SNAPSHOT
Created at: 2019-11-20 01:28
AOP ID and Title:
Graphical Representation
Status
| Author status | OECD status | OECD project | SAAOP status |
|---|---|---|---|
| Under development: Not open for comment. Do not cite |
Abstract
Wnt (Wingless and INT-1) ligands stimulate Frizzled receptors and activate Wnt signaling leading to cancer malignancy. This AOP workplan entitled “Wnt ligand stimulation and Wnt signaling activation lead to cancer malignancy” is suitable for the AOP programme in terms of revealing cancer signaling with the molecular signaling cascades induced by Wnt ligands. The current AOP includes MIE as Wnt ligand stimulation, KE1 as Frizzled activation, KE2 as GSK3beta inactivation, KE3 as beta-catenin activation, KE4 as Snail, Zeb, Twist1 activation, KE5 as epithelial-mesenchymal transition (EMT) and AO as cancer malignancy. The current AOP would be associated to the prediction of the cancer malignancy, which would be the regulatory toxicological endpoint, by chemicals or molecules activating Wnt signaling. The Wnt/beta-catenin signaling is well understood in terms of development and cancer. The relationship between EMT and cancer malignancy has recently been investigated in many research fields such as molecular signatures of cells.
Summary of the AOP
Events
Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)
| Sequence | Type | Event ID | Title | Short name |
|---|---|---|---|---|
| MIE | 1645 | Wnt ligand stimulation | Wnt ligand stimulation | |
| KE | 1646 | Frizzled activation | Frizzled activation | |
| KE | 1647 | GSK3beta inactivation | GSK3beta inactivation | |
| KE | 1648 | β-catenin activation | β-catenin activation | |
| KE | 1649 | Snail, Zeb, Twist activation | Snail, Zeb, Twist activation | |
| KE | 1650 | Epithelial-mesenchymal transition | Epithelial-mesenchymal transition | |
| AO | 1651 | Cancer Malignancy | Cancer Malignancy |
Key Event Relationships
| Upstream Event | Relationship Type | Downstream Event | Evidence | Quantitative Understanding |
|---|---|---|---|---|
| Wnt ligand stimulation | adjacent | Frizzled activation | High | Moderate |
| Frizzled activation | adjacent | GSK3beta inactivation | High | Moderate |
| GSK3beta inactivation | adjacent | β-catenin activation | High | Moderate |
| β-catenin activation | adjacent | Snail, Zeb, Twist activation | High | Moderate |
| Snail, Zeb, Twist activation | adjacent | Epithelial-mesenchymal transition | High | Moderate |
| Epithelial-mesenchymal transition | adjacent | Cancer Malignancy | High | Low |
Stressors
| Name | Evidence |
|---|---|
| Wnt | High |
| WNT2 | High |
Wnt
WNT induces EMT (J. Zhang, Tian, & Xing, 2016).
WNT2
WNT2 induces EMT in cervical cancer (Zhou et al., 2016).
Overall Assessment of the AOP
|
1. Support for Biological Plausibility of KERs |
|
|
MIE => KE1: |
Biological Plausibility of the MIE => KE1 is high. |
|
KE1 => KE2: |
Biological Plausibility of the KE1 => KE2 is high. |
|
KE2 => KE3: |
Biological Plausibility of the KE2 => KE3 is high. |
|
KE3 => KE4: |
Biological Plausibility of the KE3 => KE4 is high. |
|
KE4 => KE5: |
Biological Plausibility of the KE4 => KE5 is high. |
|
KE5 => AO: |
Biological Plausibility of the KE5 => AO is high. |
|
2. Support for essentiality of KEs |
|
|
KE5: Epithelial-mesenchymal transition |
Essentiality of the KE5 is moderate. |
|
3. Empirical support for KERs |
|
|
MIE => KE1: |
Empirical Support of the MIE => KE1 is high. |
|
KE1 => KE2: |
Empirical Support of the KE1 => KE2 is high. |
|
KE2 => KE3: |
Empirical Support of the KE2 => KE3 is high. |
|
KE3 => KE4: |
Empirical Support of the KE3 => KE4 is high. |
|
KE4 => KE5: |
Empirical Support of the KE4 => KE5 is high. |
|
KE5 => AO: |
Empirical Support of the KE5 => AO is high. |
Domain of Applicability
Life Stage Applicability| Life Stage | Evidence |
|---|---|
| All life stages | High |
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| Homo sapiens | Homo sapiens | High | NCBI |
| Sex | Evidence |
|---|---|
| Unspecific | High |
Homo sapiens
Essentiality of the Key Events
Wnt signaling is involved in cancer malignancy (Tanabe, 2018).
Key Events Frizzled activation, GSK3beta, beta-catenin activation and Zeb, Twist and Snail transcription factors are essential to this AOP.
Upon stimulation with Wnt ligand to Frizzled receptor, Wnt/beta-catenin signaling is activated. Wnt/beta-catenin consists of GSK3 beta inactivation, beta-catenin activation and up-regulation of transcription factors such as Zeb, Twist and Snail. The transcription factors Zeb, Twist and Snail relate to the activation of EMT-related genes. EMT is regulated with various gene networks (S. Tanabe, 2015).
Weight of Evidence Summary
The Wnt signaling promotes EMT and cancer malignancy in colorectal cancer (Lazarova & Bordonaro, 2017). Although the potential pathways other than Wnt signaling exist in EMT induction and the mechanism underlaid cancer malignancy, Wnt signaling is one of the main pathways to induce EMT and cancer malignancy (Polakis, 2012).
Quantitative Consideration
Wnt signaling activates the CSCs to promote cancer malignancy (Reya & Clevers, 2005). The responses between each KEs from Frizzled activation and GSK3beta inactivation, beta-catenin activation, Snail, Zeb, Twist activation are dose-dependently related. The quantification of EMT and cancer malignancy would require the further investigation.
Considerations for Potential Applications of the AOP (optional)
AOP entitled “Wnt ligand stimulation and Wnt signaling activation lead to cancer malignancy” might be utilized for the development and risk assessment of anti-cancer drugs. EMT is involved in the acquisition of drug resistance, which is one of the critical features of cancer malignancy. The assessment of EMT would be the potential prediction of the adverse effects of anti-cancer drugs.
References
Aberle, H., Bauer, A., Stappert, J., Kispert, A., & Kemler, R. (1997). beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J, 16(13), 3797-3804. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9233789. doi:10.1093/emboj/16.13.3797
Ahmad, A., Sarkar, S. H., Bitar, B., Ali, S., Aboukameel, A., Sethi, S., . . . Sarkar, F. H. (2012). Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer cells. Mol Cancer Ther, 11(10), 2193-2201. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22821148. doi:10.1158/1535-7163.MCT-12-0232-T
Anastas, J. N., Kulikauskas, R. M., Tamir, T., Rizos, H., Long, G. V., von Euw, E. M., . . . Moon, R. T. (2014). WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. J Clin Invest, 124(7), 2877-2890. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24865425. doi:10.1172/JCI70156
Asem, M. S., Buechler, S., Wates, R. B., Miller, D. L., & Stack, M. S. (2016). Wnt5a Signaling in Cancer. Cancers (Basel), 8(9). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27571105. doi:10.3390/cancers8090079
Banziger, C., Soldini, D., Schutt, C., Zipperlen, P., Hausmann, G., & Basler, K. (2006). Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell, 125(3), 509-522. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16678095. doi:10.1016/j.cell.2006.02.049
Bartscherer, K., Pelte, N., Ingelfinger, D., & Boutros, M. (2006). Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell, 125(3), 523-533. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16678096. doi:10.1016/j.cell.2006.04.009
Batlle, E., Sancho, E., Francí, C., Domínguez, D., Monfar, M., Baulida, J., & García de Herreros, A. (2000). The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology, 2(2), 84-89. Retrieved from https://doi.org/10.1038/35000034. doi:10.1038/35000034
Bhanot, P., Brink, M., Samos, C. H., Hsieh, J.-C., Wang, Y., Macke, J. P., . . . Nusse, R. (1996). A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature, 382, 225. Retrieved from https://doi.org/10.1038/382225a0. doi:10.1038/382225a0
Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E., & Lopez-Rios, J. (2008). Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci, 121(Pt 6), 737-746. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18322270. doi:10.1242/jcs.026096
Cao, T. T., Xiang, D., Liu, B. L., Huang, T. X., Tan, B. B., Zeng, C. M., . . . Fu, L. (2017). FZD7 is a novel prognostic marker and promotes tumor metastasis via WNT and EMT signaling pathways in esophageal squamous cell carcinoma. Oncotarget, 8(39), 65957-65968. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29029485. doi:10.18632/oncotarget.19586
Chen, L., Gibbons, D. L., Goswami, S., Cortez, M. A., Ahn, Y.-H., Byers, L. A., . . . Qin, F. X.-F. (2014). Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nature communications, 5, 5241-5241. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25348003
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4212319/. doi:10.1038/ncomms6241
Ching, W., & Nusse, R. (2006). A dedicated Wnt secretion factor. Cell, 125(3), 432-433. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16678089. doi:10.1016/j.cell.2006.04.018
Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127(3), 469-480. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17081971. doi:10.1016/j.cell.2006.10.018
Clevers, H., & Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell, 149(6), 1192-1205. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22682243. doi:10.1016/j.cell.2012.05.012
Colvin, H., Nishida, N., Konno, M., Haraguchi, N., Takahashi, H., Nishimura, J., . . . Ishii, H. (2016). Oncometabolite D-2-Hydroxyglurate Directly Induces Epithelial-Mesenchymal Transition and is Associated with Distant Metastasis in Colorectal Cancer. Sci Rep, 6, 36289. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27824159. doi:10.1038/srep36289
De, A. (2011). Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin (Shanghai), 43(10), 745-756. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21903638. doi:10.1093/abbs/gmr079
Diaz, V. M., Vinas-Castells, R., & Garcia de Herreros, A. (2014). Regulation of the protein stability of EMT transcription factors. Cell Adh Migr, 8(4), 418-428. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25482633. doi:10.4161/19336918.2014.969998
Dissanayake, S. K., Wade, M., Johnson, C. E., O'Connell, M. P., Leotlela, P. D., French, A. D., . . . Weeraratna, A. T. (2007). The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem, 282(23), 17259-17271. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17426020. doi:10.1074/jbc.M700075200
Du, B., & Shim, J. S. (2016). Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules, 21(7). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27455225. doi:10.3390/molecules21070965
Du, J., Zu, Y., Li, J., Du, S., Xu, Y., Zhang, L., . . . Yang, C. (2016). Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Sci Rep, 6, 20395. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26854061. doi:10.1038/srep20395
Ellwanger, K., Saito, H., Clement-Lacroix, P., Maltry, N., Niedermeyer, J., Lee, W. K., . . . Niehrs, C. (2008). Targeted disruption of the Wnt regulator Kremen induces limb defects and high bone density. Mol Cell Biol, 28(15), 4875-4882. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18505822. doi:10.1128/MCB.00222-08
Fang, C. X., Ma, C. M., Jiang, L., Wang, X. M., Zhang, N., Ma, J. N., . . . Zhao, Y. D. (2018). p38 MAPK is Crucial for Wnt1- and LiCl-Induced Epithelial Mesenchymal Transition. Curr Med Sci, 38(3), 473-481. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30074215. doi:10.1007/s11596-018-1903-4
Foulquier, S., Daskalopoulos, E. P., Lluri, G., Hermans, K. C. M., Deb, A., & Blankesteijn, W. M. (2018). WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev, 70(1), 68-141. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29247129. doi:10.1124/pr.117.013896
Goodman, R. M., Thombre, S., Firtina, Z., Gray, D., Betts, D., Roebuck, J., . . . Selva, E. M. (2006). Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development, 133(24), 4901-4911. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17108000. doi:10.1242/dev.02674
Guerra, F., Guaragnella, N., Arbini, A. A., Bucci, C., Giannattasio, S., & Moro, L. (2017). Mitochondrial Dysfunction: A Novel Potential Driver of Epithelial-to-Mesenchymal Transition in Cancer. Front Oncol, 7, 295. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29250487. doi:10.3389/fonc.2017.00295
Guerrero, F., Herencia, C., Almaden, Y., Martinez-Moreno, J. M., Montes de Oca, A., Rodriguez-Ortiz, M. E., . . . Munoz-Castaneda, J. R. (2014). TGF-beta prevents phosphate-induced osteogenesis through inhibition of BMP and Wnt/beta-catenin pathways. PLoS One, 9(2), e89179. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24586576. doi:10.1371/journal.pone.0089179
Hasegawa, K., Yasuda, S. Y., Teo, J. L., Nguyen, C., McMillan, M., Hsieh, C. L., . . . Kahn, M. (2012). Wnt signaling orchestration with a small molecule DYRK inhibitor provides long-term xeno-free human pluripotent cell expansion. Stem Cells Transl Med, 1(1), 18-28. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23197636. doi:10.5966/sctm.2011-0033
Hatsell, S., Rowlands, T., Hiremath, M., & Cowin, P. (2003). Beta-catenin and Tcfs in mammary development and cancer. J Mammary Gland Biol Neoplasia, 8(2), 145-158. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14635791.
He, X., Semenov, M., Tamai, K., & Zeng, X. (2004). LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: Arrows point the way. Development, 131(8), 1663. Retrieved from http://dev.biologists.org/content/131/8/1663.abstract. doi:10.1242/dev.01117
Hodge, D. Q., Cui, J., Gamble, M. J., & Guo, W. (2018). Histone Variant MacroH2A1 Plays an Isoform-Specific Role in Suppressing Epithelial-Mesenchymal Transition. Sci Rep, 8(1), 841. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29339820. doi:10.1038/s41598-018-19364-4
Hua, Y., Yang, Y., Li, Q., He, X., Zhu, W., Wang, J., & Gan, X. (2018). Oligomerization of Frizzled and LRP5/6 protein initiates intracellular signaling for the canonical WNT/beta-catenin pathway. J Biol Chem, 293(51), 19710-19724. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30361437. doi:10.1074/jbc.RA118.004434
Huang, J. Q., Wei, F. K., Xu, X. L., Ye, S. X., Song, J. W., Ding, P. K., . . . Gong, L. Y. (2019). SOX9 drives the epithelial-mesenchymal transition in non-small-cell lung cancer through the Wnt/beta-catenin pathway. J Transl Med, 17(1), 143. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31060551. doi:10.1186/s12967-019-1895-2
Inukai, T., Inoue, A., Kurosawa, H., Goi, K., Shinjyo, T., Ozawa, K., . . . Look, A. T. (1999). SLUG, a ces-1-Related Zinc Finger Transcription Factor Gene with Antiapoptotic Activity, Is a Downstream Target of the E2A-HLF Oncoprotein. Molecular Cell, 4(3), 343-352. Retrieved from http://www.sciencedirect.com/science/article/pii/S1097276500803366. doi:https://doi.org/10.1016/S1097-2765(00)80336-6
Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C., & Garcia, K. C. (2012). Structural basis of Wnt recognition by Frizzled. Science, 337(6090), 59-64. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22653731. doi:10.1126/science.1222879
Jia, D., Park, J. H., Jung, K. H., Levine, H., & Kaipparettu, B. A. (2018). Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States. Cells, 7(3). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29534029. doi:10.3390/cells7030021
Jiang, J. (2017). CK1 in Developmental Signaling: Hedgehog and Wnt. Curr Top Dev Biol, 123, 303-329. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28236970. doi:10.1016/bs.ctdb.2016.09.002
Jiang, X., Charlat, O., Zamponi, R., Yang, Y., & Cong, F. (2015). Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol Cell, 58(3), 522-533. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25891077. doi:10.1016/j.molcel.2015.03.015
Johnsen, J. I., Dyberg, C., Fransson, S., & Wickström, M. (2018). Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacological Research, 131, 164-176. Retrieved from http://www.sciencedirect.com/science/article/pii/S1043661817316699. doi:https://doi.org/10.1016/j.phrs.2018.02.023
Jordan, N. V., Prat, A., Abell, A. N., Zawistowski, J. S., Sciaky, N., Karginova, O. A., . . . Johnson, G. L. (2013). SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c controls epithelial-mesenchymal transition by inducing Wnt5a signaling. Mol Cell Biol, 33(15), 3011-3025. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23716599. doi:10.1128/MCB.01443-12
Kahn, M. (2014). Can we safely target the WNT pathway? Nat Rev Drug Discov, 13(7), 513-532. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24981364. doi:10.1038/nrd4233
Katoh, M. (2001). Molecular cloning and characterization of human WNT3. Int J Oncol, 19(5), 977-982. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11604997.
