

AOP 18: PPAR α activation in utero leading to impaired fertility in malesShort Title: PPAR α activation leading to impaired fertility**Graphical Representation****Authors**

Malgorzata Nepelska, Elise Grignard, Sharon Munn,

Systems Toxicology Unit, Institute for Health and Consumer Protection, Joint Research Centre, European Commission, Via E. Fermi 2749, I-21027 Ispra, Varese, Italy

Corresponding author: sharon.munn@ec.europa.eu; elise.grignard@ec.europa.eu

Status

Author status	OECD status	OECD project	SAAOP status
Open for citation & comment	EAGMST Under Review	1.21	Included in OECD Work Plan

Abstract

This AOP links the activation of Peroxisome Proliferator Activated Receptor α (PPAR α) to the developmental/reproductive toxicity in male. The development of this AOP relies on evidence collected from rodent models and incorporates human mechanistic and epidemiological data. The PPAR α is a ligand-activated transcription factor that belongs to the nuclear receptor family, which also includes the steroid and thyroid hormone receptors. The hypothesis that PPAR α action is the mechanistic basis for effects on the reproductive system arises from limited experimental data indicating relationships between activation of this receptor and impairment of steroidogenesis leading to reproductive toxicity. PPARs play important roles in the metabolic regulation of lipids, of which cholesterol, in particular, being a precursor of steroid hormones, makes the link between lipid metabolism to effects on reproduction. The key events in the pathway comprise the activation of PPAR α , followed by the disruption cholesterol transport in mitochondria, impairment of hormonal balance which leads to malformation of the reproductive tract in males which may lead to impaired fertility. The PPAR α -initiated AOP to rodent male developmental toxicity is a first step for structuring current knowledge about a mode of action which is neither AR-mediated nor via direct steroidogenesis enzymes inhibition. In the current form the pathway lays a strong basis for linking an endocrine mode of action with an apical endpoint, a prerequisite requirement for the identification of endocrine disrupting chemicals. This AOP is complemented with a structured data collection which will serve as the basis for further quantitative development of the pathway.

Summary of the AOP**Events**

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Sequence	Type	Event ID	Title	Short name
1	MIE	227	Activation, PPAR α (https://aopwiki.org/events/227)	Activation, PPAR α
2	KE	266	Decrease, Steroidogenic acute regulatory protein (STAR) (https://aopwiki.org/events/266)	Decrease, Steroidogenic acute regulatory protein (STAR)
3	KE	447	Reduction, Cholesterol transport in mitochondria (https://aopwiki.org/events/447)	Reduction, Cholesterol transport in mitochondria
4	KE	413	Reduction, Testosterone synthesis in Leydig cells (https://aopwiki.org/events/413)	Reduction, Testosterone synthesis in Leydig cells
5	KE	446	Reduction, testosterone level (https://aopwiki.org/events/446)	Reduction, testosterone level
6	KE	289	Decrease, Translocator protein (TSPO) (https://aopwiki.org/events/289)	Decrease, Translocator protein (TSPO)
7	AO	406	impaired, Fertility (https://aopwiki.org/events/406)	impaired, Fertility
8	AO	348	Malformation, Male reproductive tract (https://aopwiki.org/events/348)	Malformation, Male reproductive tract

Key Event Relationships

Upstream Event	Relationship Type	Downstream Event	Evidence	Quantitative Understanding
Decrease, Steroidogenic acute regulatory protein (STAR) (https://aopwiki.org/relationships/436)	adjacent	Reduction, Cholesterol transport in mitochondria	Moderate	
Reduction, Cholesterol transport in mitochondria (https://aopwiki.org/relationships/438)	adjacent	Reduction, Testosterone synthesis in Leydig cells	Moderate	
Reduction, Testosterone synthesis in Leydig cells (https://aopwiki.org/relationships/439)	adjacent	Reduction, testosterone level	High	
Decrease, Translocator protein (TSPO) (https://aopwiki.org/relationships/437)	adjacent	Reduction, Cholesterol transport in mitochondria	Low	
Malformation, Male reproductive tract (https://aopwiki.org/relationships/405)	adjacent	impaired, Fertility	High	
Activation, PPAR α (https://aopwiki.org/relationships/369)	non-adjacent	Decrease, Steroidogenic acute regulatory protein (STAR)	Moderate	
Activation, PPAR α (https://aopwiki.org/relationships/370)	non-adjacent	Decrease, Translocator protein (TSPO)	Low	
Reduction, testosterone level (https://aopwiki.org/relationships/608)	non-adjacent	Malformation, Male reproductive tract	High	

