journal</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>30</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(3), 524-532.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Yamakuchi, M., Ferlito, M., &amp; Lowenstein, C. J. (2008). miR-34a repression of SIRT1 regulates apoptosis.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Proceedings of the National Academy of Sciences</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>105</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(36), 13421-13426.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Yan, H. L., Xue, G., Mei, Q., Wang, Y. Z., Ding, F. X., Liu, M. F., ... &amp; Sun, S. H. (2009). Repression of the miR‐</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">17</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">‐</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">92 cluster by p53 has an important function in hypoxia</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">‐</span></span></span><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">induced apoptosis.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>The EMBO journal</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>28</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(18), 2719-2732.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Zhang, X., Wan, G., Mlotshwa, S., Vance, V., Berger, F. G., Chen, H., &amp; Lu, X. (2010). Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer research</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>70</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(18), 7176-7186.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Zhang, X., Wan, G., Berger, F. G., He, X., &amp; Lu, X. (2011). The ATM kinase induces microRNA biogenesis in the DNA damage response.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular cell</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>41</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(4), 371-383.</span></span></span></p>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • </div>
  • <div>
  • <h4><a href="/relationships/2610">Relationship: 2610: Increase,miRNA levels leads to Decrease,SIRT1(sirtuin 1) levels</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/443"> DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>adjacent</td>
  • <td>Moderate</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>human</td>
  • <td>Homo sapiens</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>human and other cells in culture</td>
  • <td>human and other cells in culture</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>mice</td>
  • <td>Mus sp.</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Adult, reproductively mature</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Female</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">The key event relationship was observed in humans,animals irrespective of gender and life stage specificity.</span></span></span></span></p>
  • <h4>Key Event Relationship Description</h4>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Upstream event: Increased, miRNA</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:14px">Downstream event: SIRT1, Reduced</span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:14px">The described Key Event Relationship (KER) outlines a sequence of events involving microRNA (miRNA) regulation and its downstream consequences. The upstream event is characterized by &quot;Increased miRNA,&quot; indicating an elevation in the levels of miRNA molecules within the cell. miRNAs are small non-coding RNA molecules that play a role in post-transcriptional gene regulation by targeting messenger RNAs (mRNAs) for degradation or translational repression.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:14px">The downstream event in this KER is &quot;SIRT1 Reduced,&quot; which suggests a reduction in the levels or activity of the protein SIRT1. SIRT1 is a member of the sirtuin family of proteins involved in various cellular processes, including DNA repair, metabolism, and stress response. The miRNAs, as part of their regulatory function, can target and inhibit the expression of genes, including SIRT1, leading to a decrease in its abundance or function.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:14px">This KER underscores the intricate regulatory mechanisms within cells, where miRNAs can modulate the expression of target genes and consequently influence cellular processes. Understanding these interactions contributes to a comprehensive grasp of how molecular events are interconnected and how changes in miRNA levels can impact downstream protein expression and cellular responses.</span></p>
  • <h4>Evidence Supporting this KER</h4>
  • <strong>Biological Plausibility</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">There are several signaling pathways that establishing the role of increased miRNA expression in downregulating SIRT 1 gene few of which are listed as follows; </span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><strong><span style="font-size:11.0000pt"><strong>Butyrate&ndash;miR-22&ndash;SIRT1 </strong></span></strong></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Butyrate, a short-chain fatty acid, is produced by the intestinal microbiome via anaerobic fermentation and is subsequently absorbed by the hepatocytes (Besten et al., 2013). Butyrate has been demonstrated to cause apoptosis and reduce carcinogenesis in a variety of cancers (Tailor et al.,2014; Rahmani et al.,2002). Although butyrate has been shown to suppress SIRT1 gene expression in various cancers, this has yet to be proven in hepatocellular carcinoma (HCC) (Iglesias et al., 2007). In HCC, miR-22 was found to be downregulated, and its low levels aided carcinogenesis (Zhang et al.,2010). The Huh7 cells&#39; in vitro proliferation was decreased by miR-22 expression, which activated apoptosis. In Huh7 cells, on the other hand, SIRT1 expression was high, which enhanced the expression of antioxidants such superoxide dismutase (SOD), allowing cell growth to continue (Chen </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">.,2012). Butyrate upregulated miR-22 in Huh7 cells, which binds directly to the 3&prime;UTR region of SIRT1 and suppresses its expression; this decreased SOD function and increased ROS generation, increasing caspase 3 and cytochrome c activity, and encouraging apoptosis (Pant </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">&nbsp;.,2017).Furthermore, by downregulating SIRT1, miR22 increased PTEN and gsk-3 expression and downregulated &beta; catenin and p-akt expression and thus may promote apoptosis and decrease HCC proliferation (Pant </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">&nbsp;.,2017).</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><strong><span style="font-size:11.0000pt"><strong>Notch3&ndash;SIRT1&ndash;LSD1&ndash;SOX2 Signaling Pathway </strong></span></strong></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Lysine demethylase 1 (LSD1) is an epigenetic regulator responsible for demethylating various histones and controls the pluripotency of stem cells (Adamo </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">.,2011; Whyte </span><span style="font-size:12.0000pt">et al.,</span><span style="font-size:11.0000pt">&nbsp;2012; Thambyrajah </span><span style="font-size:12.0000pt">et al.,</span><span style="font-size:11.0000pt">&nbsp;2016). </span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">In comparison to normal hepatic parenchyma, HCC cells overexpress LSD1. Furthermore, LSD1 is highly expressed in LCSCs, where it regulates SOX2 gene transcription, promotes self-renewal and carcinogenesis, and is linked to a poor patient prognosis (Liu </span><span style="font-size:12.0000pt">et al.,</span><span style="font-size:11.0000pt">2018). LSD1 demethylated the SOX2 promoter, increasing its expression and improving LCSC stemness in a similar way to SIRT1 via DNMT3A. Acetylation suppresses LSD1&#39;s enzymatic activity and promotes its breakdown via UPP. SIRT1 enhanced the stability of LSD1 by deacetylating it . Notch signalling is essential for cell survival and proliferation (Bouras </span><span style="font-size:12.0000pt">et al.,</span><span style="font-size:11.0000pt">&nbsp;2008). Notch receptors are overexpressed in most HCCs, and their ligand expression has been linked to aggressive tumour characteristics (Tschaharganeh </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">., 2013). The Wnt/-catenin pathway was activated by Notch, which enhanced HCC growth and metastasis (Wang et al.,2016; Wu </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">&nbsp;.,2017). Notch signalling has also been demonstrated to increase CSC self-renewal. SIRT1 expression was enhanced by Notch3 signalling, which also promoted LDS1 deacetylation and activated LSD1 which consequently promotes LCSC self-renewal. The Notch3- dependent pathway was crucial for LCSC self-renewal and in vivo tumor dissemination.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">MiR-133b is a tumour suppressor that has been found to be significantly decreased in a variety of malignancies (Hu </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">.,2010). When compared to paired neighbouring normal tissue, miR-133b expression was shown to be lower in the majority of HCC samples (El-Halawany </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">.,2015). Furthermore, overexpression of miR-133b in HepG2 cells inhibited HCC cell growth and invasion while promoting apoptosis (Tian </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">.,2016). In nude mice with orthotopic HepG2 cell tumours, increase of miR-133b also reduced tumour growth. In human HCC cells, miR-133b targets SIRT1 and has an adverse relationship with it. Increased miR-133b expression significantly reduced SIRT1 mRNA and protein expression. Overall, miR-133b appears to have an anti-cancer effect in HCC cells through suppressing SIRT1 expression.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">In Huh7 and HepG2 cell lines, inhibiting the SIRT1&ndash;SREBP pathway lowered proliferation and DNA synthesis, reduced lipid anabolism, and repressed tumorigenesis (Zhang </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">.,2014).</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">MiR-486 inhibits HCC invasion and tumorigenicity by directly targeting and suppressing SIRT1 expression. This reduced the tumorigenic and chemo-resistant features of LCSCs and inhibited HCC invasion and tumorigenicity (Yan </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">.,2019).</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">The miR-29 family inhibits tumour growth by targeting Mcl-1 and Bcl-2. MiR-29c inhibits hepatocytic SIRT1 and so has tumor-suppressing properties. Ectopic miR-29c expression suppressed cell growth by lowering SIRT1 expression. In hepatocytes, miR-29c directly targets and inhibits SIRT1 mRNA translation (Bae </span><span style="font-size:12.0000pt">et al.,</span><span style="font-size:11.0000pt">&nbsp;2014).</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">SIRT1 was downregulated at the mRNA and protein levels when miR-138 expression was increased. MiR-138 binds to the SIRT1 gene&#39;s 3&prime;UTR unique complimentary site and inhibits SIRT1 expression directly, preventing HCC proliferation, migration, and invasion (Luo </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">.,2017).When compared to the normal hepatic cell line L02, SIRT1 is overexpressed, while miR-138 levels are lowered in HepG2, SMMC7721, Bel7404, and HCCM3 </span></span></span></p>
  • <strong>Empirical Evidence</strong>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">In Jiang et al&#39;s study, the cellular function and molecular mechanism of miR2045p in hepatocellular cancer were investigated (HCC)(Jiang </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">.,2016). Real-time reverse transcription polymerase chain reaction was used to analyze at SIRT1 mRNA and miR2045p. Western blotting was used to determine SIRT1 protein levels. To confirm colony formation, a cell proliferation assay was used. The invasion experiment was carried out using a transwell technique.</span></span></li>
  • </ul>
  • <p style="margin-left:24px; text-align:justify">&nbsp;</p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-Overexpression of miR2045p in human HCC cell lines (BEL7405 and QGY7701) resulted in cell death, increased apoptosis, and increased drug sensitivity. SIRT1 levels were inversely associated to miR2045p levels and were overexpressed in human HCC tissues. These findings suggest that miR204 5p and SIRT1 may play a role in the progression of HCC.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-Introducing miR20405p into BEL7405 and QGY7701 cells lowered SIRT1 mRNA and protein expression. These findings imply that in HCC cells, SIRT1 is a direct target of miR2045.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-It was also found that SIRT1 was negatively related to miR‐204‐5p expression in HCC tissues.</span></span></p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Using real-time PCR and western blot assays, Luo et al discovered that miR-138 expression was low while sirtuin type 1 (Sirt1) mRNA expression was high in hepatocellular carcinoma tissues and cell lines, and that miR-138 functions were achieved by targeting Sirt1 using luciferase reporter gene vector and RNA immunoprecipitation assays(Luo </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">&nbsp;.,2017).</span></span></li>
  • </ul>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-Using CCK-8 and BrdU tests, overexpression of miR-138 reduced Sirt1 expression and hindered cell growth.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-Forced production of Sirt1 in cells could partially reverse the inhibitory impact of miR-138. The study findings demonstrated that miR-138 plays a critical role in the regulation of hepatocellular carcinoma cell development via the miR-138/Sirt1 axis, and that miR-138 could be an important future target for hepatocellular carcinoma clinical therapy.</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Shen et al showed that downregulation of miR-199b is associated with distant metastasis in colorectal cancer via activation of SIRT1 and inhibition of CREB/KISS1 signalling(Shen </span><span style="font-size:12.0000pt">et al.,</span><span style="font-size:11.0000pt">&nbsp;2016).</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">MiR-199b expression levels in six CRC cell lines in comparison to NCM460, a normal colorectal cell line. qRT-PCR detection of relative miR-199b expression after transfection with miR-199b mimics and its negative control (NC).After overexpression of miR-199b, the invasive capacity of SW480 and SW620 cells was examined using the Transwell test.The migratory ability of SW620 and SW480 cells was assessed using a wound healing test. Quantification was done by measuring the wound&#39;s smallest clearance distance.After overexpression of miR-199b, Western blot examination revealed the expression levels of invasion-related molecules MMP2 and MMP9, the epithelial-mesenchymal transition (EMT) marker E-cadherin, and Vimentin.The expression of miR-199b was shown to be adversely linked with SIRT1 in CRC specimens in the study. The effects of SIRT1 knockdown on biological behaviour were similar to those of miR-199b overexpression.Furthermore, &nbsp;Human Tumor Metastasis PCR Array revealed that KISS1 was one of SIRT1&#39;s downstream targets. SIRT1 silencing increased the acetylation of the transcription factor CREB, which increased KISS1 expression. The latter was activated further by attaching to the KISS1 promoter, which resulted in transcription.</span></span></li>
  • </ul>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-According to the findings, miR-199b modulates the SIRT1/CREB/KISS1 signalling pathway and could be used as a prognostic marker or a novel treatment target for CRC patients.</span></span></p>
  • <p style="margin-left:48px; text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">A study by Tian et al found that MicroRNA-133b targets Sirt1 and suppresses hepatocellular carcinoma cell progression(Tian </span><span style="font-size:12.0000pt">et al.,</span><span style="font-size:11.0000pt">&nbsp;2016).qRT-PCR was used to examine miR-133b expression levels in 37 cases of primary hepatoma carcinoma tissues and their surrounding normal equivalents.Sirt1 is a direct target of miR-133b, and its expression in HCC is inversely linked with that of miR-133b.After transfecting the miR-133b expression plasmid into HepG2 and SMMC7721 cells, Sirt1 expression was elevated, indicating that the effect of miR-133b on HCC cells is dependent on Sirt1 repression. In comparison to the control group of HCC cells pretreated with miR-133b overexpression vector, transfection of the Sirt1 overexpression vector restored Sirt1 protein levels.Restoring Sirt1 partially reverses the effect of up-regulation of miR-113b on HCC cell proliferation, invasion, and apoptosis in vitro.</span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">In liver cancer, Yan et al discovered that MicroRNA 486 5p acts as a tumour suppressor of proliferation and cancer stem-like cell characteristics by targeting Sirt1(Yan </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">.,2019).</span></span></li>
  • </ul>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-The qPCR analysis revealed that miR 486 decreased Sirt1 expression in HepG2 and PLC cells. Transfection of a miR 486 inhibitor, on the other hand, enhanced Sirt1 mRNA levels.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-The study focused primarily on Sirt1 as a miR 486 target gene. A luciferase assay in 293T cells was used to further investigate the connection between miR 486 and Sirt1 3&#39;UTR. The Dual Luciferase Assay System was used to detect luciferase activity in cells co transfected with miR 486 mimics or NC using the pGL3-Sirt1-3&#39;UTR vector or pGL3 basic vector. Sirt1-3&#39;UTR reporter firefly luciferase activity was considerably reduced by co-transfection with miR 486 mimics, but not by the pGL3 reporter. Western blot analysis revealed that in the miR 486 overexpression group, Sirt1 was downregulated. Furthermore, IHC labelling revealed that Sirt1 expression was downregulated in tumour tissues produced from miR 486 overexpression cells.</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Zhang et al reported that MicroRNA-22 functions as a tumor suppressor by targeting SIRT1 in renal cell carcinoma (Zhang </span><span style="font-size:12.0000pt">et al., 2016</span><span style="font-size:11.0000pt">).</span></span></li>
  • </ul>
  • <p style="margin-left:48px; text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">-Real-time quantitative RT-PCR was used to determine the miR-22 expression pattern (qRT-PCR).</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-Quantitative real-time PCR results revealed that miR-22 was considerably downregulated in RCC samples compared to non-cancerous tissues, and this was related with tumour stage and lymph node metastasis.In vitro, forced overexpression of miR-22 decreased proliferation, migration, and invasion, as well as promoted cell death, and suppressed tumour growth in vivo, according to a functional investigation.In addition, a luciferase reporter test showed SIRT1 as a direct target of miR-22.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-MiR-22 overexpression suppressed epithelial-mesenchymal transition via activating p53 and its downstream targets p21 and PUMA, as well as the apoptosis markers CASP3 and PARP (EMT). These findings revealed that miR-22 acted as a tumour suppressor in RCC and inhibited RCC growth and metastasis by directly targeting SIRT1, implying an unique therapeutic role for RCC treatment.</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Astragalus Polysaccharides(APS) inhibits Tumorigenesis and Lipid Metabolism Through the miR-138-5p/SIRT1/SREBP1 Pathway in Prostate Cancer ( Guo et al.,2020).APS was discovered to suppress the proliferation and invasion of PCa cells in vitro and in vivo in a dose- and time-dependent manner in the current investigation.Under APS exposure, SIRT1 expression was significantly decreased, according to microarray results.</span></span></li>
  • </ul>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-SIRT1 knockdown enhances AMPK/SREBP1 signalling and its related target genes considerably.</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Bae et al reported that MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma(Bae </span><span style="font-size:12.0000pt">et al.,</span><span style="font-size:11.0000pt">&nbsp;2014).</span></span></li>
  • </ul>
  • <p style="margin-left:48px; text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">-In this study, SIRT1 expression in a subset of HCCs was performed. </span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-The study found that overexpression of SIRT1 increased HCC cell proliferation by inactivating p21Cip1, p27Kip1, and p15INK4B, as well as activating CDK2, CDK6, cyclin D3, and cyclin D1.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-In addition, miRNA expression profiling was used to explore for deregulated miRNAs in HCC, and five miRNAs targeting SIRT1 were shown to be highly downregulated in the disease.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-The liver cancer cell lines SNU-182, HepG2, and Hep3B grew slower when SIRT1 was knocked off.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-miR-29c inhibits SIRT1 mRNA translation in the liver, acting as a tumour suppressor. In the rescue experiment, SIRT1-expressing plasmid (pcDNA3.1- SIRT1-His) or Mock (empty vector, pcDNA3.1-His) were introduced into SNU-182 cell lines in the presence or absence of ectopic miR-29c expression. MiR-29c mimic (miR-29c) and 30 UTR-negative SIRT1 expression plasmids were transfected into cells (pcDNA3.1-SIRT1-His).</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-After 48 h of transfection, endogenous SIRT1, not ectopically expressed SIRT1 (SIRT1-His), was suppressed by ectopic miR-29c transfection as found in Western blot analysis .</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-Anti-growth effect of ectopic miR-29c was attenuated by co-transfection of SIRT1-expressing plasmid</span></span></p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">In a study by Zhou et al,the miR-34a overexpression vector or scramble control was transfected into human Hep3B and Huh7 cell lines(Zhou et al 2017).</span></span></li>
  • </ul>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-To determine the impact of miR-34a expression on HCC cell invasion and migration, researchers performed Transwell assays, Matrigel, and wound healing experiments.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-Using quantitative reverse transcription polymerase chain reaction, the expression of miR-34a and the mRNA expression of other related proteins was discovered, and protein levels were determined using western blot analysis.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-MiR-34a expression was considerably downregulated in Hep3B and Huh7 cells compared to the control, however this was reversed by transfection with exogenous miR-34a.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-Overexpression of miR-34a increased the expression of sirtuin 1 while decreasing the amount of acetylate-p53.</span></span></p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Study by Fu et al concluded that MiRNA-200a induce cell apoptosis in renal cell carcinoma by directly targeting SIRT1(Fu et al.,2018).The expression of miR-200a was found to be considerably lower in renal cell carcinoma (RCC) specimens and RCC cell lines in the study. In RCC cell lines, restoring miR-200a decreased cell growth, halted cell cycle progression, and accelerated cell death.</span></span></li>
  • </ul>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-Sirtuin 1 (SIRT1) was identified as one of the downregulated proteins after miR-200a overexpression in 786-O cells using qRT-PCR array technique. SIRT1 was confirmed as a direct target of miR-200a after a second assay using a luciferase reporter system. Furthermore, knocking down SIRT1 with siRNA could partially mimic the effects of miR-200a overexpression.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-Overexpression of truncated SIRT1 (without an endogenous 30 -UTR) on 786-O cells, on the other hand, may rescue the effect of miR-200a overexpression, suggesting that the SIRT1 30 -UTR is preferentially targeted by miR-200a.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-These findings add to the growing body of data for the miR-200a&#39;s tumor-suppressive effect in RCC, as well as establishing a novel regulatory mechanism that could play a role in SIRT1 overexpression in RCC.</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Study by Lian et al &nbsp;performed Quantitative real-time PCR analysis &nbsp;to detect the expression of microRNA-128 (miR-128) in tissues from patients with CRC and CRC cell lines. The effect of miR-128 on Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), an anti-tumor medication, caused cytotoxicity against CRC cell lines was assessed using MTT assays (Lian </span><span style="font-size:12.0000pt">et al.,2018)</span><span style="font-size:11.0000pt">.</span></span></li>
  • </ul>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-Flow cytometry was used to detect the distribution of death receptor 5 (DR5) and the formation of reactive oxygen species (ROS).Western blot, flow cytometry, and luciferase reporter assays were used to look into the mechanism and pathway of miR-128-induced apoptosis in TRAIL-treated CRC cells.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-MiR-128 expression was found to be downregulated in CRC tumour tissues as well as CRC cell lines in vitro. MiR-128 overexpression made CRC cells more susceptible to TRAIL-induced cytotoxicity through triggering apoptosis. MiR-128 directly targeted sirtuin 1 (SIRT1) in CRC cells, according to bioinformatics, western blot analysis, and luciferase reporter tests. Overexpression of miR128 reduced SIRT1 expression, which increased ROS generation in TRAIL-treated CRC cells.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">This increase of ROS subsequently induced DR5 expression, and thus increased TRAIL-induced apoptosis in CRC cells. </span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">A study by Guan et al confirmed SIRT1 as a direct target of miR-30a by measuring SIRT1 expression in lung cancer cells following overexpression or knockdown of miR-30a and using a luciferase assay (Guan </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">.,2017).</span></span></li>
  • </ul>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-In vitro and in vivo, miR-30a decreased lung cancer cell proliferation, invasion, and increased apoptosis through inhibiting SIRT1.This research discovered a new regulatory axis in which miR-30a and SIRT1 control lung cancer cell proliferation, invasion, and apoptosis, as well as lung carcinogenesis. After overexpression or knockdown of miR-30a, two human lung cancer cell lines (A549 and H1975) were employed to confirm the direct link between miR-30a and SIRT1.Cellular levels of miR-30a were greatly elevated in A549 and H1975 cells transfected with miR-30a mimics and dramatically decreased in cells transfected with miR-30a inhibitor, as expected.As a result, overexpression of miR-30a dramatically decreased SIRT1 protein expression in A549 and H1975 cells, whereas the miR-30a inhibitor considerably boosted SIRT1 protein levels in lung cancer cells. The studies were repeated, and the expression of SIRT1 mRNA after transfection was evaluated to see how much miR-30a influenced SIRT1 expression. The level of SIRT1 mRNA was unaffected by overexpression or knockdown of miR-30a.</span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;- In cells co-transfected with luciferase reporter plasmid and miR-30a mimics, luciferase activity was drastically reduced. Then, to delete the expected miR-30a binding site, point mutations were induced into the SIRT1 3&prime;-UTR binding region. The overexpression or knockdown of miR30a has no effect on this mutant luciferase reporter. This finding revealed that the binding sites play a significant role in miR-30a-SIRT1 mRNA interaction.</span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • <ul>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Yang et al suggested Down-Regulation of miR-221 and miR-222 Restrain Prostate Cancer Cell Proliferation and Migration That Is Partly Mediated by Activation of SIRT1(Yang </span><span style="font-size:12.0000pt">et al.,2014)</span><span style="font-size:11.0000pt">.</span></span></li>
  • </ul>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">- When compared to LNCap cells, PC-3 cells had higher levels of miR-221 and miR-222 expression. The proliferation and migration rates of PC-3 cells dropped after miR-221 or miR-222 expression was inhibited, but the apoptosis rate rose. Furthermore, after cells were transfected with miR-221 or miR-222 inhibitors, SIRT1 protein was up-regulated. In comparison to the controls, cells transfected with siSIRT1 demonstrated greater migration and a lower rate of apoptosis, but no significant influence on cell proliferation. Although there was a negative connection between miR-221 and SIRT1, no direct target relationship was discovered. These findings show that miR-221 and miR-222 are abundant in PC-3 cells. In prostate cancer cells, inhibiting these proteins reduces cell proliferation and migration while increasing apoptosis. Upregulation of SIRT1 may be responsible for these effects.</span></span></span></p>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p>Not specific.</p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:54px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:158px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Method/ measurement reference</span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Reliability</span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Strength of evidence</span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Assay fit for purpose</span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Repeatability/ reproducibility</span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Direct measure</span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:54px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Human tissues</span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:158px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">qRT-PCR,Western blotting,Luciferase reporter assay </span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Micro-array </span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:16px">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Strong</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Yes </span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Yes </span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:54px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Human cell lines</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:158px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Micro-array, qRT-PCR,Western blotting, Luciferase reporter assay</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Micro-array </span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:16px">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Strong</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Yes </span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Yes </span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:54px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Mouse(A1)</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:158px">
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">qRT-PCR,Western blotting,Luciferase reporter assay,ELISA,cell culture</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:16px">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Moderate</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Yes </span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:12.0000pt">Yes </span></span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">No specific pattern of response response relationship was observed.</span></span></span></p>
  • <strong>Time-scale</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">In study by Jiang et al, &nbsp;it was shown that miR‐204‐5p targeting SIRT1 regulates hepatocellular carcinoma progression. The results were noted within 48 hours during the experiment (Jiang </span><span style="font-size:12.0000pt">et al., 2016)</span><span style="font-size:11.0000pt">.</span></span></span></p>