Kaufhold, S., & Bonavida, B. (2014). Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. J Exp Clin Cancer Res, 33, 62. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25084828. doi:10.1186/s13046-014-0062-0
Kim, K. K., Kugler, M. C., Wolters, P. J., Robillard, L., Galvez, M. G., Brumwell, A. N., . . . Chapman, H. A. (2006). Alveolar epithelial cell mesenchymal transition develops <em>in vivo</em> during pulmonary fibrosis and is regulated by the extracellular matrix. Proceedings of the National Academy of Sciences, 103(35), 13180. Retrieved from http://www.pnas.org/content/103/35/13180.abstract. doi:10.1073/pnas.0605669103
Kremenevskaja, N., von Wasielewski, R., Rao, A. S., Schofl, C., Andersson, T., & Brabant, G. (2005). Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene, 24(13), 2144-2154. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15735754. doi:10.1038/sj.onc.1208370
Kudo-Saito, C., Shirako, H., Takeuchi, T., & Kawakami, Y. (2009). Cancer Metastasis Is Accelerated through Immunosuppression during Snail-Induced EMT of Cancer Cells. Cancer Cell, 15(3), 195-206. Retrieved from http://www.sciencedirect.com/science/article/pii/S1535610809000324. doi:https://doi.org/10.1016/j.ccr.2009.01.023
Kusserow, A., Pang, K., Sturm, C., Hrouda, M., Lentfer, J., Schmidt, H. A., . . . Holstein, T. W. (2005). Unexpected complexity of the Wnt gene family in a sea anemone. Nature, 433(7022), 156-160. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15650739. doi:10.1038/nature03158
Kwon, Y. J., Baek, H. S., Ye, D. J., Shin, S., Kim, D., & Chun, Y. J. (2016). CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/beta-Catenin Signaling via Sp1 Upregulation. PLoS One, 11(3), e0151598. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26981862. doi:10.1371/journal.pone.0151598
Lai, S. L., Chien, A. J., & Moon, R. T. (2009). Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis. Cell Res, 19(5), 532-545. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19365405. doi:10.1038/cr.2009.41
Laursen, K. B., Mielke, E., Iannaccone, P., & Fuchtbauer, E. M. (2007). Mechanism of transcriptional activation by the proto-oncogene Twist1. J Biol Chem, 282(48), 34623-34633. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17893140. doi:10.1074/jbc.M707085200
Lazarova, D., & Bordonaro, M. (2017). ZEB1 Mediates Drug Resistance and EMT in p300-Deficient CRC. Journal of Cancer, 8(8), 1453-1459. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28638460
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479251/. doi:10.7150/jca.18762
Li, C., & Balazsi, G. (2018). A landscape view on the interplay between EMT and cancer metastasis. NPJ Syst Biol Appl, 4, 34. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30155271. doi:10.1038/s41540-018-0068-x
Li, C. H., Liu, C. W., Tsai, C. H., Peng, Y. J., Yang, Y. H., Liao, P. L., . . . Kang, J. J. (2017). Cytoplasmic aryl hydrocarbon receptor regulates glycogen synthase kinase 3 beta, accelerates vimentin degradation, and suppresses epithelial-mesenchymal transition in non-small cell lung cancer cells. Arch Toxicol, 91(5), 2165-2178. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27752740. doi:10.1007/s00204-016-1870-0
Lian, X., Bao, X., Al-Ahmad, A., Liu, J., Wu, Y., Dong, W., . . . Palecek, S. P. (2014). Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Reports, 3(5), 804-816. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25418725. doi:10.1016/j.stemcr.2014.09.005
Lin, X., Chai, G., Wu, Y., Li, J., Chen, F., Liu, J., . . . Wang, H. (2019). RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun, 10(1), 2065. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31061416. doi:10.1038/s41467-019-09865-9
Liu, C. C., Cai, D. L., Sun, F., Wu, Z. H., Yue, B., Zhao, S. L., . . . Yan, D. W. (2016). FERMT1 mediates epithelial–mesenchymal transition to promote colon cancer metastasis via modulation of β-catenin transcriptional activity. Oncogene, 36, 1779. Retrieved from https://doi.org/10.1038/onc.2016.339. doi:10.1038/onc.2016.339
https://www.nature.com/articles/onc2016339 - supplementary-information
Liu, J. X., Hu, B., Wang, Y., Gui, J. F., & Xiao, W. (2009). Zebrafish eaf1 and eaf2/u19 mediate effective convergence and extension movements through the maintenance of wnt11 and wnt5 expression. J Biol Chem, 284(24), 16679-16692. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19380582. doi:10.1074/jbc.M109.009654
MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 17(1), 9-26. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19619488. doi:10.1016/j.devcel.2009.06.016
Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., . . . Weinberg, R. A. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704-715. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18485877. doi:10.1016/j.cell.2008.03.027
Mao, J., Wang, J., Liu, B., Pan, W., Farr, G. H., Flynn, C., . . . Wu, D. (2001). Low-Density Lipoprotein Receptor-Related Protein-5 Binds to Axin and Regulates the Canonical Wnt Signaling Pathway. Molecular Cell, 7(4), 801-809. Retrieved from http://www.sciencedirect.com/science/article/pii/S1097276501002246. doi:https://doi.org/10.1016/S1097-2765(01)00224-6
Marjanovic, N. D., Weinberg, R. A., & Chaffer, C. L. (2013). Cell plasticity and heterogeneity in cancer. Clinical chemistry, 59(1), 168-179. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23220226
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220421/. doi:10.1373/clinchem.2012.184655
Mishra, P., Tang, W., Putluri, V., Dorsey, T. H., Jin, F., Wang, F., . . . Ambs, S. (2018). ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming. J Clin Invest, 128(1), 323-340. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29202474. doi:10.1172/JCI93815
Miyabayashi, T., Teo, J. L., Yamamoto, M., McMillan, M., Nguyen, C., & Kahn, M. (2007). Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci U S A, 104(13), 5668-5673. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17372190. doi:10.1073/pnas.0701331104
Mohammed, M. K., Shao, C., Wang, J., Wei, Q., Wang, X., Collier, Z., . . . Lee, M. J. (2016). Wnt/beta-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis, 3(1), 11-40. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27077077. doi:10.1016/j.gendis.2015.12.004
Mu, J., Hui, T., Shao, B., Li, L., Du, Z., Lu, L., . . . Xiang, T. (2017). Dickkopf-related protein 2 induces G0/G1 arrest and apoptosis through suppressing Wnt/beta-catenin signaling and is frequently methylated in breast cancer. Oncotarget, 8(24), 39443-39459. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28467796. doi:10.18632/oncotarget.17055
Naujok, O., Lentes, J., Diekmann, U., Davenport, C., & Lenzen, S. (2014). Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res Notes, 7, 273. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24779365. doi:10.1186/1756-0500-7-273
Nile, A. H., Mukund, S., Stanger, K., Wang, W., & Hannoush, R. N. (2017). Unsaturated fatty acyl recognition by Frizzled receptors mediates dimerization upon Wnt ligand binding. Proc Natl Acad Sci U S A, 114(16), 4147-4152. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28377511. doi:10.1073/pnas.1618293114
Nusse, R., & Clevers, H. (2017). Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 169(6), 985-999. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28575679. doi:10.1016/j.cell.2017.05.016
Pearlman, R. L., Montes de Oca, M. K., Pal, H. C., & Afaq, F. (2017). Potential therapeutic targets of epithelial-mesenchymal transition in melanoma. Cancer Lett, 391, 125-140. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28131904. doi:10.1016/j.canlet.2017.01.029
Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer, 7(6), 415-428. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17508028. doi:10.1038/nrc2131
Pez, F., Lopez, A., Kim, M., Wands, J. R., Caron de Fromentel, C., & Merle, P. (2013). Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J Hepatol, 59(5), 1107-1117. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23835194. doi:10.1016/j.jhep.2013.07.001
Piao, S., Lee, S. H., Kim, H., Yum, S., Stamos, J. L., Xu, Y., . . . Ha, N. C. (2008). Direct inhibition of GSK3beta by the phosphorylated cytoplasmic domain of LRP6 in Wnt/beta-catenin signaling. PLoS One, 3(12), e4046. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19107203. doi:10.1371/journal.pone.0004046
Pirozzi, G., Tirino, V., Camerlingo, R., Franco, R., La Rocca, A., Liguori, E., . . . Rocco, G. (2011). Epithelial to mesenchymal transition by TGFβ-1 induction increases stemness characteristics in primary non small cell lung cancer cell line. PLoS One, 6(6), e21548-e21548. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21738704
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128060/. doi:10.1371/journal.pone.0021548
Polakis, P. (2012). Wnt signaling in cancer. Cold Spring Harb Perspect Biol, 4(5). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22438566. doi:10.1101/cshperspect.a008052
Qualtrough, D., Rees, P., Speight, B., Williams, A. C., & Paraskeva, C. (2015). The Hedgehog Inhibitor Cyclopamine Reduces beta-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells. Cancers (Basel), 7(3), 1885-1899. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26393651. doi:10.3390/cancers7030867
Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843-850. Retrieved from https://doi.org/10.1038/nature03319. doi:10.1038/nature03319
Saito-Diaz, K., Chen, T. W., Wang, X., Thorne, C. A., Wallace, H. A., Page-McCaw, A., & Lee, E. (2013). The way Wnt works: components and mechanism. Growth Factors, 31(1), 1-31. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23256519. doi:10.3109/08977194.2012.752737
Saxena, M., Stephens, M. A., Pathak, H., & Rangarajan, A. (2011). Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell death & disease, 2(7), e179-e179. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21734725
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199722/. doi:10.1038/cddis.2011.61
Schwab, R. H. M., Amin, N., Flanagan, D. J., Johanson, T. M., Phesse, T. J., & Vincan, E. (2018). Wnt is necessary for mesenchymal to epithelial transition in colorectal cancer cells. Dev Dyn, 247(3), 521-530. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28560804. doi:10.1002/dvdy.24527
Sciacovelli, M., & Frezza, C. (2017). Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J, 284(19), 3132-3144. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28444969. doi:10.1111/febs.14090
Semenov, M. V., Zhang, X., & He, X. (2008). DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J Biol Chem, 283(31), 21427-21432. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18505732. doi:10.1074/jbc.M800014200
Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol, 14(10), 611-629. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28397828. doi:10.1038/nrclinonc.2017.44
Sineva, G. S., & Pospelov, V. A. (2010). Inhibition of GSK3beta enhances both adhesive and signalling activities of beta-catenin in mouse embryonic stem cells. Biol Cell, 102(10), 549-560. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20626347. doi:10.1042/BC20100016
Smith, B. N., & Bhowmick, N. A. (2016). Role of EMT in Metastasis and Therapy Resistance. J Clin Med, 5(2). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26828526. doi:10.3390/jcm5020017
Sohn, S. H., Kim, B., Sul, H. J., Kim, Y. J., Kim, H. S., Kim, H., . . . Zang, D. Y. (2019). INC280 inhibits Wnt/beta-catenin and EMT signaling pathways and its induce apoptosis in diffuse gastric cancer positive for c-MET amplification. BMC Res Notes, 12(1), 125. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30871613. doi:10.1186/s13104-019-4163-x
Stump, B., Shrestha, S., Lamattina, A. M., Louis, P. H., Cho, W., Perrella, M. A., . . . El-Chemaly, S. (2019). Glycogen synthase kinase 3-beta inhibition induces lymphangiogenesis through beta-catenin-dependent and mTOR-independent pathways. PLoS One, 14(4), e0213831. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30964887. doi:10.1371/journal.pone.0213831
Suarez-Carmona, M., Lesage, J., Cataldo, D., & Gilles, C. (2017). EMT and inflammation: inseparable actors of cancer progression. Mol Oncol, 11(7), 805-823. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28599100. doi:10.1002/1878-0261.12095
Sun, J., Yang, X., Zhang, R., Liu, S., Gan, X., Xi, X., . . . Sun, Y. (2017). GOLPH3 induces epithelial-mesenchymal transition via Wnt/beta-catenin signaling pathway in epithelial ovarian cancer. Cancer Med, 6(4), 834-844. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28332316. doi:10.1002/cam4.1040
Taelman, V. F., Dobrowolski, R., Plouhinec, J. L., Fuentealba, L. C., Vorwald, P. P., Gumper, I., . . . De Robertis, E. M. (2010). Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell, 143(7), 1136-1148. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21183076. doi:10.1016/j.cell.2010.11.034
Tamai, K., Zeng, X., Liu, C., Zhang, X., Harada, Y., Chang, Z., & He, X. (2004). A Mechanism for Wnt Coreceptor Activation. Molecular Cell, 13(1), 149-156. Retrieved from http://www.sciencedirect.com/science/article/pii/S1097276503004842. doi:https://doi.org/10.1016/S1097-2765(03)00484-2
Tanabe, S. (2013). Perspectives of gene combinations in phenotype presentation. World journal of stem cells, 5(3), 61-67. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23951387
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744131/. doi:10.4252/wjsc.v5.i3.61
Tanabe, S. (2014). Role of mesenchymal stem cells in cell life and their signaling. World journal of stem cells, 6(1), 24-32. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24567785
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927011/. doi:10.4252/wjsc.v6.i1.24
Tanabe, S. (2015a). Origin of cells and network information. World journal of stem cells, 7(3), 535-540. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25914760
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4404388/. doi:10.4252/wjsc.v7.i3.535
Tanabe, S. (2015b). Signaling involved in stem cell reprogramming and differentiation. World journal of stem cells, 7(7), 992-998. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26328015
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550631/. doi:10.4252/wjsc.v7.i7.992
Tanabe, S., Aoyagi, K., Yokozaki, H., & Sasaki, H. (2014). Gene expression signatures for identifying diffuse-type gastric cancer associated with epithelial-mesenchymal transition. Int J Oncol, 44(6), 1955-1970. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24728500. doi:10.3892/ijo.2014.2387
Tanabe, S., Aoyagi, K., Yokozaki, H., & Sasaki, H. (2015). Regulated genes in mesenchymal stem cells and gastric cancer. World journal of stem cells, 7(1), 208-222. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25621121
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300932/. doi:10.4252/wjsc.v7.i1.208
Tanabe, S., Kawabata, T., Aoyagi, K., Yokozaki, H., & Sasaki, H. (2016). Gene expression and pathway analysis of CTNNB1 in cancer and stem cells. World J Stem Cells, 8(11), 384-395. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27928465. doi:10.4252/wjsc.v8.i11.384
Tanabe, S., Komatsu, M., Kazuhiko, A., Yokozaki, H., & Sasaki, H. (2015). Implications of epithelial-mesenchymal transition in gastric cancer. Translational Gastrointestinal Cancer, 4(4), 258-264. Retrieved from http://tgc.amegroups.com/article/view/6996.