Overall Assessment of the AOP

Biological plausibility, coherence, and consistency of the experimental evidence

In the presented AOP it is hypothesized that the key events occur in a biologically plausible order prior to the development of adverse outcomes. The PPAR α activators have been shown to alter steroidogenesis and impair reproduction [see reviews (Corton and Lapinskas 2004), (Latini et al. 2008), (David 2006)]. However, there are some conflicting reports on the involvement of PPAR α as MIE of the proposed AOP (Johnson, Heger, and Boekelheide 2012), (David 2006). The biochemistry of steroidogenesis and the predominant role of the gonad in synthesis of the sex steroids are well established. Steroidogenesis is a complex process that is dependent on the availability of cholesterol in mitochondria. Perturbation of genes responsible for cholesterol transport and steroidogenic enzyme activities in the Leydig cell will lead to a decrease in testicular testosterone (T) production. As a consequence, androgen-dependent tissue differentiation/development is adversely affected. The physical manifestation of this event may be reproductive tract malformation and possibly leads to impaired fertility.

Concordance of dose-response relationships

This is a qualitative description of the pathway; the currently available studies provide quantitative information on dose-response relationships only partially. Experimental data are based on exposure to phthalates and indicate that key events of this pathway occur at similar dose levels. The effects of altered gene expression levels that are responsible for the cholesterol transport into the Leydig cells were shown at >50 mg/kg/bw, a dose at which foetal T was decreased and anatomical malformations (hypospadias) were produced (Mylchreest, Cattley, and Foster 1998), (Mylchreest 2000), (Akingbemi 2001), (Lehmann et al. 2004). Tailored experiments are required for the exploration of quantitative linkages.

Temporal concordance among the key events and the adverse outcome

This AOP bridges two life stages: the AOs are results of the chemical exposure during a critical prenatal period for male development, the masculinization programming window (MPW), within which androgens must act to ensure the correct development of the male reproductive tract (Welsh et al. 2008). Therefore, the AOP focuses on the exposures within the MPW (15.5–18.5 GD days in rats). The temporal relationship of exposure to gestation day has been investigated using phthalates and it has been demonstrated that the gestational timing of exposure is important for the production of the adverse effects on the male reproductive tract (reviewed in (Ema 2002)).

AOP18

Moreover, the temporal relationship between alterations of gene expression and changes in testosterone production has been investigated for phthalates (DBP) (Lehmann et al. 2004), (Thompson et al. 2005). Initial increases in gene expression are followed by decreases in the expression of genes which are associated with steroidogenesis. The observed decreased steroidogenesis and subsequent decrease in testosterone levels is well established as precursors to anatomical changes in the developing male reproductive tract. Thus, those key events of gene expression are temporally consistent with subsequent events, however complete temporal concordance studies are missing.

Strength, consistency, and specificity of association of adverse effect and initiating event

The strength of the chosen chemical initiators as PPAR α activators was shown to partially correlate with their ability to act as a male reproductive toxicant (Corton and Lapinskas 2004). The presented key events leading to a decrease in steroidogenesis are plausible and consistent with the observed effects. There is coherence between decreased testosterone synthesis and malformations.