  • <strong>Known modulating factors</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">SIRT1 has been found to have a number of endogenous and external regulators. SIRT1 activity is naturally inhibited by the protein encoded by deleted in breast cancer 1 (DBC1). DBC1 forms a tumour suppressor complex with SIRT1, but knocking out DBC1 increases SIRT1 activity, promoting tumorigenesis. The small molecule resveratrol was the first to be discovered to regulate SIRT1 activity and extend life span. After the effect of resveratrol upon SIRT1 was characterized, high throughput screening was used to find other small molecule activators of SIRT.</span></span></span></p>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><strong><span style="font-size:11.0000pt"><strong>p53-miR-34a&ndash;SIRT1 Signaling Pathway </strong></span></strong></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">0404 is a DNA-damaging substance that has no cytotoxic effects on human hepatocytes that aren&#39;t malignant. In an in vivo HepG2 HCC model, 0404 caused apoptosis and inhibited proliferation. P53 WT HepG2 cells, on the other hand, were more susceptible to 0404 than p53 mutant Huh7 cell lines (Xia </span><span style="font-size:12.0000pt">et al.,2017</span><span style="font-size:11.0000pt">). P53 influences the expression of several miRs. As a result, a large number of miRs target the 3&prime;UTR region of the p53 mRNA. As a result, p53 and miRs could establish a feedback loop (Zhang </span><span style="font-size:12.0000pt">et al.,</span><span style="font-size:11.0000pt">&nbsp;2015). The miR-34 family has been identified as the most common p53-induced miRs and is commonly suppressed in diverse malignancies (Xiao </span><span style="font-size:12.0000pt">et al.,2014</span><span style="font-size:11.0000pt">, Lou </span><span style="font-size:12.0000pt">et al</span><span style="font-size:11.0000pt">.,2015). In HCC cells, miR-34a increased p53 transcription and acetylation while also inducing apoptosis. 0404 enhanced p53 and miR-34a expression, elevated acetylated p53, and downregulated SIRT1 protein expression in HepG2 but not Huh7 cell lines, inhibiting HCC growth (Xiao </span><span style="font-size:12.0000pt">et al.,2014</span><span style="font-size:11.0000pt">).</span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">In HCC, the lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is highly expressed, promoting development and invasion. MALAT1 stimulates the formation of HCC CSCs by activating the mechanistic target of rapamycin (mTOR) signalling pathway (Malakar et al.,2017;Yuan et al 2016). MiR-204, in contrast to MALAT1, promotes apoptosis by activating p53 and suppressing Bcl-2, an anti-apoptotic protein (Ryan et al.,2012 ). Cancer stemness and EMT were also suppressed by miR-204, which increased chemosensitivity (Ryan et al.,2012 ;Sacconi et al.,2012). MALAT1 expression, on the other hand, was negatively linked with miR-204 levels. MALAT1 binds to miR-204 and inhibits its expression by binding directly to it (Hou et al., 2017). SIRT1 appears to play a key role in the interaction between MALAT1 and miR-204. SIRT1 is recognised to play a role in HCC EMT, migration, and invasion. MiR-204 specifically targets SIRT1 and silences it (Hou et al.,2017).</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">However, because SIRT1 and MALAT1 bind to the same miR-204 region, MALAT1 may compete with SIRT1 for miR204 binding, reducing miR-204-induced SIRT1 suppression. Overall, MALAT1 inhibited miR-204 activity, resulting in an elevation in SIRT1, which encouraged HCC migration and invasion (Hou et al., 2017). MALAT1 inhibition reduced the aggressiveness of HCC, making it a possible therapeutic target (Hou et al., 2017).</span></span></span></p>
  • <h4>References</h4>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri">&nbsp;<span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Adamo, A., Barrero, M. J., &amp; Izpisua Belmote, J. C. (2011). LSD1 and pluripotency: a new player in the network.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell Cycle</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>10</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(19), 3215-3216.</span></span></span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Bae, H. J., Noh, J. H., Kim, J. K., Eun, J. W., Jung, K. H., Kim, M. G., ... &amp; Nam, S. W. (2014). MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncogene</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>33</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(20), 2557-2567.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Bai, X. Z., Zhang, J. L., Liu, Y., Zhang, W., Li, X. Q., Wang, K. J., ... &amp; Hu, D. H. (2018). MicroRNA-138 aggravates inflammatory responses of macrophages by targeting SIRT1 and regulating the NF-&kappa;B and AKT pathways.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cellular Physiology and Biochemistry</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>49</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(2), 489-500.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">den Besten, G. K. van Eunen AK Groen K. Venema DJ Reijngoud, and Bakker BM 2013.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. j. Lipid Res</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>54</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">, 2325-2340.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Bouras, T., Pal, B., Vaillant, F., Harburg, G., Asselin-Labat, M. L., Oakes, S. R., ... &amp; Visvader, J. E. (2008). Notch signaling regulates mammary stem cell function and luminal cell-fate commitment.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell stem cell</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>3</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(4), 429-441.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Chen, H. C., Jeng, Y. M., Yuan, R. H., Hsu, H. C., &amp; Chen, Y. L. (2012). SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Annals of surgical oncology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>19</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(6), 2011-2019.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">&nbsp;<span style="background-color:#ffffff"><span style="color:#222222">El-Halawany, M. S., Ismail, H. M., Zeeneldin, A. A., Elfiky, A., Tantawy, M., Kobaisi, M. H., ... &amp; Abdel Wahab, A. H. A. (2015). Investigating the pretreatment miRNA expression patterns of advanced hepatocellular carcinoma patients in association with response to TACE treatment.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>BioMed research international</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>2015</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">&nbsp;<span style="background-color:#ffffff"><span style="color:#222222">Fu, H., Song, W., Chen, X., Guo, T., Duan, B., Wang, X., ... &amp; Zhang, C. (2018). MiRNA-200a induce cell apoptosis in renal cell carcinoma by directly targeting SIRT1.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular and cellular biochemistry</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>437</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 143-152.</span></span>&nbsp;</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Guo, S., Ma, B., Jiang, X., Li, X., &amp; Jia, Y. (2020). Astragalus polysaccharides inhibits tumorigenesis and lipid metabolism through miR-138-5p/SIRT1/SREBP1 pathway in prostate cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Frontiers in Pharmacology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>11</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">, 598.</span></span>&nbsp;</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Guan, Y., Rao, Z., &amp; Chen, C. (2018). miR-30a suppresses lung cancer progression by targeting SIRT1.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncotarget</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>9</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(4), 4924.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">&nbsp;<span style="background-color:#ffffff"><span style="color:#222222">Hou, Z., Xu, X., Zhou, L., Fu, X., Tao, S., Zhou, J., ... &amp; Liu, S. (2017). The long non-coding RNA MALAT1 promotes the migration and invasion of hepatocellular carcinoma by sponging miR-204 and releasing SIRT1.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Tumor Biology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>39</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(7), 1010428317718135.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Hu, G., Chen, D., Li, X., Yang, K., Wang, H., &amp; Wu, W. (2010). miR-133b regulates the MET proto-oncogene and inhibits the growth of colorectal cancer cells in vitro and in vivo.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer biology &amp; therapy</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>10</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(2), 190-197.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Jiang, G., Wen, L., Zheng, H., Jian, Z., &amp; Deng, W. (2016). miR‐204‐5p targeting SIRT1 regulates hepatocellular carcinoma progression.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell biochemistry and function</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>34</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(7), 505-510.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Lian, B., Yang, D., Liu, Y., Shi, G., Li, J., Yan, X., ... &amp; Zhang, R. (2018). miR-128 targets the SIRT1/ROS/DR5 pathway to sensitize colorectal cancer to TRAIL-induced apoptosis.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cellular Physiology and Biochemistry</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>49</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(6), 2151-2162.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Liu, C., Liu, L., Chen, X., Cheng, J., Zhang, H., Zhang, C., ... &amp; Qian, C. (2018). LSD1 stimulates cancer-Associated fibroblasts to drive Notch3-Dependent self-Renewal of liver cancer stem&ndash;like cells.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer research</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>78</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(4), 938-949.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Lou, G., Liu, Y., Wu, S., Xue, J., Yang, F., Fu, H., ... &amp; Chen, Z. (2015). The p53/miR-34a/SIRT1 positive feedback loop in quercetin-induced apoptosis.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cellular Physiology and Biochemistry</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>35</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(6), 2192-2202.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Luo, J., Chen, P., Xie, W., &amp; Wu, F. (2017). MicroRNA-138 inhibits cell proliferation in hepatocellular carcinoma by targeting Sirt1.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncology reports</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>38</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(2), 1067-1074.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Malakar, P., Shilo, A., Mogilevsky, A., Stein, I., Pikarsky, E., Nevo, Y., ... &amp; Karni, R. (2017). Long noncoding RNA MALAT1 promotes hepatocellular carcinoma development by SRSF1 upregulation and mTOR activation.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer research</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>77</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(5), 1155-1167.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Pant, K., Yadav, A. K., Gupta, P., Islam, R., Saraya, A., &amp; Venugopal, S. K. (2017). Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Redox Biology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>12</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">, 340-349.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Rada-Iglesias, A., Enroth, S., Ameur, A., Koch, C. M., Clelland, G. K., Respuela-Alonso, P., ... &amp; Wadelius, C. (2007). Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Genome research</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>17</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(6), 708-719.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Rahmani, M., Dai, Y., &amp; Grant, S. (2002). The histone deacetylase inhibitor sodium butyrate interacts synergistically with phorbol myristate acetate (PMA) to induce mitochondrial damage and apoptosis in human myeloid leukemia cells through a tumor necrosis factor-&alpha;-mediated process.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Experimental cell research</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>277</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 31-47.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Ryan, J., Tivnan, A., Fay, J., Bryan, K., Meehan, M., Creevey, L., ... &amp; Stallings, R. L. (2012). MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>British journal of cancer</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>107</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(6), 967-976.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Sacconi, A., Biagioni, F., Canu, V., Mori, F., Di Benedetto, A., Lorenzon, L., ... &amp; Blandino, G. (2012). miR-204 targets Bcl-2 expression and enhances responsiveness of gastric cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell death &amp; disease</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>3</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(11), e423-e423.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Shen, Z. L., Wang, B., Jiang, K. W., Ye, C. X., Cheng, C., Yan, Y. C., ... &amp; Wang, S. (2016). Downregulation of miR-199b is associated with distant metastasis in colorectal cancer via activation of SIRT1 and inhibition of CREB/KISS1 signaling.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncotarget</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>7</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(23), 35092.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Tailor, D., Hahm, E. R., Kale, R. K., Singh, S. V., &amp; Singh, R. P. (2014). Sodium butyrate induces DRP1-mediated mitochondrial fusion and apoptosis in human colorectal cancer cells.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Mitochondrion</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>16</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">, 55-64.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Tian, Z., Jiang, H., Liu, Y., Huang, Y., Xiong, X., Wu, H., &amp; Dai, X. (2016). MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Experimental cell research</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>343</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(2), 135-147.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Thambyrajah, R., Mazan, M., Patel, R., Moignard, V., Stefanska, M., Marinopoulou, E., ... &amp; Lacaud, G. (2016). GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD1.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature cell biology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>18</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 21-32.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Tschaharganeh, D. F., Chen, X., Latzko, P., Malz, M., Gaida, M. M., Felix, K., ... &amp; Breuhahn, K. (2013). Yes-associated protein up-regulates Jagged-1 and activates the Notch pathway in human hepatocellular carcinoma.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Gastroenterology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>144</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(7), 1530-1542.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Wang, R., Sun, Q., Wang, P., Liu, M., Xiong, S., Luo, J., ... &amp; Cheng, B. (2016). Notch and Wnt/&beta;-catenin signaling pathway play important roles in activating liver cancer stem cells.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncotarget</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>7</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(5), 5754.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Whyte, W. A., Bilodeau, S., Orlando, D. A., Hoke, H. A., Frampton, G. M., Foster, C. T., ... &amp; Young, R. A. (2012). Enhancer decommissioning by LSD1 during embryonic stem cell differentiation.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>482</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(7384), 221-225.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Wu, C. X., Xu, A., Zhang, C. C., Olson, P., Chen, L., Lee, T. K., ... &amp; Wang, X. Q. (2017). Notch inhibitor PF-03084014 inhibits hepatocellular carcinoma growth and metastasis via suppression of cancer stemness due to reduced activation of Notch1&ndash;Stat3.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular cancer therapeutics</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>16</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(8), 1531-1543.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Xiao, Z., Li, C. H., Chan, S. L., Xu, F., Feng, L., Wang, Y., ... &amp; Chen, Y. (2014). A small-molecule modulator of the tumor-suppressor miR34a inhibits the growth of hepatocellular carcinoma.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer research</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>74</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(21), 6236-6247.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Lou, G., Liu, Y., Wu, S., Xue, J., Yang, F., Fu, H., ... &amp; Chen, Z. (2015). The p53/miR-34a/SIRT1 positive feedback loop in quercetin-induced apoptosis.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cellular Physiology and Biochemistry</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>35</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(6), 2192-2202.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Yan, X., Liu, X., Wang, Z., Cheng, Q., Ji, G., Yang, H., ... &amp; Pei, X. (2019). MicroRNA4865p functions as a tumor suppressor of proliferation and cancer stemlike cell properties by targeting Sirt1 in liver cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncology reports</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>41</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(3), 1938-1948.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Yang, X., Yang, Y., Gan, R., Zhao, L., Li, W., Zhou, H., ... &amp; Meng, Q. H. (2014). Down-regulation of mir-221 and mir-222 restrain prostate cancer cell proliferation and migration that is partly mediated by activation of SIRT1.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>PloS one</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>9</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(6), e98833.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Yuan, P., Cao, W., Zang, Q., Li, G., Guo, X., &amp; Fan, J. (2016). The HIF-2&alpha;-MALAT1-miR-216b axis regulates multi-drug resistance of hepatocellular carcinoma cells via modulating autophagy.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Biochemical and biophysical research communications</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>478</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(3), 1067-1073.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Zhang, H., Feng, Z., Huang, R., Xia, Z., Xiang, G., &amp; Zhang, J. (2014). MicroRNA-449 suppresses proliferation of hepatoma cell lines through blockade lipid metabolic pathway related to SIRT1.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>International journal of oncology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>45</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(5), 2143-2152.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Zhang, J., Yang, Y., Yang, T., Liu, Y., Li, A., Fu, S., ... &amp; Zhou, W. (2010). microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>British journal of cancer</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>103</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(8), 1215-1220.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Zhang, S., Zhang, D., Yi, C., Wang, Y., Wang, H., &amp; Wang, J. (2016). MicroRNA-22 functions as a tumor suppressor by targeting SIRT1 in renal cell carcinoma.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncology reports</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>35</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 559-567.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Zhang, Y., Dai, J., Deng, H., Wan, H., Liu, M., Wang, J., ... &amp; Tang, H. (2015). miR-1228 promotes the proliferation and metastasis of hepatoma cells through a p53 forward feedback loop.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>British journal of cancer</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>112</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(2), 365-374.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Zhou, J., Zhou, W., Kong, F., Xiao, X., Kuang, H., &amp; Zhu, Y. (2017). microRNA34a overexpression inhibits cell migration and invasion via regulating SIRT1 in hepatocellular carcinoma Corrigendum in/10.3892/ol. 2019.11048.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncology letters</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>14</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(6), 6950-6954.</span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • </div>
  • <div>
  • <h4><a href="/relationships/2611">Relationship: 2611: Decrease,SIRT1(sirtuin 1) levels leads to Increased activation, Nuclear factor kappa B (NF-kB)</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/443"> DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>adjacent</td>
  • <td>Moderate</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>human and other cells in culture</td>
  • <td>human and other cells in culture</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>human</td>
  • <td>Homo sapiens</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>mice</td>
  • <td>Mus sp.</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Not Otherwise Specified</td>
  • <td>Not Specified</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Female</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">The KER has been noted in human and animal cell lines irrespevtive of gender or any specific life stage.</span></span></span></p>
  • <h4>Key Event Relationship Description</h4>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Upstream event: Decreased, SIRT1</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Downstream event: NF kB activity, Increased</span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">The described Key Event Relationship (KER) delineates a sequence of events involving the regulatory impact of SIRT1 and its downstream effects. The upstream event is characterized by &quot;Decreased SIRT1,&quot; indicating a reduction in the levels or activity of the protein SIRT1. SIRT1 is a member of the sirtuin family of proteins that plays a role in various cellular processes, including gene expression regulation and stress response.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">The downstream event in this KER is an &quot;Increased NF-&kappa;B activity,&quot; signifying an elevation in the activity of the nuclear factor kappa B (NF-&kappa;B) signaling pathway. SIRT1 has been recognized as a modulator of NF-&kappa;B activity. Decreased SIRT1 levels can lead to enhanced NF-&kappa;B activity, potentially due to the loss of SIRT1-mediated deacetylation and inhibition of NF-&kappa;B transcriptional activity.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">This KER underscores the intricate interplay between proteins and signaling pathways within the cell, where changes in the levels of one protein, like SIRT1, can impact downstream signaling and cellular responses. The reduction in SIRT1 levels can contribute to heightened NF-&kappa;B activity, which in turn may influence various cellular processes, including inflammation, immune responses, and stress-related pathways.</span></span></span></p>
  • <h4>Evidence Supporting this KER</h4>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">SIRT1 deacetylates &nbsp;NFkB. In the context of NFkB, all of the evidence so far points to its signalling being inhibited after SIRT1 deacetylation (Morris, 2012). SIRT1 or SIRT1 activation by resveratrol and other polyphenols, in fact, has been found to reduce inflammatory response by deacetylating and inhibiting NFkB in both in vitro and in vivo investigations. The essential significance of NFkB in many cellular processes implicated in inflammation, ageing, cancer, and other diseases makes these findings particularly intriguing.</span></span></span></p>
  • <strong>Biological Plausibility</strong>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">-<span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">The acetylation of many lysines on NFkB has been identified, which leads to its activation (Kiernan et al., 2003). A&nbsp;novel class of deacetylases known as Sirtuins has heightened interest &nbsp;in modulating NFkB activity. The activation of sirtuins actually inhibits NFkB.</span></span></span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">- According to Yeung et al, SIRT1 can directly interact with and deacetylate the RelA/p65 component of the NF-B complex (Yeung et al.,2004). Deacetylation of Lys310 decreased the transactivation ability of the RelA/p65 subunit and, as a result,&nbsp;lowered the transcription of NF-B-dependent genes. Furthermore, deacetylation of Lys310 in the RelA/p65 protein exposed it to methylation at Lys314 and Lys315, resulting in increased ubiquitination and destruction of the protein (Yang&nbsp;et al.,2010). SIRT1 inhibition of NF-B signalling has been demonstrated in a number of recent studies, and activation of SIRT1 could ameliorate a variety of NF-B-driven&nbsp;inflammatory and metabolic illnesses (Salminen et al.,2008; Yu et al.,2010; Yao et al.,2012; Xie et al.,2013).</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">SIRT1 suppresses NF-B signalling either directly by deacetylating the RelA/p65 subunit or indirectly by triggering repressive transcriptional complexes, which frequently involve heterochromatin formation at NF-B promoter regions. SIRT1 expression and signalling are both inhibited by NF-B.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Zhang et al. &nbsp;found that overexpressing RelA/p65 protein increased SIRT1 expression at both the transcriptional and protein levels (36 h treatment), whereas knocking down RelA/p65 expression decreased TNF-induced SIRT1 expression (8 h treatment)(Zhang et al.,2010). They also discovered that the RelA/p65 protein may bind to the SIRT1 promoter&#39;s NF-B motifs. These findings suggest that NF-B may promote SIRT1 expression. Given that SIRT1 induction appeared to occur much later than NF-B activation, it appears that this action could represent a feedback response limiting inflammation and eventually generating endotoxin tolerance.</span></span></p>
  • <strong>Empirical Evidence</strong>
  • <ul>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">According to Lu et al, SIRT1 inhibited the growth of gastric cancer through inhibiting the activation of STAT3 and NF-B (Lu </span><span style="font-size:11.0000pt">et al.,2014)</span><span style="font-size:11.0000pt">. The goal was to look at SIRT1&#39;s regulatory effects on gastric cancer (GC) cells (AGS and MKN-45) as well as the links between SIRT1 and STAT3 and NF-B activation in GC cells. The SIRT1 activator (resveratrol RSV) was discovered to contribute to the repression of viability and increase of senescence, which was reversed by SIRT1 inhibitor (nicotinamide NA) and SIRT1 depletion using the CCK-8 and SA-&beta;-gal&nbsp;assays, respectively. SIRT1 activation (RSV supplement) reduced not only STAT3 activation, including STAT3 mRNA level, c-myc mRNA level, phosphorylated STAT3 (pSTAT3) proteins, and acetylizad STAT3 (acSTAT3) proteins, but also pNF-B p65 and acNF-B p65 suppression. The effects of RSV were reversed by NA.</span></span></li>
  • </ul>
  • <ul>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Furthermore, when STAT3 or NF-B were knocked down, neither RSV nor NA could affect cellular survival or senescence in MKN-45 cells. Overall, the outcomes of the study revealed that SIRT1 activation could cause GC in vitro to lose viability and senescence. Furthermore, our findings demonstrated that SIRT1 inhibited proliferation in GC cells and was related with deacetylation-mediated suppression of STAT3 and NF-B protein activation</span><em><span style="font-size:11.0000pt"><em>.</em></span></em></span></li>
  • </ul>
  • <ul>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">The levels of SIRT1 protein expression in non-small-cell lung cancer (NSCLC) cell lines were examined in a study by Yeung et al.,2004. In comparison to immortalised epithelial human lung NL-20 cells, NSCLC cells exhibit significant quantities of SIRT1 protein, as reported by other researchers (Luo et al, 2001; Vaziri et al, 2001).</span></span></li>
  • </ul>
  • <ul>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Pharmacological modulators of Sirtuin activity were employed to see if NF-kB transcription was regulated by Sirtuins (Landry et al, 2000; Bedalov et al, 2001; Howitz et al, 2003).&nbsp;</span></span></li>
  • </ul>
  • <p><span style="font-family:Arial,Helvetica,sans-serif; font-size:11pt">Transient luciferase reporter experiments revealed that cells pretreated with resveratrol had very minimal NF-kB transcription following the presence of TNFa. TNFa-induced NF-kB activity was boosted when cells were pretreated with the Sirtuin inhibitors nicotinamide or splitomicin. NF-kB transcription was also potentiated in cells treated with trichostatin A (TSA), an HDAC class I and class II inhibitor, as expected.</span></p>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <ul>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">SIRT1 can inhibit NF-&kappa;B signaling directly or indirectly, in turn the NF-&kappa;B system suppresses SIRT1-mediated functions by inhibiting the downstream targets of SIRT1. Given that SIRT1 and NF-&kappa;B signaling have antagonistic characteristics, these pathways control many of the physiologically relevant metabolic and inflammatory switches required for the maintenance of cellular and organismal homeostasis.</span></span></li>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">PGC-1 is a downstream target of the SIRT/AMPK signalling cascade that promotes oxidative metabolism by promoting mitochondrial biogenesis (Fernandez </span><span style="font-size:11.0000pt">et al</span><span style="font-size:11.0000pt">.,2011). In cardiac cells, Alvarez-Guardia et al. found that the RelA/p65 member of the NF-B complex was constitutively linked to the PGC-1 protein. They also discovered that activating NF-B after TNF exposure boosted the association between the RelA/p65 and PGC-1 proteins, resulting in an increase in glucose oxidation (Alvarez </span><span style="font-size:11.0000pt">et al., 2010)</span><span style="font-size:11.0000pt">. These findings show that deacetylation of PGC-1 promotes mitochondrial oxidative respiration, whereas activation of NF-B signalling inhibits SIRT1/PGC-1 communication and activates aerobic glycolysis. This shift is known as the Warburg effect, which can be seen in cancer cells but also in ageing (Salminen </span><span style="font-size:11.0000pt">et al., 2010)</span><span style="font-size:11.0000pt">. Overexpression of PGC-1, on the other hand, decreased the transcriptional activity of NF-B by lowering the phosphorylation of the transactivating RelA/p65 component(Eisele et al.,2013)</span></span></li>
  • </ul>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px; width:586px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:54px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:158px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Method/ measurement reference</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Reliability</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Strength of evidence</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Assay fit for purpose</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Repeatability/ reproducibility</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Direct measure</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:top; width:54px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Human cell line</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:158px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">qRT-PCR,,Luciferase reporter assay </span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Cell based HDAC assay(Luo et al.,2001)</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Strong</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:top; width:54px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Humans</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:158px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">&nbsp;qRT-PCR,immunohistochemistry (McGlynn et al.,2014)</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Strong</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:top; width:54px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Mouse</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:158px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">qRT-PCR,Southern and northern blotting, reporter gene &nbsp;assay(Paul et al.,2008)</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Low</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">-<span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"> Studies have been done on pancreatic cancer cells, Joudah et colleagues investigated the processes and correlations between SIRT1 and NF-B activation .The results showed that a 1 &micro;M&nbsp;&nbsp;SIRT1 aptamer might limit NF-B activation by increasing SIRT1 protein activity(Joudah </span></span></span></span><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">et al.,2021). According to the findings of SIRT1 aptamer mechanisms, it is possible that SIRT1 aptamer will be used in the treatment of pancreatic cancer in the future.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">-To explore the mechanism of SIRT1 aptamer in cell lines, SIRT1 activity was measured in parallel on Aspc-1, BxPc-3, and Capan-2 cell lines under the same conditions. SIRT1 activity was measured in BxPc-3 cell lines using SIRT1 aptamer at 0.25, 0.5, and 1M. Then, using 100M resveratrol (SIRT1 activator control), 100M suramin, and nicotinamide(SIRT1 inhibitor control), assess its activity .</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">-The results revealed that using SIRT1 aptamer at 1M boosted SIRT1 activity in Capan-2 cells when compared to high concentrations of 100M resveratrol, 100M Suramin, and 100M Nicotinamide.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">-The activation of SIRT1 in the Aspc-1 cell line when treated with SIRT1 at 1&micro;M&nbsp;was higher than that of 100&micro;M&nbsp;resveratrol, Suramin, and Nicotinamide.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">-the effect of SIRT1 aptamer on NF-kB activation was determined in nuclear extracts of BxPC-3, Capan-2, and AsPC-1 cell lines using an ELISA-based test to measure the capacity of NF-kB p65 subunit for DNA-binding.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">-At 1 &micro;M, adding a SIRT1 aptamer caused biphasic alterations in NF-kB. At 8 hours, NF-kB binding activity in Bx-PC-3, Capan-2, and AsPC-1 cell lines was reduced by 150 percent, 130 percent, and 130 percent, respectively, compared to control 100 percent. In Bx-PC-3,Capan-2, and AsPC-1 cell lines, the decline was 180 percent, 145 percent, and 140 percent of the control 100 percent, P&lt;0.005 at 16 hours respectively.</span></span></p>