Tang, Y. Y., Sheng, S. Y., Lu, C. G., Zhang, Y. Q., Zou, J. Y., Lei, Y. Y., . . . Hong, H. (2018). Effects of Glycogen Synthase Kinase-3beta Inhibitor TWS119 on Proliferation and Cytokine Production of TILs From Human Lung Cancer. J Immunother, 41(7), 319-328. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29877972. doi:10.1097/CJI.0000000000000234
Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871-890. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19945376. doi:10.1016/j.cell.2009.11.007
Wang, B., Tang, Z., Gong, H., Zhu, L., & Liu, X. (2017). Wnt5a promotes epithelial-to-mesenchymal transition and metastasis in non-small-cell lung cancer. Biosci Rep, 37(6). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29054966. doi:10.1042/BSR20171092
Wang, H. X., Li, T. Y., & Kidder, G. M. (2010). WNT2 regulates DNA synthesis in mouse granulosa cells through beta-catenin. Biol Reprod, 82(5), 865-875. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20107203. doi:10.1095/biolreprod.109.080903
Wawruszak, A., Kalafut, J., Okon, E., Czapinski, J., Halasa, M., Przybyszewska, A., . . . Stepulak, A. (2019). Histone Deacetylase Inhibitors and Phenotypical Transformation of Cancer Cells. Cancers (Basel), 11(2). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30691229. doi:10.3390/cancers11020148
Wendt, M. K., Smith, J. A., & Schiemann, W. P. (2010). Transforming growth factor-beta-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene, 29(49), 6485-6498. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20802523. doi:10.1038/onc.2010.377
Willert, K., & Nusse, R. (2012). Wnt proteins. Cold Spring Harb Perspect Biol, 4(9), a007864. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22952392. doi:10.1101/cshperspect.a007864
Willis, B. C., Liebler, J. M., Luby-Phelps, K., Nicholson, A. G., Crandall, E. D., du Bois, R. M., & Borok, Z. (2005). Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol, 166(5), 1321-1332. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15855634.
Wu, W.-S., Heinrichs, S., Xu, D., Garrison, S. P., Zambetti, G. P., Adams, J. M., & Look, A. T. (2005). Slug Antagonizes p53-Mediated Apoptosis of Hematopoietic Progenitors by Repressing puma. Cell, 123(4), 641-653. Retrieved from http://www.sciencedirect.com/science/article/pii/S0092867405010317. doi:https://doi.org/10.1016/j.cell.2005.09.029
Wu, Y., Liu, F., Liu, Y., Liu, X., Ai, Z., Guo, Z., & Zhang, Y. (2015). GSK3 inhibitors CHIR99021 and 6-bromoindirubin-3'-oxime inhibit microRNA maturation in mouse embryonic stem cells. Sci Rep, 5, 8666. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25727520. doi:10.1038/srep08666
Yan, T.-f., Wu, M.-j., Xiao, B., Hu, Q., Fan, Y.-H., & Zhu, X.-G. (2018). Knockdown of HOXC6 inhibits glioma cell proliferation and induces cell cycle arrest by targeting WIF-1 in vitro and vivo. Pathology - Research and Practice, 214(11), 1818-1824. Retrieved from http://www.sciencedirect.com/science/article/pii/S0344033818308380. doi:https://doi.org/10.1016/j.prp.2018.09.001
Yang, W., Wu, P. F., Ma, J. X., Liao, M. J., Wang, X. H., Xu, L. S., . . . Yi, L. (2019). Sortilin promotes glioblastoma invasion and mesenchymal transition through GSK-3beta/beta-catenin/twist pathway. Cell Death Dis, 10(3), 208. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30814514. doi:10.1038/s41419-019-1449-9
Yang, Y. M., Gupta, S. K., Kim, K. J., Powers, B. E., Cerqueira, A., Wainger, B. J., . . . Rubin, L. L. (2013). A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell, 12(6), 713-726. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23602540. doi:10.1016/j.stem.2013.04.003
Yao, Z., Zhou, G., Wang, X. S., Brown, A., Diener, K., Gan, H., & Tan, T. H. (1999). A novel human STE20-related protein kinase, HGK, that specifically activates the c-Jun N-terminal kinase signaling pathway. J Biol Chem, 274(4), 2118-2125. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9890973.
Ying, J., Li, H., Yu, J., Ng, K. M., Poon, F. F., Wong, S. C., . . . Tao, Q. (2008). WNT5A exhibits tumor-suppressive activity through antagonizing the Wnt/beta-catenin signaling, and is frequently methylated in colorectal cancer. Clin Cancer Res, 14(1), 55-61. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18172252. doi:10.1158/1078-0432.CCR-07-1644
Zeisberg, M., & Neilson, E. G. (2009). Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 119(6), 1429-1437. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19487819. doi:10.1172/JCI36183
Zeng, H., Lu, B., Zamponi, R., Yang, Z., Wetzel, K., Loureiro, J., . . . Cong, F. (2018). mTORC1 signaling suppresses Wnt/beta-catenin signaling through DVL-dependent regulation of Wnt receptor FZD level. Proc Natl Acad Sci U S A, 115(44), E10362-E10369. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30297426. doi:10.1073/pnas.1808575115
Zeng, X., Huang, H., Tamai, K., Zhang, X., Harada, Y., Yokota, C., . . . He, X. (2008). Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development, 135(2), 367. Retrieved from http://dev.biologists.org/content/135/2/367.abstract. doi:10.1242/dev.013540
Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., . . . He, X. (2005). A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature, 438(7069), 873-877. Retrieved from https://doi.org/10.1038/nature04185. doi:10.1038/nature04185
Zhang, J., Tian, X. J., & Xing, J. (2016). Signal Transduction Pathways of EMT Induced by TGF-beta, SHH, and WNT and Their Crosstalks. J Clin Med, 5(4). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27043642. doi:10.3390/jcm5040041
Zhang, J., Zhou, B., Liu, Y., Chen, K., Bao, P., Wang, Y., . . . Li, Y. (2014). Wnt inhibitory factor-1 functions as a tumor suppressor through modulating Wnt/β-catenin signaling in neuroblastoma. Cancer Letters, 348(1), 12-19. Retrieved from http://www.sciencedirect.com/science/article/pii/S0304383514001025. doi:https://doi.org/10.1016/j.canlet.2014.02.011
Zhang, P., Sun, Y., & Ma, L. (2015). ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle, 14(4), 481-487. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25607528. doi:10.1080/15384101.2015.1006048
Zhou, Y., Huang, Y., Cao, X., Xu, J., Zhang, L., Wang, J., . . . Zheng, M. (2016). WNT2 Promotes Cervical Carcinoma Metastasis and Induction of Epithelial-Mesenchymal Transition. PLoS One, 11(8), e0160414. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27513465. doi:10.1371/journal.pone.0160414
Ziv, E., Yarmohammadi, H., Boas, F. E., Petre, E. N., Brown, K. T., Solomon, S. B., . . . Erinjeri, J. P. (2017). Gene Signature Associated with Upregulation of the Wnt/beta-Catenin Signaling Pathway Predicts Tumor Response to Transarterial Embolization. J Vasc Interv Radiol, 28(3), 349-355 e341. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28126478. doi:10.1016/j.jvir.2016.11.004
Appendix 1
List of MIEs in this AOP
Event: 1645: Wnt ligand stimulation
Short Name: Wnt ligand stimulation
AOPs Including This Key Event
| AOP ID and Name | Event Type |
|---|---|
| Aop:298 - Wnt ligand stimulation and Wnt signalling activation lead to cancer malignancy | MolecularInitiatingEvent |
Stressors
| Name |
|---|
| WNT2 |
| Wnt |
| WNT5A |
Biological Context
| Level of Biological Organization |
|---|
| Molecular |
Cell term
| Cell term |
|---|
| cell |
Organ term
| Organ term |
|---|
| organ |
Evidence for Perturbation by Stressor
Overview for Molecular Initiating Event
•WNT secretion from the cells requires a number of factors including the sorting receptor Wntless (Banziger et al., 2006; Bartscherer, Pelte, Ingelfinger, & Boutros, 2006; Goodman et al., 2006).
・Wnt signaling activation is occurred by WNTs. WNT5A can activate Wnt signaling leading to EMT (Dissanayake et al., 2007) and inhibit Wnt signaling as well (Kremenevskaja et al., 2005).
・Dickkopf WNT signaling pathway inhibitor 2 (DKK2) inhibits Wnt signaling (Mu et al., 2017).
・Zebrafish eaf1 and eaf2/u19 mediate effective convergence and extension movements through the maintenance of wnt11 and wnt5 expression (J. X. Liu, Hu, Wang, Gui, & Xiao, 2009).
・The inhibitors for WNT signaling include WNT inhibitory factor 1 (WIF-1) (Yan et al., 2018; Jiao Zhang et al., 2014).
・The casein kinase 1 (CK1), serine (Ser)/threonine (Thr) protein kinases are involved in Wnt and Hedgehog pathways (J. Jiang, 2017).
・IQ-1 and ID-8 are modulators for Wnt signaling (Hasegawa et al., 2012; Miyabayashi et al., 2007) (Kahn, 2014).
・WNT activates Wnt signaling which is involved in neuroblastoma (Johnsen, Dyberg, Fransson, & Wickström, 2018).
・Wnt5a is involved in non-canonical WNT signaling pathways, through binding to different members of the Frizzled- and Ror-family receptors (Asem, Buechler, Wates, Miller, & Stack, 2016).
・WNT5A induces EMT via non-canonical WNT signaling related to molecules such as PKC and JNK (Dissanayake et al., 2007; Jordan et al., 2013) Abell et al., 2011).
・WNT2B/WNT13 has been identified as human genes, and induces mesenchymal to epithelial transition (MET) in cooperation with FZD in colorectal cancer (Schwab et al., 2018).
・Wnt8 activates WNT/beta-catenin signaling leading to induction of EMT in Sea urchin (Thiery, Acloque, Huang, & Nieto, 2009).
WNT2
WNT2 induces EMT in cervical cancer (Zhou et al., 2016).
Wnt
Wnt stimulation induces EMT.
WNT5A
WNT5A induces EMT in non-small-cell lung cancer (Wang, Tang, Gong, Zhu, & Liu, 2017).
Domain of Applicability
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| Homo sapiens | Homo sapiens | High | NCBI |
| Life Stage | Evidence |
|---|---|
| All life stages | Moderate |
| Sex | Evidence |
|---|---|
| Unspecific | High |
- The up-regulation of WNT ligand expression occurs in Homo sapiens (B. Wang et al., 2017).
- The Wnt genes play an important roles in the secretion from cells, glycosylation and tight association with the cell surface and extracellular matrix in Drosophila melanogaster (Willert & Nusse, 2012).
- Wnt5a expression leads to epithelial-mesenchymal transition (EMT) and metastasis in non-small-cell lung cancer in Homo sapiens (B. Wang et al., 2017).
- WNT2 expression lead to EMT induction in Homo sapiens (Zhou et al., 2016).
Key Event Description
Site of action: The site of action for the molecular initiating event is the cell membrane.
WNTs are secreted proteins that contain 22-24 conserved cysteine residues (Foulquier et al., 2018). The WNT molecules consist of molecular families including WNT1, WNT2, WNT2B/WNT13, WNT3, WNT4, WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT10B, WNT11 and WNT16. (Clevers & Nusse, 2012; Katoh, 2001; Kusserow et al., 2005)
Wnt proteins consists of 350-400 amino acids (Saito-Diaz et al., 2013).
WNT ligands are known to trigger at least three different downstream signaling cascades including canonical WNT/beta-catenin signaling pathway, non-canonical WNT/Ca2+ pathway and planer cell polarity (PCP) pathway(De, 2011; Lai, Chien, & Moon, 2009; Willert & Nusse, 2012). WNTs bind to Frizzled proteins, which are seven-pass transmembrane receptors with an extracellular N-terminal cysteine-rich domain (Bhanot et al., 1996; Clevers, 2006). Wnt signaling begins with the binding of Wnt ligand towards the Frizzled receptors (Mohammed et al., 2016).
Canonical Wnt pathway consists of Wnt, GSK3beta and beta-catenin cascade (Clevers & Nusse, 2012; Hatsell, Rowlands, Hiremath, & Cowin, 2003).
How it is Measured or Detected
- Secretion of WNT requires a number of other dedicated factors including the sortin receptor Wntless (WLS), which binds to Wnt and escorts it to the cell surface (Banziger et al., 2006; Ching & Nusse, 2006)
- Wnt signaling is activated by the gene mutations of the signaling components (Ziv et al., 2017).
- Wnt1, Wnt3a and Wnt5a protein expression are measured by immunoblotting using antibodies for Wnt1, Wnt3a and Wnt5a, respectively (J. Du et al., 2016; B. Wang et al., 2017).
- WNT2, of which expression is detected by quantitative PCR, immunoblotting and immunohistochemistry, induces EMT (Zhou et al., 2016).
- Wnt2B (Wnt13) mediates mesenchymal-epithelial-transition (MET) in vitro (Homo sapiens)(Schwab et al., 2018).
References
Asem, M. S., Buechler, S., Wates, R. B., Miller, D. L., & Stack, M. S. (2016). Wnt5a Signaling in Cancer. Cancers (Basel), 8(9). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27571105. doi:10.3390/cancers8090079
Banziger, C., Soldini, D., Schutt, C., Zipperlen, P., Hausmann, G., & Basler, K. (2006). Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell, 125(3), 509-522. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16678095. doi:10.1016/j.cell.2006.02.049
Bartscherer, K., Pelte, N., Ingelfinger, D., & Boutros, M. (2006). Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell, 125(3), 523-533. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16678096. doi:10.1016/j.cell.2006.04.009
Bhanot, P., Brink, M., Samos, C. H., Hsieh, J.-C., Wang, Y., Macke, J. P., . . . Nusse, R. (1996). A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature, 382, 225. Retrieved from https://doi.org/10.1038/382225a0. doi:10.1038/382225a0
Ching, W., & Nusse, R. (2006). A dedicated Wnt secretion factor. Cell, 125(3), 432-433. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16678089. doi:10.1016/j.cell.2006.04.018
Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127(3), 469-480. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17081971. doi:10.1016/j.cell.2006.10.018
Clevers, H., & Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell, 149(6), 1192-1205. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22682243. doi:10.1016/j.cell.2012.05.012
De, A. (2011). Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin (Shanghai), 43(10), 745-756. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21903638. doi:10.1093/abbs/gmr079
Dissanayake, S. K., Wade, M., Johnson, C. E., O'Connell, M. P., Leotlela, P. D., French, A. D., . . . Weeraratna, A. T. (2007). The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem, 282(23), 17259-17271. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17426020. doi:10.1074/jbc.M700075200
Du, J., Zu, Y., Li, J., Du, S., Xu, Y., Zhang, L., . . . Yang, C. (2016). Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Sci Rep, 6, 20395. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26854061. doi:10.1038/srep20395
Foulquier, S., Daskalopoulos, E. P., Lluri, G., Hermans, K. C. M., Deb, A., & Blankesteijn, W. M. (2018). WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev, 70(1), 68-141. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29247129. doi:10.1124/pr.117.013896
Goodman, R. M., Thombre, S., Firtina, Z., Gray, D., Betts, D., Roebuck, J., . . . Selva, E. M. (2006). Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development, 133(24), 4901-4911. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17108000. doi:10.1242/dev.02674
Hasegawa, K., Yasuda, S. Y., Teo, J. L., Nguyen, C., McMillan, M., Hsieh, C. L., . . . Kahn, M. (2012). Wnt signaling orchestration with a small molecule DYRK inhibitor provides long-term xeno-free human pluripotent cell expansion. Stem Cells Transl Med, 1(1), 18-28. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23197636. doi:10.5966/sctm.2011-0033
Hatsell, S., Rowlands, T., Hiremath, M., & Cowin, P. (2003). Beta-catenin and Tcfs in mammary development and cancer. J Mammary Gland Biol Neoplasia, 8(2), 145-158. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14635791.
