SNAPSHOT
Created at: 2020-08-28 21:07
AOP ID and Title:
Graphical Representation
Status
| Author status | OECD status | OECD project | SAAOP status |
|---|---|---|---|
| Under development: Not open for comment. Do not cite |
Abstract
This AOP links Androgen receptor antagonism during fetal life with short anogenital distance (AGD) in male offspring. A short AGD around birth is a marker for feminization of male fetuses and is associated with male reproductive disorders, including reduced fertility in adulthood. Although a short AGD is not necessarily ‘adverse’ from a human health perspective, it is considered an ‘adverse outcome’ in OECD test guidelines; AGD measurements are mandatory in specific tests for developmental and reproductive toxicity in chemical risk assessment (TG 443, TG 421/422, TG 414).
The AR is a nuclear receptor involved in the transcriptional regulation of various target genes during development and adulthood across species. Its main ligand is testosterone and dihydrotestosterone (DHT). Under normal physiological conditions, testosterone produced mainly by the testicles, is converted in peripheral tissues by 5α-reductase into DHT, which in turn binds AR and activates downstream target genes. AR signaling is necessary for normal masculinization of the developing fetus, including differentiation of the levator ani/bulbocavernosus (LABC) muscle complex in male fetuses. The LABC complex does not develop in the absence, or low levels of, androgen signaling, as in female fetuses.
The key events in this pathway is antagonism of the AR in target cells of the primitive perineal region, which leads to inactivation of the AR and failure to properly masculinize the perineum/LABC complex. In this instance, the local levels of testosterone or DHT may be normal, but prevented from binding the AR.
Summary of the AOP
Events
Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)
| Sequence | Type | Event ID | Title | Short name |
|---|---|---|---|---|
| MIE | 26 | Antagonism, Androgen receptor | Antagonism, Androgen receptor | |
| KE | 1614 | Decrease, androgen receptors (AR) activation | Decrease, AR activation | |
| KE | 1687 | decrease, transcription of genes by AR | decrease, transcription of genes by AR | |
| AO | 1688 | decrease, male anogenital distance | short male AGD |
Key Event Relationships
| Upstream Event | Relationship Type | Downstream Event | Evidence | Quantitative Understanding |
|---|---|---|---|---|
| Antagonism, Androgen receptor | adjacent | Decrease, androgen receptors (AR) activation | High | High |
| Decrease, androgen receptors (AR) activation | adjacent | decrease, transcription of genes by AR | High | Moderate |
| decrease, transcription of genes by AR | adjacent | decrease, male anogenital distance | Moderate | Low |
| Antagonism, Androgen receptor | non-adjacent | decrease, male anogenital distance | Moderate | Low |
Stressors
| Name | Evidence |
|---|---|
| Finasteride | High |
| Flutamide | High |
Finasteride
Intrauterine exposure in rats can result in shorter male AGD in male offspring as reported in:
Bowman et al (2003), Toxicol Sci 74:393-406; doi: 10.1093/toxsci/kfg128
Christiansen et al (2009), Environ Health Perspect 117:1839-1846; doi: 10.1289/ehp.0900689
Schwartz et al (2019), Toxicol Sci 169:303-311; doi: 10.1093/toxsci/kfz046
Flutamide
Finasteride is a selective androgen receptor (AR) antagonist (Simard et al 1986) that has been shown to induce shorter male AGD in rats after in utero exposure (Foster & Harris 2005; Hass et al 2007; Kita et al 2016; McIntyre et al 2001; Mylchreest et al 1999; Scott et al 2007; Welsh et al 2007).