  • <strong>Time-scale</strong>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">The events connected by this KER occur within hours.</span></span></p>
  • <strong>Known modulating factors</strong>
  • <ul>
  • <li><span style="font-size:16px"><span style="font-family:Arial,Helvetica,sans-serif"><sup><span style="color:#202122">NF-B can be activated by cytokines (TNF-, IL-1), growth factors (EGF), bacterial and viral products (lipopolysaccharide (LPS), dsRNA), UV and ionising radiation, reactive oxygen species (ROS), DNA damage, and oncogenic stress from inside the cells. Almost all stimuli eventually activate a large cytoplasmic protein complex called the inhibitor of B (IB) kinase (IKK) complex via a so-called &quot;canonical pathway.&quot; The exact composition of this complex is unknown, however it has three fundamental components: IKK1/IKK, IKK2/IKK, and NEMO/IKK. IB is phosphorylated by the activated IKK complex, which marks it for destruction by the -transducin repeat-containing protein (-TrCP)-dependent E3 ubiquitin ligase-mediated proteasomal degradation pathway (Liu et al., 2012;Li et al., 2002). As a result, unbound NF-B dimers can go from the cytoplasm to the nucleus, bind to DNA, and control gene transcription.</span></sup></span></span></li>
  • <li><span style="font-size:16px"><span style="font-family:Arial,Helvetica,sans-serif"><sup><span style="color:#202122">SIRT6 is a nuclear sirtuin that regulates the acetylation status and transcriptional activity of HIF1 and NFkB. SIRT6 deacetylates histone 3 lysine 8 (H3K9) at HIF1 target gene promoters and so acts as a corepressor of HIF1 transcriptional activity. SIRT6 modulation of glucose flow appears to be crucial, as SIRT6 deficiency results in fatal hypoglycemia (Zhong et al., 2010). SIRT6 inhibits NFkB function through a mechanism that is strikingly similar. SIRT6 also deacetylates H3K9 on the promoters of specific NFkB target genes, reducing NFkB&#39;s accessibility to these promoters (Kawahara et al., 2009). SIRT6 has a compensating impact in SIRT1 deficient animals, attenuating the enhanced NFkB activity due to an elevated acetylation state (Schug et al., 2010). Finally, although having different methods, both SIRT1 and SIRT6 are negative regulators of NFkB activity.</span></sup></span></span></li>
  • <li><span style="font-size:16px"><span style="font-family:Arial,Helvetica,sans-serif"><sup><span style="color:#202122">SIRT2 has been demonstrated to deacetylate the cytoplasmic lysine 310 (K310) of NFkB subunit p65 (Rothgiesser et al., 2010). SIRT2 suppresses NFkB activation and transcription of NFkB target genes in response to TNF stimulation in this way (Rothgiesser et al., 2010). After TNF exposure, SIRT2 silenced cells show higher NFkB activity and a reduced probability of cell death (Rothgiesser et al., 2010). As a result, SIRT2 in the cytosol and SIRT1 in the nucleus can both deacetylate NFkB.</span></sup></span></span></li>
  • </ul>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <ul>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">SIRT1 and AMPK have a close interaction in the control of energy metabolism and inflammation as they can promote each other&#39;s activity (Ruderman et al., 2010). SIRT1 stimulates AMPK by deacetylating LKB1, which then activates AMPK (Lan et al., 2008), whereas AMPK promotes the synthesis of cellular NAD+, which is necessary for SIRT1 activity (Canto et al.,2009). SIRT1 and AMPK have many similar activities in the control of energy metabolism as a result of this positive feedback.</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">AMPK appears to be an efficient inhibitor of NF-B signalling and inflammatory reactions, according to new research. This topic was recent discussed in depth (Salminen et al.,2011). In a nutshell, AMPK inhibits RelA/p65 by activating SIRT1. PGC-1 is also phosphorylated by AMPK, which increases its activation (Canto et al.,2009). As a result, PGC-1 can block RelA/p65-mediated NF-B signalling.</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">The transcription factor FoxO3a, which is involved in metabolic and immunological homeostasis, was activated by AMPK (Eijkelenboom et al.,2013). Overexpression of FoxO3a decreased NF-B activation in cultured cells, such as after TNF treatment, by suppressing nuclear translocation of the RelA/p65 component. The inhibition of NF-B signalling by FoxO3a was corroborated in a study (Lee et al.,2008) who found that overexpression of FoxO3a caused the production of B-Ras1, an inhibitor of NF-B activation. However, FoxO3a has recently been discovered to activate the NF-B system via BCL10, which is expressed in B lymphocytes (Li et al., 2012).</span></span></li>
  • </ul>
  • <h4>References</h4>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Alvarez-Guardia, D., Palomer, X., Coll, T., Davidson, M. M., Chan, T. O., Feldman, A. M., ... &amp; V&aacute;zquez-Carrera, M. (2010). The p65 subunit of NF-&kappa;B binds to PGC-1&alpha;, linking inflammation and metabolic disturbances in cardiac cells.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cardiovascular research</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>87</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(3), 449-458.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Bedalov, A., Gatbonton, T., Irvine, W. P., Gottschling, D. E., &amp; Simon, J. A. (2001). Identification of a small molecule inhibitor of Sir2p.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Proceedings of the National Academy of Sciences</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>98</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(26), 15113-15118.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Cant&oacute;, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., ... &amp; Auwerx, J. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>458</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(7241), 1056-1060.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Cant&oacute;, C., &amp; Auwerx, J. (2009). PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Current opinion in lipidology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>20</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(2), 98.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Eijkelenboom, A., &amp; Burgering, B. M. (2013). FOXOs: signalling integrators for homeostasis maintenance.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature reviews Molecular cell biology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>14</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(2), 83-97.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Fernandez-Marcos, P. J., &amp; Auwerx, J. (2011). Regulation of PGC-1&alpha;, a nodal regulator of mitochondrial biogenesis.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>The American journal of clinical nutrition</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>93</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(4), 884S-890S.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., ... &amp; Sinclair, D. A. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>425</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(6954), 191-196.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Kawahara, T. L., Michishita, E., Adler, A. S., Damian, M., Berber, E., Lin, M., ... &amp; Chua, K. F. (2009). SIRT6 links histone H3 lysine 9 deacetylation to NF-&kappa;B-dependent gene expression and organismal life span.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>136</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 62-74.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Kiernan, R., Br&egrave;s, V., Ng, R. W., Coudart, M. P., El Messaoudi, S., Sardet, C., ... &amp; Benkirane, M. (2003). Post-activation turn-off of NF-&kappa;B-dependent transcription is regulated by acetylation of p65.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of Biological Chemistry</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>278</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(4), 2758-2766.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Lan, F., Cacicedo, J. M., Ruderman, N., &amp; Ido, Y. (2008). SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1: possible role in AMP-activated protein kinase activation.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of Biological Chemistry</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>283</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(41), 27628-27635.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Landry, J., Slama, J. T., &amp; Sternglanz, R. (2000). Role of NAD+ in the deacetylase activity of the SIR2-like proteins.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Biochemical and biophysical research communications</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>278</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(3), 685-690.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">&nbsp;<span style="background-color:#ffffff"><span style="color:#222222">Lee, H. Y., Youn, S. W., Kim, J. Y., Park, K. W., Hwang, C. I., Park, W. Y., ... &amp; Kim, H. S. (2008). FOXO3a turns the tumor necrosis factor receptor signaling towards apoptosis through reciprocal regulation of c-Jun N-terminal kinase and NF-&kappa;B.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Arteriosclerosis, thrombosis, and vascular biology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>28</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 112-120.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Li, Z., Zhang, H., Chen, Y., Fan, L., &amp; Fang, J. (2012). Forkhead transcription factor FOXO3a protein activates nuclear factor &kappa;B through B-cell lymphoma/leukemia 10 (BCL10) protein and promotes tumor cell survival in serum deprivation.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of Biological Chemistry</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>287</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(21), 17737-17745.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Liu, F., Xia, Y., Parker, A. S., &amp; Verma, I. M. (2012). IKK biology.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Immunological reviews</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>246</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 239-253.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Li, Q., &amp; Verma, I. M. (2002). NF-&kappa;B regulation in the immune system.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature reviews immunology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>2</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(10), 725-734.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Lu, J., Zhang, L., Chen, X., Lu, Q., Yang, Y., Liu, J., &amp; Ma, X. (2014). SIRT1 counteracted the activation of STAT3 and NF-&kappa;B to repress the gastric cancer growth.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>International journal of clinical and experimental medicine</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>7</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(12), 5050.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Luo, J., Nikolaev, A. Y., Imai, S. I., Chen, D., Su, F., Shiloh, A., ... &amp; Gu, W. (2001). Negative control of p53 by Sir2&alpha; promotes cell survival under stress.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>107</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(2), 137-148.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Joudah, M. S., Arif, I. S., &amp; Al-Sudani, B. T. (2021). Crosstalk Between Sirt1 Activators And Nf-&Kappa;b Axis As A Therapeutic Target To Reduce Pancreatic Cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Systematic Reviews in Pharmacy</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>12</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(3), 207-212.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">McGlynn, L. M., Zino, S., MacDonald, A. I., Curle, J., Reilly, J. E., Mohammed, Z. M., ... &amp; Shiels, P. G. (2014). SIRT2: tumour suppressor or tumour promoter in operable breast cancer?.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>European Journal of Cancer</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>50</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(2), 290-301.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Yang, L., Wu, D., Wang, X., &amp; Cederbaum, A. I. (2012). Cytochrome P4502E1, oxidative stress, JNK, and autophagy in acute alcohol-induced fatty liver.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Free Radical Biology and Medicine</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>53</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(5), 1170-1180.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M., &amp; Tsch&ouml;p, M. H. (2008). Sirt1 protects against high-fat diet-induced metabolic damage.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Proceedings of the national academy of sciences</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>105</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(28), 9793-9798.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Rothgiesser, K. M., Erener, S., Waibel, S., L&uuml;scher, B., &amp; Hottiger, M. O. (2010). SIRT2 regulates NF-&kappa;B-dependent gene expression through deacetylation of p65 Lys310.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of cell science</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>123</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(24), 4251-4258.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Ruderman, N. B., Xu, X. J., Nelson, L., Cacicedo, J. M., Saha, A. K., Lan, F., &amp; Ido, Y. (2010). AMPK and SIRT1: a long-standing partnership?.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>American Journal of Physiology-Endocrinology and Metabolism</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Salminen, A., &amp; Kaarniranta, K. (2010). Glycolysis links p53 function with NF‐&kappa;B signaling: Impact on cancer and aging process.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of cellular physiology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>224</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 1-6.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Eisele, P. S., Salatino, S., Sobek, J., Hottiger, M. O., &amp; Handschin, C. (2013). The peroxisome proliferator-activated receptor &gamma; coactivator 1&alpha;/&beta; (PGC-1) coactivators repress the transcriptional activity of NF-&kappa;B in skeletal muscle cells.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of Biological Chemistry</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>288</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(4), 2246-2260.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Salminen, A., Kauppinen, A., Suuronen, T., &amp; Kaarniranta, K. (2008). SIRT1 longevity factor suppresses NF‐&kappa;B‐driven immune responses: regulation of aging via NF‐&kappa;B acetylation?.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Bioessays</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>30</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(10), 939-942.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Salminen, A., Hyttinen, J. M., &amp; Kaarniranta, K. (2011). AMP-activated protein kinase inhibits NF-&kappa;B signaling and inflammation: impact on healthspan and lifespan.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of molecular medicine</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>89</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(7), 667-676.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Schug, T. T., Xu, Q., Gao, H., Peres-da-Silva, A., Draper, D. W., Fessler, M. B., ... &amp; Li, X. (2010). Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular and cellular biology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>30</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(19), 4712-4721.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Vaziri, H., Dessain, S. K., Eaton, E. N., Imai, S. I., Frye, R. A., Pandita, T. K., ... &amp; Weinberg, R. A. (2001). hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>107</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(2), 149-159.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Xie, J., Zhang, X., &amp; Zhang, L. (2013). Negative regulation of inflammation by SIRT1.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Pharmacological Research</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>67</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 60-67.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Yao, H., &amp; Rahman, I. (2012). Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Biochemical pharmacology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>84</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(10), 1332-1339.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Yang, X. D., Tajkhorshid, E., &amp; Chen, L. F. (2010). Functional interplay between acetylation and methylation of the RelA subunit of NF-&kappa;B.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular and cellular biology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>30</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(9), 2170-2180.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Yeung, F., Hoberg, J. E., Ramsey, C. S., Keller, M. D., Jones, D. R., Frye, R. A., &amp; Mayo, M. W. (2004). Modulation of NF‐&kappa;B‐dependent transcription and cell survival by the SIRT1 deacetylase.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>The EMBO journal</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>23</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(12), 2369-2380.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Yu, J., &amp; Auwerx, J. (2010). Protein deacetylation by SIRT1: an emerging key post-translational modification in metabolic regulation.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Pharmacological research</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>62</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 35-41.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Zhang, H. N., Li, L., Gao, P., Chen, H. Z., Zhang, R., Wei, Y. S., ... &amp; Liang, C. C. (2010). Involvement of the p65/RelA subunit of NF-&kappa;B in TNF-&alpha;-induced SIRT1 expression in vascular smooth muscle cells.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Biochemical and biophysical research communications</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>397</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(3), 569-575.</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Zhong, L., D&#39;Urso, A., Toiber, D., Sebastian, C., Henry, R. E., Vadysirisack, D. D., ... &amp; Mostoslavsky, R. (2010). The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1&alpha;.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>140</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(2), 280-293.</span></span></span></span></p>
  • <p style="margin-left:24px">&nbsp;</p>
  • </div>
  • <div>
  • <h4><a href="/relationships/2612">Relationship: 2612: Increased activation, Nuclear factor kappa B (NF-kB) leads to Antagonism, Estrogen receptor</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/443"> DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>adjacent</td>
  • <td>Moderate</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>human</td>
  • <td>Homo sapiens</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>mice</td>
  • <td>Mus sp.</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Not Otherwise Specified</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Female</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">KER has been observed in humans and animals irrespective of the gender and life stage.</span></span></span></span></p>
  • <h4>Key Event Relationship Description</h4>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Upstream event: Increased, NF kB activity</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Downstream event: Estrogen receptor, Reduced</span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">The described Key Event Relationship (KER) outlines a sequence of events involving the activation of the nuclear factor kappa B (NF-&kappa;B) pathway and its impact on the estrogen receptor. The upstream event is marked by &quot;Increased NF-&kappa;B activity,&quot; signifying an elevation in the activation of the NF-&kappa;B signaling pathway. NF-&kappa;B is a transcription factor that plays a crucial role in various cellular processes, including inflammation, immune response, and cell survival.</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">The downstream event in this KER is &quot;Reduced Estrogen receptor,&quot; indicating a decrease in the levels or activity of the estrogen receptor. The NF-&kappa;B pathway has been linked to the modulation of estrogen receptor function. Increased NF-&kappa;B activity can lead to the downregulation or interference of estrogen receptor signaling, which can affect cellular responses to estrogen and its related pathways.</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">This KER emphasizes the intricate cross-talk between signaling pathways and transcriptional regulation within cells. The heightened NF-&kappa;B activity can exert downstream effects on the estrogen receptor, potentially impacting hormone-related processes and cellular functions. Understanding these interactions contributes to a broader comprehension of how cellular pathways influence each other and how changes in one pathway can lead to consequences in another.</span></span></span></span></p>
  • <h4>Evidence Supporting this KER</h4>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Activation NF-&kappa;B in breast cancer leads to loss of Estrogen Receptor (ER) expression and Human Epidermal Growth Fac- tor Receptor 2 (HER-2) overexpressed via epidermal growth factor receptor (EGFR) and Mitogen Activated Protein Kinase (MAPK) pathway (Laere </span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">et al.,2007)</span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">. Indeed, the binding of epidermal growth factor (EGF) to its receptor (EGFR) activates NF-B, which most likely contributes to this transcription factor&#39;s increased activity in ER negative breast cancer cells (Shostak </span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">et al.,</span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">2011). Because of constitutive production of cytokines and growth factors, loss of ER function has been linked to constitutive NF-kB activity and hyperactive MAPK, resulting in aggressive, metastatic, hormone-resistant malignancies (Ali </span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">et al.,</span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">&nbsp;2002). Activation of the progesterone receptor can reduce DNA binding and transcriptional activity by inhibiting NF-B-driven gene expression (Kalkhoven et al., 1996). HER-2 stimulates NF-B via the conventional route, which includes IKK (Merkhofer </span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">et al.,</span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">&nbsp;2010).</span></span></span></span></p>
  • <strong>Biological Plausibility</strong>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">-NF-kB activation in breast cancer has been extensively documented in oestrogen receptor negative (ER) breast tumours and ER breast cancer cell lines, implying a significant inhibitory interaction between both signalling pathways (Biswas et al, 2000, 2001, 2004; Zhou et al, 2005). A rise in both NF-kB DNA-binding activity (Nakshatri et al, 1997) and expression of NF-kB target genes such IL8 coincides with a transition from oestrogen dependence to oestrogen independence in breast cancer, indicating inhibitory cross-talk. The fact that some breast tumours that are resistant to the tumoricidal action of anti-estrogens become sensitised to apoptosis and show a drop in NF-kB activity after treatment with oestrogen supports the inverse relationship between ER and NF-kB activity. </span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">-This shows that oestrogen&#39;s proapoptotic actions in these tumours are mediated via NF-kB suppression.</span></span></span></span></p>
  • <strong>Empirical Evidence</strong>
  • <p>&nbsp;</p>
  • <ul>
  • <li><span style="font-size:11.0000pt"><span style="font-family:Calibri">In specific subclasses of human breast cancer cells and tumour tissue specimens, an enhanced level of activated NF-kB is found, primarily in erbB2-overexpressing ER-negative breast cancer (Biswas et al 2000;2003).</span></span></li>
  • </ul>
  • <p>&nbsp;</p>
  • <ul>
  • <li><span style="font-size:11.0000pt"><span style="font-family:Calibri">Singh et al explored a variety of methods to inhibit NF-kB activation in ER-negative breast cancer cells and looked at the effects on cell proliferation, apoptosis, and tumour growth in xenografts(Singh et al.,2007). Several cell lines were utilised as representative cultured cell models for subclasses of human breast cancer, including ER negative and erbB2 positive (SKBr3 and MDA-MB453), ER negative and erbB1 positive (MDA-MB231), and ER positive and erbB1/erbB2 negative (MCF-7). IKK, the primary kinase in NF-nB activation, was disabled using a conditional dominant-negative gene construct and small-molecule inhibitors. Bortezomib, a proteasome inhibitor, was used to prevent NF-kB activation.</span></span></li>
  • </ul>
  • <p><span style="font-size:11.0000pt"><span style="font-family:Calibri">-The study compared the results of NF-kB activation patterns in ER-negative and erbB2-positive SKBr3 and MDA-MB453 cell lines as representative functional systems of this subclass of human breast cancer to the ER-positive and erbB2-negative MCF-7 cell line. Growing SKBr3 cells in deficient (minimum) media followed by supplementation with the particular mitogenic growth factor HRG (+HRG) allowed the degree of activated NF-kB to be experimentally controlled. This therapy increased IKK activity in as little as 15 minutes, while also increasing NF-nB DNA-binding activity and NF-nB&ndash;driven reporter gene expression. These findings imply that HRG-initiated signalling in erbB2-positive cells is mediated by IKK-induced NF-kB activation. MDA-MB453, a second erbB2-positive and ER-negative breast cancer cell line, showed similar results.</span></span></p>
  • <p>&nbsp;</p>
  • <ul>
  • <li><span style="font-size:11.0000pt"><span style="font-family:Calibri">In a prospective cohort study, Sampepajung et al used immunohistochemistry (IHC) to examine NF-B expression and intrinsic subtypes of breast cancer tissue and found a significant correlation between negative ER and overexpression of NF-B (p 0.05), with overexpression of NF-B being higher in negative ER (77.3 percent) compared to positive ER (47.4 percent )( Sampepajung et al., 2021)</span></span></li>
  • </ul>
  • <p>&nbsp;</p>
  • <ul>
  • <li><span style="font-size:11.0000pt"><span style="font-family:Calibri">Laere et al suggested that activation of NF-kB in inflammatory breast cancer (IBC) is associated with loss of estrogen receptor (ER) expression, indicating a potential crosstalk between NF-kB and ER(Laere et al.,2007).</span></span></li>
  • </ul>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11.0000pt"><span style="font-family:Calibri">In this study, the activation of NF-kB in IBC and non-IBC cells was investigated in relation to ER and EGFR expression, ErbB2 expression, and MAPK hyperactivation.The expression of eight NF-kB target genes was associated with the expression of a qRT&ndash;PCR-based ER signature in tumours with and without transcriptionally active NF-kB. Hierarchical clustering was performed using a combined ER/NF-kB signature. MAPK hyperactivation was associated to tumour phenotype, ER and EGFR overexpression, and/or ErbB2 overexpression, according to a recently reported MAPK signature.</span></span></p>
  • <p><span style="font-size:11.0000pt"><span style="font-family:Calibri">In breast tumours without transcriptionally active NF-kB, the expression of most ER-modulated genes was much higher. Furthermore, the expression of most ER-modulated genes was highly anticorrelated with that of most NF-kB target genes, demonstrating that ER and NF-kB activity are inversely related.</span></span></p>
  • <p><span style="font-size:11.0000pt"><span style="font-family:Calibri">-The activation of the transcription factors of &nbsp;ER and NF-kB are inversely linked.</span></span></p>
  • <ul>
  • <li><span style="font-size:11.0000pt"><span style="font-family:Calibri">Indra et al employed the prospective cohort approach to investigate 62 samples in an observational analysis.The positive and negative expression of NF-B, ER, and HER2 overexpression were among the data used in this investigation(Indra et al.,2021). The cases were separated into two groups: those who responded to neoadjuvant chemotherapy and those who did not. Negative NF-B expression (82.5%), positive HER2 status (85.7%), and negative ER status (85.7%) were all associated with a larger percentage of responding individuals (71.9 percent ).</span></span></li>
  • </ul>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">-NF-B expression, ER status, and HER2 all had a substantial relationship with the response to anthracycline-based neoadjuvant chemotherapy for locally advanced breast cancer, with NF-B expression having the strongest link.</span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">-A higher percentage of responding participants (71.9 percent) had a negative ER status, indicating that ER expression and chemotherapy response have a substantial relationship (p 0.05).</span></span></span></span></p>
  • <ul>
  • <li><span style="font-size:11.0000pt"><span style="font-family:Calibri">This finding &nbsp;is consistent with alanalysis by Osako et al, of 103 individuals with locally advanced KPD. Neoadjuvant chemotherapy with anthracyclines and taxanes was given to the patients. The pCR chemotherapy results were significantly correlated with negative ER and PR expression results (Osako et al.,2012).</span></span></li>
  • </ul>
  • <p><span style="font-size:11.0000pt"><span style="font-family:Calibri">The expression of NF-B, HER2, and ER status has a strong association with chemotherapy response, according to these findings. Multivariate analysis of the specific association between NF-B expression and chemotherapeutic response revealed that NF-B expression and HER2 status were both related with chemotherapy response , whereas ER status had no such relationship.</span></span></p>
  • <ul>
  • <li><span style="font-size:11.0000pt"><span style="font-family:Calibri">Sarkar et al assessed NF-B expression in breast cancer tissue and fibroadenoma tissue as test samples and controls, respectively. The Western Blot Technique was used to measure the p65 protein from the NF-kB superfamily of transcription factors. Immunohistochemistry was used to determine the levels of ER, PR, and HER-2/neu(Sarkar et al., 2013).Large tumour size (5 cm), high grade tumours, negative ER, negative PR, and positive HER-2/neu are all related with -NF-B/p65.</span></span></li>
  • </ul>
  • <p><span style="font-size:11.0000pt"><span style="font-family:Calibri">-NF-B activation was shown to be more common in ER-negative tumours (81.8%) than in ER-positive cancers (38.5%), a statistically significant difference.</span></span></p>
  • <p><span style="font-size:11.0000pt"><span style="font-family:Calibri">-NF-B expression is linked to ER negative status and is also linked to a higher NPI value, which indicates a poor prognosis.</span></span></p>
  • <ul>
  • <li><span style="font-size:11.0000pt"><span style="font-family:Calibri">NF-kB activity is elevated in hormone-independent and ER-negative breast tumors , and hyperactiva- tion of MAPK leads to enhanced NF-kB activity through induction of autocrine factors such as HB- EGF (Norris et l.,1999;Pearson et l.,2001;McCarthy et l.,1995;Troppamair et l.,1998). NF-kB activity is elevated in MCF-7 breast cancer cells with elevated MAPK activity(Holloway et l.,2004).</span></span></li>
  • </ul>
  • <p><span style="font-size:11.0000pt"><span style="font-family:Calibri">-NF-kB activity is about 5-fold higher than parental MCF-7 in all of our model cell lines. This elevated NF-kB activity is attributable to hyperactivation of MAPK because NF-kB activity is returned to normal levels (basal levels in co-MCF7 cells) by dnERKs 1 and 2 . </span></span></p>
  • <p>&nbsp;</p>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><strong><span style="font-size:11.0000pt"><span style="font-family:Calibri"><strong>No specific uncertainties and inconsistencies reported to the best of our knowledge.</strong></span></span></strong></span></span></p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px; width:586px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:54px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:158px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Method/ measurement reference</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Reliability</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strength of evidence</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Assay fit for purpose</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Repeatability/ reproducibility</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Direct measure</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:top; width:54px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Human cell line</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:158px">
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">qPCR, western blotting, immunoprecipitation, immunofluorescent microscopy, Luciferase reporter assay </span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">EMSA,</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">IHC,Cell viability assay </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strong</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:top; width:54px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Humans</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:158px">