Jiang, J. (2017). CK1 in Developmental Signaling: Hedgehog and Wnt. Curr Top Dev Biol, 123, 303-329. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28236970. doi:10.1016/bs.ctdb.2016.09.002
Johnsen, J. I., Dyberg, C., Fransson, S., & Wickström, M. (2018). Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacological Research, 131, 164-176. Retrieved from http://www.sciencedirect.com/science/article/pii/S1043661817316699. doi:https://doi.org/10.1016/j.phrs.2018.02.023
Jordan, N. V., Prat, A., Abell, A. N., Zawistowski, J. S., Sciaky, N., Karginova, O. A., . . . Johnson, G. L. (2013). SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c controls epithelial-mesenchymal transition by inducing Wnt5a signaling. Mol Cell Biol, 33(15), 3011-3025. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23716599. doi:10.1128/MCB.01443-12
Kahn, M. (2014). Can we safely target the WNT pathway? Nat Rev Drug Discov, 13(7), 513-532. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24981364. doi:10.1038/nrd4233
Katoh, M. (2001). Molecular cloning and characterization of human WNT3. Int J Oncol, 19(5), 977-982. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11604997.
Kremenevskaja, N., von Wasielewski, R., Rao, A. S., Schofl, C., Andersson, T., & Brabant, G. (2005). Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene, 24(13), 2144-2154. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15735754. doi:10.1038/sj.onc.1208370
Kusserow, A., Pang, K., Sturm, C., Hrouda, M., Lentfer, J., Schmidt, H. A., . . . Holstein, T. W. (2005). Unexpected complexity of the Wnt gene family in a sea anemone. Nature, 433(7022), 156-160. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15650739. doi:10.1038/nature03158
Lai, S. L., Chien, A. J., & Moon, R. T. (2009). Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis. Cell Res, 19(5), 532-545. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19365405. doi:10.1038/cr.2009.41
Liu, J. X., Hu, B., Wang, Y., Gui, J. F., & Xiao, W. (2009). Zebrafish eaf1 and eaf2/u19 mediate effective convergence and extension movements through the maintenance of wnt11 and wnt5 expression. J Biol Chem, 284(24), 16679-16692. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19380582. doi:10.1074/jbc.M109.009654
Miyabayashi, T., Teo, J. L., Yamamoto, M., McMillan, M., Nguyen, C., & Kahn, M. (2007). Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci U S A, 104(13), 5668-5673. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17372190. doi:10.1073/pnas.0701331104
Mohammed, M. K., Shao, C., Wang, J., Wei, Q., Wang, X., Collier, Z., . . . Lee, M. J. (2016). Wnt/beta-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis, 3(1), 11-40. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27077077. doi:10.1016/j.gendis.2015.12.004
Mu, J., Hui, T., Shao, B., Li, L., Du, Z., Lu, L., . . . Xiang, T. (2017). Dickkopf-related protein 2 induces G0/G1 arrest and apoptosis through suppressing Wnt/beta-catenin signaling and is frequently methylated in breast cancer. Oncotarget, 8(24), 39443-39459. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28467796. doi:10.18632/oncotarget.17055
Nusse, R., & Clevers, H. (2017). Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 169(6), 985-999. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28575679. doi:10.1016/j.cell.2017.05.016
Saito-Diaz, K., Chen, T. W., Wang, X., Thorne, C. A., Wallace, H. A., Page-McCaw, A., & Lee, E. (2013). The way Wnt works: components and mechanism. Growth Factors, 31(1), 1-31. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23256519. doi:10.3109/08977194.2012.752737
Schwab, R. H. M., Amin, N., Flanagan, D. J., Johanson, T. M., Phesse, T. J., & Vincan, E. (2018). Wnt is necessary for mesenchymal to epithelial transition in colorectal cancer cells. Dev Dyn, 247(3), 521-530. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28560804. doi:10.1002/dvdy.24527
Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871-890. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19945376. doi:10.1016/j.cell.2009.11.007
Wang, B., Tang, Z., Gong, H., Zhu, L., & Liu, X. (2017). Wnt5a promotes epithelial-to-mesenchymal transition and metastasis in non-small-cell lung cancer. Biosci Rep, 37(6). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29054966. doi:10.1042/BSR20171092
Willert, K., & Nusse, R. (2012). Wnt proteins. Cold Spring Harb Perspect Biol, 4(9), a007864. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22952392. doi:10.1101/cshperspect.a007864
Yan, T.-f., Wu, M.-j., Xiao, B., Hu, Q., Fan, Y.-H., & Zhu, X.-G. (2018). Knockdown of HOXC6 inhibits glioma cell proliferation and induces cell cycle arrest by targeting WIF-1 in vitro and vivo. Pathology - Research and Practice, 214(11), 1818-1824. Retrieved from http://www.sciencedirect.com/science/article/pii/S0344033818308380. doi:https://doi.org/10.1016/j.prp.2018.09.001
Zhang, J., Zhou, B., Liu, Y., Chen, K., Bao, P., Wang, Y., . . . Li, Y. (2014). Wnt inhibitory factor-1 functions as a tumor suppressor through modulating Wnt/β-catenin signaling in neuroblastoma. Cancer Letters, 348(1), 12-19. Retrieved from http://www.sciencedirect.com/science/article/pii/S0304383514001025. doi:https://doi.org/10.1016/j.canlet.2014.02.011
Zhou, Y., Huang, Y., Cao, X., Xu, J., Zhang, L., Wang, J., . . . Zheng, M. (2016). WNT2 Promotes Cervical Carcinoma Metastasis and Induction of Epithelial-Mesenchymal Transition. PLoS One, 11(8), e0160414. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27513465. doi:10.1371/journal.pone.0160414
Ziv, E., Yarmohammadi, H., Boas, F. E., Petre, E. N., Brown, K. T., Solomon, S. B., . . . Erinjeri, J. P. (2017). Gene Signature Associated with Upregulation of the Wnt/beta-Catenin Signaling Pathway Predicts Tumor Response to Transarterial Embolization. J Vasc Interv Radiol, 28(3), 349-355 e341. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28126478. doi:10.1016/j.jvir.2016.11.004
List of Key Events in the AOP
Event: 1646: Frizzled activation
Short Name: Frizzled activation
AOPs Including This Key Event
| AOP ID and Name | Event Type |
|---|---|
| Aop:298 - Wnt ligand stimulation and Wnt signalling activation lead to cancer malignancy | KeyEvent |
Stressors
| Name |
|---|
| Wnt ligand |
Biological Context
| Level of Biological Organization |
|---|
| Molecular |
Cell term
| Cell term |
|---|
| cell |
Organ term
| Organ term |
|---|
| organ |
Evidence for Perturbation by Stressor
Wnt ligand
Wnt ligands bind to Frizzled receptor leading to the activation (Bhanot et al., 1996; Janda, Waghray, Levin, Thomas, & Garcia, 2012).
Domain of Applicability
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| Homo sapiens | Homo sapiens | High | NCBI |
| Life Stage | Evidence |
|---|---|
| All life stages | High |
| Sex | Evidence |
|---|---|
| Unspecific | High |
Oligomerization of FZD and low-density lipoprotein receptor-related protein 5/6 (LRP5/6) activates Wnt/beta-catenin signaling in Homo sapiens. (Hua et al., 2018).
Key Event Description
Wnt ligands bind to Frizzled (FZD) receptors which are seven transmembrane-domain protein receptors (Nile, Mukund, Stanger, Wang, & Hannoush, 2017). At least 10 FZD receptors are identified in human cells. FZD receptor is activated by Wnt ligand binding (MacDonald, Tamai, & He, 2009).
Dishevelled (DVL), a positive regulator of Wnt signaling, form the complex with FZD and lead to trigger the Wnt signaling together with Wnt coreceptor low-density lipoprotein (LDL) receptor-related protein 6 (LRP6) (Clevers & Nusse, 2012; X. Jiang, Charlat, Zamponi, Yang, & Cong, 2015). DVL, however, has a controversial role to promote Wnt receptor degradation (X. Jiang et al., 2015). Meanwhile, DVL-dependent regulation of FZD level is involved in mTORC1 signaling suppression via Wnt/beta-catenin signaling (H. Zeng et al., 2018).
How it is Measured or Detected
- Frizzled receptor protein level on the cell surface is measured by flow cytometry with pan-FZD antibody (X. Jiang et al., 2015; H. Zeng et al., 2018).
- DVL protein level is measured by immunoblotting with anti-DVL2 antibody (H. Zeng et al., 2018).
- Fzd mRNA level is measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR) (H. Zeng et al., 2018).
References
Bhanot, P., Brink, M., Samos, C. H., Hsieh, J.-C., Wang, Y., Macke, J. P., . . . Nusse, R. (1996). A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature, 382, 225. Retrieved from https://doi.org/10.1038/382225a0. doi:10.1038/382225a0
Clevers, H., & Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell, 149(6), 1192-1205. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22682243. doi:10.1016/j.cell.2012.05.012
Hua, Y., Yang, Y., Li, Q., He, X., Zhu, W., Wang, J., & Gan, X. (2018). Oligomerization of Frizzled and LRP5/6 protein initiates intracellular signaling for the canonical WNT/beta-catenin pathway. J Biol Chem, 293(51), 19710-19724. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30361437. doi:10.1074/jbc.RA118.004434
Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C., & Garcia, K. C. (2012). Structural basis of Wnt recognition by Frizzled. Science, 337(6090), 59-64. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22653731. doi:10.1126/science.1222879
Jiang, X., Charlat, O., Zamponi, R., Yang, Y., & Cong, F. (2015). Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol Cell, 58(3), 522-533. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25891077. doi:10.1016/j.molcel.2015.03.015
MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 17(1), 9-26. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19619488. doi:10.1016/j.devcel.2009.06.016
Nile, A. H., Mukund, S., Stanger, K., Wang, W., & Hannoush, R. N. (2017). Unsaturated fatty acyl recognition by Frizzled receptors mediates dimerization upon Wnt ligand binding. Proc Natl Acad Sci U S A, 114(16), 4147-4152. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28377511. doi:10.1073/pnas.1618293114
Zeng, H., Lu, B., Zamponi, R., Yang, Z., Wetzel, K., Loureiro, J., . . . Cong, F. (2018). mTORC1 signaling suppresses Wnt/beta-catenin signaling through DVL-dependent regulation of Wnt receptor FZD level. Proc Natl Acad Sci U S A, 115(44), E10362-E10369. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30297426. doi:10.1073/pnas.1808575115
Event: 1647: GSK3beta inactivation
Short Name: GSK3beta inactivation
AOPs Including This Key Event
| AOP ID and Name | Event Type |
|---|---|
| Aop:298 - Wnt ligand stimulation and Wnt signalling activation lead to cancer malignancy | KeyEvent |
Stressors
| Name |
|---|
| CHIR99021 |
| BIO (6-bromoindirubin-3’-oxime) |
| Kenpaullone |
| SB216763 |
| TWS119 |
| CHIR98014 |
Biological Context
| Level of Biological Organization |
|---|
| Molecular |
Cell term
| Cell term |
|---|
| cell |
Organ term
| Organ term |
|---|
| organ |
Evidence for Perturbation by Stressor
CHIR99021
CHIR99021 inhibits GSK3beta (Wu et al., 2015) .
BIO (6-bromoindirubin-3’-oxime)
BIO (6-bromoindirubin-3’-oxime) inhibits GSK3beta (Wu et al., 2015).
Kenpaullone
Kenpaullone inhibits GSK3beta (Yang et al., 2013).
SB216763
SB216763 inhibits GSK3betat (Naujok, Lentes, Diekmann, Davenport, & Lenzen, 2014).
TWS119
TWS119 inhibits GSK3beta (Tang et al., 2018).
CHIR98014
CHIR98014 inhibits GSK3beta (Guerrero et al., 2014; Lian et al., 2014).
Domain of Applicability
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| Homo sapiens | Homo sapiens | High | NCBI |
| Life Stage | Evidence |
|---|---|
| All life stages | High |
| Sex | Evidence |
|---|---|
| Unspecific | High |
Phosphorylation of GSK3beta is induced, which means the inactivation of GSK3beta, in Homo sapiens (Huang et al., 2019).
Key Event Description
・Glycogen synthase kinase 3beta (GSK3 beta) is inhibited by CHIR99021 (C. H. Li et al., 2017; C. C. Liu et al., 2016; Sineva & Pospelov, 2010).
・Glycogen synthase kinase 3beta (GSK3 beta) is inhibited by BIO (6-bromoindirubin-3’-oxime) (Mohammed et al., 2016; Sineva & Pospelov, 2010).
・Kenpaullone is a dual inhibitor for GSK3 alpha/beta and HPK1/GCK-like kinase (Y. M. Yang et al., 2013; Yao et al., 1999).
・CHIR and BIO treatments lead to a slight upregulation of the primary transcripts of the miR-302-367 cluster and miR-181 family of miRNAs, which activate Wnt/beta-catenin signaling (Y. Wu et al., 2015).
・SB216763 inhibits GSK3beta (Naujok et al., 2014).
・TWS119 inhibits GSK3beta (Tang et al., 2018).
・CHIR98014 inhibits GSK3beta (Guerrero et al., 2014; Lian et al., 2014).
How it is Measured or Detected
Inactivation of GSK3 beta is measured by Wnt/beta-catenin activity assay, in which the vector containing the firefly luciferase gene controlled by TCF/LEF binding sites is transfected in the cells (Naujok et al., 2014). Phosphorylation of GSK3beta at residue Ser9 leads to the inactivation of GSK3beta. Phosphorylation of GSK3 beta is measured by immunoblotting with anti-phospho-GSK3beta (Huang et al., 2019).