References:
Foster & Harris (2005), Toxicol Sci 85:1024-1032; doi: 10.1093/toxsci/kfi159
Hass et al (2007), Environ Health Perspect 115(suppl 1):122-128; doi: 10.1289/ehp.0360
Kita et al (2016), Toxicology 368-369:152-161; doi: 10.1016/j.tox.2016.08.021
McIntyre et al (2001), Toxicol Sci 62:236-249; doi: 10.1093/toxsci/62.2.236
Mylchreest et al (1999), Toxicol Appl Pharmacol 156:81-95; doi: 10.1006/taap.1999.8643
Scott et al (2007), Endocrinology 148:2027-2036; doi: 10.1210/en.2006-1622
Simard et al (1986), Mol Cell Endocrinol 44:261-270; doi: 10.1016/0303-7207(86)90132-2
Overall Assessment of the AOP
Domain of Applicability
Life Stage Applicability| Life Stage | Evidence |
|---|---|
| Pregnancy | High |
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| human | Homo sapiens | Moderate | NCBI |
| rat | Rattus norvegicus | High | NCBI |
| mouse | Mus musculus | Moderate | NCBI |
| Sex | Evidence |
|---|---|
| Male | High |
References
1. Schwartz CL, Christiansen S, Vinggaard AM, Axelstad M, Hass U and Svingen T (2019), Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Arch Toxicol 93: 253-272.
Appendix 1
List of MIEs in this AOP
Event: 26: Antagonism, Androgen receptor
Short Name: Antagonism, Androgen receptor
AOPs Including This Key Event
| AOP ID and Name | Event Type |
|---|---|
| Aop:306 - Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male (mammalian) offspring | MolecularInitiatingEvent |
| Aop:344 - Androgen receptor (AR) antagonism leading to nipple retention (NR) in male (mammalian) offspring | MolecularInitiatingEvent |
| Aop:345 - Androgen receptor (AR) antagonism leading to decreased fertility in females | MolecularInitiatingEvent |
Stressors
| Name |
|---|
| Mercaptobenzole |
| Triticonazole |
| Flusilazole |
| Epoxiconazole |
| Prochloraz |
| Propiconazole |
| Tebuconazole |
| Flutamide |
| Cyproterone acetate |
| Vinclozolin |
Biological Context
| Level of Biological Organization |
|---|
| Molecular |
Cell term
| Cell term |
|---|
| eukaryotic cell |
Evidence for Perturbation by Stressor
Overview for Molecular Initiating Event
A large number of drugs and chemicals have been shown to antagonise the AR using various AR reporter gene assays. The AR is specifically targeted in AR-sensitive cancers, for example the use of the anti-androgenic drug flutamide in treating prostate cancer (Alapi & Fischer, 2006). Flutamide has also been used in several rodent in vivo studies showing anti-androgenic effects (feminization of male offspring) evident by e.g. short anogenital distance (AGD) in males (Foster & Harris, 2005; Hass et al, 2007; Kita et al, 2016). QSAR models can predict AR antagonism for a wide range of chemicals, many of which have shown in vitro antagonistic potential (Vinggaard et al, 2008).
Triticonazole
Using hAR-EcoScreen Assay, triticonazole showed a LOEC for antagonisms of 0.2 uM and an IC50 of 0.3 (±0.01) uM (Draskau et al, 2019)
Flusilazole
Using hAR-EcoScreen Assay, flusilazole showed a LOEC for antagonisms of 0.8 uM and an IC50 of 2.8 (±0.1) uM (Draskau et al, 2019).►
Epoxiconazole
Using transiently AR-transfected CHO cells, epoxiconazole showed a LOEC of 1.6 uM and an IC50 of 10 uM (Kjærstad et al, 2010)
Prochloraz
Using transiently AR-transfected CHO cells, prochloraz showed a LOEC of 6.3 uM and an IC50 of 13 uM (Kjærstad et al, 2010)
Propiconazole
Using transiently AR-transfected CHO cells, propiconazole showed a LOEC of 12.5 uM and an IC50 of 18 uM (Kjærstad et al, 2010)
Tebuconazole
Using transiently AR-transfected CHO cells, tebuconazole showed a LOEC of 3.1 uM and an IC50 of 8.1 uM (Kjærstad et al, 2010)
Flutamide
Using the AR-CALUX reporter assay in antagonism mode, flutamide showed an IC50 of 1.3 uM (Sonneveld et al, 2005).