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">&nbsp;qRT-PCR, immunohistochemistry </span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strong</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:top; width:54px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Mouse</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:158px">
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">EMSA,Autoradiography Immunofluorescent microscopy, Westernblotting</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strong</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Differential Sensitivity of ER </span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="font-family:Calibri">&alpha;</span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">&nbsp;and ER</span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="font-family:Calibri">&beta;</span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">&nbsp;Cells to the NF-kB Inhibitor Go6976. A differential sensitivity to Go6976 by ER </span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="font-family:Calibri">&alpha;</span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">&nbsp;and ER</span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="font-family:Calibri">&beta;</span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">&nbsp;breast cancer cells was observed (Holloway et al.,2004). The ER</span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">&nbsp;<span style="font-family:Calibri">&alpha;</span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">&nbsp;cells were more sensitive and less viable after treatment with this NF-kB inhibitor. The IC50 (50% killing) by Go6976 was 1 mM for Era of MDA-MB435 and MDA-MB231 breast cancer cells, whereas it was greater than 10 mM for ERa of MCF-7 and T47D or the normal mammary epithelial H16N &nbsp;cells . At 10 mM Go6976, about 80% of the ERa cells were killed, whereas only 15&ndash;30% of ERa and normal H16N cells were sensitive to this compound. The relative resistance of the H16N normal human mammary cells indicates a possible high therapeutic index of Go6976 against ERa cancer cells.</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">This observation is consistent with the previously observed role of NF-kB as an antiapoptotic agent. FACS analysis demonstrated accumulation of sub-G1 population (67%) in Go6976- treated (48 h at 1 mM) ERa vs. only 10&ndash;15% in ERa cells, indicating enhanced apoptotic cell death preferentially of ERa cells caused by this low molecular weight compound.</span></span></span></span></p>
  • <strong>Time-scale</strong>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Key events connected by this KER occur within hours of exposure.</span></span></span></span></p>
  • <strong>Known modulating factors</strong>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Estradiol has been shown to decrease transcriptional activity and expression of NF-kB in a variety of experimental models (Biswas et al., 2005;Lobanova et al.,2007). Estrogen treatment of MCF-7 or MCF-7/H cells resulted in a significant suppression of NF-kB activity in both cell lines, according to research. The antiestrogen tamoxifen boosted NF-kB activity in the cells, indicating that ER plays a key role in NF-kB down-regulation in both parent and hypoxia-tolerant cells.</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">-MCF-7/T2H cells were discovered to have a partial tolerance to acute cobalt chloride-induced hypoxia while maintaining their estrogen-independent phenotype. In contrast to the MCF-7/H subline, MCF-7/T2H cells had a non-affected baseline NF-kB level, indicating that estrogens are responsible for NF-kB downregulation (Scherbakov et al., 2009).</span></span></span></span></p>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">- Multiple pathways are implicated in the crosstalk between NF-KB and ER. Through many mechanisms, including collaboration with FOXA1 to strengthen latent ER-binding sites and trigger translation of their synergistic genes, NF-KB directly interacts with the DNA-binding activity of ER (Franco et al. 2015). Furthermore, NF-KB affects ER via interacting with its ER co-activator or co-repressor, which changes ER transcriptional activity (Park et al. 2005). Similar to ER, NF-KB has been reported to have a role as a downstream effector for the growth factor pathway, which is recognized to be involved in both ligand-dependent and non-ligand-dependent ER activation, leading to resistance to a wide range of anti- oestrogen drugs (Zhou et al. 2005a, Sas et al. 2012, Frasor et al. 2015).</span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">-NF-KB is also involved in the anti-apoptotic pathway and immune surveillance systems, both of which have been linked to endocrine resistance (Hu et al. 2015; Lim et al. 2016). Furthermore, NF-KB inhibition of ER activity has been observed. The zinc finger repressor B-lymphocyte-induced maturation protein (BLIMP1), which can bind to the ER promoter area and restrict ER transcription, is triggered by the NFB subunit RelB. (Wang et al. 2009). Increasing data suggests that NF-KB plays an important role in the complexities of the endocrine resistance environment in breast cancer.</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">-NF-KB and ERS1 mutations in breast cancer patients who are resistant to endocrine therapy</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">TNF needs NF-KB and FOXA1 to change the breast cancer cell transcriptome by modulating latent ER-binding sites.</span></span></span></span></p>
  • <h4>References</h4>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Ali, S., &amp; Coombes, R. C. (2002). Endocrine-responsive breast cancer and strategies for combating resistance.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Nature Reviews Cancer</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>2</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(2), 101-112.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Kalkhoven, E., Wissink, S., van der Saag, P. T., &amp; van der Burg, B. (1996). Negative Interaction between the RelA (p65) Subunit of NF-&kappa;B and the Progesterone Receptor (</span></span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Cambria Math'"><span style="color:#222222"><span style="font-family:Cambria Math">&lowast;</span></span></span></span></span><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">).&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Journal of Biological Chemistry</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>271</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(11), 6217-6224.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Allred, D. C., &amp; Mohsin, S. K. (2000). Biological features of premalignant disease in the human breast.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Journal of mammary gland biology and neoplasia</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>5</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), 351-364.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Biswas, D. K., Shi, Q., Baily, S., Strickland, I., Ghosh, S., Pardee, A. B., &amp; Iglehart, J. D. (2004). NF-&kappa;B activation in human breast cancer specimens and its role in cell proliferation and apoptosis.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Proceedings of the National Academy of Sciences</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>101</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(27), 10137-10142.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri">&nbsp;<span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Biswas, D. K., Martin, K. J., McAlister, C., Cruz, A. P., Graner, E., Dai, S. C., &amp; Pardee, A. B. (2003). Apoptosis caused by chemotherapeutic inhibition of nuclear factor-&kappa;B activation.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Cancer research</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>63</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(2), 290-295.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri">&nbsp;</span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Biswas, D. K., Cruz, A. P., Gansberger, E., &amp; Pardee, A. B. (2000). Epidermal growth factor-induced nuclear factor &kappa;B activation: a major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Proceedings of the National Academy of Sciences</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>97</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(15), 8542-8547.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Biswas, D. K., Dai, S. C., Cruz, A., Weiser, B., Graner, E., &amp; Pardee, A. B. (2001). The nuclear factor kappa B (NF-&kappa;B): a potential therapeutic target for estrogen receptor negative breast cancers.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Proceedings of the National Academy of Sciences</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>98</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(18), 10386-10391.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri">&nbsp;<span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Biswas, D. K., Singh, S., Shi, Q., Pardee, A. B., &amp; Iglehart, J. D. (2005). Crossroads of estrogen receptor and NF-&kappa;B signaling.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Science&#39;s STKE</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>2005</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(288), pe27-pe27.</span></span></span></span>&nbsp;</span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Franco, H. L., Nagari, A., &amp; Kraus, W. L. (2015). TNF&alpha; signaling exposes latent estrogen receptor binding sites to alter the breast cancer cell transcriptome.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Molecular cell</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>58</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(1), 21-34.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Frasor, J., El-Shennawy, L., Stender, J. D., &amp; Kastrati, I. (2015). NF&kappa;B affects estrogen receptor expression and activity in breast cancer through multiple mechanisms.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Molecular and cellular endocrinology</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>418</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">, 235-239.</span></span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">.</span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Holloway, J. N., Murthy, S., &amp; El-Ashry, D. (2004). A cytoplasmic substrate of mitogen-activated protein kinase is responsible for estrogen receptor-&alpha; down-regulation in breast cancer cells: the role of nuclear factor-&kappa;B.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Molecular Endocrinology</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>18</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(6), 1396-1410.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Hu, R., Warri, A., Jin, L., Zwart, A., Riggins, R. B., Fang, H. B., &amp; Clarke, R. (2015). NF-&kappa;B signaling is required for XBP1 (unspliced and spliced)-mediated effects on antiestrogen responsiveness and cell fate decisions in breast cancer.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Molecular and cellular biology</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>35</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(2), 379-390.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Manginstar, C., Islam, A. A., Sampepajung, D., Hamdani, W., Bukhari, A., Syamsu, S. A., ... &amp; Faruk, M. (2021). The relationship between NFKB, HER2, ER expression and anthracycline-based neoadjuvan chemotherapy response in local advanced stadium breast cancer: A cohort study in Eastern Indonesia.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Annals of Medicine and Surgery</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>63</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">, 102164.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Lim, S. O., Li, C. W., Xia, W., Cha, J. H., Chan, L. C., Wu, Y., ... &amp; Hung, M. C. (2016). Deubiquitination and stabilization of PD-L1 by CSN5.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Cancer cell</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>30</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(6), 925-939.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Lobanova, Y. S., Scherbakov, A. M., Shatskaya, V. A., &amp; Krasil&rsquo;nikov, M. A. (2007). Mechanism of estrogen-induced apoptosis in breast cancer cells: role of the NF-&kappa;B signaling pathway.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Biochemistry (moscow)</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>72</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(3), 320-327.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">McCarthy, S. A., Samuels, M. L., Pritchard, C. A., Abraham, J. A., &amp; McMahon, M. (1995). Rapid induction of heparin-binding epidermal growth factor/diphtheria toxin receptor expression by Raf and Ras oncogenes.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Genes &amp; development</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>9</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(16), 1953-1964.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Merkhofer, E. C., Cogswell, P., &amp; Baldwin, A. S. (2010). Her2 activates NF-&kappa;B and induces invasion through the canonical pathway involving IKK&alpha;.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Oncogene</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>29</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(8), 1238-1248.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Nakshatri, H., Bhat-Nakshatri, P., Martin, D. A., Goulet Jr, R. J., &amp; Sledge Jr, G. W. (1997). Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Molecular and cellular biology</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>17</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(7), 3629-3639.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Norris, J. L., &amp; Baldwin, A. S. (1999). Oncogenic Ras enhances NF-&kappa;B transcriptional activity through Raf-dependent and Raf-independent mitogen-activated protein kinase signaling pathways.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Journal of Biological Chemistry</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>274</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(20), 13841-13846.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Osako, T., Nishimura, R., Okumura, Y., Toyozumi, Y., &amp; Arima, N. (2012). Predictive significance of the proportion of ER-positive or PgR-positive tumor cells in response to neoadjuvant chemotherapy for operable HER2-negative breast cancer.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Experimental and therapeutic medicine</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>3</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(1), 66-71.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Park, K. J., Krishnan, V., O&rsquo;Malley, B. W., Yamamoto, Y., &amp; Gaynor, R. B. (2005). Formation of an IKK&alpha;-dependent transcription complex is required for estrogen receptor-mediated gene activation.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Molecular cell</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>18</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(1), 71-82.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Pearson, G., English, J. M., White, M. A., &amp; Cobb, M. H. (2001). ERK5 and ERK2 cooperate to regulate NF-&kappa;B and cell transformation.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Journal of Biological Chemistry</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>276</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(11), 7927-7931.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Sampepajung, E., Hamdani, W., Sampepajung, D., &amp; Prihantono, P. (2021). Overexpression of NF-kB as a predictor of neoadjuvant chemotherapy response in breast cancer.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Breast Disease</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">, (Preprint), 1-9.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Sarkar, D. K., Jana, D., Patil, P. S., Chaudhari, K. S., Chattopadhyay, B. K., Chikkala, B. R., ... &amp; Chowdhary, P. (2013). Role of NF-&kappa;B as a prognostic marker in breast cancer: a pilot study in Indian patients.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Indian journal of surgical oncology</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>4</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(3), 242-247.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Sas, L., Lardon, F., Vermeulen, P. B., Hauspy, J., Van Dam, P., Pauwels, P., ... &amp; Van Laere, S. J. (2012). The interaction between ER and NF&kappa;B in resistance to endocrine therapy.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Breast Cancer Research</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>14</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), 1-14.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Scherbakov, A. M., Lobanova, Y. S., Shatskaya, V. A., &amp; Krasil&rsquo;nikov, M. A. (2009). The breast cancer cells response to chronic hypoxia involves the opposite regulation of NF-kB and estrogen receptor signaling.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Steroids</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>74</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(6), 535-542.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Shostak, K., &amp; Chariot, A. (2011). NF-&kappa;B, stem cells and breast cancer: the links get stronger.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Breast Cancer Research</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>13</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), 1-7.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Singh, S., Shi, Q., Bailey, S. T., Palczewski, M. J., Pardee, A. B., Iglehart, J. D., &amp; Biswas, D. K. (2007). Nuclear factor-&kappa;B activation: a molecular therapeutic target for estrogen receptor&ndash;negative and epidermal growth factor receptor family receptor&ndash;positive human breast cancer.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Molecular cancer therapeutics</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>6</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(7), 1973-1982.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Song, R. D., Zhang, Z., Mor, G., &amp; Santen, R. J. (2005). Down-regulation of Bcl-2 enhances estrogen apoptotic action in long-term estradiol-depleted ER+ breast cancer cells.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Apoptosis</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>10</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(3), 667-678.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Troppmair, J., Hartkamp, J., &amp; Rapp, U. R. (1998). Activation of NF-&kappa;B by oncogenic Raf in HEK 293 cells occurs through autocrine recruitment of the stress kinase cascade.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Oncogene</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>17</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(6), 685-690.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Van Laere, S. J., Van der Auwera, I., Van den Eynden, G. G., Van Dam, P., Van Marck, E. A., Vermeulen, P. B., &amp; Dirix, L. Y. (2007). NF-&kappa;B activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>British journal of cancer</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>97</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(5), 659-669.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Wang, X., &amp; Belguise, K. (2009). O&rsquo; Neill, CF, Sanchez-Morgan, N.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Romagnoli, M., Eddy, SF, Mineva, ND, Yu, Z., Min, C., Trinkaus-Randall, V. et al</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">, 3832-3844.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Zhou, Y., Eppenberger-Castori, S., Eppenberger, U., &amp; Benz, C. C. (2005). The NFkB pathway and endocrine-resistant breast cancer.&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Endocrine Related Cancer</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>12</em></span></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(1), S37.</span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri">&nbsp;</span></span></p>
  • </div>
  • <div>
  • <h4><a href="/relationships/2613">Relationship: 2613: Antagonism, Estrogen receptor leads to EMT</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/443"> DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>adjacent</td>
  • <td>High</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>human</td>
  • <td>Homo sapiens</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Not Otherwise Specified</td>
  • <td>Not Specified</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Female</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Humans and animals with no specific gender or life stage specificity.</span></span></span></p>
  • <h4>Key Event Relationship Description</h4>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Upstream event: Decreased, Estrogen receptor activity</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Downstream event: EMT, Increased</span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">The outlined Key Event Relationship (KER) elucidates a sequence of events involving the modulation of estrogen receptor activity and its influence on Epithelial-Mesenchymal Transition (EMT). The upstream event is characterized by &quot;Decreased Estrogen receptor activity,&quot; indicating a reduction in the functioning or expression of the estrogen receptor. Estrogen receptors are crucial for mediating the effects of estrogen hormone signaling.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">The downstream event in this KER is &quot;Increased EMT,&quot; denoting an elevation in the occurrence of Epithelial-Mesenchymal Transition. EMT is a cellular process where epithelial cells lose their characteristics and adopt a more mesenchymal phenotype, which can lead to increased cell motility and invasiveness. A decrease in estrogen receptor activity has been associated with promoting EMT in certain contexts.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">This KER underscores the intricate relationships between molecular pathways and cellular behaviors. The reduced activity of estrogen receptors can impact cellular responses, potentially contributing to the initiation of EMT. Understanding these connections sheds light on how changes in receptor activity can influence fundamental cellular processes and cellular plasticity.</span></span></span></p>
  • <h4>Evidence Supporting this KER</h4>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Estrogen/ERa signaling maintains an epithelial phenotype and suppresses EMT.</span></span><span style="font-size:11pt"><span style="font-size:11.0000pt">ERa signaling promotes proliferation and epithelial differentiation and opposes EMT. ERa activated by E2 inhibits TGF-b signaling and cytokine signaling through Smad and NF-kB, respectively, both of which promote EMT. EMT-related transcription factors and microRNAs are likewise suppressed by ERa signalling. This anti-EMT stance is thought to be a major component in luminal A breast cancer&#39;s low spreading potential and excellent prognosis. ERa signalling, on the other hand, promotes the proliferation and survival of ERa-positive breast cancer cells by increasing cell cycle and anti-apoptotic gene expression. Furthermore, because GATA3 is a marker for luminal progenitor cell development and both GATA3 and FOXA1 are cofactors that affect ERa signalling and activity, ERa signalling interacts with luminal-related transcription factors GATA3 and FOXA1 to promote an epithelial phenotype. These elements work together to enhance cell&ndash;cell adhesion, basolateral polarity, and low motility in epithelial tissues.</span></span></span></p>
  • <strong>Biological Plausibility</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">E2/ERa signalling, in part through transcriptional activation of luminal/epithelial-related transcription factors, promotes the development of mammary epithelia along a luminal/epithelial lineage. GATA3 and ERa both promote each other (Eeckhoute et al.,2007)</span><span style="font-size:11.0000pt">. In normal breast epithelia, GATA3 is needed for luminal differentiation(Kouros-Mehr </span><span style="font-size:11.0000pt">et al.,2008)</span><span style="font-size:11.0000pt">&nbsp;and GATA3 and ERa control many of the same genes (Wilson </span><span style="font-size:11.0000pt">et al.,2008)</span><span style="font-size:11.0000pt">. &nbsp;In mice, forcing GATA3 expression in mesenchymal breast cancer cells produces mesenchymal&ndash;epithelial transition (MET), a reversible mechanism analogous to EMT, and prevents tumour metastasis (Yan </span><span style="font-size:11.0000pt">et al.,2010)</span><span style="font-size:11.0000pt">. Another ERa-interacting transcription factor, FOXA1, is essential for luminal lineage in mammary epithelia and stimulates ductal development in mice (Bernardo </span><span style="font-size:11.0000pt">et al.,2010)</span><span style="font-size:11.0000pt">. FOXA1 enhances ERa gene expression by increasing the accessibility of estrogen-response regions for ERa binding (Nakshatri </span><span style="font-size:11.0000pt">et al.,</span><span style="font-size:11.0000pt">&nbsp;2009). In breast cancer cells, on the other hand, E2 appears to increase FOXA1 expression. Importantly, ERa, FOXA1, and GATA3 are all positive breast cancer prognostic factors(Nakshatri </span><span style="font-size:11.0000pt">et al.,2009).</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">ERa signalling enhances primary lesion formation (and therefore is mitogenic), but it can control the EMT process (and thus is anti-metastatic) up to a point. Signaling pathways that lead to EMT are antagonised by E2/ERa signalling. TGF-b, for example, has been demonstrated to generate EMT in human mammary epithelial cells, and overexpression of the EMT-inducing protein Snail boosted TGF-b signalling and invasiveness while decreasing adhesion and ERa expression in MCF-7 cells (Taylor et al.,2010)</span><span style="font-size:11.0000pt">. TGF-b has an anti-estrogen impact on MCF-7 cells. Smad2/3 and the Smad-selective E3 ubiquitin ligase Smurf create a ternary complex with ERa, which enhances the proteosomal degradation of Smad proteins, according to Ito et al (Ito </span><span style="font-size:11.0000pt">et al.,2010).</span></span></span></p>
  • <strong>Empirical Evidence</strong>
  • <ul>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Ye et al. &nbsp;investigated the impact of ERa overexpression in ERa-negative breast cancer cell lines (MDA-MB-468, MDA-MB-231) or ERa knockdown in ERa-positive cell lines (MCF-7, T47D) on Slug and Snail expression and phenotypes in ERa-positive cell lines (MCF-7, T47D)(Ye et al., 2010). Slug is repressed, E-cadherin is increased, and cells develop as adherent colonies with less invasiveness when ERa is forced to get&nbsp;expressed. ERa knockdown, on the other hand, causes an increase in Slug expression, a decrease in E-cadherin, and spindle-shaped invasive cells.</span></span></li>
  • </ul>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-In luminal-type breast tumours, E2 signalling modulates the activity of ERa and associated cofactors GATA3 and FOXA1 to promote an epithelial phenotype and repress EMT and pro-metastatic progression. In vitro, direct regulatory linkages have been shown, such as increased invasion and beginning of EMT in MCF-7 cells after overexpression of RELB or Snail due to suppression of ERa and E-cadherin, and in vivo results support these findings.</span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-In breast cancer patients, high levels of ERa, GATA3, and FOXA1 expression are linked to a better prognosis. Invasive basal-like and claudin-low breast cancer subtypes, on the other hand, are associated with high levels of RELB and Snail expression (as well as no/low expression of ERa, GATA3, and FOXA1).</span></span></p>
  • <p>&nbsp;</p>
  • <ul>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Wik et al used integrated molecular profiling to examine Endometrial cancer samples from a primary investigation cohort and three independent validation cohorts (Wik et al.,2013). Patient survival was closely linked to ER-a immunohistochemical staining and receptor gene (ESR1) mRNA expression. In the study cohort, ER-a negative was related with activation of genes implicated in Wnt, Sonic Hedgehog, and TGF-b signalling, indicating epithelial&ndash;mesenchymal transition (EMT).</span></span></li>
  • </ul>
  • <p>&nbsp;</p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-In conclusion, the absence of ER-a in endometrial cancer is linked to EMT and a shorter survival time.</span></span></p>
  • <p>&nbsp;</p>
  • <ul>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Bouris et al used specialised shRNA lentiviral particles to create stably transfected MCF-7 cells by knocking down the ER gene (identified as MCF-7/SP10 + cells) and compared them to control cells (MCF-7/c). In MCF-7 cells, ER suppression triggered cellular phenotypic changes as well as significant changes in gene and protein expression of many markers associated with epithelial to mesenchymal transition (EMT). These cells, in particular, showed increased cell proliferation, migration, and invasion(Bouris et al.,2015).</span></span></li>
  • </ul>
  • <p>&nbsp;</p>
  • <ul>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">N1-Guanyl-1,7-Diaminoheptane Sensitizes Estrogen Receptor Negative Breast Cancer Cells to Doxorubicin by Preventing Epithelial-Mesenchymal Transition by Inhibiting Eukaryotic Translation Initiation Factor 5A2 Activation &nbsp;(Liu et al.,2015)</span></span></li>
  • </ul>
  • <p>&nbsp;</p>
  • <ul>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Saleh et al. hypothesise that loss of oestrogen receptor function, which causes endocrine resistance in breast cancer, also causes trans-differentiation from an epithelial to a mesenchymal phenotype, which causes enhanced aggressiveness and metastatic tendency(Saleh et al., 2011).</span></span></li>
  • </ul>
  • <p>&nbsp;</p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-siRNA-mediated oestrogen receptor silencing in MCF7 breast cancer cells resulted in estrogen/tamoxifen resistant cells (pII) with altered morphology, increased motility with cytoskeleton rearrangement and switch from keratin/actin to vimentin, and ability to invade simulated extracellular matrix components.</span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-Invasion assay of MCF7, E2, pII and MDA231 cells through simulated ECM protein components was carried out.Cells were plated into the upper chambers of the cell invasion plate and incubated for 48 h prior to measurement of the fluorescence intensity of the invading cells in the bottom chambers. MCF7 and E2 cells were considered non- invasive (,20 FU/m), whereas pII and MDA231 cells progressively invaded the BME (100 FU/m).</span></span></p>
  • <p>&nbsp;</p>
  • <ul>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">Quantitative proteomics demonstrates ER participation in CD146-induced epithelial-mesenchymal transition in breast cancer cells, according to Zheng et al. They used a three-step Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) method to examine whole cell protein profiles of MCF-7 cells that had undergone EMT as CD146 expression increased from moderate to high levels (Zheng et al.,2014).</span></span></li>
  • </ul>
  • <p>&nbsp;</p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-In total, 2293 proteins were identified in this investigation, with 103 showing changes in protein abundance that linked with CD146 expression levels, demonstrating substantial morphological and biochemical changes associated with EMT.</span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">-According to the Ingenuity Pathway Analysis (IPA), oestrogen receptor (ER) was the transcription regulator that was most strongly suppressed during CD146-induced EMT. In addition, functional experiments demonstrated that in cells undergoing CD146-induced EMT, ER expression was suppressed, but re-expression of ER eliminated their migratory and invasive characteristics. Finally, we discovered that ER- exerted its effects on CD146-induced EMT via inhibiting Slug, a major EMT transcriptional component.</span></span></p>
  • <p>&nbsp;</p>
  • <ul>
  • <li><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11.0000pt">By immunohistochemistry, Ye et al found a high direct link between ERa and E-cadherin expression in human breast tumours, showing that ERa signalling may regulate E-cadherin and influence EMT and tumour growth(Ye et al.,2010).They looked at the impacts of ERa signalling in ERa-transfected ERa-negative breast carcinoma cell lines MDA-MB-468 and MDA-MB-231, as well as the effects of ERa knockdown in naturally expressing ERa-positive lines MCF-7 and T47D, to test this theory and the mechanisms behind it.17b-estradiol (E2) decreased slug and increased E-cadherin in ERa-negative lines when ERa was overexpressed. </span></span></li>