References
Guerrero, F., Herencia, C., Almaden, Y., Martinez-Moreno, J. M., Montes de Oca, A., Rodriguez-Ortiz, M. E., . . . Munoz-Castaneda, J. R. (2014). TGF-beta prevents phosphate-induced osteogenesis through inhibition of BMP and Wnt/beta-catenin pathways. PLoS One, 9(2), e89179. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24586576. doi:10.1371/journal.pone.0089179
Huang, J. Q., Wei, F. K., Xu, X. L., Ye, S. X., Song, J. W., Ding, P. K., . . . Gong, L. Y. (2019). SOX9 drives the epithelial-mesenchymal transition in non-small-cell lung cancer through the Wnt/beta-catenin pathway. J Transl Med, 17(1), 143. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31060551. doi:10.1186/s12967-019-1895-2
Li, C. H., Liu, C. W., Tsai, C. H., Peng, Y. J., Yang, Y. H., Liao, P. L., . . . Kang, J. J. (2017). Cytoplasmic aryl hydrocarbon receptor regulates glycogen synthase kinase 3 beta, accelerates vimentin degradation, and suppresses epithelial-mesenchymal transition in non-small cell lung cancer cells. Arch Toxicol, 91(5), 2165-2178. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27752740. doi:10.1007/s00204-016-1870-0
Lian, X., Bao, X., Al-Ahmad, A., Liu, J., Wu, Y., Dong, W., . . . Palecek, S. P. (2014). Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Reports, 3(5), 804-816. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25418725. doi:10.1016/j.stemcr.2014.09.005
Liu, C. C., Cai, D. L., Sun, F., Wu, Z. H., Yue, B., Zhao, S. L., . . . Yan, D. W. (2016). FERMT1 mediates epithelial–mesenchymal transition to promote colon cancer metastasis via modulation of β-catenin transcriptional activity. Oncogene, 36, 1779. Retrieved from https://doi.org/10.1038/onc.2016.339. doi:10.1038/onc.2016.339
https://www.nature.com/articles/onc2016339 - supplementary-information
Mohammed, M. K., Shao, C., Wang, J., Wei, Q., Wang, X., Collier, Z., . . . Lee, M. J. (2016). Wnt/beta-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis, 3(1), 11-40. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27077077. doi:10.1016/j.gendis.2015.12.004
Naujok, O., Lentes, J., Diekmann, U., Davenport, C., & Lenzen, S. (2014). Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res Notes, 7, 273. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24779365. doi:10.1186/1756-0500-7-273
Sineva, G. S., & Pospelov, V. A. (2010). Inhibition of GSK3beta enhances both adhesive and signalling activities of beta-catenin in mouse embryonic stem cells. Biol Cell, 102(10), 549-560. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20626347. doi:10.1042/BC20100016
Tang, Y. Y., Sheng, S. Y., Lu, C. G., Zhang, Y. Q., Zou, J. Y., Lei, Y. Y., . . . Hong, H. (2018). Effects of Glycogen Synthase Kinase-3beta Inhibitor TWS119 on Proliferation and Cytokine Production of TILs From Human Lung Cancer. J Immunother, 41(7), 319-328. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29877972. doi:10.1097/CJI.0000000000000234
Wu, Y., Liu, F., Liu, Y., Liu, X., Ai, Z., Guo, Z., & Zhang, Y. (2015). GSK3 inhibitors CHIR99021 and 6-bromoindirubin-3'-oxime inhibit microRNA maturation in mouse embryonic stem cells. Sci Rep, 5, 8666. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25727520. doi:10.1038/srep08666
Yang, Y. M., Gupta, S. K., Kim, K. J., Powers, B. E., Cerqueira, A., Wainger, B. J., . . . Rubin, L. L. (2013). A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell, 12(6), 713-726. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23602540. doi:10.1016/j.stem.2013.04.003
Yao, Z., Zhou, G., Wang, X. S., Brown, A., Diener, K., Gan, H., & Tan, T. H. (1999). A novel human STE20-related protein kinase, HGK, that specifically activates the c-Jun N-terminal kinase signaling pathway. J Biol Chem, 274(4), 2118-2125. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9890973.
Event: 1648: β-catenin activation
Short Name: β-catenin activation
AOPs Including This Key Event
| AOP ID and Name | Event Type |
|---|---|
| Aop:298 - Wnt ligand stimulation and Wnt signalling activation lead to cancer malignancy | KeyEvent |
Stressors
| Name |
|---|
| CHIR-99021 |
| CHIR-98014 |
Biological Context
| Level of Biological Organization |
|---|
| Molecular |
Cell term
| Cell term |
|---|
| cell |
Organ term
| Organ term |
|---|
| organ |
Evidence for Perturbation by Stressor
CHIR-99021
CHIR-99021 activates beta-catenin (Naujok et al., 2014).
CHIR-98014
CHIR-98014 activates beta-catenin (Naujok et al., 2014).
Domain of Applicability
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| Homo sapiens | Homo sapiens | High | NCBI |
| Life Stage | Evidence |
|---|---|
| All life stages | High |
| Sex | Evidence |
|---|---|
| Unspecific | High |
•Beta-catenin is stabilized and translocated into nucleus in Homo sapiens (Huang et al., 2019).
•Beta-catenin is activated in Homo sapiens (Huang et al., 2019) (Naujok et al., 2014).
Key Event Description
Upon the Wnt signaling activation, beta-catenin is stabilized and activated via inhibition of the phosphorylation by GSK3beta (Huang et al., 2019). Once the beta-catenin is stabilized, it translocates into the nucleus and enhance the expression of target genes of Wnt/beta-catenin signaling pathway (Huang et al., 2019). Beta-catenin activation is related to cancer(Tanabe, 2014).
How it is Measured or Detected
•The beta-catenin level in nucleus is measured by immunoblotting with anti-beta-catenin antibody (Huang et al., 2019)
•The beta-catenin nuclear translocation is measured by immunofluorescence assay (Huang et al., 2019).
•Activity of beta-catenin is measured by Wnt/beta-catenin activity assay, in which the vector containing the firefly luciferase gene controlled by TCF/LEF binding sites is transfected in the cells (Naujok et al., 2014).
References
Huang, J. Q., Wei, F. K., Xu, X. L., Ye, S. X., Song, J. W., Ding, P. K., . . . Gong, L. Y. (2019). SOX9 drives the epithelial-mesenchymal transition in non-small-cell lung cancer through the Wnt/beta-catenin pathway. J Transl Med, 17(1), 143. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31060551. doi:10.1186/s12967-019-1895-2
Naujok, O., Lentes, J., Diekmann, U., Davenport, C., & Lenzen, S. (2014). Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res Notes, 7, 273. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24779365. doi:10.1186/1756-0500-7-273
Tanabe, S. (2014). Role of mesenchymal stem cells in cell life and their signaling. World journal of stem cells, 6(1), 24-32. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24567785
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927011/. doi:10.4252/wjsc.v6.i1.24
Event: 1649: Snail, Zeb, Twist activation
Short Name: Snail, Zeb, Twist activation
AOPs Including This Key Event
| AOP ID and Name | Event Type |
|---|---|
| Aop:298 - Wnt ligand stimulation and Wnt signalling activation lead to cancer malignancy | KeyEvent |
Biological Context
| Level of Biological Organization |
|---|
| Molecular |
Cell term
| Cell term |
|---|
| cell |
Organ term
| Organ term |
|---|
| organ |
Domain of Applicability
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| Homo sapiens | Homo sapiens | High | NCBI |
| Life Stage | Evidence |
|---|---|
| All life stages | High |
| Sex | Evidence |
|---|---|
| Unspecific | High |
•Snail and Twist transcription factor is up-regulated in Homo sapiens (Huang et al., 2019).
•ZEB1 promoter activity is increased in Homo sapiens (Kwon et al., 2016).
•Twist1 is activated in Mus musculus (Laursen, Mielke, Iannaccone, & Fuchtbauer, 2007).
Key Event Description
•ZEB is one of the important transcription factors for EMT regulation (Zhang, Sun, & Ma, 2015).
•SNAI1 (Snail) is an important transcription factor for cell differentiation and survival, and the phosphorylation and nuclear localization of Snail1 induced by Wnt signaling pathways are critical for the regulation of EMT (Kaufhold & Bonavida, 2014).
•Transcription factors SNAI1 and TWIST1 induce EMT (Hodge, Cui, Gamble, & Guo, 2018) (Mani et al., 2008)
•It is suggested that Sp1, a transcription factor involved in cell growth and metastasis, is induced by cytochrome P450 1B1 (CYP1B1), and promotes EMT, which leads to cell proliferation and metastasis (Kwon et al., 2016).
How it is Measured or Detected
•The activation of Snail and Twist are measured with gene expression up-regulation by real-time PCR (Huang et al., 2019).
•ZEB1 and TWIST1 activation is measured by dual luciferase reporter assay detecting the promoter activation (Kwon et al., 2016)
•The protein expression of ZEB2, SNAI1 are measure by western blotting with antibodies (Kwon et al., 2016).
References
Hodge, D. Q., Cui, J., Gamble, M. J., & Guo, W. (2018). Histone Variant MacroH2A1 Plays an Isoform-Specific Role in Suppressing Epithelial-Mesenchymal Transition. Sci Rep, 8(1), 841. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29339820. doi:10.1038/s41598-018-19364-4
Huang, J. Q., Wei, F. K., Xu, X. L., Ye, S. X., Song, J. W., Ding, P. K., . . . Gong, L. Y. (2019). SOX9 drives the epithelial-mesenchymal transition in non-small-cell lung cancer through the Wnt/beta-catenin pathway. J Transl Med, 17(1), 143. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31060551. doi:10.1186/s12967-019-1895-2
Kaufhold, S., & Bonavida, B. (2014). Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. J Exp Clin Cancer Res, 33, 62. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25084828. doi:10.1186/s13046-014-0062-0
Kwon, Y. J., Baek, H. S., Ye, D. J., Shin, S., Kim, D., & Chun, Y. J. (2016). CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/beta-Catenin Signaling via Sp1 Upregulation. PLoS One, 11(3), e0151598. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26981862. doi:10.1371/journal.pone.0151598
Laursen, K. B., Mielke, E., Iannaccone, P., & Fuchtbauer, E. M. (2007). Mechanism of transcriptional activation by the proto-oncogene Twist1. J Biol Chem, 282(48), 34623-34633. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17893140. doi:10.1074/jbc.M707085200
Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., . . . Weinberg, R. A. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704-715. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18485877. doi:10.1016/j.cell.2008.03.027
Zhang, P., Sun, Y., & Ma, L. (2015). ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle, 14(4), 481-487. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25607528. doi:10.1080/15384101.2015.1006048
Event: 1650: Epithelial-mesenchymal transition
Short Name: Epithelial-mesenchymal transition
AOPs Including This Key Event
| AOP ID and Name | Event Type |
|---|---|
| Aop:298 - Wnt ligand stimulation and Wnt signalling activation lead to cancer malignancy | KeyEvent |
Stressors
| Name |
|---|
| GOLPH3 |
| LiCl |
| D-2-hydroxyglutarate |
Biological Context
| Level of Biological Organization |
|---|
| Cellular |
Cell term
| Cell term |
|---|
| cell |
Organ term
| Organ term |
|---|
| organ |
Evidence for Perturbation by Stressor
GOLPH3
GOLPH3 induces EMT (Sun et al., 2017).
LiCl
LiCl induces EMT (Fang et al., 2018).
D-2-hydroxyglutarate
D-2-hydroxyglutarate induces EMT (Colvin et al., 2016).
Domain of Applicability
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| Homo sapiens | Homo sapiens | High | NCBI |
| Life Stage | Evidence |
|---|---|
| All life stages | High |
| Sex | Evidence |
|---|---|
| Unspecific | High |
EMT is induced in cancer and involved in cancer metastasis in Homo sapiens (Suarez-Carmona, Lesage, Cataldo, & Gilles, 2017) (Du & Shim, 2016).
Key Event Description
•Epithelial-mesenchymal transition (EMT) is a phenomenon in which the cells transit from epithelial-like into mesenchymal-like phenotypes (S. Tanabe, 2017; Shihori Tanabe, Komatsu, Kazuhiko, Yokozaki, & Sasaki, 2015). In cancer, cells exhibiting EMT features contribute into the metastasis and drug resistance.
•It is known that D-2-hydroxyglurate induces EMT(Guerra et al., 2017; Jia, Park, Jung, Levine, & Kaipparettu, 2018; Mishra et al., 2018; Sciacovelli & Frezza, 2017). D-2-hydroxyglurate, an inhibitor of Jumonji-family histone demethylase, increased the trimethylation of histone H3 lysine 4 (H3K4) in the promoter region of the ZEB1, followed by the induction of EMT (Colvin et al., 2016).
•Wnt5a induces EMT and metastasis in non-small-cell lung cancer (Wang, Tang, Gong, Zhu, & Liu, 2017).
•EMT is related to Wnt/beta-catenin signaling and important for cancer (S. Tanabe, Kawabata, Aoyagi, Yokozaki, & Sasaki, 2016)
•TGFbeta induces EMT (Wendt, Smith, & Schiemann, 2010).
How it is Measured or Detected
- TGFbeta induces EMT in vitro (Willis et al., 2005).
- EMT can be detected by immunostaining with pro-surfactant protein-C (pro-SPC) and N-cadherin in idiopathic pulmonary fibrosis (IPF) lung in vivo (Kim et al., 2006).
- TGFbeta induces EMT, which can be detected by immunostaining with vimentin in lung aloevela in vivo (Kim et al., 2006).
References
Colvin, H., Nishida, N., Konno, M., Haraguchi, N., Takahashi, H., Nishimura, J., . . . Ishii, H. (2016). Oncometabolite D-2-Hydroxyglurate Directly Induces Epithelial-Mesenchymal Transition and is Associated with Distant Metastasis in Colorectal Cancer. Sci Rep, 6, 36289. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27824159. doi:10.1038/srep36289
Du, B., & Shim, J. S. (2016). Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules, 21(7). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27455225. doi:10.3390/molecules21070965
Fang, C. X., Ma, C. M., Jiang, L., Wang, X. M., Zhang, N., Ma, J. N., . . . Zhao, Y. D. (2018). p38 MAPK is Crucial for Wnt1- and LiCl-Induced Epithelial Mesenchymal Transition. Curr Med Sci, 38(3), 473-481. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30074215. doi:10.1007/s11596-018-1903-4
Guerra, F., Guaragnella, N., Arbini, A. A., Bucci, C., Giannattasio, S., & Moro, L. (2017). Mitochondrial Dysfunction: A Novel Potential Driver of Epithelial-to-Mesenchymal Transition in Cancer. Front Oncol, 7, 295. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29250487. doi:10.3389/fonc.2017.00295
Jia, D., Park, J. H., Jung, K. H., Levine, H., & Kaipparettu, B. A. (2018). Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States. Cells, 7(3). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29534029. doi:10.3390/cells7030021
Kim, K. K., Kugler, M. C., Wolters, P. J., Robillard, L., Galvez, M. G., Brumwell, A. N., . . . Chapman, H. A. (2006). Alveolar epithelial cell mesenchymal transition develops <em>in vivo</em> during pulmonary fibrosis and is regulated by the extracellular matrix. Proceedings of the National Academy of Sciences, 103(35), 13180. Retrieved from http://www.pnas.org/content/103/35/13180.abstract. doi:10.1073/pnas.0605669103
Mishra, P., Tang, W., Putluri, V., Dorsey, T. H., Jin, F., Wang, F., . . . Ambs, S. (2018). ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming. J Clin Invest, 128(1), 323-340. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29202474. doi:10.1172/JCI93815
Sciacovelli, M., & Frezza, C. (2017). Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J, 284(19), 3132-3144. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28444969. doi:10.1111/febs.14090
Suarez-Carmona, M., Lesage, J., Cataldo, D., & Gilles, C. (2017). EMT and inflammation: inseparable actors of cancer progression. Mol Oncol, 11(7), 805-823. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28599100. doi:10.1002/1878-0261.12095
Sun, J., Yang, X., Zhang, R., Liu, S., Gan, X., Xi, X., . . . Sun, Y. (2017). GOLPH3 induces epithelial-mesenchymal transition via Wnt/beta-catenin signaling pathway in epithelial ovarian cancer. Cancer Med, 6(4), 834-844. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28332316. doi:10.1002/cam4.1040
Tanabe, S. (2017). Molecular markers and networks for cancer and stem cells. J Embryol Stem Cell Res, 1(1).