Cyproterone acetate
Using the AR-CALUX reporter assay in antagonism mode, cyproterone acetate showed an IC50 of 7.1 nM (Sonneveld et al, 2005).
Vinclozolin
Using the AR-CALUX reporter assay in antagonism mode, vinclozolin showed an IC50of 1.0 uM (Sonneveld et al, 2005).
Domain of Applicability
| Life Stage | Evidence |
|---|---|
| Foetal | High |
| Embryo | Moderate |
| During development and at adulthood | High |
| Sex | Evidence |
|---|---|
| Mixed | High |
Both the DNA-binding and ligand-binding domains of the AR are highly evolutionary conserved, whereas the transactivation domain show more divergence which may affect AR-mediated gene regulation across species (Davey & Grossmann, 2016). Despite certain inter-species differences, AR function mediated through gene expression is highly conserved, with mutations studies from both humans and rodents showing strong correlation for AR-dependent development and function (Walters et al, 2010).
This KE is applicable for both sexes, across developmental stages into adulthood, in numerous cells and tissues and across taxa
Key Event Description
The androgen receptor (AR) and its function
Development of the male reproductive system and secondary male characteristics is dependent on androgens (foremost testosterone (T) and dihydrotestosterone (DHT). T and the more biologically active DHT act by binding to the AR (MacLean et al, 1993; MacLeod et al, 2010; Schwartz et al, 2019), with human AR mutations and mouse knock-out models having established its pivotal role in masculinization and spermatogenesis (Walters et al, 2010). The AR is a ligand-activated transcription factor belonging to the steroid hormone nuclear receptor family (Davey & Grossmann, 2016). The AR has three domains; the N-terminal domain, the DNA-binding domain and the ligand-binding domain, with the latter being most evolutionary conserved. Apart from the essential role AR plays for male reproductive development and function (Walters et al, 2010), the AR is also expressed in many other tissues and organs such as bone, muscles, ovaries and the immune system (Rana et al, 2014).
AR antagonism as Key Event
The main function of the AR is to activate gene transcription in cells. Canonical signaling occurs by ligands (androgens) binding to AR in the cytoplasm which results in translocation to the cell nucleus, receptor dimerization and binding to specific regulatory DNA sequences (Heemers & Tindall, 2007). The gene targets regulated by AR activation depends on cell/tissue type and what stage of development activation occur, and is, for instance, dependent on available co-factors. Apart from the canonical signaling pathway, AR can also function through non-genomic modalities, for instance rapid change in cell function by ion transport changes (Heinlein & Chang, 2002). However, with regard to this specific KE the canonical signaling pathway is what is referred to.
How it is Measured or Detected
AR antagonism can be measured in vitro by transient or stable transactivation assays to evaluate nuclear receptor activation. There is already a validated assay for AR (ant)agonism adopted by the OECD, Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals (OECD, 2016). The stably transfected AR-EcoScreenTM cell line should be used for the assay and is freely available for the Japanese Collection of Research Bioresources (JCRB) Cell Bank under reference number JCRB1328.
Other assays include the AR-CALUX reporter gene assay that is derived from human U2-OS cells stably transfected with the human AR and an AR responsive reporter gene (van der Burg et al, 2010).