  • </ul>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">-In Matrigel, clones that showed the most of these alterations developed in clusters and were less invasive.Slug rose, E-cadherin reduced, cells became spindly, and Matrigel invasion increased when ERa was knocked down in ERa-positive lines. Slug expression was reduced by ERa signalling in two ways: directly, by repression of slug transcription via the formation of a corepressor complex containing ligand-activated ERa, HDAC inhibitor (HDAC1), and nuclear receptor corepressor (N-CoR) that bound the slug promoter in three half-site oestrogen response elements (EREs); and indirectly, by phosphorylation and inactivation of GSK-3b via phosphoinositide (Akt). Inactivation of GSK-3b suppressed slug expression while increasing E-cadherin. There was a substantial inverse connection between slug and ERa and E-cadherin immunoreactivity in human breast cancer cases. The data suggest that E-cadherin and EMT are regulated by ERa signalling through slug.</span></span></span></p>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">No specific Uncertainties and Inconsistencies noted to the best of our knowledge.</span></span></span></span></p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px; width:586px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:57px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Method/ measurement reference</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Reliability</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Strength of evidence</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Assay fit for purpose</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Repeatability/ reproducibility</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:1px solid #000000; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Direct measure</span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:top; width:57px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Human cell line</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">qRT-PCR, cell viability assay,</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Western blotting, EdU incorporation assay (C1,c2,C3,C5,c6,c8)</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Strong</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes </span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes </span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid #000000; border-left:1px solid #000000; border-right:1px solid #000000; border-top:none; vertical-align:top; width:57px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Human</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:155px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">IHC,microarray,qPCR, SNP array(H)</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Moderate</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes </span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid #000000; border-left:none; border-right:1px solid #000000; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Yes </span></span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">- Endogenous ER silencing causes EMT in ER-positive breast cancer cells.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">ER-positive MCF-7 cells were infected with ER shRNA lentiviral particles and stable clones were selected with puromycin (optimal dose of 0.8 g/mL) to knockdown ER gene expression (Zheng et al.,2014).</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">-When the number of cell passages was increased following infection, the expression of ER was gradually knocked down.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">-ER gene expression was decreased by roughly 25% four passages after infection compared to control lentiviral particles transfected cells (MCF-7/c cells). The ER gene expression was lowered even more in the following passage (passage 5 post-infection) (by around 50% compared to MCF-7/c cells). In passage 7, a significant reduction in ER gene expression (about 75&ndash;80%) was seen, along with a distinct transition of cells from an epithelial to a mesenchymal phenotype.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">- When MCF-7 cells reach confluency, they develop as closely packed colonies that produce sheet-like monolayer structures. Stable clones from stage 7 post-infection, on the other hand, grew as more elongated individual cells rather than tight clusters, with a spindle-like shape. For stable clones with a distinct mesenchymal character, a very substantial down-regulation of ER gene expression (above 99 percent) was found from passage 10 and beyond. MCF-7/SP10+ was given to these cells to emphasise the stable transfection (S) and passage 10 or more (P10+). The substantial down-regulation of ERa was confirmed by immunofluorescence and Western blot analysis of the same stable clones (MCF-7/ SP10 + cells).</span></span></span></p>
  • <strong>Time-scale</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Downstream key event occurs within hours of the occurrence of the upstream key event.</span></span></span></p>
  • <strong>Known modulating factors</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt"><span style="background-color:#ffffff"><span style="color:#212121">Tumour characteristics and heterogeneity, biological changes of tumour progression and interacting molecules, all of which can influence the degree of hormone responsiveness in a particular individual with hormone receptor-positive breast cancer.</span></span></span></span></span></p>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">EMT is inhibited by ERa, and microRNAs either promote or inhibit EMT . These findings raise the question of whether microRNAs have a role in the control of EMT by targeting ERa mRNA. The large (&gt;4000 nt) 30 untranslated region (30-UTR) of human ERa mRNA, as well as results that particular microRNAs are differentially expressed between ERa-positive and ERa-negative breast tumours , suggest the possibility of microRNA-mediated control of human ERa mRNA(Adams et al.,2008).</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Pro-metastatic/anti-proliferative (miR-206), pro-metastatic/pro-proliferative (miR-221/222), and anti-proliferative/anti-metastatic (miR-221/223) ERa-targeting microRNAs (miR-130a, miR-145). MiR-17/92 appears to be prometastatic, although it is implicated in several feedback loops, which could make miR-17/92&#39;s expression and effects on proliferation extremely reliant on the microenvironment as well as the genetic and epigenetic background.</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:11.0000pt">Accurate identification of micro-RNAs that contribute significantly to a particular pathway (such as EMT) within breast cancers in situ is one hurdle. MicroRNAs have hundreds of potential targets, and in vivo studies will be needed to identify physiologically important targets in the context of breast cancer, as well as to develop effective treatments for breast cancer that involve manipulating microRNA expression levels and identifying off-target effects. (Adams et al.,2007;Zhao et al.,2008;Leva et al.,2010;Stinson et al.,2011;Acunzo et al.,2011;Castellano et al.,2009).</span></span></span></p>
  • <h4>References</h4>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Acunzo, M., Visone, R., Romano, G., Veronese, A., Lovat, F., Palmieri, D., ... &amp; Croce, C. M. (2012). miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncogene</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>31</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(5), 634-642.</span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Adams, B. D., Guttilla, I. K., &amp; White, B. A. (2008, November). Involvement of microRNAs in breast cancer. In&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Seminars in reproductive medicine</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">&nbsp;(Vol. 26, No. 06, pp. 522-536). &copy; Thieme Medical Publishers.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Adams, B. D., Furneaux, H., &amp; White, B. A. (2007). The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-&alpha; (ER&alpha;) and represses ER&alpha; messenger RNA and protein expression in breast cancer cell lines.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular endocrinology</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>21</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(5), 1132-1147.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Al Saleh, S., Al Mulla, F., &amp; Luqmani, Y. A. (2011). Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>PloS one</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>6</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(6), e20610.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Bernardo, G. M., Lozada, K. L., Miedler, J. D., Harburg, G., Hewitt, S. C., Mosley, J. D., ... &amp; Keri, R. A. (2010). FOXA1 is an essential determinant of ER&alpha; expression and mammary ductal morphogenesis.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Development</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>137</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(12), 2045-2054.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Bouris, P., Skandalis, S. S., Piperigkou, Z., Afratis, N., Karamanou, K., Aletras, A. J., ... &amp; Karamanos, N. K. (2015). Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Matrix Biology</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>43</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">, 42-60.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Castellano, L., Giamas, G., Jacob, J., Coombes, R. C., Lucchesi, W., Thiruchelvam, P., ... &amp; Stebbing, J. (2009). The estrogen receptor-&alpha;-induced microRNA signature regulates itself and its transcriptional response.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Proceedings of the National Academy of Sciences</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>106</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(37), 15732-15737.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Di Leva, G., Gasparini, P., Piovan, C., Ngankeu, A., Garofalo, M., Taccioli, C., ... &amp; Croce, C. M. (2010). MicroRNA cluster 221-222 and estrogen receptor &alpha; interactions in breast cancer.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>JNCI: Journal of the National Cancer Institute</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>102</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(10), 706-721.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Eeckhoute, J., Keeton, E. K., Lupien, M., Krum, S. A., Carroll, J. S., &amp; Brown, M. (2007). Positive cross-regulatory loop ties GATA-3 to estrogen receptor &alpha; expression in breast cancer.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer research</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>67</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(13), 6477-6483.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Ito, I., Hanyu, A., Wayama, M., Goto, N., Katsuno, Y., Kawasaki, S., ... &amp; Yanagisawa, J. (2010). Estrogen inhibits transforming growth factor &beta; signaling by promoting Smad2/3 degradation.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of biological chemistry</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>285</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(19), 14747-14755.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Kouros-Mehr, H., Kim, J. W., Bechis, S. K., &amp; Werb, Z. (2008). GATA-3 and the regulation of the mammary luminal cell fate.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Current opinion in cell biology</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>20</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(2), 164-170.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Lin, H. Y., Liang, Y. K., Dou, X. W., Chen, C. F., Wei, X. L., Zeng, D., ... &amp; Zhang, G. J. (2018). Notch3 inhibits epithelial&ndash;mesenchymal transition in breast cancer via a novel mechanism, upregulation of GATA-3 expression.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncogenesis</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>7</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(8), 1-15.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Liu, Y., Liu, R., Fu, P., Du, F., Hong, Y., Yao, M., ... &amp; Zheng, S. (2015). N1-Guanyl-1, 7-diaminoheptane sensitizes estrogen receptor negative breast cancer cells to doxorubicin by preventing epithelial-mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2 activation.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Cellular Physiology and Biochemistry</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>36</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(6), 2494-2503.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Nakshatri, H., &amp; Badve, S. (2009). FOXA1 in breast cancer.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Expert reviews in molecular medicine</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>11</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Stinson, S., Lackner, M. R., Adai, A. T., Yu, N., Kim, H. J., O&rsquo;Brien, C., ... &amp; Dornan, D. (2011). TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Science signaling</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>4</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(177), ra41-ra41.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Taylor, M. A., Parvani, J. G., &amp; Schiemann, W. P. (2010). The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-&beta; in normal and malignant mammary epithelial cells.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of mammary gland biology and neoplasia</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>15</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(2), 169-190.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Wilson, B. J., &amp; Gigu&egrave;re, V. (2008). Meta-analysis of human cancer microarrays reveals GATA3 is integral to the estrogen receptor alpha pathway.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular cancer</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>7</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(1), 1-8.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Wik, E., R&aelig;der, M. B., Krakstad, C., Trovik, J., Birkeland, E., Hoivik, E. A., ... &amp; Salvesen, H. B. (2013). Lack of estrogen receptor-&alpha; is associated with epithelial&ndash;mesenchymal transition and PI3K alterations in endometrial carcinoma.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Clinical Cancer Research</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>19</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(5), 1094-1105.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Yan, W., Cao, Q. J., Arenas, R. B., Bentley, B., &amp; Shao, R. (2010). GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of Biological Chemistry</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>285</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(18), 14042-14051.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">Ye, Y., Xiao, Y., Wang, W., Yearsley, K., Gao, J. X., Shetuni, B., &amp; Barsky, S. H. (2010). ER&alpha; signaling through slug regulates E-cadherin and EMT.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncogene</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>29</em></span></span></span></em><span style="font-family:Arial,Helvetica,sans-serif; font-size:10pt"><span style="background-color:#ffffff"><span style="color:#222222">(10), 1451-1462.</span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Zeng, Q., Zhang, P., Wu, Z., Xue, P., Lu, D., Ye, Z., ... &amp; Yan, X. (2014). Quantitative proteomics reveals ER-&alpha; involvement in CD146-induced epithelial-mesenchymal transition in breast cancer cells.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of proteomics</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>103</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">, 153-169.</span></span></span></span></p>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">Zhao, J. J., Lin, J., Yang, H., Kong, W., He, L., Ma, X., ... &amp; Cheng, J. Q. (2008). MicroRNA-221/222 negatively regulates estrogen receptor&alpha; and is associated with tamoxifen resistance in breast cancer.&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of Biological Chemistry</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span></span><em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222"><em>283</em></span></span></span></em><span style="font-size:10.0000pt"><span style="background-color:#ffffff"><span style="color:#222222">(45), 31079-31087.</span></span></span>&nbsp;</span></p>
  • <p>&nbsp;</p>
  • </div>
  • <div>
  • <h4><a href="/relationships/2614">Relationship: 2614: EMT leads to Metastasis, Breast Cancer</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/443"> DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>adjacent</td>
  • <td>High</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>human and other cells in culture</td>
  • <td>human and other cells in culture</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>human</td>
  • <td>Homo sapiens</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Adult, reproductively mature</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Female</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#212529">EMT induces cancer invasion, metastasis (</span><em><span style="color:#212529"><em>Homo sapiens</em></span></em><span style="color:#212529">)(</span><a href="#_ENREF_128" title="Zhang, 2015 #64">P. Zhang et al., 2015</a><span style="color:#212529">).</span></span></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#212529">EMT is related to cancer drug resistance in MCF-7 human breast cancer cells (</span><em><span style="color:#212529"><em>Homo sapiens</em></span></em>)(<a href="#_ENREF_19" title="Du, 2016 #57">B. Du &amp; Shim, 2016</a><span style="color:#212529">).</span></span></span></span></p>
  • <h4>Key Event Relationship Description</h4>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Upstream event: Increased, EMT</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Downstream event: Metastasis</span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">The described Key Event Relationship (KER) outlines a consequential sequence of events pertaining to cellular transitions and their impact on metastasis. The upstream event is marked by &quot;Increased Epithelial-Mesenchymal Transition (EMT),&quot; signifying an elevation in the occurrence of EMT&mdash;a process where epithelial cells transition into a mesenchymal phenotype with increased motility and invasiveness.</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">The downstream event in this KER is &quot;Metastasis,&quot; indicating the spread of cancer cells from the primary tumor site to distant locations in the body. EMT has been recognized as a critical step in the metastatic cascade, as it can equip cancer cells with the traits necessary for invading surrounding tissues, entering the bloodstream, and establishing secondary tumors at distant sites.</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">This KER underscores the pivotal role of EMT in driving the metastatic potential of cancer cells. The transition from an epithelial to mesenchymal state enhances the ability of cancer cells to navigate through tissues and disseminate to distant locations, contributing to the aggressive nature of metastatic disease. Understanding these relationships is crucial for developing strategies to inhibit metastasis and improve cancer treatment outcomes.</span></span></span></span></p>
  • <h4>Evidence Supporting this KER</h4>
  • <p style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:10.5pt"><span style="font-size:10.5000pt">The &ldquo;epithelial&ndash;mesenchymal transition&rdquo; (EMT), a key developmental regulatory program, has been reported to play critical and intricate roles in promoting tumor invasion and metastasis in epithelium-derived carcinomas in recent years. The EMT program allows stationary and polarized epithelial cells, which are connected laterally via several types of junctions and normally interact with the basement membrane via their basal surfaces to maintain apical&ndash;basal polarity, to undergo multiple biochemical changes that enable them to disrupt cell&ndash;cell adherence, lose apical&ndash;basal polarity, dramatically remodel the cytoskeleton, and acquire mesenchymal characteristics such as enhanced migratory capacity, invasiveness, elevated resistance to apoptosis and greatly increased production of ECM components. (Boyer et al., 1993).Some of the cells undergoing EMT have the characteristics of cancer stem cells (CSCs), which are linked to cancer malignancy (Shibue &amp; Weinberg, 2017; Shihori Tanabe, 2015a, 2015b; Tanabe, Aoyagi, Yokozaki, &amp; Sasaki, 2015).Cancer metastasis and cancer therapeutic resistance are linked to the EMT phenomenon (Smith &amp; Bhowmick, 2016; Tanabe, 2013). EMT causes the cell to escape from the basement membrane and metastasize by increasing the production of enzymes that breakdown extracellular matrix components and decreasing adherence to the basement membrane (Smith &amp; Bhowmick, 2016). Therapy resistance is linked to morphological alterations seen during EMT (Smith &amp; Bhowmick, 2016).</span></span></span></p>
  • <strong>Biological Plausibility</strong>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px; margin-left:-8px; width:616px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:601px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><strong><span style="color:#444444"><strong>Biological Plausibility</strong></span></strong></span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">EMT is marked by a decrease in E-cadherin and &beta;-&nbsp;catenin translocation into the nucleus&nbsp;and an increase in vimentin, fibronectin, and N-cadherin expression (Irani et al., 2018,Tanabe et al., 2016). EMT is a master mechanism in cancer cells that allows them to lose their epithelial characteristics and gain mesenchymal-like qualities. EMT is the most crucial step in initiating metastasis, including metastasis to lymph nodes, because tumour cell movement is a pre-requisite for the metastatic process (Da et al., 2017). Multiple signalling pathways cause cancer cells to lose their cell-to-cell connections and cellular polarity during EMT, increasing their motility and invasive ness (Huang et al., 2017). MMPs cause E-cadherin to be cleaved, which increases tumour cell motility and invasion (Pradella et al., 2017).</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Invasiveness and medication resistance are linked to the morphological and physiological changes associated with EMT (Shibue &amp; Weinberg, 2017). In initial tumours, EMT-activated carcinoma cells penetrate the surrounding stroma (Shibue &amp; Weinberg, 2017). EMT-activated carcinoma cells interact with the extracellular matrix protein to activate focal adhesion kinase and extracellular signal-related kinase, followed by TGFbeta and canonical and/or noncanonical Wnt pathways to develop cancer stem cell (CSC) traits, which contribute to drug resistance (Shibue &amp; Weinberg, 2017).</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Drug efflux and cell proliferation are slowed by EMT-associated downregulation of several apoptotic signalling pathways, resulting in general resistance of carcinoma cells to anti-cancer drugs (Shibue &amp; Weinberg, 2017).Snail, an EMT-related transcription factor, promotes the production of the AXL receptor tyrosine kinase, which allows cancer cells to survive by activating AXL signalling when its ligand, growth arrest-specific protein 6 (GAS6), binds to it (Shibue &amp; Weinberg, 2017).</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">EMT-activated cells are resistant to the deadly effects of cytotoxic T cells, which include increased expression of programmed cell death 1 ligand (PD-L1), which binds to the inhibitory immune-checkpoint receptor programmed cell death protein 1 (PD-1) on the cell surface of cytotoxic T cells(<a href="#_ENREF_81" title="Shibue, 2017 #58">Shibue &amp; Weinberg, 2017</a>).</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#212529">The reversing process of EMT, which names as a mesenchymal-epithelial transition (MET), maybe one of the candidates for the anti-cancer therapy, where the plasticity of the cell phenotype is of importance and under investigation (</span></span><a href="#_ENREF_81" title="Shibue, 2017 #58"><span style="background-color:#ffffff">Shibue &amp; Weinberg, 2017</span></a><span style="background-color:#ffffff"><span style="color:#212529">).</span></span></span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <strong>Empirical Evidence</strong>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#212529">Incidence concordance</span></span></span></span></p>
  • <ul>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#212529">By inhibiting PUMA (also known as BBC3, encoding Bcl-2-binding component 3) and conferring resistance to p53-mediated apoptosis of hematopoietic progenitors, Slug/Snai2, a ces-1-related zinc finger transcription factor gene, confers resistance to p53-mediated apoptosis of hematopoietic progenitors (Inukai et al., 1999; Shibue &amp; Weinberg, 2017; W.-S. Wu et al., 2005).TGFbeta-1 induced EMT results in the acquisition of cancer stem cell (CSC) like properties by inducing the expression of multiple members of the ATP-binding cassette (ABC) transporter family, which results in doxorubicin resistance (Saxena et al.,2011; Shibue &amp; Weinberg, 2017). (Pirozzi et al., 2011; Shibue &amp; Weinberg, 2017).Cancer metastasis and resistance to dendritic cell-mediated immunotherapy are promoted by snail-driven EMT (Kudo-Saito, Shirako, Takeuchi, &amp; Kawakami, 2009).EMT induced by the zinc finger E-box-binding homeobox (ZEB1) relieves miR-200-mediated repression of programmed cell death 1 ligand (PD-L1) expression, a major inhibitory ligand for the programmed cell death protein (PD-1) immune-checkpoint protein on CD8+ cytotoxic T lymphocytes (CTL), resulting in immunosuppression and metastasis of CD8+ T cells (</span><a href="#_ENREF_11" title="Chen, 2014 #121">Chen et al., 2014</a><span style="color:#212529">).</span></span></span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#212529">Wnt signalling &nbsp;is important for embryonic development, and genetic abnormalities in this network have been linked to colorectal cancer(Gujral et al.,2014). The Wnt receptor Frizzled2 (Fzd2) and its ligands Wnt5a/b are enhanced in metastatic liver, lung, colon, and breast cancer cell lines and in high-grade malignancies, and their expression correlates with epithelial-mesenchymal transition markers (EMT)(They created an anti-Fzd2 antibody that decreases tumour growth and metastasis in xenografts by reducing cell migration and invasion(</span><strong><span style="color:#212529"><strong>Support for essentiality</strong></span></strong><span style="color:#212529">). Patients with malignancies that exhibit high levels of Fzd2 and Wnt5a/b may benefit from blocking this pathway, according to the researchers.</span></span></span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#212529">In breast, colon, liver, and 186 lung cancer cell lines, researchers discovered a link between Fzd2 and its ligands Wnt5a/b and mesenchymal markers.</span></span></span></span>
  • <ul>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Fzd2 mRNA expression is significantly increased in late stages (stages III and IV) of primary liver and lung cancers compared with normal tissue </span></span></li>
  • </ul>
  • </li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">-Fzd2 regulated cell migration. </span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">- Fzd2 signaling regulates EMT program </span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">-expression of Fzd2 in Huh7 cells decreased levels of the epithelial markers E-cadherin and Occludin and increased levels of the mesenchymal markers Foxc1 and Vimentin.</span></span>
  • <ul>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Exposing cells to an inhibitor of Wnt secretion (C59) decreased Stat3 transcriptional activity in FOCUS cells 2- to 4-fold, whereas overexpressing Fzd2 in Huh7 cells increased Stat3 activity 2-fold.</span></span></li>
  • </ul>
  • </li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Cui et al discovered a link between metastasis and the expression of ROR1, a type I receptor tyrosine kinase&ndash;like orphan receptor that is expressed throughout embryogenesis and by a variety of malignancies but not by normal postpartum tissues(Cui et al.,2013). ROR1 expression has been linked to the epithelial&ndash;mesenchymal transition (EMT), which occurs during embryogenesis and cancer metastasis, according to their findings. Breast adenocarcinomas with high ROR1 expression were more likely to have gene expression profiles consistent with EMT and had greater rates of recurrence and metastasis than those with low ROR1 expression. Suppressing ROR1 expression in metastasis-prone breast cancer cell lines MDA-MB-231, HS-578T, or BT549 decreased expression of proteins associated with EMT (e.g., vimentin, SNAIL-1/2, and ZEB1), increased expression of E-cadherin, epithelial cytokeratins (e.g., CK-19), and tight junction proteins (e.g., ZO-1), and impaired their migration/invasion capacity in vitro.(<strong><span style="color:#212529"><strong>&nbsp;Support for essentiality)</strong></span></strong></span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">-Conversely, transfection of MCF-7 cells to express ROR1 reduced expression of E-cadherin and CK-19, but enhanced the expression of SNAIL-1/2 and vimentin. Treatment of MDA-MB-231 with a monoclonal antibody specific for ROR1 induced downmodulation of vimentin and inhibited cancer cell migration and invasion in vitro and tumor metastasis in vivo.</span></span>
  • <ul>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">ROR1 associates with metastatic cancer phenotypes</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">ROR1 is associated with early metastatic relapse in breast adenocarcinoma</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Silencing ROR1 inhibits orthotopic lung metastasis</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Silencing ROR1 inhibits experimental lung and bone metastasis</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">An anti-ROR1 antibody inhibits cancer metastasis(<strong><span style="color:#212529"><strong>Support for essentiality)</strong></span></strong></span></span></li>
  • </ul>
  • </li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">At 37&deg;C, monoclonal antibodies (mAb) specific for ROR1&#39;s extracellular domain were created, and one (D10) was chosen to elicit fast downmodulation of surface ROR1 . ROR1 internalisation was observed in MDA-MB-231 cells treated with D10, as determined by confocal microscopy . As measured by flow cytometry with a separate mAb specific for a unique, non&ndash;cross-blocking epitope of ROR1, this resulted in a considerable reduction in ROR1 . D10 treatment of MDA-MB-231 reduced cytoplasmic vimentin expression , which was bound to ROR1 in coimmunoprecipitation studies . In vitro, D10 treatment significantly reduced the ability of MDA-MB-231 to migrate and invade . D10 may also be able to stop other ROR1 cancer cell lines from migrating or invading.</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Chen et al investigated the potential function of MDM2 in ovarian cancer SKOV3 cells&#39; EMT and metastasis(Chen et al.,2015).</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Wound-healing and transwell tests were used to mimic MDM2&#39;s regulatory effects on cell motility. By displaying the expression levels of epithelial marker E-cadherin as well as critical components of the Smad pathway, the impacts on EMT transition and Smad pathway were explored. The connection of MDM2 expression levels with the stages of 104 ovarian cancer patients was explored using an immunohistochemical assay to assess the clinical relevance of their&nbsp;findings.</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Results&nbsp;show that MDM2 plays a significant role in driving EMT and motility in ovarian SKOV3 cells by promoting the activation of the TGF-b-Smad pathway, which leads to increased snail/slug transcription and a decrease of E-cadherin levels.</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Such induction of EMT is sustained in either E3 ligase-depleted MDM2 or E3 ligase inhibitor HLI-373-treated cells, but is reduced by MDM2 N-terminal deletion, as evidenced by Nutlin-3a, the N-terminal targeting agent&#39;s inhibitory effects on EMT. MDM2 expression levels are substantially correlated with ovarian cancer &nbsp;stages, and increased MDM2 expression in combination with TGFB is associated with a bad prognosis and predicts a high risk of ovarian cancer patients.</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">This research suggests that MDM2 activates the Smad pathway to promote EMT in ovarian cancer metastasis, and that targeting MDM2&#39;s N-terminal can reprogram EMT and limit cancer cell mobility.</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">HOXD9, a Hox family member, is involved in cancer growth and metastasis. But, its regulation mechanism at the molecular level particularly in colo rectal cancer (CRC), is mostly unknown.Liu and&nbsp;colleagues used immunofluorescence, immunohistochemistry (IHC), and western blot to examine the levels of HOXD9 protein expression. Colony formation and EdU in-corporation, CCK-8, wound scratch and transwell invasion assays, and animal models were used to determine the in vivo and in vitro roles of HOXD9 in CRC. In CRC, HOXD9 expression was higher than in matched healthy tissues (Liu et al.,2020). High HOXD9 expression has been linked to advanced stages of cancer, tumour differentiation, lymph node metastasis, and other serious invasions, as well as a poor prognosis, according to the American Joint Committee on Cancer (AJCC). In CRC cells, HOXD9 promoted proliferation, motility, and EMT processes in vitro. TGF-1 also stimulated the expression of HOXD9, which was dosage dependent, and HOXD9 downregulation suppressed TGF-1-induced EMT. Through orthotopic implantation, HOXD9 promoted the invasiveness and metastasis of CRC cells in vivo.The ectopic expression of HOXD9 promoted the invasion metastasis in cells of the colorectal tumor by induction of EMT in vitro and vivo.</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Twist1, Snail1, Snail2, ZEB1, and ZEB2 are among a group of transcription factors that have been demonstrated to promote tumour spread by inducing epithelial mesenchymal transition (EMT). However, it is unknown whether these transcription factors activate the EMT program separately or in concert. Twist1 requires direct induction of Snail2 to induce EMT, according to the study by Casas et al. Twist1&#39;s capacity to decrease E-cadherin transcription is totally blocked when Snail2 is knocked off. Twist1 induces Snail2 transcription by binding to an evolutionarily conserved E-box on the proximal promoter. Twist1-induced cell invasion and distant metastasis in mice require Snail2 induction. Twist1 and Snail2 expression in human breast cancers are significantly linked.Results of the study by Casas et al show that Twist1 needs to induce Snail2 to suppress the epithelial branch of the EMT program and that Twist1 and Snail2 act together to promote EMT and tumor metastasis in human mammary epithelial cell lines (Casas et al.,2012).</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">The basic helix-loop-helix transcription factor AP4/TFAP4/AP-4 is encoded by a c-MYC target gene and is up-regulated in colorectal cancer (CRC) and a variety of other tumour types at the same time as c-MYC. A combination of microarray, genome-wide chromatin immunoprecipitation, next-generation sequencing, and bioinformatic studies were&nbsp;used to characterise AP4 DNA binding and mRNA expression across the genome. Hundreds of AP4 target genes were identified as activated and repressed as a result. SNAIL, E-cadherin/CDH1, OCLN, VIM, FN1, and the Claudins 1, 4, and 7 were among the AP4 target genes, which included markers of stemness (LGR5 and CD44) and epithelial&ndash;mesenchymal transition (EMT) such as SNAIL, E-cadherin/CDH1, OCLN, VIM, and FN1. As a result, AP4 activation promoted EMT and increased CRC cell motility and invasion. Down-regulation of AP4 hindered migration and invasion by causing mesenchymal&ndash;epithelial transition (Jackstadt et al.,2013).</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">EMT, migration, and invasion produced by ectopic expression of c-MYC also needed AP4 induction. Lung metastasis in mice was reduced when AP4 was inhibited in CRC cells. Increased AP4 expression was linked to liver metastases and poor patient survival in primary CRC. These findings point to AP4 as a novel EMT regulator that plays a role in CRC and maybe other carcinomas&#39; metastatic processes.</span></span></li>