Tanabe, S., Kawabata, T., Aoyagi, K., Yokozaki, H., & Sasaki, H. (2016). Gene expression and pathway analysis of CTNNB1 in cancer and stem cells. World J Stem Cells, 8(11), 384-395. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27928465. doi:10.4252/wjsc.v8.i11.384
Tanabe, S., Komatsu, M., Kazuhiko, A., Yokozaki, H., & Sasaki, H. (2015). Implications of epithelial-mesenchymal transition in gastric cancer. Translational Gastrointestinal Cancer, 4(4), 258-264. Retrieved from http://tgc.amegroups.com/article/view/6996.
Wang, B., Tang, Z., Gong, H., Zhu, L., & Liu, X. (2017). Wnt5a promotes epithelial-to-mesenchymal transition and metastasis in non-small-cell lung cancer. Biosci Rep, 37(6). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29054966. doi:10.1042/BSR20171092
Wendt, M. K., Smith, J. A., & Schiemann, W. P. (2010). Transforming growth factor-beta-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene, 29(49), 6485-6498. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20802523. doi:10.1038/onc.2010.377
Willis, B. C., Liebler, J. M., Luby-Phelps, K., Nicholson, A. G., Crandall, E. D., du Bois, R. M., & Borok, Z. (2005). Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol, 166(5), 1321-1332. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15855634.
List of Adverse Outcomes in this AOP
Event: 1651: Cancer Malignancy
Short Name: Cancer Malignancy
AOPs Including This Key Event
| AOP ID and Name | Event Type |
|---|---|
| Aop:298 - Wnt ligand stimulation and Wnt signalling activation lead to cancer malignancy | AdverseOutcome |
Biological Context
| Level of Biological Organization |
|---|
| Tissue |
Organ term
| Organ term |
|---|
| organ |
Domain of Applicability
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| Homo sapiens | Homo sapiens | High | NCBI |
| Life Stage | Evidence |
|---|---|
| All life stages | High |
| Sex | Evidence |
|---|---|
| Unspecific | High |
Cancer malignancy such as drug resistance occurs in Homo sapiens (Du & Shim, 2016).
Key Event Description
•Cancer malignancy such as drug resistance is involved in EMT, which is an important phenomenon exhibiting the feature similar to cancer stem cells (CSCs) (Du & Shim, 2016).
•EMT is involved in metastasis and therapy resistance (Smith & Bhowmick, 2016).
•Diffuse-type gastric cancer which has a poor prognosis may be related to EMT (Tanabe, Aoyagi, Yokozaki, & Sasaki, 2014).
How it is Measured or Detected
Cancer malignancy and EMT can be detected with biomarkers (Zeisberg & Neilson, 2009).
Regulatory Significance of the AO
Cancer malignancy is very important in the cancer treatment, since the cancer metastasis and recurrence are one of the main obstacles to cure cancer.
References
Du, B., & Shim, J. S. (2016). Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules, 21(7). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27455225. doi:10.3390/molecules21070965
Smith, B. N., & Bhowmick, N. A. (2016). Role of EMT in Metastasis and Therapy Resistance. J Clin Med, 5(2). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26828526. doi:10.3390/jcm5020017
Tanabe, S., Aoyagi, K., Yokozaki, H., & Sasaki, H. (2014). Gene expression signatures for identifying diffuse-type gastric cancer associated with epithelial-mesenchymal transition. Int J Oncol, 44(6), 1955-1970. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24728500. doi:10.3892/ijo.2014.2387
Zeisberg, M., & Neilson, E. G. (2009). Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 119(6), 1429-1437. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19487819. doi:10.1172/JCI36183
Appendix 2
List of Key Event Relationships in the AOP
List of Adjacent Key Event Relationships
Relationship: 1924: Wnt ligand stimulation leads to Frizzled activation
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Wnt ligand stimulation and Wnt signalling activation lead to cancer malignancy | adjacent | High | Moderate |
Evidence Supporting Applicability of this Relationship
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| Homo sapiens | Homo sapiens | High | NCBI |
| Life Stage | Evidence |
|---|---|
| All life stages | Moderate |
| Sex | Evidence |
|---|---|
| Unspecific | High |
Wnt ligand stimulation leads to FZD activation in Homo sapiens (Clevers & Nusse, 2012).
Key Event Relationship Description
Wnt ligand binds to Frizzled receptor (FZD), which leads to the Wnt signaling activation (Nile, Mukund, Stanger, Wang, & Hannoush, 2017).
Evidence Supporting this KER
Biological PlausibilityUpon the stimulation with Wnt ligand, Wnt ligand binds to FZD and form the complex with LRP5/6 (MacDonald et al., 2009).
Empirical EvidenceDishevelled (DVL), a positive regulator of Wnt signaling, form the complex with FZD and lead to trigger the Wnt signaling together with Wnt coreceptor low-density lipoprotein (LDL) receptor-related protein 6 (LRP6) (Clevers & Nusse, 2012; X. Jiang et al., 2015).
Wnt binds to FZD and activate the Wnt signaling (Clevers & Nusse, 2012; Janda et al., 2012; Nile et al., 2017). Wnt binding towards FZD induce the formation of the protein complex with LRP5/6 and DVL, leading to the down-stream signaling activation (Clevers & Nusse, 2012).
Uncertainties and InconsistenciesSome Wnt ligands bind to FZD, leading to Wnt/beta-catenin signaling inactivation. DVL, a positive regulator of Wnt signaling, has a controversial role to promote Wnt receptor degradation (X. Jiang et al., 2015). DVL-dependent regulation of FZD level is involved in mTORC1 signaling suppression via Wnt/beta-catenin signaling (H. Zeng et al., 2018).
Quantitative Understanding of the Linkage
Response-response relationshipFZD5 can activate WNT3A/beta-catenin signaling in a dose-dependent manner (Hua et al., 2018). The increase in FZD5 protein enhances cell response to WNT3A. (Hua et al., 2018). LRP5 can augment WNT3A/beta-catenin signaling in a dose-dependent manner (Hua et al., 2018).
Time-scaleFZD7 enhances the activity of canonical Wnt/beta-catenin signaling with the treatment of WNT3A for 1 to 6 hrs (Cao et al., 2017).
Known modulating factorsThe binding of Wnt and FZD induce the formation of the protein complex with the Dvl, Axin, CK1 GSK3, beta-catenin and APC to induce the beta-catenin translocation into the nucleus (Clevers & Nusse, 2012).
Known Feedforward/Feedback loops influencing this KERThe Wnt ligand is antagonized with secreted Frizzled-related proteins (sFRPs) and Wnt inhibitory protein (WIF), both of which can bind Wnts and inhibit interactions between WNT and FZD (Bovolenta, Esteve, Ruiz, Cisneros, & Lopez-Rios, 2008; Clevers & Nusse, 2012).
The Dickkopf 1 (DKK1) can disrupts Wnt-induced FZD-LRP6 complex formation (Clevers & Nusse, 2012; Ellwanger et al., 2008; Semenov, Zhang, & He, 2008).
References
Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E., & Lopez-Rios, J. (2008). Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci, 121(Pt 6), 737-746. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18322270. doi:10.1242/jcs.026096
Cao, T. T., Xiang, D., Liu, B. L., Huang, T. X., Tan, B. B., Zeng, C. M., . . . Fu, L. (2017). FZD7 is a novel prognostic marker and promotes tumor metastasis via WNT and EMT signaling pathways in esophageal squamous cell carcinoma. Oncotarget, 8(39), 65957-65968. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29029485. doi:10.18632/oncotarget.19586
Clevers, H., & Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell, 149(6), 1192-1205. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22682243. doi:10.1016/j.cell.2012.05.012
Ellwanger, K., Saito, H., Clement-Lacroix, P., Maltry, N., Niedermeyer, J., Lee, W. K., . . . Niehrs, C. (2008). Targeted disruption of the Wnt regulator Kremen induces limb defects and high bone density. Mol Cell Biol, 28(15), 4875-4882. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18505822. doi:10.1128/MCB.00222-08
Hua, Y., Yang, Y., Li, Q., He, X., Zhu, W., Wang, J., & Gan, X. (2018). Oligomerization of Frizzled and LRP5/6 protein initiates intracellular signaling for the canonical WNT/beta-catenin pathway. J Biol Chem, 293(51), 19710-19724. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30361437. doi:10.1074/jbc.RA118.004434
Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C., & Garcia, K. C. (2012). Structural basis of Wnt recognition by Frizzled. Science, 337(6090), 59-64. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22653731. doi:10.1126/science.1222879
Jiang, X., Charlat, O., Zamponi, R., Yang, Y., & Cong, F. (2015). Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol Cell, 58(3), 522-533. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25891077. doi:10.1016/j.molcel.2015.03.015
MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 17(1), 9-26. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19619488. doi:10.1016/j.devcel.2009.06.016
Nile, A. H., Mukund, S., Stanger, K., Wang, W., & Hannoush, R. N. (2017). Unsaturated fatty acyl recognition by Frizzled receptors mediates dimerization upon Wnt ligand binding. Proc Natl Acad Sci U S A, 114(16), 4147-4152. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28377511. doi:10.1073/pnas.1618293114
Semenov, M. V., Zhang, X., & He, X. (2008). DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J Biol Chem, 283(31), 21427-21432. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18505732. doi:10.1074/jbc.M800014200
Zeng, H., Lu, B., Zamponi, R., Yang, Z., Wetzel, K., Loureiro, J., . . . Cong, F. (2018). mTORC1 signaling suppresses Wnt/beta-catenin signaling through DVL-dependent regulation of Wnt receptor FZD level. Proc Natl Acad Sci U S A, 115(44), E10362-E10369. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30297426. doi:10.1073/pnas.1808575115
Relationship: 1925: Frizzled activation leads to GSK3beta inactivation
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Wnt ligand stimulation and Wnt signalling activation lead to cancer malignancy | adjacent | High | Moderate |
Evidence Supporting Applicability of this Relationship
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| Homo sapiens | Homo sapiens | High | NCBI |
| Life Stage | Evidence |
|---|---|
| All life stages | High |
| Sex | Evidence |
|---|---|
| Unspecific | High |
FZD activation leads to GSK3beta inactivation by the sequestration inside multivesicular endosomes in Homo sapiens (Taelman et al., 2010).
Key Event Relationship Description
Frizzled receptor (FZD) activation leads to Glycogen synthase kinase 3 (GSK3) beta inactivation, which leads to dephosphorylation of beta-catenin (Clevers & Nusse, 2012).
Evidence Supporting this KER
Biological PlausibilityUpon Wnt ligand stimulation, FZD is activated and Axin is recruited to the phosphorylated tail of LRP dimerized with the activated FZD, the seven-transmembrane receptor, followed by GSK3beta inactivation to prevent beta-catenin degradation (Aberle, Bauer, Stappert, Kispert, & Kemler, 1997) (Clevers & Nusse, 2012).
Empirical Evidence- The ligand-stimulated FZD induces the regulation of the phosphorylation by GSK3beta to inactivate GSK3beta which phosphorylates beta-catenin (Clevers & Nusse, 2012).
- The binding of Axin to the cytoplasmic tail of LRP5 bound to Wnt is crucial for the Wnt signaling pathway regulation and GSK3 beta inactivation in Wnt/beta-catenin signaling (Mao et al., 2001).
- Axin-LRP6 binding is the important step for the phosphorylation of the LRP5/6 tail by GSK3 beta which phosphorylates the serine in the PPPSP motif found in beta-catenin, Axin, APC (He, Semenov, Tamai, & Zeng, 2004; Tamai et al., 2004; Zeng et al., 2005).
Wnt3a induces phosphorylation of LRP6 leading to beta-catenin activation, while beta-catenin is not activated in FZD-inhibited cells (Zeng et al., 2008).
Uncertainties and Inconsistencies- WNT5A inhibits WNT/beta-catenin signaling and exhibits tumor-suppressive activity (Ying et al., 2008).
- WNT5A promotes resistance of melanoma cell (Anastas et al., 2014).
Quantitative Understanding of the Linkage
Response-response relationshipGSK3beta activity is inhibited by 1, 10, and 100 uM of LRP6 PPPSPxS peptides dose-dependently in vitro (Piao et al., 2008).
Time-scaleGSK3beta activity inhibition by LRP6 PPPSPxS peptides is measured in the reaction for 30 min at 37 °C in vitro (Piao et al., 2008).
Known modulating factorsFZD and LRP5/6 form dimers and Axin binds to the cytoplasmic tail of LRP5/6, which is phosphorylated by GSK3beta, followed by the inactivation of GSK3beta in Wnt/beta-catenin signaling (Mao et al., 2001) (He et al., 2004; Tamai et al., 2004; Zeng et al., 2005).
Axin is required for WNT3-induced FZD and LRP6 activation leading to the recruitment of GSK3beta to the plasma membrane (Zeng et al., 2008).
Known Feedforward/Feedback loops influencing this KERThe recruitment of GSK3beta together with Axin to LRP5/6 upon FZD activation decreases the phosphorylation of beta-catenin by GSK3beta (He et al., 2004; Tamai et al., 2004; Zeng et al., 2005).