References
List of Key Events in the AOP
Event: 1614: Decrease, androgen receptors (AR) activation
Short Name: Decrease, AR activation
AOPs Including This Key Event
Biological Context
| Level of Biological Organization |
|---|
| Cellular |
Key Event Description
Androgen receptor activation is regulated by the binding of androgens. AR activity can be decreased by either a lack of steroidal ligands (testosterone, DHT) or the presence of antagonist compounds. 12
How it is Measured or Detected
Significance of AR signaling in fetal development can be studied through a conditional deletion of the androgen receptor using a Cre/loxP approach. The recommended animal model for reproductive study is the mouse.3
Also, epidemiological case-studies following mouse or humans expressing a complete androgen insensitivity allow to directly assess the effects of a lack of AR activation on the development.4
Enzyme immunoassay (ELISA) kits for in vitro quantitative measurement of AR activity are available. Androgen receptors activity can be measured using bioassay such as the (Anti-)Androgen Receptor CALUX reporter gene assay.5
References
|
|
1 Davey R.A and Grossmann M. (2016) Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clinical Biochemist Reviews, 37(1): 3-15. PCM4810760 2 Gao W., Bohl C.E. and Dalton J.T. (2005) Chemistry and Structural Biology of Androgen Receptor. Chemical Reviews 105(9): 3352-3370https://doi.org/10.1021/cr020456u 3 Kaftanovskaya E.M., Huang Z., Barbara A.M., De Gendt K., Verhoeven G., Ivan P. Gorlov, and Agoulnik A.I. (2012) Cryptorchidism in Mice with an Androgen Receptor Ablation in Gubernaculum Testis. Molecular Endocrinology, 26(4): 598-607.https://doi.org/10.1210/me.2011-1283 4 Hutson J.M. (1985) A biphasic model for the hormonal control of testicular descent. Lancet, 24;2(8452): 419-21http://dx.doi.org/10.1016/S0140-6736(85)92739-4 5 van der Burg B., Winter R., Man HY., Vangenechten C., Berckmans P., Weimer M., Witters M. and van der Linden S. (2010) Optimization and prevalidation of the in vitro AR CALUX method to test androgenic and antiandrogenic activity of compounds. Reproductive Toxicology, 30(1):18-24 https://doi.org/0.1016/j.reprotox.2010.04.012 |
Event: 1687: decrease, transcription of genes by AR
Short Name: decrease, transcription of genes by AR
AOPs Including This Key Event
Biological Context
| Level of Biological Organization |
|---|
| Cellular |
List of Adverse Outcomes in this AOP
Event: 1688: decrease, male anogenital distance
Short Name: short male AGD
Key Event Component
| Process | Object | Action |
|---|---|---|
| androgen receptor signaling pathway | Musculature of male perineum | disrupted |
AOPs Including This Key Event
Stressors
| Name |
|---|
| Butylparaben |
| p,p'-DDE |
| Bis(2-ethylhexyl) phthalate |
| Dexamethasone |
| Fenitrothion |
| Finasteride |
| Flutamide |
| Ketoconazole |
| Linuron |
| Prochloraz |
| Procymidone |
| Triticonazole |
| Vinclozolin |
| di-n-hexyl phthalate |
| Dicyclohexyl phthalate |
| butyl benzyl phthalate |
| monobenzyl phthalate |
| di-n-heptyl phthalate |
Biological Context
| Level of Biological Organization |
|---|
| Tissue |
Organ term
| Organ term |
|---|
| perineum |
Evidence for Perturbation by Stressor
Butylparaben
Butylparaben has been shown to cause decreased male AGD in rats following intrauterine exposure to 500 and 1000 mg/kg bw/day (Boberg et al, 2016; Zhang et al, 2014). A separate study using 600 mg/kg bw/day did not see an effect on male AGD (Boberg et al, 2008).
p,p'-DDE
p,p,DDE has been shown to cause decreased male AGD in rats following intrauterine exposure to 100-200 mg/kg bw/day (Loeffler & Peterson, 1999; Wolf et al, 1999).
Bis(2-ethylhexyl) phthalate
DEHP has been shown to cause decreased male AGD in rats following intrauterine exposure to 300-1500 mg/kg bw/day (Christiansen et al, 2010; Gray et al, 2000; Howdeshell et al, 2007; Jarfelt et al, 2005; Kita et al, 2016; Li et al, 2013; Lin et al, 2009; Moore et al, 2001; Nardelli et al, 2017; Saillenfait et al, 2009; Wolf et al, 1999).