  • </ul>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Whenever cell phenotype plasticity is crucial and under investigation, the reverse of EMT,&nbsp;known as the mesenchymal-epithelial transition (MET), may be one of the prospects for anti-cancer therapy (<a href="#_ENREF_81" title="Shibue, 2017 #58">Shibue &amp; Weinberg, 2017</a>).</span></span></p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:54px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:158px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Method/ measurement reference</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Reliability</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Strength of evidence</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Assay fit for purpose</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Repeatability/ reproducibility</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Direct measure</span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:54px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Cell line,humans,Human cell line studies</span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:158px">
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">qRT-PCR,,Luciferase reporter assay ,immunoblotting,immunoprecipitation,cell invasion assay,cell migration assay, bioluminesence imaging,wound healing assay,Wound scratch &amp; Transwell assay, Microarray,Immunofluorescence, Immunohistochemistry&nbsp;</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Strong</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes</span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Yes </span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">TGFbeta and Twist induce EMT by upregulating the expression of EMT markers such Snail, Vimentin, N-cadherin, and ABC transporters like ABCA3, ABCC1, ABCC3, and ABCC10 (Saxena et al., 2011).In the treatment with about 0.3, 3, 30 mM of doxorubicin, human mammary epithelial cells (HMLE) stably expressing Twist, FOXC2 or Snail demonstrate increased cell viability compared to control HMLE, dose-dependently (<a href="#_ENREF_77" title="Saxena, 2011 #119">Saxena et al., 2011</a>).</span></span></p>
  • <strong>Time-scale</strong>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#212529">When Twist/FOXC2/Snail overexpressed HMLE is treated with doxorubicin for 48 hours, cell viability increases compared to control HMLE (Saxena et al., 2011).When Twist or Zeb1 were inhibited with small interference RNA (siRNA), cell viability was reduced relative to control MDAMB231 cells treated with doxorubicin for 48 hours (</span><a href="#_ENREF_77" title="Saxena, 2011 #119">Saxena et al., 2011</a><span style="color:#212529">).</span></span></span></span></p>
  • <strong>Known modulating factors</strong>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">In EMT-activated cells, ABC transporters linked to drug resistance are overexpressed (Saxena et al., 2011). In EMT-activated cells, the expression of PD-L1, which binds to PD-1 on cytotoxic T cells, is upregulated, inhibiting cancer immunity and increasing resistance to cancer therapy (Shibue &amp; Weinberg, 2017).</span></span></p>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <ul>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#212529">Understanding the association between EMT and cancer malignancy necessitates further research into the EMT-cancer stem cells (CSC) relationship. Non-CSCs in cancer can spontaneously undergo EMT and dedifferentiate into new CSCs, resulting in tumorigenic potential renewal (Marjanovic, Weinberg, &amp; Chaffer, 2013; Shibue &amp; Weinberg, 2017).The plastic CSC theory demonstrates bidirectional conversions between non-CSCs and CSCs, which could help EMT-activated cells acquire cancer malignancy (</span><a href="#_ENREF_60" title="Marjanovic, 2013 #122">Marjanovic et al., 2013</a><span style="color:#212529">).</span></span></span></span></li>
  • </ul>
  • <ul>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Long non-coding RNAs (lncRNAs) play crucial roles in many biological and pathological processes, including tumor metastasis. Kong et al reported a novel lncRNA, LINC01133 that was downregulated by TGF- &beta;, which could inhibit epithelial&ndash;mesenchymal transition (EMT) and metastasis in colorectal cancer (CRC) cells (Kong et al.,2016). SRSF6, an alternative splicing factor that interacts directly with LINC01133, was found to enhance EMT and metastasis in CRC cells even when LINC01133 was not present. The study also found that the EMT process in CRC cells was regulated by LINC01133 in the presence of SRSF6. In vivo, the ability of LINC01133 to prevent metastasis was confirmed. Furthermore, clinical data revealed that LINC01133 expression was favourably correlated with E-cadherin and negatively correlated with Vimentin, and that low LIINC01133 expression in tumours was associated with poor CRC survival. These findings show that LINC01133, by directly binding to SRSF6 as a target mimic and inhibiting EMT and metastasis, could be used as a predictive biomarker and an effective target for anti-metastasis therapy in CRC.</span></span></li>
  • <li><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">MiR-148a inhibited Met expression directly by binding to its 30-UTR, according to Zhang et al&#39;s findings. Furthermore, reintroducing miR-148a reduced the nuclear accumulation of Snail, a transcription factor that promotes EMT, by inhibiting Met&#39;s downstream signalling, such as activating phosphorylation of AKT-Ser473 and inhibitory phosphorylation of GSK-3b-Ser9 (Zhang et al.,2015). MiR-148a, when combined, may suppress hepatoma cell EMT and metastasis by adversely regulating Met/Snail signalling. </span></span></li>
  • </ul>
  • <h4>References</h4>
  • <ul>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">BOYER, B., &amp; THIERY, J. P. (1993). Epithelium‐mesenchyme interconversion as example of epithelial plasticity.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Apmis</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>101</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1‐6), 257-268.</span></span></span></span></li>
  • </ul>
  • <p style="margin-left:24px; text-align:justify"><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">Chen, S. P., Liu, B. X., Xu, J., Pei, X. F., Liao, Y. J., Yuan, F., &amp; Zheng, F. (2015). MiR-449a suppresses the epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma by multiple targets.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>BMC cancer</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>15</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">(1), 1-13.</span></span></p>
  • <ul>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Cui, B., Zhang, S., Chen, L., Yu, J., Widhopf, G. F., Fecteau, J. F., ... &amp; Kipps, T. J. (2013). Targeting ROR1 inhibits epithelial&ndash;mesenchymal transition and metastasis.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer research</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>73</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(12), 3649-3660.</span></span></span></span></li>
  • </ul>
  • <p style="margin-left:24px; text-align:justify"><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">Chen, Y., Wang, D. D., Wu, Y. P., Su, D., Zhou, T. Y., Gai, R. H., ... &amp; Yang, B. (2017). MDM2 promotes epithelial&ndash;mesenchymal transition and metastasis of ovarian cancer SKOV3 cells.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>British journal of cancer</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>117</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">(8), 1192-1201.</span><span style="color:#212121">.</span></span></p>
  • <ul>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Casas, E., Kim, J., Bendesky, A., Ohno-Machado, L., Wolfe, C. J., &amp; Yang, J. (2011). Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer research</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>71</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 245-254.</span></span></span></span></li>
  • </ul>
  • <ul>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Chen, L., Mai, W., Chen, M., Hu, J., Zhuo, Z., Lei, X., ... &amp; Zhang, D. (2017). Arenobufagin inhibits prostate cancer epithelial-mesenchymal transition and metastasis by down-regulating &beta;-catenin.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Pharmacological research</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>123</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">, 130-142.</span></span></span></span></li>
  • </ul>
  • <p style="margin-left:24px; text-align:justify"><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">Chen, L., Gibbons, D. L., Goswami, S., Cortez, M. A., Ahn, Y. H., Byers, L. A., ... &amp; Qin, F. X. F. (2014). Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature communications</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>5</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">(1), 1-12.</span></span></p>
  • <p style="margin-left:24px; text-align:justify"><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">Da, C., Wu, K., Yue, C., Bai, P., Wang, R., Wang, G., ... &amp; Hou, P. (2017). N-cadherin promotes thyroid tumorigenesis through modulating major signaling pathways.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncotarget</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>8</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">(5), 8131.</span></span></p>
  • <p style="margin-left:24px; text-align:justify"><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">Du, B., &amp; Shim, J. S. (2016). Targeting epithelial&ndash;mesenchymal transition (EMT) to overcome drug resistance in cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecules</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>21</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">(7), 965.</span></span></p>
  • <ul>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Gao, J., Yang, Y., Qiu, R., Zhang, K., Teng, X., Liu, R., &amp; Wang, Y. (2018). Proteomic analysis of the OGT interactome: novel links to epithelial&ndash;mesenchymal transition and metastasis of cervical cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Carcinogenesis</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>39</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(10), 1222-1234.</span></span></span></span></li>
  • </ul>
  • <ul>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Gumireddy, K., Li, A., Gimotty, P. A., Klein-Szanto, A. J., Showe, L. C., Katsaros, D., ... &amp; Huang, Q. (2009). KLF17 is a negative regulator of epithelial&ndash;mesenchymal transition and metastasis in breast cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature cell biology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>11</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(11), 1297-1304.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Gujral, T. S., Chan, M., Peshkin, L., Sorger, P. K., Kirschner, M. W., &amp; MacBeath, G. (2014). A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>159</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(4), 844-856.</span></span></span></span></li>
  • </ul>
  • <p style="margin-left:24px; text-align:justify"><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">Huang, Y., Zhao, M., Xu, H., Wang, K., Fu, Z., Jiang, Y., &amp; Yao, Z. (2014). RASAL2 down-regulation in ovarian cancer promotes epithelial-mesenchymal transition and metastasis.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncotarget</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>5</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">(16), 6734.</span></span></p>
  • <ul>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="background-color:#ffffff"><span style="color:#222222">Huang, R., &amp; Zong, X. (2017). Aberrant cancer metabolism in epithelial&ndash;mesenchymal transition and cancer metastasis: Mechanisms in cancer progression.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Critical reviews in oncology/hematology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>115</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">, 13-22.</span></span></span></span></span></li>
  • </ul>
  • <ul>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="background-color:#ffffff"><span style="color:#222222">Inukai, T., Inoue, A., Kurosawa, H., Goi, K., Shinjyo, T., Ozawa, K., ... &amp; Look, A. T. (1999). SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular cell</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>4</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(3), 343-352.</span></span></span></span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Irani, S., &amp; Dehghan, A. (2018). The expression and functional significance of vascular endothelial-cadherin, CD44, and vimentin in oral squamous cell carcinoma.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of International Society of Preventive &amp; Community Dentistry</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>8</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(2), 110.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Jackstadt, R., R&ouml;h, S., Neumann, J., Jung, P., Hoffmann, R., Horst, D., ... &amp; Hermeking, H. (2013). AP4 is a mediator of epithelial&ndash;mesenchymal transition and metastasis in colorectal cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of Experimental Medicine</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>210</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(7), 1331-1350.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Kong, J., Sun, W., Li, C., Wan, L., Wang, S., Wu, Y., ... &amp; Lai, M. (2016). Long non-coding RNA LINC01133 inhibits epithelial&ndash;mesenchymal transition and metastasis in colorectal cancer by interacting with SRSF6.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer letters</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>380</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(2), 476-484.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Kudo-Saito, C., Shirako, H., Takeuchi, T., &amp; Kawakami, Y. (2009). Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer cell</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>15</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(3), 195-206.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">Liang, Y. J., Wang, Q. Y., Zhou, C. X., Yin, Q. Q., He, M., Yu, X. T., ... &amp; Zhao, Q. (2013). MiR-124 targets Slug to regulate epithelial&ndash;mesenchymal transition and metastasis of breast cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Carcinogenesis</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>34</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">(3), 713-722.</span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Liu, Y., Wang, G., Yang, Y., Mei, Z., Liang, Z., Cui, A., ... &amp; Cui, L. (2016). Increased TEAD4 expression and nuclear localization in colorectal cancer promote epithelial&ndash;mesenchymal transition and metastasis in a YAP-independent manner.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncogene</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>35</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(21), 2789-2800.</span></span></span></span></li>
  • </ul>
  • <p style="margin-left:24px; text-align:justify"><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">Liu, M., Xiao, Y., Tang, W., Li, J., Hong, L., Dai, W., ... &amp; Xiang, L. (2020). HOXD9 promote epithelial‐mesenchymal transition and metastasis in colorectal carcinoma.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer medicine</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>9</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">(11), 3932-3943.</span></span></p>
  • <p style="margin-left:24px; text-align:justify"><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">Marjanovic, N. D., Weinberg, R. A., &amp; Chaffer, C. L. (2013). Cell plasticity and heterogeneity in cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Clinical chemistry</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>59</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">(1), 168-179.</span></span></p>
  • <ul>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Pirozzi, G., Tirino, V., Camerlingo, R., Franco, R., La Rocca, A., Liguori, E., ... &amp; Rocco, G. (2011). Epithelial to mesenchymal transition by TGF&beta;-1 induction increases stemness characteristics in primary non small cell lung cancer cell line.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>PloS one</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>6</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(6), e21548.</span></span></span></span></li>
  • </ul>
  • <ul>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Pradella, D., Naro, C., Sette, C., &amp; Ghigna, C. (2017). EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular cancer</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>16</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 1-19.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">Sarkar, T. R., Battula, V. L., Werden, S. J., Vijay, G. V., Ramirez-Pe&ntilde;a, E. Q., Taube, J. H., ... &amp; Mani, S. A. (2015). GD3 synthase regulates epithelial&ndash;mesenchymal transition and metastasis in breast cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncogene</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>34</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">(23), 2958-2967.</span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="background-color:#ffffff"><span style="color:#222222">Saxena, M., Stephens, M. A., Pathak, H., &amp; Rangarajan, A. (2011). Transcription factors that mediate epithelial&ndash;mesenchymal transition lead to multidrug resistance by upregulating ABC transporters.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell death &amp; disease</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>2</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(7), e179-e179.</span></span></span></span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Shibue, T., &amp; Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: the mechanistic link and clinical implications.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature reviews Clinical oncology</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>14</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(10), 611-629.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Shiota, M., Zardan, A., Takeuchi, A., Kumano, M., Beraldi, E., Naito, S., ... &amp; Gleave, M. E. (2012). Clusterin mediates TGF-&beta;&ndash;induced epithelial&ndash;mesenchymal transition and metastasis via Twist1 in prostate cancer cells.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cancer research</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>72</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(20), 5261-5272.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Smith, B. N., &amp; Bhowmick, N. A. (2016). Role of EMT in metastasis and therapy resistance.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Journal of clinical medicine</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>5</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(2), 17.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Tanabe, S. (2013). Perspectives of gene combinations in phenotype presentation.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>World journal of stem cells</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>5</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(3), 61.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Tanabe, S. (2015). Origin of cells and network information.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>World journal of stem cells</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>7</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(3), 535.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Tanabe, S. (2015). Signaling involved in stem cell reprogramming and differentiation.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>World journal of stem cells</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>7</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(7), 992.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Tanabe, S., Aoyagi, K., Yokozaki, H., &amp; Sasaki, H. (2016). Regulation of CTNNB1 signaling in gastric cancer and stem cells.&nbsp;<em>World journal of gastrointestinal oncology</em>,&nbsp;<em>8</em>(8), 592&ndash;598.</span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Tanabe, S., Aoyagi, K., Yokozaki, H., &amp; Sasaki, H. (2015). Regulated genes in mesenchymal stem cells and gastric cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>World journal of stem cells</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>7</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 208.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">Wang, L., Tong, X., Zhou, Z., Wang, S., Lei, Z., Zhang, T., ... &amp; Zhang, H. T. (2018). Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-&beta;-induced epithelial-mesenchymal transition and metastasis by controlling TIF1&gamma; in non-small cell lung cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular cancer</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>17</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">(1), 1-18.</span></span></li>
  • <li style="text-align:justify"><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">Wu, W. S., Heinrichs, S., Xu, D., Garrison, S. P., Zambetti, G. P., Adams, J. M., &amp; Look, A. T. (2005). Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>123</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">(4), 641-653.</span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Yu, C. P., Yu, S., Shi, L., Wang, S., Li, Z. X., Wang, Y. H., ... &amp; Liang, J. (2017). FoxM1 promotes epithelial-mesenchymal transition of hepatocellular carcinoma by targeting Snai1.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular medicine reports</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>16</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(4), 5181-5188.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Yu, J., Lei, R., Zhuang, X., Li, X., Li, G., Lev, S., ... &amp; Hu, G. (2016). MicroRNA-182 targets SMAD7 to potentiate TGF&beta;-induced epithelial-mesenchymal transition and metastasis of cancer cells.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Nature communications</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>7</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(1), 1-12.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">Yue, B., Song, C., Yang, L., Cui, R., Cheng, X., Zhang, Z., &amp; Zhao, G. (2019). METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Molecular cancer</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>18</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">(1), 1-15.</span></span></li>
  • <li style="text-align:justify"><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff"><span style="color:#222222">Zhang, P., Sun, Y., &amp; Ma, L. (2015). ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Cell cycle</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>14</em></span></span></em><span style="background-color:#ffffff"><span style="color:#222222">(4), 481-487.</span></span></span></span></li>
  • <li style="text-align:justify"><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">Zhang, J. P., Zeng, C., Xu, L., Gong, J., Fang, J. H., &amp; Zhuang, S. M. (2014). MicroRNA-148a suppresses the epithelial&ndash;mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>Oncogene</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>33</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">(31), 4069-4076.</span></span></li>
  • <li style="text-align:justify"><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">Zhang, W., Shi, X., Peng, Y., Wu, M., Zhang, P., Xie, R., ... &amp; Wang, J. (2015). HIF-1&alpha; promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer.&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>PloS one</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">,&nbsp;</span></span><em><span style="background-color:#ffffff"><span style="color:#222222"><em>10</em></span></span></em><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif; font-size:14px"><span style="color:#222222">(6), e0129603.</span></span></li>
  • </ul>
  • <p style="margin-left:48px; text-align:justify">&nbsp;</p>
  • <p style="text-align:justify">&nbsp;</p>
  • </div>
  • <h3>List of Non Adjacent Key Event Relationships</h3>
  • <div>
  • <h4><a href="/relationships/2728">Relationship: 2728: Increased, DNA damage and mutation leads to Increase chromosomal aberrations</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/443"> DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>non-adjacent</td>
  • <td>High</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>mice</td>
  • <td>Mus sp.</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>human</td>
  • <td>Homo sapiens</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>human and other cells in culture</td>
  • <td>human and other cells in culture</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>All life stages</td>
  • <td>Not Specified</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>Not Specified</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p>Not specific,</p>
  • <h4>Key Event Relationship Description</h4>
  • <p>Increased DNA damage leads to increased chromosomal aberrations</p>
  • <p>The presented relationship outlines a direct correlation between two genetic events. The upstream event, &quot;Increased DNA damage,&quot; signifies an augmentation in the occurrence of genetic lesions and alterations within the DNA molecule. This damage can result from various sources, such as exposure to radiation, chemicals, or errors during DNA replication.</p>
  • <p>The downstream event in this relationship is &quot;increased chromosomal aberrations,&quot; which signifies a rise in the number or frequency of structural abnormalities in chromosomes. Chromosomal aberrations can encompass various changes, including deletions, insertions, translocations, or inversions of genetic material within chromosomes.</p>
  • <p>This relationship underscores the close connection between genetic lesions and chromosomal abnormalities. Increased DNA damage can directly contribute to an elevated occurrence of chromosomal aberrations, as the integrity of DNA is essential for maintaining the proper structure of chromosomes. Understanding this relationship is crucial in the context of genomic stability and its implications for various biological outcomes, including genetic disorders and cancer development.</p>
  • <h4>Evidence Supporting this KER</h4>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">DNA double-strand breaks (DSB) are the crucial lesions underlying the formation of CA </span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">[</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">M.A Bender et al.,1974</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">;</span></span></span>&nbsp;<span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">G.Obe et al., 2002</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000066">]</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">. Chromosomes are uninemic; each chromatid contains one continuous DNA molecule. Consequently, an unrepaired DSB, appears at mitosis as a terminal deletion (or an incomplete exchange), leading to loss of genetic material and eventually cell death or loss of heterozygosity in diploid cells. On the other hand, misrepaired DSB generate intra- or inter-chromosomal exchanges which may or may not be lethal, depending on the exact form they take. Concluding a controversy that lasted a number of &nbsp;years (</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">[</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">K.H Chandwick et al.,1981</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">]</span></span></span>&nbsp;<span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">and references therein), there is now a general agreement that the dose&ndash;response curve for the induction of DSB is linear over several orders of magnitude </span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">[</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">K Rothkamm et al., 2003</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">]</span></span></span></span></span></p>
  • <strong>Biological Plausibility</strong>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">DNA damage and unrepaired or insuffificiently repaired DNA double-strand breaks as well as telomere shortening contribute to the formation of structural chromosomal </span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">aberrations (CAs). Non-specifific CAs have been used in the monitoring of individuals </span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">exposed to potential carcinogenic chemicals and radiation. The frequency of CAs in </span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">peripheral blood lymphocytes (PBLs) has been associated with cancer risk and the </span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">association has also been found in incident cancer patients. CAs include chromosome</span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">type aberrations (CSAs) and chromatid-type aberrations (CTAs) and their sum CAtot.</span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">Structural CAs may be specifific, such as translocations and inversions, or non-specifific, such as chromatid breaks, fragmented or missing parts of chromosomes, and fusions </span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">resulting in dicentric and ring chromosomes </span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">(Bignold, 2009</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">). </span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">The former are often recurrent and they are currently analyzed by molecular cytogenetic methods while the latter are scored by classical cytogenetic techniques, which are able to recognize chromosome-type aberrations (CSAs) and chromatid-type aberrations (CTAs) according to morphological changes (</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">Hagmar et al., 2004)</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">. CTAs are formed due to insufficiently repaired double-strand breaks (DS</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#6c6d70">00</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">Bs) during the late S or G2 phase of the&nbsp;</span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">cell cycle </span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">(Natarajan and Palitti, 2008; Bignold, 2009; Durante et al., 2013</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">), whereas CSAs are the result of direct DNA damage due to radiation, chemical mutagens, or shortening of telomeres during the G0/G1 phase (</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">Albertini et al., 20; Jones et al., 2012)</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">. Non-specifific CAs have been used in the monitoring of populations occupationally exposed to potential carcinogenic chemicals and radiation and an increased frequency of CAs in peripheral blood lymphocytes (PBLs) has been associated with cancer risk and the association has also been found in incident cancer patients (</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">Rossner et al., 2005; Vodicka et al., 2010; Vodenkova et al., 2015). </span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">Unrepaired or insuffiffifficiently repaired DSBs, as well as telomerase dysfunction, represent the mechanistic bases for the formation of structural CAs (</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">Natarajan and Palitti, 2008; </span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">Bignold, 2009; Durante et al., 2013; Vodicka et al., 2018; Srinivas et al., 2020)</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">. However, even other types of DNA repair pathways may contribute to CA formation as these are </span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">found in inherited syndromes manifesting DNA repair gene mutations (</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">Rahman, 2014)</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">.</span></span></span></span></span></p>