References
Aberle, H., Bauer, A., Stappert, J., Kispert, A., & Kemler, R. (1997). beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J, 16(13), 3797-3804. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9233789. doi:10.1093/emboj/16.13.3797
Anastas, J. N., Kulikauskas, R. M., Tamir, T., Rizos, H., Long, G. V., von Euw, E. M., . . . Moon, R. T. (2014). WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. J Clin Invest, 124(7), 2877-2890. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24865425. doi:10.1172/JCI70156
Clevers, H., & Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell, 149(6), 1192-1205. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22682243. doi:10.1016/j.cell.2012.05.012
He, X., Semenov, M., Tamai, K., & Zeng, X. (2004). LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: Arrows point the way. Development, 131(8), 1663. Retrieved from http://dev.biologists.org/content/131/8/1663.abstract. doi:10.1242/dev.01117
Mao, J., Wang, J., Liu, B., Pan, W., Farr, G. H., Flynn, C., . . . Wu, D. (2001). Low-Density Lipoprotein Receptor-Related Protein-5 Binds to Axin and Regulates the Canonical Wnt Signaling Pathway. Molecular Cell, 7(4), 801-809. Retrieved from http://www.sciencedirect.com/science/article/pii/S1097276501002246. doi:https://doi.org/10.1016/S1097-2765(01)00224-6
Piao, S., Lee, S. H., Kim, H., Yum, S., Stamos, J. L., Xu, Y., . . . Ha, N. C. (2008). Direct inhibition of GSK3beta by the phosphorylated cytoplasmic domain of LRP6 in Wnt/beta-catenin signaling. PLoS One, 3(12), e4046. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19107203. doi:10.1371/journal.pone.0004046
Taelman, V. F., Dobrowolski, R., Plouhinec, J. L., Fuentealba, L. C., Vorwald, P. P., Gumper, I., . . . De Robertis, E. M. (2010). Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell, 143(7), 1136-1148. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21183076. doi:10.1016/j.cell.2010.11.034
Tamai, K., Zeng, X., Liu, C., Zhang, X., Harada, Y., Chang, Z., & He, X. (2004). A Mechanism for Wnt Coreceptor Activation. Molecular Cell, 13(1), 149-156. Retrieved from http://www.sciencedirect.com/science/article/pii/S1097276503004842. doi:https://doi.org/10.1016/S1097-2765(03)00484-2
Ying, J., Li, H., Yu, J., Ng, K. M., Poon, F. F., Wong, S. C., . . . Tao, Q. (2008). WNT5A exhibits tumor-suppressive activity through antagonizing the Wnt/beta-catenin signaling, and is frequently methylated in colorectal cancer. Clin Cancer Res, 14(1), 55-61. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18172252. doi:10.1158/1078-0432.CCR-07-1644
Zeng, X., Huang, H., Tamai, K., Zhang, X., Harada, Y., Yokota, C., . . . He, X. (2008). Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development, 135(2), 367. Retrieved from http://dev.biologists.org/content/135/2/367.abstract. doi:10.1242/dev.013540
Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., . . . He, X. (2005). A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature, 438(7069), 873-877. Retrieved from https://doi.org/10.1038/nature04185. doi:10.1038/nature04185
Relationship: 1926: GSK3beta inactivation leads to β-catenin activation
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Wnt ligand stimulation and Wnt signalling activation lead to cancer malignancy | adjacent | High | Moderate |
Evidence Supporting Applicability of this Relationship
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| Homo sapiens | Homo sapiens | High | NCBI |
| Life Stage | Evidence |
|---|---|
| All life stages | High |
| Sex | Evidence |
|---|---|
| Unspecific | High |
GSK3-beta inhibition induced beta-catenin activation in human lung lymphatic endothelial cells (Homo sapiens) (Stump et al., 2019).
Key Event Relationship Description
GSK3beta inactivation leads to beta-catenin dephosphorylation, which avoids the ubiquitination of the beta-catenin and stabilize the beta-catenin (Clevers & Nusse, 2012).
Evidence Supporting this KER
Biological PlausibilityGSK3beta recruitment to LRP6 leads to form un-phosphorylated beta-catenin inducing the stabilization and translocation of the beta-catenin (MacDonald, Tamai, & He, 2009).
Stabilized beta-catenin accumulates in cytosol and translocates into the nucleus leading to beta-catenin activation (MacDonald et al., 2009).
Empirical EvidenceGSK3beta inactivation induces the beta-catenin stabilization (Pez et al., 2013).
GSK3beta inactivation induces beta-catenin translocation into the nucleus (MacDonald et al., 2009; Pez et al., 2013).
WNT2 knockdown induces the accumulation of GSK3beta in the cytoplasm and reduced the expression of beta-catenin, which WNT2 overexpression reduces the expression of GSK3beta in the cytoplasm and induces beta-catenin translocation into the nucleus (Wang, Li, & Kidder, 2010).
WNT2 siRNA knockdown increases the GSK3beta expression and decreases beta-catenin expression, and WNT2 overexpression reduces the GSK3beta and increases beta-catenin in granulosa cells in Mus musculus (Wang et al., 2010).
Uncertainties and InconsistenciesGSK3beta phosphorylates LRP6 as well as remaining GSK3 beta phosphorylates beta-catenin which would be ubiquitinated and degradated (MacDonald et al., 2009).
Quantitative Understanding of the Linkage
Response-response relationshipGSK3beta inhibition by 1 mM of SB216763 or 5 mM of BRD3731 results in the decreased phosphorylation and stabilization of beta-catenin (Stump et al., 2019). The level of beta-catenin is increased by the inhibition of GSK3beta kinase activity (Stump et al., 2019). GSK3beta inhibition by small interference RNA (siRNA) of GSK3beta results in the decreased phosphorylation and increased expression of beta-catenin (Stump et al., 2019).
Time-scaleThe treatment with SB216763 or BRD3731, GSK3beta inhibitors, decreases phosphorylated beta-catenin and increased beta-catenin expression in 48 hours (Stump et al., 2019). The cells are treated with GSK3beta small interference RNA (siRNA) for 48 hours to silence the expression of GSK3beta, which results in the activation of beta-catenin pathway (Stump et al., 2019).
Known modulating factorsSortilin, a member of the sorting receptor family that transport intracellular proteins, regulates GSK3-beta, beta-catenin and Twist pathway activation to induce epithelial-mesenchymal transition and glioblastoma invasion (Yang et al., 2019).
Known Feedforward/Feedback loops influencing this KERBeta-catenin is required and sufficient for the sequestration of GSK3 in acidic cytoplasmic endosomes (Taelman et al., 2010). Beta-catenin, of which level increases in Wnt signaling, facilitates GSK3 sequestration leading to feed-forward loop formation (Taelman et al., 2010).
References
Clevers, H., & Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell, 149(6), 1192-1205. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22682243. doi:10.1016/j.cell.2012.05.012
MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 17(1), 9-26. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19619488. doi:10.1016/j.devcel.2009.06.016
Pez, F., Lopez, A., Kim, M., Wands, J. R., Caron de Fromentel, C., & Merle, P. (2013). Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J Hepatol, 59(5), 1107-1117. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23835194. doi:10.1016/j.jhep.2013.07.001
Stump, B., Shrestha, S., Lamattina, A. M., Louis, P. H., Cho, W., Perrella, M. A., . . . El-Chemaly, S. (2019). Glycogen synthase kinase 3-beta inhibition induces lymphangiogenesis through beta-catenin-dependent and mTOR-independent pathways. PLoS One, 14(4), e0213831. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30964887. doi:10.1371/journal.pone.0213831
Taelman, V. F., Dobrowolski, R., Plouhinec, J. L., Fuentealba, L. C., Vorwald, P. P., Gumper, I., . . . De Robertis, E. M. (2010). Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell, 143(7), 1136-1148. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21183076. doi:10.1016/j.cell.2010.11.034
Wang, H. X., Li, T. Y., & Kidder, G. M. (2010). WNT2 regulates DNA synthesis in mouse granulosa cells through beta-catenin. Biol Reprod, 82(5), 865-875. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20107203. doi:10.1095/biolreprod.109.080903
Yang, W., Wu, P. F., Ma, J. X., Liao, M. J., Wang, X. H., Xu, L. S., . . . Yi, L. (2019). Sortilin promotes glioblastoma invasion and mesenchymal transition through GSK-3beta/beta-catenin/twist pathway. Cell Death Dis, 10(3), 208. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30814514. doi:10.1038/s41419-019-1449-9
Relationship: 1927: β-catenin activation leads to Snail, Zeb, Twist activation
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Wnt ligand stimulation and Wnt signalling activation lead to cancer malignancy | adjacent | High | Moderate |
Evidence Supporting Applicability of this Relationship
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| Homo sapiens | Homo sapiens | High | NCBI |
| Life Stage | Evidence |
|---|---|
| All life stages | High |
| Sex | Evidence |
|---|---|
| Unspecific | High |
The inhibition of c-MET decreases the expression of beta-catenin and Snail in human diffuse-type gastric cancer (Sohn et al., 2019).
The treatment with garcinol decreases the expression of beta-catenin and ZEB1/ZEB2 in human breast cancer cells (Ahmad et al., 2012).
Key Event Relationship Description
Beta-catenin activation, of which mechanism include the stabilization of the dephosphorylated beta-catenin and translocation of beta-catenin into the nucleus, induce the formation of beta-catenin-TCF complex and transcription of transcription factors such as Snail, Zeb and Twist (Clevers & Nusse, 2012) (Ahmad et al., 2012; Pearlman, Montes de Oca, Pal, & Afaq, 2017; Sohn et al., 2019; W. Yang et al., 2019).
Evidence Supporting this KER
Biological PlausibilityThe treatment of human gastric cancer cells with INC280, which inhibits c-MET overexpressed in diffuse-type gastric cancer with poor prognosis, shows downregulation in beta-catenin and Snail expression, (Sohn et al., 2019).
The treatment with garcinol, a polyisoprenylated benzophenone derivative that is obtained from Garcinia indica extract, induced ZEB1 and ZEB2 down-regulation, increase in phosphorylated beta-catenin and decrease in nuclear beta-catenin in human breast cancer cells (Ahmad et al., 2012).
Sortilin, a member of the Vps10p sorting receptor family which is highly expressed in high-glade malignant glioma, positively regulates GSK-3beta/beta-catenin/Twist signaling pathway in glioblastoma (W. Yang et al., 2019).
Empirical EvidenceThe inhibition of c-MET, which is overexpressed in diffuse-type gastric cancer, induced increase in phosphorylated beta-catenin, decrease in beta-catenin and Snail (Sohn et al., 2019).
The garcinol, that has anti-cancer effect, increases phosphorylated beta-catenin, decreases beta-catenin and ZEB1/ZEB2, and inhibit EMT (Ahmad et al., 2012).
The inhibition of sortilin by AF38469 (a sortilin inhibitor) or small interference RNA (siRNA) results in decrease in beta-catenin and Twist expression in human glioblastoma cells (W. Yang et al., 2019).
Uncertainties and InconsistenciesIt is possible that the inhibition of ZEB1 and ZEB2 by garcinol treatment is caused by down-regulation of NFkappaB and Wnt/beta catenin signaling (Ahmad et al., 2012).
Quantitative Understanding of the Linkage
Response-response relationshipThe treatment with AF38469, a sortilin inhibitor, in 0, 100, 200, 400, 800, and 1600 nM concentration inhibited beta-catenin and Twist expression dose-depenently in human glioblastoma cells (W. Yang et al., 2019).
Time-scaleThe treatment with 25 mM of garcinol for 48 hours induced increase in phosphorylated beta-catenin and decreased nuclear beta-catenin protein and ZEB1/ZEB2 mRNA in human breast cancer cells (Ahmad et al., 2012).
The treatment with AF38469, a sortilin inhibitor, for 0, 2, 4, 8, 16, or 24 hours shows that the expression of beta-catenin and Twist decrease in 8 hours followed by the subsequent decrease in 16 and 24 hours in human gliobastoma cells (W. Yang et al., 2019).
Known modulating factorsThe proto-oncogene MET regulates beta-catenin and Snail expression (Sohn et al., 2019).
The inhibition of GSK3beta by SB216763 induced expression of beta-catenin and Twist, as well as mesenchymal markers such as N-cadherin, vimentin and MMP9 (W. Yang et al., 2019).
Known Feedforward/Feedback loops influencing this KERThe inhibited expression of phosphorylated GSK3beta, beta-catenin and Twist by sortilin inhibition is reversed by GSK3beta inhibition. Furthermore, twist overexpression by lentivirus increased the inhibited expression of N-cadherin, MMP9 and vimentin and reverses the inhibitory effect of AF38469 on sortilin, which suggests that sortilin induces glioblastoma invasion mainly via GSK3beta/beta-catenin/Twist induced mesenchymal transition (W. Yang et al., 2019).
References
Ahmad, A., Sarkar, S. H., Bitar, B., Ali, S., Aboukameel, A., Sethi, S., . . . Sarkar, F. H. (2012). Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer cells. Mol Cancer Ther, 11(10), 2193-2201. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22821148. doi:10.1158/1535-7163.MCT-12-0232-T
Clevers, H., & Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell, 149(6), 1192-1205. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22682243. doi:10.1016/j.cell.2012.05.012
Pearlman, R. L., Montes de Oca, M. K., Pal, H. C., & Afaq, F. (2017). Potential therapeutic targets of epithelial-mesenchymal transition in melanoma. Cancer Lett, 391, 125-140. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28131904. doi:10.1016/j.canlet.2017.01.029
Sohn, S. H., Kim, B., Sul, H. J., Kim, Y. J., Kim, H. S., Kim, H., . . . Zang, D. Y. (2019). INC280 inhibits Wnt/beta-catenin and EMT signaling pathways and its induce apoptosis in diffuse gastric cancer positive for c-MET amplification. BMC Res Notes, 12(1), 125. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30871613. doi:10.1186/s13104-019-4163-x
Yang, W., Wu, P. F., Ma, J. X., Liao, M. J., Wang, X. H., Xu, L. S., . . . Yi, L. (2019). Sortilin promotes glioblastoma invasion and mesenchymal transition through GSK-3beta/beta-catenin/twist pathway. Cell Death Dis, 10(3), 208. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30814514. doi:10.1038/s41419-019-1449-9
Relationship: 1928: Snail, Zeb, Twist activation leads to Epithelial-mesenchymal transition
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Wnt ligand stimulation and Wnt signalling activation lead to cancer malignancy | adjacent | High | Moderate |
Evidence Supporting Applicability of this Relationship
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| Homo sapiens | Homo sapiens | High | NCBI |
| Life Stage | Evidence |
|---|---|
| All life stages | High |
| Sex | Evidence |
|---|---|
| Unspecific | High |
Zeb1 activation leads to EMT via Prex1 activation in NCH421k, NCH441, and NCH644 human glioblastoma model cells (Homo sapiens) (Rosmaninho et al., 2018).
Zeb1 siRNA induced the suppression of EMT in SGC-7901 human gastric cancer cell line (Homo sapiens) (Xue et al., 2019).
Snail induces EMT in SAS and HSC-4 human head and neck squamous cancer cells (Homo sapiens) (Ota et al., 2016).
Snail induces EMT in B16-F10 murine melanoma cells (Mus musculus) (Kudo-Saito, Shirako, Takeuchi, & Kawakami, 2009; Y. Wang, Shi, Chai, Ying, & Zhou, 2013).
Twist1 is related to EMT in MCF-7 and MDA-MB-231 human breast cancer cell lines (Homo sapiens) (Menendez-Menendez et al., 2019).Hu et al., 2019).
Key Event Relationship Description
EMT-related transcription factors including Snail, ZEB and Twist are up-regulated in cancer cells (Diaz, Vinas-Castells, & Garcia de Herreros, 2014). The transcription factors such as Snail, ZEB and Twist bind to E-cadherin (CDH1) promoter and inhibit the CDH1 transcription via the consensus E-boxes (5’-CACCTG-3’ or 5’-CAGGTG-3’), which leads to EMT (Diaz et al., 2014).
Evidence Supporting this KER
Biological PlausibilityThe transcription factors such as Snail, Zeb and Twist inhibit the CDH1 expression through their binding towards the promoter of CDH1, which leads to inhibition of cell adhesion and EMT (Diaz et al., 2014).
Empirical EvidenceHistone deacetylase inhibitors affect on EMT-related transcription factors including ZEB, Twist and Snail (Wawruszak et al., 2019).
Snail and Zeb induces EMT and suppress E-cadherin (CDH1) (Batlle et al., 2000; Diaz et al., 2014; Peinado, Olmeda, & Cano, 2007).
Uncertainties and InconsistenciesThe EMT is induced different transcription factors other than Zeb, Twist and Snail, which includes E47 and KLF8 (Diaz et al., 2014).