Dexamethasone
Dexamethasone has been shown to cause decreased male AGD in rats following intrauterine exposure to 0.1 mg/kg bw/day (Van den Driesche et al, 2012).
Fenitrothion
Fenitrothion has been shown to cause decreased male AGD in rats following intrauterine exposure to 25 mg/kg bw/day (Turner et al, 2002).
Finasteride
Finasteride has been shown to cause decreased male AGD in rats following intrauterine exposure to 100 mg/kg bw/day (Bowman et al, 2003).
Flutamide
Flutamide has been shown to cause decreased male AGD in rats following intrauterine exposure to doses between 16-100 mg/kg bw/day (Foster & Harris, 2005; Hass et al, 2007; Kita et al, 2016; McIntyre et al, 2001; Mylchreest et al, 1999; Scott et al, 2007; Welsh et al, 2007).
Ketoconazole
Ketoconazole has been shown to cause decreased male AGD in rats following intrauterine exposure to 50 mg/kg bw/day in one study (Taxvig et al, 2008), but no effect in another study using same dose (Wolf et al, 1999).
Linuron
Linuron has been shown to cause decreased male AGD in rats following intrauterine exposure to 50-100 mg/kg bw/day (Hotchkiss et al, 2004; McIntyre et al, 2002; Wolf et al, 1999).
Prochloraz
Prochloraz has been shown to cause decreased male AGD in rats following intrauterine exposure to 150-250 mg/kg bw/day (Laier et al, 2006; Noriega et al, 2005).
Procymidone
Procymidone has been shown to cause decreased male AGD in rats following intrauterine exposure to doses between 50-150 mg/kg bw/day (Hass et al, 2012; Hass et al, 2007; Wolf et al, 1999).
Triticonazole
Triticonazole has been shown to cause decreased male AGD in rats following intrauterine exposure to 150 and 450 mg/kg bw/day (Draskau et al, 2019).
Vinclozolin
Vinclozolin has been shown to cause decreased male AGD in rats following intrauterine exposure to doses between 50-200 mg/kg bw/day (Christiansen et al, 2009; Gray et al, 1994; Hass et al, 2007; Matsuura et al, 2005; Ostby et al, 1999; Schneider et al, 2011; Wolf et al, 2004).
di-n-hexyl phthalate
DnHP has been shown to cause decreased male AGD in rats following intrauterine exposure to 500-750 mg/kg bw/day (Saillenfait et al, 2009a; Saillenfait et al, 2009b).
Dicyclohexyl phthalate
DCHP has been shown to cause decreased male AGD in rats following intrauterine exposure to 350-750 mg/kg bw/day (Aydoğan Ahbab & Barlas, 2015; Hoshino et al, 2005; Saillenfait et al, 2009a).
butyl benzyl phthalate
BBP has been shown to cause decreased male AGD in rats following intrauterine exposure to 500-1000 mg/kg bw/day (Ema & Miyawaki, 2002; Gray et al, 2000; Hotchkiss et al, 2004; Nagao et al, 2000; Tyl et al, 2004).
monobenzyl phthalate
MBeP has been shown to cause decreased male AGD in rats following intrauterine exposure to 375 mg/kg bw/day (Ema et al, 2003).
di-n-heptyl phthalate
DHPP has been shown to cause decreased male AGD in rats following intrauterine exposure to 1000 mg/kg bw/day (Saillenfait et al, 2011).
Domain of Applicability
| Life Stage | Evidence |
|---|---|
| Foetal | High |
| Sex | Evidence |
|---|---|
| Male | High |
A short AGD in male offspring is a marker of insufficient androgen action during critical fetal developmental stages (Schwartz et al, 2019; Welsh et al, 2008). A short AGD is thus a sign of undervirilization, which is also associated with a series of male reproductive disorders, including genital malformations and infertility in humans (Juul et al, 2014; Skakkebaek et al, 2001).