Alternative mechanism(s) or MIE(s) described which may contribute/synergise the postulated AOP

The inhibitory effect of PPAR α activation seems to be attributable to an impairment of the multistep process of cholesterol mobilization, transport into mitochondria, and steroidogenesis leading to impaired androgens production. Therefore, it is plausible that several other mechanisms may contribute to/synergise with this AOP. For example, activation of other isoforms of PPARs (PPAR β /5 or/and γ) is hypothesised to be relevant for the pathway (Lapinskas et al. 2005), (Shipley and Waxman 2004).

PPAR γ activation

Opposing effects of PPAR γ ligands (thiazolidinediones, TZD) on androgen levels and/or production in male humans (Dunaif et al. 1996), (Bloomgarden, Futterweit, and Poretsky 2001), (Vierhapper, Nowotny, and Waldhäusl 2003) and animal models have been described (Kempná et al. 2007), (Gasic et al. 1998), (Mu et al. 2000), (Arlt, Auchus, and Miller 2001), (Minge, Robker, and Norman 2008), (Gasic et al. 2001), (Veldhuis, Zhang, and Garmey 2002). In rats no effects of PPAR γ ligand (rosiglitazone) on production or total circulating testosterone levels were seen (Boberg et al. 2008), however a decrease in basal or induced testosterone production occurred in the Leydig cells of rosiglitazone-treated rats (Couto et al. 2010).

Moreover, there are contradicting reports as to the presence of PPAR γ in the foetal testes (Hannas et al. 2012). Few others transcription factors involved in regulation of lipid metabolism are hypothesized to mediate effects on fetal Leydig cell gene expression like sterol regulatory element-binding protein (SREBP) (Lehmann et al. 2004), (Shultz 2001), CCAAT/enhancer-binding protein- β (CEBP β) (Kuhl, Ross, and Gaido 2007) or NR5A1 (also known as steroidogenic factor 1; Sf1) (Borch et al. 2006). The downstream effects in the pathway might be due to the constellation of earlier events in fetal Leydig cells leading to decrease testosterone production and connected adverse outcomes. Alternative/synergistic MIEs relating to this pathway are hypothesised in the KER description. At present there are no strong views on the other possible MIEs.

Uncertainties, inconsistencies and data gaps

The major uncertainty in this AOP is the functional relationship between (MIE) PPAR α activation leading to cholesterol transport reduction; possible mechanisms have been proposed but strong experimental support is missing and some conflicting data are reported. The dose response data to support this relationship are lacking. Studies exploring the role of PPAR α using PPAR α knockout mice showed that prenatal exposure to phthalates caused developmental malformations in both wild-type and PPAR α knockout mice, thus suggesting a PPAR α -independent mechanism. However, it is difficult to draw any conclusion on the role of PPAR α in phthalate-related reproductive toxicity since the intrauterine administration of phthalate (DEHP) occurred before the critical period of reproductive tract differentiation (Peters et al. 1997). Intrauterine DEHP-treated PPAR α -deficient mice, developed delayed testicular, renal and developmental toxicities, but no liver toxicity, compared to wild types, thus confirming the early observation by Lee et al. about the PPAR α dependence of liver response and, more importantly, indicating that DEHP may induce reproductive toxicity through both PPAR α -dependent and -independent mechanism (Ward et al. 1998). PPAR α -independent reproductive toxicity observed by Ward et al. may conceivably be mediated by other PPAR isoforms, such as PPAR β and PPAR γ , or by a non-receptor-mediated organ-specific mechanism (Barak et al. 1999). Other studies showed that the administration of DEHP resulted in milder testis lesions and higher testosterone levels in PPAR α -null mice than in wild-type mice (Gazouli 2002). A more recent report, investigating the role of PPAR α , showed decreased testosterone levels in PPAR α (-/-) null control mice, suggesting a positive constitutive role for PPAR α in maintaining Leydig cell steroid formation (Borch et al. 2006).