  • <p style="text-align:left">&nbsp;</p>
  • <strong>Empirical Evidence</strong>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">A study by Solange et al </span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">evaluated the effects of exposure to formaldehyde (FA) &nbsp;in human peripheral blood lymphocytes, a group of laboratory workers exposed occupationally to FA and &nbsp;control subjects were tested for chromosomal aberrations (CAs) and DNA damage (comet assay)( Solange et al 2015). The level of exposure to FA in the workplace air was evaluated. The association between genotoxicity biomarkers and polymorphic genes of xenobiotic - metabolising and DNA repair enzymes were also assessed.</span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">All cytogenetic parameters evaluated&mdash;total-CA, CSAs, CTAs, gaps and aneuploidies&mdash;were significantly elevated in anatomy pathology professionals exposed to FA (mean 0.38 ppm) compared with control subjects. FA-exposed individuals showed an increase of 91% in total-CAs frequency compared with controls. Mean frequencies of both CAs types, CSAs and CTAs were also significantly higher in exposed workers . Although there is a paucity of studies assessing CAs in FA occupationally exposed subjects, our findings are in agreement with most of the published literature. </span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">(</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">He</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">.J.L</span></span></span>&nbsp;<em><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20"><em>et al</em></span></span></span></em><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">. </span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">1998)</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">found higher frequencies of CAs in PBLs of 13 anatomy students exposed to FA (mean level 2.37 ppm) during a 12-week anatomy class. Similarly, in a recent study involving FA-exposed personnel working in pathology departments (</span></span></span><em><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20"><em>n</em></span></span></span></em><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">&nbsp;= 21; mean level 0.72 ppm), total-CA and CTAs were significantly elevated </span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">compared with controls (</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">Jakab et al., 2010</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">). A &nbsp;significant increase in CAs frequencies was also observed in industrial workers (</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">kitaeva et al.,1996</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">).</span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">Multiaberrant cells frequency was significantly higher (4-fold) in FA-exposed workers than in control individuals, whereas aberrant cells frequency was significantly increased by 1.7-fold in the exposed group(Solange</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">&nbsp;et al., </span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">2015).</span></span></span></span></span></p>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p>&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">In contrast, no significant differences were found in CAs frequencies between individuals working in different laboratories of a Cancer Research Institute, including an anatomical pathology laboratory (</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">Pala M et al.,2008</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">)</span></span></span></span></span></p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:57px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:158px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Method/ measurement reference</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Reliability</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strength of evidence</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Assay fit for purpose</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Repeatability/ reproducibility</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Direct measure</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:57px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Mice</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:158px">
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Chromosomal abberation assay, Genotoxicity assessment assay, (</span></span><span style="font-size:9.5000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">Evgenii Plotnikov</span></span></span><span style="font-size:9.5000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">., et al 2016)</span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">CT8 Assay (</span></span><span style="font-size:9.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">Francesco Marchett</span></span></span><span style="font-size:9.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">., et al 2015)</span></span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">+</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strong</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:57px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Human</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:158px">
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Micronuclease (CBMN) &nbsp;Assay, Comet assay, (</span></span><span style="font-size:9.5000pt"><span style="font-family:'Times New Roman'"><span style="color:#131413">Qiang Liu</span></span></span><span style="font-size:9.5000pt"><span style="font-family:'Times New Roman'"><span style="color:#131413">., et al 2009.)</span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:9.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">CAs analysis</span></span></span><span style="font-size:9.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">, Comet assay, &nbsp;PCR-RFLP</span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">(</span></span></span><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">S. Costa et al., 2015</span></span></span><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">)</span></span></span></span></span></p>
  • <p style="text-align:left">&nbsp;</p>
  • <p>&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">+</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strong</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:57px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'">Human Cell lines</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:158px">
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'">Polyploid assay,</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'">Sister chromatid exchange test</span></span><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'">, </span></span><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">V79/HPRT mutation assay</span></span></span><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">,</span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">Cell transformation assay</span></span></span><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">,</span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">Tumorigenicity test</span></span></span><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">,</span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">,</span></span></span><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">spore rec assay</span></span></span><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">&nbsp;(</span></span></span><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">Hirohisa Tsuda</span></span></span><span style="font-size:10.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">&nbsp;et al., 1993)</span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">+</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:68px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strong</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:66px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">Multiaberrant cells frequency was significantly higher (4-fold) in formaldehyde-exposed workers than in control individuals, whereas aberrant cells frequency was significantly increased by 1.7-fold in the exposed group(Solange</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">&nbsp;et al., </span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#231f20">2015).</span></span></span></span></span></p>
  • <strong>Time-scale</strong>
  • <p>&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">It is generally accepted that exchanges formed in the G1-phase originate from the interaction of two spatially distinct radiogenic damaged sites (DSB)</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">&nbsp;[</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">Heck et al., 2008</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">],</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">&nbsp;which runs counter to the once-popular concept encompassed by so-called &ldquo;one-hit models&rdquo; for the formation of translocations, dicentrics and other exchanges </span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">[</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">Pala M et al.,2008</span></span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'"><span style="color:#000000">].</span></span></span></span></span></p>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <p>Not known.</p>
  • <h4>References</h4>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Albertini, R. J., Anderson, D., Douglas, G. R., Hagmar, L., Hemminki, K., Merlo, F., ... &amp; Aitio, A. (2000). IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Mutation Research/Reviews in Mutation Research</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>463</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(2), 111-172.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Bignold, L. P. (2009). Mechanisms of clastogen-induced chromosomal aberrations: A critical review and description of a model based on failures of tethering of DNA strand ends to strand-breaking enzymes.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Mutation Research/Reviews in Mutation Research</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>681</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(2-3), 271-298.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Costa, S., Carvalho, S., Costa, C., Coelho, P., Silva, S., Santos, L. S., ... &amp; Teixeira, J. P. (2015). Increased levels of chromosomal aberrations and DNA damage in a group of workers exposed to formaldehyde.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Mutagenesis</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>30</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(4), 463-473.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Durante, M., Bedford, J. S., Chen, D. J., Conrad, S., Cornforth, M. N., Natarajan, A. T., ... &amp; Obe, G. (2013). From DNA damage to chromosome aberrations: joining the break.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Mutation Research/Genetic Toxicology and Environmental Mutagenesis</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>756</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(1-2), 5-13.</span></span></span></span></span></span></p>
  • <ol start="7" style="list-style-type:upper-alpha">
  • <li style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">Obe, P. Pfeiffer, J.R.K. Savage, C. Johannes, W. Goedecke, P. Jeppsen, A.T. Natarajan,W.Martinez-Lopez, G.A. Folle,M.E. (2002</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">)</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">&nbsp;Drets,Chromosomal aberrations: formation, identifification, and distribution, Mutat. Res. 504</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">.</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">3&ndash;16. </span></span></span></span></li>
  • </ol>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Hagmar, L., Str&ouml;mberg, U., Tinnerberg, H., &amp; Mikoczy, Z. (2004). Epidemiological evaluation of cytogenetic biomarkers as potential surrogate end-points for cancer.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>IARC scientific publications</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">, (157), 207-215.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri">&nbsp;<span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">He, J. L., Jin, L. F., &amp; Jin, H. Y. (1998). Detection of cytogenetic effects in peripheral lymphocytes of students exposed to formaldehyde with cytokinesis-blocked micronucleus assay.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Biomedical and environmental sciences: BES</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>11</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(1), 87-92.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Heck, H. D. A., &amp; Casanova, M. (2004). The implausibility of leukemia induction by formaldehyde: a critical review of the biological evidence on distant-site toxicity.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Regulatory Toxicology and Pharmacology</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>40</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(2), 92-106.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Jakab, M. G., Klupp, T., Besenyei, K., Bir&oacute;, A., Major, J., &amp; Tompa, A. (2010). Formaldehyde-induced chromosomal aberrations and apoptosis in peripheral blood lymphocytes of personnel working in pathology departments.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Mutation Research/Genetic Toxicology and Environmental Mutagenesis</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>698</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(1-2), 11-17.</span></span></span></span>&nbsp;</span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Jones, C. H., Pepper, C., &amp; Baird, D. M. (2012). Telomere dysfunction and its role in haematological cancer.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>British journal of haematology</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>156</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(5), 573-587.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">&nbsp;K.H. Chadwick, H.P. Leenhouts, The Molecular Theory of Radiation Biology, Springer-Verlag, Berlin, </span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">(</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">1981</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">)</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">.</span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Kitaeva, L. V., Mikheeva, E. A., Shelomova, L. F., &amp; PIa, S. (1996). Genotoxic effect of formaldehyde in somatic human cells in vivo.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Genetika</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>32</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(9), 1287-1290.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">K. Rothkamm, M. L&ouml;brich, (2003</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">).</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">Evidence for a lack of DNAdouble-strand break repair </span></span>&nbsp;<span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">in human cells exposed to very low X-ray doses, Proc. Natl. Acad. Sci. U. S. A. 100</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">.</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">&nbsp;5057&ndash;5062.</span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Liu, Q., Cao, J., Li, K. Q., Miao, X. H., Li, G., Fan, F. Y., &amp; Zhao, Y. C. (2009). Chromosomal aberrations and DNA damage in human populations exposed to the processing of electronics waste.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Environmental science and pollution research</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>16</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(3), 329-338.</span></span></span></span></p>
  • <p style="text-align:left">&nbsp;</p>
  • <ol start="13" style="list-style-type:upper-alpha">
  • <li style="text-align:left" value="1000"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">A. Bender, H.G. Griggs, J.S. Bedford,(1974</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">).</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">&nbsp;Mechanisms of chromosomal aberration production. III: chemicals and ionizing radiation, Mutat. Res. 23</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">.</span></span><span style="font-size:12.0000pt"><span style="font-family:'Times New Roman'">197&ndash;212. </span></span></span></span></li>
  • </ol>
  • <p style="text-align:left">&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Marchetti, F., Bishop, J., Gingerich, J., &amp; Wyrobek, A. J. (2015). Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Scientific reports</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>5</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(1), 1-7.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Natarajan, A. T., &amp; Palitti, F. (2008). DNA repair and chromosomal alterations.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Mutation Research/Genetic Toxicology and Environmental Mutagenesis</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>657</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(1), 3-7.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Pala, M., Ugolini, D., Ceppi, M., Rizzo, F., Maiorana, L., Bolognesi, C., ... &amp; Vecchio, D. (2008). Occupational exposure to formaldehyde and biological monitoring of Research Institute workers.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Cancer detection and prevention</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>32</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(2), 121-126.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Plotnikov, E., Silnikov, V., Gapeyev, A., &amp; Plotnikov, V. (2016). Investigation of DNA-damage and chromosomal aberrations in blood cells under the influence of new silver-based antiviral complex.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Advanced Pharmaceutical Bulletin</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>6</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(1), 71.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Rahman, N. (2014). Realizing the promise of cancer predisposition genes.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Nature</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>505</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(7483), 302-308.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Rossner, P., Boffetta, P., Ceppi, M., Bonassi, S., Smerhovsky, Z., Landa, K., ... &amp; &Scaron;r&aacute;m, R. J. (2005). Chromosomal aberrations in lymphocytes of healthy subjects and risk of cancer.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Environmental health perspectives</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>113</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(5), 517-520.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#2a2a2a">Solange Costa, Sandra Carvalho, Carla Costa, Patr&iacute;cia Coelho, Susana Silva, Lu&iacute;s S. Santos, Jorge F. Gaspar, Beatriz Porto, Blanca Laffon, Jo&atilde;o P. Teixeira, Increased levels of chromosomal aberrations and DNA damage in a group of workers exposed to formaldehyde,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#2a2a2a"><em>Mutagenesis</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#2a2a2a">, Volume 30, Issue 4, July 2015, Pages 463&ndash;473,</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Srinivas, N., Rachakonda, S., &amp; Kumar, R. (2020). Telomeres and telomere length: a general overview.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Cancers</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>12</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(3), 558.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Tsuda, H., Shimlzu, C. S., Taketomi, M. K., Hasegawa, M. M., Hamada, A., Kawata, K. M., &amp; Inui, N. (1993). Acrylamide; induction of DNA damage, chromosomal aberrations and cell transformation without gene mutations.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Mutagenesis</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>8</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(1), 23-29.</span></span></span></span></span></span></p>
  • <p style="text-align:left">&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Vodicka, P., Musak, L., Vodickova, L., Vodenkova, S., Catalano, C., Kroupa, M., ... &amp; Hemminki, K. (2018). Genetic variation of acquired structural chromosomal aberrations.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Mutation Research/Genetic Toxicology and Environmental Mutagenesis</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>836</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">, 13-21.</span></span></span></span></span></span></p>
  • <p style="text-align:left">&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Vodicka, P., Polivkova, Z., Sytarova, S., Demova, H., Kucerova, M., Vodickova, L., ... &amp; Hemminki, K. (2010). Chromosomal damage in peripheral blood lymphocytes of newly diagnosed cancer patients and healthy controls.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Carcinogenesis</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>31</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(7), 1238-1241.</span></span></span></span></span></span></p>
  • <p style="text-align:left">&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">Vodenkova, S., Polivkova, Z., Musak, L., Smerhovsky, Z., Zoubkova, H., Sytarova, S., ... &amp; Vodicka, P. (2015). Structural chromosomal aberrations as potential risk markers in incident cancer patients.&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>Mutagenesis</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222"><em>30</em></span></span></span></span></em><span style="font-size:12.0000pt"><span style="background-color:#ffffff"><span style="font-family:'Times New Roman'"><span style="color:#222222">(4), 557-563.</span></span></span></span></span></span></p>
  • <p style="text-align:left">&nbsp;</p>
  • <p style="text-align:left">&nbsp;</p>
  • <p style="text-align:left">&nbsp;</p>
  • <p style="text-align:left">&nbsp;</p>
  • <p style="text-align:left">&nbsp;</p>
  • <p style="text-align:left">&nbsp;</p>
  • </div>
  • <div>
  • <h4><a href="/relationships/2729">Relationship: 2729: Increase chromosomal aberrations leads to Increase,miRNA levels</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/443"> DNA damage and mutations leading to Metastatic Breast Cancer</a></td>
  • <td>non-adjacent</td>
  • <td>High</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>human</td>
  • <td>Homo sapiens</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>All life stages</td>
  • <td>Not Specified</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Not specific through any particular life stage or gender</span></span></span></span></p>
  • <h4>Key Event Relationship Description</h4>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="font-family:Calibri">KER :Increased, </span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri">chromosomal aberration</span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri">&nbsp;leads to microRNA &nbsp;expression, increased</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri">&nbsp;&nbsp;</span></span><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Upstream event: increased,</span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">&nbsp;chromosomal aberration</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Downstream event: increased miRNA</span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">&nbsp;expression</span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">The depicted Key Event Relationship (KER) outlines a sequence of events involving genetic alterations and their potential impact on microRNA (miRNA) regulation. The upstream event, &quot;Increased chromosomal aberration,&quot; suggests an elevation in the occurrence of structural abnormalities within chromosomes. These aberrations can encompass various changes, including deletions, duplications, inversions, or translocations of genetic material.</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">The downstream event in this KER is &quot;increased miRNA expression,&quot; signifying a rise in the levels of microRNA molecules within the cell. Genetic alterations, such as chromosomal aberrations, can influence the expression of miRNAs, leading to changes in their abundance.</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">This KER underscores the potential interplay between genetic changes and miRNA regulation. Genetic alterations can influence miRNA expression patterns, potentially impacting downstream gene expression and cellular responses. Understanding these relationships contributes to a broader understanding of how genomic changes can influence post-transcriptional gene regulation and cellular processes.</span></span></span></span></p>
  • <h4>Evidence Supporting this KER</h4>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">The first report linking a chromosomal breakpoint with the genomic location of miRNAs was published a couple of decades ago (</span></span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Gauwerky</span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">&nbsp;et al.,1989)</span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">. A masked t(8;17) translocation resulted in a high activation of the MYC OG:&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>MYC</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;from chromosome 8 was truncated at the end of the first exon (which is noncoding), and the coding region joined the regulatory elements of a gene located on chromosome 17, called&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>BCL3</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;(B cell leukemia/lymphoma 3). Despite extensive genomic search,&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>BCL3&nbsp;</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">remained an elusive entity until the identification of the human miRNAs. Fifteen years after the initial discovery, the&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-142&nbsp;</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">gene was found to be located 50 nt from the t(8;17) break involving chromosome 17 and&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>MYC,&nbsp;</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">meaning that the regulatory elements of this miRNA are likely involved in the overexpression of MYC (</span></span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Calin, G.A., et al. 2002</span></span></span><span style="font-size:9.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#212121">)</span></span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">. The clinical consequences were dramatic for the patient, leading to aggressive acute prolymphocytic leukemia &nbsp;(</span></span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Gauwerky</span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">&nbsp;et al.,1989)</span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">. Apart from the involvement in the t(8;17) breakpoint of B cell acute leukemia,&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-142-3p&nbsp;</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">and</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>&nbsp;miR-142-5p&nbsp;</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">are also within the 17q23 minimal amplicon described in breast cancer (</span></span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Barlund, M., et al. 2000</span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">)</span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;and near the FRA17B site, a target for HPV16 integration in cervical tumors (</span></span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Calin, G.A., et al. 2004</span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">).</span></span></span></span></span></span></p>
  • <strong>Biological Plausibility</strong>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">Chromosomal translocations alter PCG loci through two main mechanisms (</span></span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Russo, G., et al. 1988</span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">). The first is the juxtaposition of promoter/enhancer elements from one gene to the intact coding region of another gene, while the second is the recombination of the coding regions of two different genes. The former is more frequently found in B and T cell lymphomas and leukemias and the latter in human myeloid leukemias and soft-tissue sarcomas. The translocations that alter miRNA loci can be classified by analogy with these mechanisms . At least five different situations can be postulated, the last three of which have yet to be identified in human cancers: (a) juxtaposition of promoter/enhancer elements from miRNA genes to a PCG ORF with overexpression of the protein [e.g., t(8;17)(q24;q22)]; (b) disruption of the region of interaction between the target PCG and the interactor miRNA with the disruption of the repression and the overexpression of the protein (e.g., 12q15 translocations involving HMGA2 gene); (c) juxtaposition of promoter/enhancer elements from PCG to a miRNA gene with overexpression of the noncoding gene; (d) juxtaposition of promoter/enhancer elements from miRNA to another miRNA gene with overexpression of the noncoding gene (termed &ldquo;promoter swapping&rdquo;); and (e) miRNA gene&ndash;to&ndash;miRNA gene fusion with the consequent production of a &ldquo;new&rdquo; cluster of coexpressed or independently expressed miRNAs.</span></span></span></span></span></span></p>
  • <strong>Empirical Evidence</strong>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">miRNA genes are located near breakpoint regions.&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-180</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;is only 1 kb from the&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>MN1</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;gene involved in a t(4;22) chromosomal translocation in meningioma that inactivates&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>MN1</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;and possibly the miRNA gene located in the same position. Also, in a patient with precursor B cell acute lymphoblastic leukemia, an insertion of&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-125b-1</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;into a rearranged immunoglobulin heavy-chain locus was described, possibly as an early step in leukemogenesis (</span></span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Sonoki, T</span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">&nbsp;et al., 2009-2010</span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">). Chromosomal translocations fusing the BCL-6 OG to the regulatory elements of&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-28</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;or to the lipoma preferred partner were described in primary central nervous system lymphomas and may be associated with aberrant somatic hypermutation or defective class switch recombination (</span></span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Schwindt, H., et al. 2006</span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">).</span></span></span></span></span></span></p>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="color:#000000">The contribution of </span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="color:#000000">microRNAs </span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="color:#000000">(</span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="color:#000000">miR</span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="color:#000000">) to the pathogenesis of mantle cell lymphoma (MCL) is not well known. The expression of 86 mature </span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="color:#000000">miRs </span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="color:#000000">mapped to frequently altered genomic regions in MCL in CD5+ /CD5</span></span></span>&nbsp;<span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="color:#000000">normal B cells, reactive lymph nodes, and purified tumor cells of 17 leukemic MCL, 12 nodal MCL, and 8MCL cell lines were investigated. Genomic alterations of the tumors were studied by single nucleotide polymorphism arrays and comparative genomic hybridization. Leukemic and nodal tumors showed a high number of differentially expressed miRs compared with purified normal B cells, but only some of them were commonly deregulated in both tumor types. An unsupervised analysis of miR expression profile in purified leukemic MCL cells revealed two clusters of tumors characterized by different mutational status of the immunoglobulin genes, proliferation signature, and number of genomic alterations. The expression of most miRs was not related to copy number changes in their respective chromosomal loci. Only the levels of miRs included in the </span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="color:#000000">miR-17-92 </span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="color:#000000">cluster were significantly related to genetic alterations at 13q31. Moreover, overexpression of miR-17-5p/miR-20a from this cluster was associated with high </span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="color:#000000">MYC </span></span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri"><span style="color:#000000">mRNA levels in tumors with a more aggressive behavior. In conclusion, the miR expression pattern of MCL is deregulated in comparison with normal lymphoid cells and distinguishes two subgroups of tumors with different biological features.</span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <table cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; font-family:&quot;Times New Roman&quot;; font-size:13px; width:586px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:63px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:150px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Method/ measurement reference</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Reliability</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strength of evidence</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Assay fit for purpose</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Repeatability/ reproducibility</span></span></span></span></p>