Zeb, Twist and Snail may activate or inactivate different genes or molecules to induce phenomena related to EMT and other phenomena other than EMT (Li & Balazsi, 2018).
Quantitative Understanding of the Linkage
Response-response relationshipSnail (SNAI1) mRNA is methylated and N6-methyladenosine (m6A) in its coding region (CDS) and 3’ untranslated region (3’UTR) are significantly enriched during EMT progression (Lin et al., 2019). The m6A enrichment fold of SNAI1 mRNA in EMT cells is about 2.3-fold greater than in control cells (Lin et al., 2019).
Time-scaleSnail (SNAI1) transfection for 48 hours induce the repression of E-cadherin (CDH1) protein expression (Lin et al., 2019).
SNAI1 mRNA in polysome is up-regulated in EMT-undergoing HeLa cells treated with 10 ng/ml of TGF-beta for 3 days compared with control cells (Lin et al., 2019).
Known modulating factorsThe decrease in E-cadherin (CDH1), a cell adhesion molecule, is related to EMT (Diaz et al., 2014).
Methyltransferase-like 3 (METTL3) modulates methylation of Snail (SNAI1) mRNA and EMT (Lin et al., 2019).
Binding of beta-catenin to members of the TCF/LEF family transcription factors increase gene expression related to EMT such as Twist and decrease E-cadherin protein expression (Qualtrough, Rees, Speight, Williams, & Paraskeva, 2015).
Known Feedforward/Feedback loops influencing this KERThe inhibition of Hedgehog signaling pathway with cyclopamine reduces beta-catenin-TCF transcriptional activity, decreases the Twist expression, induces E-cadherin expression and inhibits EMT (Qualtrough et al., 2015).
References
Batlle, E., Sancho, E., Francí, C., Domínguez, D., Monfar, M., Baulida, J., & García de Herreros, A. (2000). The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology, 2(2), 84-89. doi:10.1038/35000034
Diaz, V. M., Vinas-Castells, R., & Garcia de Herreros, A. (2014). Regulation of the protein stability of EMT transcription factors. Cell Adh Migr, 8(4), 418-428. doi:10.4161/19336918.2014.969998
Hu, B., Cheng, J. W., Hu, J. W., Li, H., Ma, X. L., Tang, W. G., . . . Yang, X. R. (2019). KPNA3 Confers Sorafenib Resistance to Advanced Hepatocellular Carcinoma via TWIST Regulated Epithelial-Mesenchymal Transition. Journal of Cancer, 10(17), 3914-3925. doi:10.7150/jca.31448
Kudo-Saito, C., Shirako, H., Takeuchi, T., & Kawakami, Y. (2009). Cancer Metastasis Is Accelerated through Immunosuppression during Snail-Induced EMT of Cancer Cells. Cancer Cell, 15(3), 195-206. doi:https://doi.org/10.1016/j.ccr.2009.01.023
Li, C., & Balazsi, G. (2018). A landscape view on the interplay between EMT and cancer metastasis. NPJ Syst Biol Appl, 4, 34. doi:10.1038/s41540-018-0068-x
Lin, X., Chai, G., Wu, Y., Li, J., Chen, F., Liu, J., . . . Wang, H. (2019). RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun, 10(1), 2065. doi:10.1038/s41467-019-09865-9
Menendez-Menendez, J., Hermida-Prado, F., Granda-Diaz, R., Gonzalez, A., Garcia-Pedrero, J. M., Del-Rio-Ibisate, N., . . . Martinez-Campa, C. (2019). Deciphering the Molecular Basis of Melatonin Protective Effects on Breast Cells Treated with Doxorubicin: TWIST1 a Transcription Factor Involved in EMT and Metastasis, a Novel Target of Melatonin. Cancers (Basel), 11(7). doi:10.3390/cancers11071011
Ota, I., Masui, T., Kurihara, M., Yook, J. I., Mikami, S., Kimura, T., . . . Kitahara, T. (2016). Snail-induced EMT promotes cancer stem cell-like properties in head and neck cancer cells. Oncol Rep, 35(1), 261-266. doi:10.3892/or.2015.4348
Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer, 7(6), 415-428. doi:10.1038/nrc2131
Qualtrough, D., Rees, P., Speight, B., Williams, A. C., & Paraskeva, C. (2015). The Hedgehog Inhibitor Cyclopamine Reduces beta-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells. Cancers (Basel), 7(3), 1885-1899. doi:10.3390/cancers7030867
Rosmaninho, P., Mükusch, S., Piscopo, V., Teixeira, V., Raposo, A. A., Warta, R., . . . Castro, D. S. (2018). Zeb1 potentiates genome-wide gene transcription with Lef1 to promote glioblastoma cell invasion. The EMBO Journal, 37(15), e97115. doi:10.15252/embj.201797115
Wang, Y., Shi, J., Chai, K., Ying, X., & Zhou, B. P. (2013). The Role of Snail in EMT and Tumorigenesis. Current cancer drug targets, 13(9), 963-972. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24168186
Wawruszak, A., Kalafut, J., Okon, E., Czapinski, J., Halasa, M., Przybyszewska, A., . . . Stepulak, A. (2019). Histone Deacetylase Inhibitors and Phenotypical Transformation of Cancer Cells. Cancers (Basel), 11(2). doi:10.3390/cancers11020148
Xue, Y., Zhang, L., Zhu, Y., Ke, X., Wang, Q., & Min, H. (2019). Regulation of Proliferation and Epithelial-to-Mesenchymal Transition (EMT) of Gastric Cancer by ZEB1 via Modulating Wnt5a and Related Mechanisms. Medical science monitor : international medical journal of experimental and clinical research, 25, 1663-1670. doi:10.12659/MSM.912338
Relationship: 1929: Epithelial-mesenchymal transition leads to Cancer Malignancy
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Wnt ligand stimulation and Wnt signalling activation lead to cancer malignancy | adjacent | High | Low |
Evidence Supporting Applicability of this Relationship
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| Homo sapiens | Homo sapiens | High | NCBI |
| Life Stage | Evidence |
|---|---|
| All life stages | High |
| Sex | Evidence |
|---|---|
| Unspecific | High |
EMT induces cancer invasion, metastasis (Homo sapiens)(P. Zhang et al., 2015).
EMT is related to cancer drug resistance in MCF-7 human breast cancer cells (Homo sapiens)(B. Du & Shim, 2016).
Key Event Relationship Description
Some population of the cells exhibiting EMT demonstrates the feature of cancer stem cells (CSCs), which are related to cancer malignancy (Shibue & Weinberg, 2017; Shihori Tanabe, 2015a, 2015b; Tanabe, Aoyagi, Yokozaki, & Sasaki, 2015).
EMT phenomenon is related to cancer metastasis and cancer therapy resistance (Smith & Bhowmick, 2016; Tanabe, 2013). Increase expression of enzymes that degrade the extracellular matrix components and the decrease in adhesion to the basement membrane in EMT induce the cell escape from the basement membrane and metastasis (Smith & Bhowmick, 2016). Morphological changes observed during EMT is associated with therapy resistance (Smith & Bhowmick, 2016).
Evidence Supporting this KER
Biological PlausibilityThe morphological and physiological changes associated with EMT are involved in invasiveness and drug resistance (Shibue & Weinberg, 2017). The EMT-activated particular carcinoma cells in primary tumors invade the surrounding stroma (Shibue & Weinberg, 2017). The EMT –activated carcinoma cells interact with the surrounding extracellular matrix protein to induce focal adhesion kinase and extracellular signal-related kinase activation, followed by the transforming growth factor beta (TGFbeta) and canonical and/or noncanonical Wnt pathways to induce cancer stem cell (CSC) properties which contribute to the drug resistance (Shibue & Weinberg, 2017).
EMT-associated down-regulation of multiple apoptotic signaling pathways induce drug efflux and slow cell proliferation to induce the general resistance of carcinoma cells to anti-cancer drugs (Shibue & Weinberg, 2017).
Snail, an EMT-related transcription factor, induces the expression of the AXL receptor tyrosine kinase, which enables the cancer cells to survive by the activation of AXL signaling triggered by the binding of its ligand growth arrest-specific protein 6 (GAS6)(Shibue & Weinberg, 2017).
The EMT-activated cells evade the lethal effect of cytotoxic T cells, which include the elevated expression of programmed cell death 1 ligand (PD-L1) which binds to the programmed cell death protein 1 (PD-1) inhibitory immune-checkpoint receptor on the cell surface of cytotoxic T cells (Shibue & Weinberg, 2017).
Empirical EvidenceSlug/Snai2, a ces-1-related zinc finger transcription factor gene, confers resistance to p53-mediated apoptosis of hematopoietic progenitors by repressing PUMA (also known as BBC3, encoding Bcl-2-binding component 3) (Inukai et al., 1999; Shibue & Weinberg, 2017; W.-S. Wu et al., 2005).
EMT activation induces the expression of multiple members of the ATP-binding cassette (ABC) transporter family, which results in the resistant to doxorubicin (Saxena, Stephens, Pathak, & Rangarajan, 2011; Shibue & Weinberg, 2017)
TGFbeta-1 induced EMT results in the acquisition of cancer stem cell (CSC) like properties (Pirozzi et al., 2011; Shibue & Weinberg, 2017).
Snail-induced EMT induces the cancer metastasis and resistance to dendritic cell-mediated immunotherapy (Kudo-Saito, Shirako, Takeuchi, & Kawakami, 2009).
Zinc finger E-box-binding homeobox (ZEB1)-induced EMT results in the relief of miR-200-mediated repression of programmed cell death 1 ligand (PD-L1) expression, a major inhibitory ligand for the programmed cell death protein (PD-1) immune-checkpoint protein on CD8+ cytotoxic T lymphocyte (CTL), subsequently the CD8+ T cell immunosuppression and metastasis (Chen et al., 2014).
Uncertainties and InconsistenciesThe reversing process of EMT, which names as mesenchymal-epithelial transition (MET), may be one of the candidates for the anti-cancer therapy, where the plasticity of the cell phenotype is of importance and under investigation (Shibue & Weinberg, 2017).
Quantitative Understanding of the Linkage
Response-response relationshipInduction of EMT by TGFbeta and Twist increase the gene expression of EMT markers such as Snail, Vimentin, N-cadherin, and ABC transporters including ABCA3, ABCC1, ABCC3 and ABCC10 (Saxena et al., 2011).
Human mammary epithelial cells (HMLE) stably expressing Twist, FOXC2 or Snail demonstrates the increased the cell viability compared to control HMLE in the treatment with about 0.3, 3, 30 mM of doxorubicin, dose-dependently (Saxena et al., 2011).
Time-scaleThe treatment with doxorubicin for 48 hours demonstrates the increase in the cell viability in Twist/FOXC2/Snail overexpressed HMLE compared to control HMLE (Saxena et al., 2011).
The inhibition of Twist or Zeb1 with small interference RNA (siRNA) induced the inhibition of the cell viability compared to control MDAMB231 cells treated with doxorubicin for 48 hours (Saxena et al., 2011).
Known modulating factorsABC transporters which are related to drug resistance are overexpressed in the EMT-activated cells (Saxena et al., 2011). The expression of PD-L1, which binds to the PD-1 on the cytotoxic T cells, is up-regulated in EMT-activated cells, which results in the inhibition of cancer immunity and the resistance to cancer therapy (Shibue & Weinberg, 2017).
Known Feedforward/Feedback loops influencing this KERThe investigation of EMT-CSC relations is important to understand the relationship between EMT and cancer malignancy. Non-CSCs in cancer can spontaneously undergo EMT and dedifferentiate into new CSC, subsequently induce the regeneration of tumorigenic potential (Marjanovic, Weinberg, & Chaffer, 2013; Shibue & Weinberg, 2017).
The plastic CSC theory demonstrates the bidirectional conversions between non-CSCs and CSCs, which may contribute into the acquisition of cancer malignancy in EMT-activated cells (Marjanovic et al., 2013).
References
Chen, L., Gibbons, D. L., Goswami, S., Cortez, M. A., Ahn, Y.-H., Byers, L. A., . . . Qin, F. X.-F. (2014). Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nature communications, 5, 5241-5241. doi:10.1038/ncomms6241
Du, B., & Shim, J. S. (2016). Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules, 21(7). doi:10.3390/molecules21070965
Inukai, T., Inoue, A., Kurosawa, H., Goi, K., Shinjyo, T., Ozawa, K., . . . Look, A. T. (1999). SLUG, a ces-1-Related Zinc Finger Transcription Factor Gene with Antiapoptotic Activity, Is a Downstream Target of the E2A-HLF Oncoprotein. Molecular Cell, 4(3), 343-352. doi:https://doi.org/10.1016/S1097-2765(00)80336-6
Kudo-Saito, C., Shirako, H., Takeuchi, T., & Kawakami, Y. (2009). Cancer Metastasis Is Accelerated through Immunosuppression during Snail-Induced EMT of Cancer Cells. Cancer Cell, 15(3), 195-206. doi:https://doi.org/10.1016/j.ccr.2009.01.023
Marjanovic, N. D., Weinberg, R. A., & Chaffer, C. L. (2013). Cell plasticity and heterogeneity in cancer. Clinical chemistry, 59(1), 168-179. doi:10.1373/clinchem.2012.184655
Pirozzi, G., Tirino, V., Camerlingo, R., Franco, R., La Rocca, A., Liguori, E., . . . Rocco, G. (2011). Epithelial to mesenchymal transition by TGFβ-1 induction increases stemness characteristics in primary non small cell lung cancer cell line. PLoS One, 6(6), e21548-e21548. doi:10.1371/journal.pone.0021548
Saxena, M., Stephens, M. A., Pathak, H., & Rangarajan, A. (2011). Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell death & disease, 2(7), e179-e179. doi:10.1038/cddis.2011.61
Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol, 14(10), 611-629. doi:10.1038/nrclinonc.2017.44
Smith, B. N., & Bhowmick, N. A. (2016). Role of EMT in Metastasis and Therapy Resistance. J Clin Med, 5(2). doi:10.3390/jcm5020017
Tanabe, S. (2013). Perspectives of gene combinations in phenotype presentation. World journal of stem cells, 5(3), 61-67. doi:10.4252/wjsc.v5.i3.61
Tanabe, S. (2015a). Origin of cells and network information. World journal of stem cells, 7(3), 535-540. doi:10.4252/wjsc.v7.i3.535
Tanabe, S. (2015b). Signaling involved in stem cell reprogramming and differentiation. World journal of stem cells, 7(7), 992-998. doi:10.4252/wjsc.v7.i7.992
Tanabe, S., Aoyagi, K., Yokozaki, H., & Sasaki, H. (2015). Regulated genes in mesenchymal stem cells and gastric cancer. World journal of stem cells, 7(1), 208-222. doi:10.4252/wjsc.v7.i1.208
Wu, W.-S., Heinrichs, S., Xu, D., Garrison, S. P., Zambetti, G. P., Adams, J. M., & Look, A. T. (2005). Slug Antagonizes p53-Mediated Apoptosis of Hematopoietic Progenitors by Repressing puma. Cell, 123(4), 641-653. doi:https://doi.org/10.1016/j.cell.2005.09.029
Zhang, P., Sun, Y., & Ma, L. (2015). ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle, 14(4), 481-487. doi:10.1080/15384101.2015.1006048