Inconsistencies Genomic studies by Hannas et al., demonstrated that PPAR α agonist Wy-14,643, did not reduce foetal testicular testosterone production following gestational day 14–18 exposure, suggesting that the antiandrogenic activity of phthalates is not PPAR α mediated (Hannas et al. 2012). Similarly, recent report by Furr et al. did not observe testosterone decrease after administration of Wy-14,643 in rat (ex vivo) (Furr et al. 2014).

Data Gaps: Complete/pathway driven studies to investigate the effects of PPARs and their role in male reproductive development are lacking. For establishing a solid quantitative and temporal coherent linkage, mode of action framework analysis for PPAR α mediated developmental toxicity are needed. This approach has been applied for the involvement of PPAR α in liver toxicity (Corton et al. 2014), (Wood et al. 2014).

Domain of Applicability

Life Stage Applicability

Life Stage	Evidence
Development	High

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
rat	Rattus norvegicus	Moderate	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)
human	Homo sapiens	Low	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
mouse	Mus musculus	Moderate	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)

Sex Applicability

Sex	Evidence
Male	High

Empirical information on dose-response relationships between the KEs, are not available, however there are solid empirical data that would inform a computational, predictive model for reproductive toxicity via PPAR α activation.

Life Stage Applicability

This AOP is relevant for developing (prenatal) male.

Taxonomic Applicability

The experimental support for the pathway is mainly based on the animal (rat studies). Conflicting reports comes from the studies on mouse. Studies in mice report contradictory results. Recently, studies by Furr et al revealed that fetal T production can be inhibited by exposure to a phthalates in utero (CD-1 mice), but at a higher dose level than required in rats and causing systemic effects (Furr et al. 2014). However there are some earlier reports that chronic dietary administration of phthalates produces adverse testicular effects and reduces fertility in CD-1 mice (Heindel et al. 1989)

Sex Applicability

This AOP applies to males only.

Essentiality of the Key Events

KRs	Essentiality - KEs	level of confidence
PPAR alpha, Activation	PPAR alpha activation was found to indirectly alter the expression of genes involved in cholesterol transport in mitochondria	very weak
TSPO; STAR decrease	Alterations in the amount of cholesterol transport proteins in mitochondria impact on the levels of substrate for steroid hormones production.	weak
cholesterol transport in mitochondria, reduction	Production of steroid hormones depends on the availability of cholesterol to the enzymes in the mitochondrial matrix. Decreasing the amount of cholesterol inside the mitochondria will result in a diminished amount of substrate for hormone (testosterone) synthesis.	moderate
Testosterone synthesis, reduction	The gonads are generally considered the major source of circulating androgens. Consequently, if testosterone synthesis by testes is reduced, testosterone concentrations would be expected to decrease unless there are concurrent reductions in the rate of T catabolism.	strong
Testosterone, reduction	Male sexual differentiation in general depends on androgens (T, dihydrotestosterone (DHT)), disturbances in the balance of this endocrine system by either endogenous or exogenous factors lead to male reproductive tract malformation.	strong
Male reproductive tract malformations	Androgens regulate masculinization of the external genitalia. Therefore any defects in androgen biosynthesis, metabolism or action during foetal development can reproductive tract malformation.	strong
Fertility, impaired	Impaired fertility is the endpoint of reproductive toxicity	strong