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Direct measure</span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Human </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:150px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Microarray, CGH analysis (dehan &nbsp;et al., 2007)</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">+</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strong</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Human cell line and blood samples </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:150px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Northern blotting (Calin et al., 2004)</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">+</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strong</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify">&nbsp;</p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:150px">
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Cytogenetic techniques (</span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Lionetti M</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;e</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri">t al., 2009 ; </span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Min DJ</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;e</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri">t al., 2013 ;</span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Huang JJ</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;e</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri">t al., 2012 ; </span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Pichiorri F,</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;e</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri">t al., 2011; </span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Roccaro AM</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;e</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri">t al., 2009; </span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Gao X</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;et al., 2009 ; </span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Corthals SL</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;et al.,2010 ; </span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Pichiorri F</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;et al., 2008 ; </span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Yang RF</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;et al., 2010; </span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Rio-Machin A</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;et al., 2013 ; </span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Guti&eacute;rrez NC</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;et al., 2010 ; </span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Kuehl WM</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;et al., 2012 ; </span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Pichiorri F</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;et al., 2010 ; </span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Gatt ME</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;et al., 2011 ; </span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Zhang Y-K</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;et al., 2011 ;</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Misiewicz-Krzeminska I</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;et al., 2013;</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Wong KY</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;et al., 2011</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;;</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">Chim CS</span></span></span><span style="font-size:10.0000pt"><span style="font-family:Calibri"><span style="color:#231f20">&nbsp;et al., 2010)</span></span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:72px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">+</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Strong</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:63px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:101px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes</span></span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; vertical-align:top; width:67px">
  • <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Yes </span></span></span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • <strong>Response-response relationship</strong>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">D</span></span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">etailed investigation of the 13q14.3 deletions showed that both members of an miRNA cluster,&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-15a</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;and&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-16-1</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">, are deleted or downregulated in approximately 68% of CLL cases as compared with healthy donors (</span></span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Calin, G.A., et al. 2002</span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">). Furthermore, a rare mutation lowering the expression of these genes was identified in two CLL patients including one from a family with individuals having CLL and breast cancer, and was found to be associated with the loss of the normal allele in the leukemic cells (</span></span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Calin, G.A., et al. 2005</span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">). It was shown that the levels of both&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-15</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;and&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-16</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;inversely correlate with the BCL-2 protein expression and that BCL-2 repression by these miRNAs induces apoptosis in leukemia cells </span></span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">(</span></span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Cimmino, A., et al. 2005</span></span></span><span style="font-size:9.5000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">)</span></span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">Levels of&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-16</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;were decreased in NZB lymphoid tissue, and exogenous&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-16</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;delivered to an NZB malignant B-1 cell line resulted in cell cycle alterations and increased apoptosis. Linkage of the&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-15a/miR-16-1</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;complex to the development of CLL in this spontaneous mouse model suggests that the altered expression of these genes is the molecular lesion in CLL (</span></span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Raveche, E.S., et al. 2007</span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">).</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">The only miRNA found to be overexpressed in any type of solid tumor analyzed (breast, colon, lung, prostate, stomach, and endocrine pancreas tumors, glioblastomas, and uterine leiomyomas) is&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-21</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;(</span></span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Volinia, S., et al. 2006</span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">,</span></span></span>&nbsp;<span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Ciafre, S.A., et al. 2005</span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">; </span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">. Krichevsky</span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">&nbsp;et al.,2003; </span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Wang, T., et al. 2007</span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">). This gene is located in the 3&prime;UTR of the vacuole membrane protein 1 (</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>VMP1</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">) gene at chromosome 17q23.2, a region frequently found amplified in neuroblastomas and breast, colon, and lung cancers. Knockdown of&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-21</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;in glioblastoma cell lines induces a caspase-mediated apoptosis, further supporting the oncogenic role of this miRNA (</span></span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Chan,</span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">&nbsp;et al.,2005</span></span></span><span style="font-size:9.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#212121">)</span></span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">.</span></span></span></span></span></span></p>
  • <strong>Time-scale</strong>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">S</span></span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">tudies performed in solid cancer cell lines showed that&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-16</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;negatively regulated cellular growth and cell cycle progression.&nbsp;</span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-16</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><span style="font-family:Cambria">&ndash;downregulated transcripts were enriched with genes whose silencing by small interfering RNAs causes an accumulation of cells in G0/G1. Simultaneous silencing of these genes was more effective at blocking cell cycle progression than was disruption of the individual genes. Thus,&nbsp;</span></span></span></span></span><em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121"><em>miR-16</em></span></span></span></span></em><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">&nbsp;coordinately regulates targets that may act in concert to control cell cycle progression (</span></span></span></span><span style="font-size:9.5000pt"><span style="font-family:Arial"><span style="color:#231f20">Linsley, P.S., et al. 2007</span></span></span><span style="font-size:15.0000pt"><span style="background-color:#ffffff"><span style="font-family:Cambria"><span style="color:#212121">)</span></span></span></span></span></span></p>
  • <strong>Known modulating factors</strong>
  • <div>
  • <table class="table table-bordered table-fullwidth">
  • <thead>
  • <tr>
  • <th>Modulating Factor (MF)</th>
  • <th>MF Specification</th>
  • <th>Effect(s) on the KER</th>
  • <th>Reference(s)</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>
  • <p>UV rays,<span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">cisplatin, doxorubicin, IR</span></span></span></span></p>
  • </td>
  • <td>Impaired DNA repair</td>
  • <td>Altered miRNA expression</td>
  • <td>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.0000pt"><span style="font-family:Calibri">Pothof et al., 2009,</span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">Galluzzi et al., 2010, Saleh et</span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">.</span></span><span style="font-size:11.0000pt"><span style="font-family:Calibri">al.,2011;Suzuki et al.,2009</span></span></span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p>&nbsp;</p>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <p>Not mentioned.</p>
  • <h4>References</h4>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Bärlund, M., Monni, O., Kononen, J., Cornelison, R., Torhorst, J., Sauter, G., ... &amp; Kallioniemi, A. (2000). Multiple genes at 17q23 undergo amplification and overexpression in breast cancer.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Cancer research</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>60</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(19), 5340-5344.</span></span></span></span></span></span></p>
  • <p style="text-align:left">&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., ... &amp; Croce, C. M. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Proceedings of the national academy of sciences</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>99</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(24), 15524-15529.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., ... &amp; Croce, C. M. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Proceedings of the National Academy of Sciences</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>101</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(9), 2999-3004.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Calin, G. A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S. E., ... &amp; Croce, C. M. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>New England Journal of Medicine</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>353</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(17), 1793-1801.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Calin, G. A., &amp; Croce, C. M. (2006). MicroRNAs and chromosomal abnormalities in cancer cells.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Oncogene</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>25</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(46), 6202-6210.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Chan, J. A., Krichevsky, A. M., &amp; Kosik, K. S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Cancer research</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>65</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(14), 6029-6033.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Chim, C. S., Wong, K. Y., Qi, Y., Loong, F., Lam, W. L., Wong, L. G., ... &amp; Liang, R. (2010). Epigenetic inactivation of the miR-34a in hematological malignancies.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Carcinogenesis</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>31</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), 745-750.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Ciafre, S. A., Galardi, S., Mangiola, A., Ferracin, M., Liu, C. G., Sabatino, G., ... &amp; Farace, M. G. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Biochemical and biophysical research communications</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>334</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), 1351-1358.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., ... &amp; Croce, C. M. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Proceedings of the National Academy of Sciences</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>102</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(39), 13944-13949.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Corthals, S. L., Jongen-Lavrencic, M., de Knegt, Y., Peeters, J. K., Beverloo, H. B., Lokhorst, H. M., &amp; Sonneveld, P. (2010). Micro-RNA-15a and micro-RNA-16 expression and chromosome 13 deletions in multiple myeloma.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Leukemia research</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>34</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(5), 677-681.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Dehan, E., Ben-Dor, A., Liao, W., Lipson, D., Frimer, H., Rienstein, S., ... &amp; Kaminski, N. (2007). Chromosomal aberrations and gene expression profiles in non-small cell lung cancer.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Lung cancer</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>56</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(2), 175-184.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Galluzzi, L., Morselli, E., Vitale, I., Kepp, O., Senovilla, L., Criollo, A., ... &amp; Kroemer, G. (2010). miR-181a and miR-630 regulate cisplatin-induced cancer cell death.&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Cancer research</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>70</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(5), 1793-1803.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Gao, X., Zhang, R., Qu, X., Zhao, M., Zhang, S., Wu, H., ... &amp; Chen, L. (2012). MiR-15a, miR-16-1 and miR-17-92 cluster expression are linked to poor prognosis in multiple myeloma.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Leukemia research</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>36</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(12), 1505-1509.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Gatt, M. E., Zhao, J. J., Ebert, M. S., Zhang, Y., Chu, Z., Mani, M., ... &amp; Carrasco, D. R. (2010). MicroRNAs 15a/16-1 function as tumor suppressor genes in multiple myeloma.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Blood</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">, 61-65.</span></span></span></span></span></span></p>
  • <p style="text-align:left">&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Gauwerky, C. E., Huebner, K., Isobe, M., Nowell, P. C., &amp; Croce, C. M. (1989). Activation of MYC in a masked t (8; 17) translocation results in an aggressive B-cell leukemia.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Proceedings of the National Academy of Sciences</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>86</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(22), 8867-8871.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Guti&eacute;rrez, N. C., Sarasquete, M. E., Misiewicz-Krzeminska, I., Delgado, M., De Las Rivas, J., Ticona, F. V., ... &amp; San Miguel, J. F. (2010). Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Leukemia</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>24</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(3), 629-637.</span></span></span></span></span></span></p>
  • <p style="text-align:left">&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Huang, J. J., Yu, J., Li, J. Y., Liu, Y. T., &amp; Zhong, R. Q. (2012). Circulating microRNA expression is associated with genetic subtype and survival of multiple myeloma.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Medical oncology</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>29</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), 2402-2408.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K., &amp; Kosik, K. S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Rna</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>9</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(10), 1274-1281.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Kuehl, W. M., &amp; Bergsagel, P. L. (2012). Molecular pathogenesis of multiple myeloma and its premalignant precursor.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>The Journal of clinical investigation</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>122</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(10), 3456-3463.</span></span></span></span></span></span></p>
  • <p style="text-align:left">&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Linsley, P. S., Schelter, J., Burchard, J., Kibukawa, M., Martin, M. M., Bartz, S. R., ... &amp; Lim, L. (2007). Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Molecular and cellular biology</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>27</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(6), 2240-2252.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Lionetti, M., Biasiolo, M., Agnelli, L., Todoerti, K., Mosca, L., Fabris, S., ... &amp; Neri, A. (2009). Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Blood, The Journal of the American Society of Hematology</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>114</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(25), e20-e26.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Min, D. J., Ezponda, T., Kim, M. K., Will, C. M., Martinez-Garcia, E., Popovic, R., ... &amp; Licht, J. D. (2013). MMSET stimulates myeloma cell growth through microRNA-mediated modulation of c-MYC.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Leukemia</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>27</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(3), 686-694.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Misiewicz-Krzeminska, I., Sarasquete, M. E., Quwaider, D., Krzeminski, P., Ticona, F. V., Pa&iacute;no, T., ... &amp; Guti&eacute;rrez, N. C. (2013). Restoration of microRNA-214 expression reduces growth of myeloma cells through positive regulation of P53 and inhibition of DNA replication.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>haematologica</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>98</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), 640.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Pichiorri, F., Suh, S. S., Ladetto, M., Kuehl, M., Palumbo, T., Drandi, D., ... &amp; Croce, C. M. (2008). MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Proceedings of the National Academy of Sciences</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>105</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(35), 12885-12890.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Pichiorri, F., Suh, S. S., Rocci, A., De Luca, L., Taccioli, C., Santhanam, R., ... &amp; Croce, C. M. (2010). Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Cancer cell</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>18</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), 367-381.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Pichiorri, F., De Luca, L., &amp; Aqeilan, R. I. (2011). MicroRNAs: new players in multiple myeloma.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Frontiers in genetics</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>2</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">, 22.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Pothof, J., Verkaik, N. S., Van Ijcken, W., Wiemer, E. A., Ta, V. T., Van Der Horst, G. T., ... &amp; Persengiev, S. P. (2009). MicroRNA</span></span></span></span><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:'Cambria Math'"><span style="color:#222222"><span style="font-family:Cambria Math">‐</span></span></span></span></span><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">mediated gene silencing modulates the UV</span></span></span></span><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:'Cambria Math'"><span style="color:#222222"><span style="font-family:Cambria Math">‐</span></span></span></span></span><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">induced DNA</span></span></span></span><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:'Cambria Math'"><span style="color:#222222"><span style="font-family:Cambria Math">‐</span></span></span></span></span><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">damage response.&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>The EMBO journal</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>28</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(14), 2090-2099.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Raveche, E. S., Salerno, E., Scaglione, B. J., Manohar, V., Abbasi, F., Lin, Y. C., ... &amp; Marti, G. E. (2007). Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Blood, The Journal of the American Society of Hematology</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>109</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(12), 5079-5086.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Rio-Machin, A., Ferreira, B. I., Henry, T., G&oacute;mez-L&oacute;pez, G., Agirre, X., Alvarez, S., ... &amp; Cigudosa, J. C. (2013). Downregulation of specific miRNAs in hyperdiploid multiple myeloma mimics the oncogenic effect of IgH translocations occurring in the non-hyperdiploid subtype.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Leukemia</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>27</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), 925-931.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Roccaro, A. M., Sacco, A., Thompson, B., Leleu, X., Azab, A. K., Azab, F., ... &amp; Ghobrial, I. M. (2009). MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Blood, The Journal of the American Society of Hematology</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>113</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(26), 6669-6680.</span></span></span></span></span></span></p>
  • <p style="text-align:left">&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Russo, G., Isobe, M., Pegoraro, L., Finan, J., Nowell, P. C., &amp; Croce, C. M. (1988). Molecular analysis of at (7; 14)(g35; g32) chromosome translocation in a T cell leukemia of a patient with ataxia telangiectasia.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Cell</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>53</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(1), 137-144.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Saleh, A. D., Savage, J. E., Cao, L., Soule, B. P., Ly, D., DeGraff, W., ... &amp; Simone, N. L. (2011). Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53.&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>PloS one</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>6</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(10), e24429.</span></span></span></span></span></span></p>
  • <p style="text-align:left">&nbsp;</p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Schwindt, H., Akasaka, T., Z&uuml;hlke-Jenisch, R., Hans, V., Schaller, C., Klapper, W., ... &amp; Deckert, M. (2006). Chromosomal translocations fusing the BCL6 gene to different partner loci are recurrent in primary central nervous system lymphoma and may be associated with aberrant somatic hypermutation or defective class switch recombination.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Journal of Neuropathology &amp; Experimental Neurology</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>65</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(8), 776-782.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Sonoki, T., Iwanaga, E., Mitsuya, H., &amp; Asou, N. (2005). Insertion of microRNA-125b-1, a human homologue of lin-4, into a rearranged immunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Leukemia</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>19</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(11), 2009-2010.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Suzuki, H. I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., &amp; Miyazono, K. (2009). Modulation of microRNA processing by p53.&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Nature</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>460</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(7254), 529-533.</span></span></span></span></span></span></p>
  • <p style="text-align:left">&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., ... &amp; Croce, C. M. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Proceedings of the National Academy of Sciences</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>103</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(7), 2257-2261.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Wang, T., Zhang, X., Obijuru, L., Laser, J., Aris, V., Lee, P., ... &amp; Wei, J. J. (2007). A micro‐RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Genes, Chromosomes and Cancer</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>46</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), 336-347.</span></span></span></span></span></span></p>
  • <p style="text-align:left"><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Wong, K. Y., So, C. C., Loong, F., Chung, L. P., Lam, W. W. L., Liang, R., ... &amp; Chim, C. S. (2011). Epigenetic inactivation of the miR-124-1 in haematological malignancies.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>PloS one</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>6</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), e19027.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Yang, R. F., Chen, L. J., Li, J. Y., Li, C. M., Xu, J. R., Wu, Y. J., &amp; Lu, H. (2010). microRNA-21 and microRNA-30b expression in multiple myeloma.</span></span></span></span>&nbsp;<em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Zhonghua xue ye xue za zhi= Zhonghua Xueyexue Zazhi</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>31</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(1), 38-41.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri"><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">Zhang, X., Wan, G., Berger, F. G., He, X., &amp; Lu, X. (2011). The ATM kinase induces microRNA biogenesis in the DNA damage response.&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>Molecular cell</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">,&nbsp;</span></span></span></span><em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222"><em>41</em></span></span></span></span></em><span style="font-size:11.5000pt"><span style="background-color:#ffffff"><span style="font-family:Arial"><span style="color:#222222">(4), 371-383.</span></span></span></span></span></span></p>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • </div>
  • </div>
  • </div>
  • </div>
  • </main>
  • <nav class="navbar navbar-expand nav-footer navbar-dark bg-dark mt-auto">
  • <div class="container-fluid">
  • <ul class="navbar-nav mx-auto">
  • <li class="nav-item"><a class="nav-link" href="/info_pages/2" target="_blank">Help</a></li>
  • <li class="nav-item"><a class="nav-link" href="/info_pages/3">About</a></li>
  • <li class="nav-item"><a class="nav-link" href="/info_pages/10">About</a></li>
  • <li class="nav-item"><a class="nav-link" href="/info_pages/4">FAQ</a></li>
  • <li class="nav-item d-none d-sm-block"><a class="nav-link" href="/info_pages/5">Download Options</a></li>
  • <li class="nav-item"><a class="nav-link" href="/metrics_summary">Metrics</a></li>
  • <li class="nav-item"><a class="nav-link" href="/info_pages/3">Release Notes</a></li>
  • </ul>
  • </div>
  • </nav>
  • <script crossorigin="anonymous" integrity="sha256-9/aliU8dGd2tb6OSsuzixeV4y/faTqgFtohetphbbj0=" src="https://code.jquery.com/jquery-3.5.1.min.js"></script>
  • <script crossorigin="anonymous" integrity="sha256-VazP97ZCwtekAsvgPBSUwPFKdrwD3unUfSGVYrahUqU=" src="https://code.jquery.com/ui/1.12.1/jquery-ui.min.js"></script>
  • <script crossorigin="anonymous" integrity="sha256-sXPRAPYJk5w3GI/IBiN2AK31ZAMCcJ/5LRpLHpsk5vY=" src="https://cdn.jsdelivr.net/npm/@rails/ujs@6.0.3-2/lib/assets/compiled/rails-ujs.js"></script>
  • <script crossorigin="anonymous" integrity="sha256-9nt4LsWmLI/O24lTW89IzAKuBqEZ47l/4rh1+tH/NY8=" src="https://cdn.jsdelivr.net/npm/bootstrap@4.5.2/dist/js/bootstrap.bundle.min.js"></script>
  • <script crossorigin="anonymous" integrity="sha256-5VhCqFam2Cn+yjw61zbBNrbHVJ6SRydPeKopYlngbiQ=" src="https://cdn.jsdelivr.net/npm/cookieconsent@3.1.1/build/cookieconsent.min.js" data-cfasync="false"></script>
  • <script src="https://aopwiki.org/lib/tablefilter/tablefilter.js"></script>
  • <script src="https://www.aopwiki.org/lib/tablefilter/tablefilter.js"></script>
  • <script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
  • <script src="https://aopwiki.org/lib/ckeditor/ckeditor.js"></script>
  • <link rel="stylesheet" crossorigin="anonymous" integrity="sha256-PaAZL3VjvuBsQSngzjA8dTdYa2mU88xmjd0vw8biXfg=" href="https://cdn.jsdelivr.net/npm/selectize@0.12.6/dist/css/selectize.css">
  • <link rel="stylesheet" crossorigin="anonymous" integrity="sha256-9xc5FBFR3TnnIx/G9SEbdMm0BWyGNRDH1XITfATut8Q=" href="https://cdn.jsdelivr.net/npm/selectize@0.12.6/dist/css/selectize.bootstrap3.css">
  • <script crossorigin="anonymous" integrity="sha256-+C0A5Ilqmu4QcSPxrlGpaZxJ04VjsRjKu+G82kl5UJk=" src="https://cdn.jsdelivr.net/npm/selectize@0.12.6/dist/js/standalone/selectize.min.js"></script>
  • <script src="/assets/application-f8e1733bf816bbd5a3bbfc40ccb4218a6097e96e116013b747e9cad961ff4511.js"></script>
  • <script>
  • function getCookie(cookieName) {
  • let cookies = decodeURIComponent(document.cookie).split(';');
  • for (let idx = 0; idx < cookies.length; idx++) {
  • let cookie = cookies[idx].trim().split("=");
  • if (cookie[0] === cookieName) {
  • return cookie[1];
  • }
  • }
  • return "";
  • }
  • function setGtagConfig() {
  • gtag('config','UA-172534727-1',{'send_page_view':getCookie("cookieconsent_status")==="allow"});
  • }
  • window.dataLayer=window.dataLayer||[];
  • function gtag(){dataLayer.push(arguments);}
  • gtag('js',new Date());
  • setGtagConfig();
  • window.cookieconsent.initialise({
  • "palette": { "popup": {"background":"#252e39" }, "button": {"background":"#14a7d0" } },
  • "theme": "classic", "position": "bottom-right", "type": "opt-out",
  • "content": { "dismiss": "I accept cookies", "deny": "I refuse cookies" },
  • onStatusChange: function() { setGtagConfig(); }
  • });
  • </script>
  • <script type="text/javascript" id="flash">
  • </script>
  • </body>
  • </html>