There are numerous human epidemiological studies showing associations with intrauterine exposure to anti-androgenic chemicals and short AGD in newborn boys alongside other reproductive disorders (Schwartz et al, 2019). This underscores the human relevance of this AO. However, in reproductive toxicity studies and chemical risk assessment, rodents (rats and mice) are what is tested on. The list of chemicals inducing short male AGD in male rat offspring is extensive, as evidenced by the ‘stressor’ list and reviewed by (Schwartz et al, 2019).
Key Event Description
The anogenital distance (AGD) refers to the distance between anus and the external genitalia. In rodents and humans, the male AGD is approximately twice the length as the female AGD (Salazar-Martinez et al, 2004; Schwartz et al, 2019). This sexual dimorphisms is a consequence of sex hormone-dependent development of secondary sexual characteristics (Schwartz et al, 2019). In males, it is believed that androgens (primarily DHT) activate AR-positive cells in non-myotic cells in the fetal perineum region to initiate differentiation of the perineal levator ani and bulbocavernosus (LABC) muscle complex (Ipulan et al, 2014). This AR-dependent process occurs within a critical window of development, around gestational days 15-18 in rats (MacLeod et al, 2010). In females, the absence of DHT prevents this masculinization effect from occurring.
The involvement of androgens in masculinization of the male fetus, including the perineum, has been known for a very long time (Jost, 1953), and AGD has historically been used to, for instance, sex newborn kittens. It is now well established that the AGD in newborns is a proxy readout for the intrauterine sex hormone milieu the fetus was developing. Too low androgen levels in XY fetuses makes the male AGD shorter, whereas excess (ectopic) androgen levels in XX fetuses makes the female AGD longer, in humans and rodents (Schwartz et al, 2019).
How it is Measured or Detected
The AGD is a morphometric measurement carried out by trained technicians (rodents) or medical staff (humans).
In rodent studies AGD is assessed as the distance between the genital papilla and the anus, and measured using a stereomicroscope with a micrometer eyepiece. The AGD index (AGDi) is often calculated by dividing AGD by the cube root of the body weight. It is important in statistical analysis to use litter as the statistical unit. This is done when more than one pup from each litter is examined. Statistical analyses is adjusted using litter as an independent, random and nested factor. AGD are analysed using body weight as covariate as recommended in Guidance Document 151 (OECD, 2013).
Regulatory Significance of the AO
In regulatory toxicology, the AGD is mandatory inclusions in OECD test guidelines used to test for developmental and reproductive toxicity of chemicals. Guidelines include ‘TG 443 extended one-generation study’, ‘TG 421/422 reproductive toxicity screening studies’ and ‘TG 414 developmental toxicity study’.
References
Appendix 2
List of Key Event Relationships in the AOP
List of Adjacent Key Event Relationships
Relationship: 2130: Antagonism, Androgen receptor leads to Decrease, AR activation
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male (mammalian) offspring | adjacent | High | High |
| Androgen receptor (AR) antagonism leading to nipple retention (NR) in male (mammalian) offspring | adjacent | High |
Relationship: 2128: Decrease, AR activation leads to decrease, transcription of genes by AR
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| 5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) offspring | adjacent | Moderate | Low |
| Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male (mammalian) offspring | adjacent | High | Moderate |
Evidence Supporting Applicability of this Relationship
| Life Stage | Evidence |
|---|---|
| During development and at adulthood | High |
| Sex | Evidence |
|---|---|
| Male | High |
| Female | High |
Relationship: 2129: decrease, transcription of genes by AR leads to short male AGD
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| 5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) offspring | adjacent | Moderate | Low |
| Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male (mammalian) offspring | adjacent | Moderate | Low |
List of Non Adjacent Key Event Relationships
Relationship: 2123: Antagonism, Androgen receptor leads to short male AGD
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male (mammalian) offspring | non-adjacent | Moderate | Low |