Weight of Evidence Summary

KERs	Biological plausibility	Level of confidence	Empirical Support			Level of confidence	Inconsistencies/Uncertainties
			Dose-response	Temporality	Incidence		
PPAR alpha, Activation => Translator protein (TSPO), Decrease	There is functional relationship between PPAR α activation and reduction in TSPO levels.	Very Weak	• KEs occur at similar dose levels	• occurrence of the key events at similar dose and time point • Support for solid temporal relationship is lacking		Very Weak	Some conflicting data
PPAR alpha, Activation => Steroidogenic acute regulatory protein (STAR), decrease	There is functional relationship between PPAR α activation and reduction in STAR levels.	Weak	• KEs occur at similar dose levels	• Support for solid temporal relationship is lacking.		Weak	Some conflicting data
Steroidogenic acute regulatory protein (STAR), decrease and Translator protein (TSPO), Decrease => cholesterol transport in mitochondria, reduction	Changes in cholesterol transport proteins can generally be assumed to directly impact levels of cholesterol transport.	Moderate	• KEs occur at similar dose levels	• Support for solid temporal relationship is lacking.		Moderate	Some conflicting data
cholesterol transport in mitochondria, reduction => testosterone synthesis, reduction	Decreasing the amount of cholesterol inside the mitochondria (e. g by decreasing the expression of enzymes like STAR or TSOP) will result in a diminished amount of substrate for hormone (testosterone) synthesis.	Moderate	• KEs occur at similar dose levels	• occurrence of the key events at similar dose and time point • Support for solid temporal relationship is lacking.		Moderate	Some conflicting data
testosterone, reduction => Male reproductive tract malformations	Reduction in testosterone (T) levels produced in the Leydig cell subsequently lowers the availability of its metabolite; Dihydrotestosterone (DHT) that regulates masculinization of external genitalia. Therefore any defects in androgen biosynthesis, metabolism or action during development can cause male reproductive tract malformation.	Strong	• KEs occur at similar dose levels	• occurrence of the key events at similar dose and time point • Support for solid temporal relationship is lacking.		Strong	No conflicting data

Male reproductive tract malformations \Rightarrow Fertility, Impaired	<p>Male reproductive tract malformations (congenital malformation of male genitalia) comprise any physical abnormality of the male internal or external genitalia present at birth, which may impair on fertility later in life</p>	<p>Moderate</p>	<ul style="list-style-type: none"> KEs occur at similar dose levels <p>Support for solid temporal relationship is lacking.</p>	<ul style="list-style-type: none"> occurrence of the key events at similar dose and time point 	<p>Moderate</p>	<p>No conflicting data</p>

Table 1 Weight of Evidence Summary Table. The underlying questions for the content of the table: Dose-response Does the empirical evidence support that a change in KEup leads to an appropriate change in KEdown?; Does KEup occur at lower doses and earlier time points than KE down and is the incidence of KEup > than that for KEdown?; Incidence Is there higher incidence of KEup than of KEdown?; Inconsistencies/Uncertainties: Are there inconsistencies in empirical support across taxa, species and stressors that don't align with expected pattern for hypothesized AOP? n.a not applicable

Quantitative Consideration

This AOP is qualitatively described; however it contains also data that may be used for further development of quantitative description.

Considerations for Potential Applications of the AOP (optional)

1. The AOP describes a pathway which allows for the detection of sex steroid-related endocrine disrupting modes of action, with focus on the identification of substances which affect the reproductive system. In the current form the pathway lays a strong basis for linking endocrine mode of action with an apical endpoint, a prerequisite requirement for identification of endocrine disrupting chemicals (EDC).

EDCs require specific evaluation under REACH (1907/2006, Registration, Evaluation, Authorisation and Restriction of Chemicals (EU, 2006)), the revised European plant protection product regulation 1107/2009 (EU, 2009) and use of biocidal products 528/2012 EC (EU, 2012). Amongst other agencies the US EPA is also giving particular attention to EDCs (EPA, 1998).

2. This AOP structurally represents current knowledge of the pathway from PPAR α activation to impaired fertility that may provide a basis for development (and interpretation) of strategies for Integrated Approaches to Testing Assessment (IATA) to identify similar substances that may operate via the same pathway related to sex steroid disruption and effects on reproductive tract and fertility. This AOP forms the starting point on an AOP network mapping to modes of action for endocrine disruption.

3. The AOP could inform the development of quantitative structure activity relationships, read-across models, and/or systems biology models to prioritize chemicals for further testing.

References

Akingbemi, B. T. 2001. "Modulation of Rat Leydig Cell Steroidogenic Function by Di(2-Ethylhexyl)Phthalate." *Biology of Reproduction* 65 (4) (October 1): 1252–1259. doi:10.1093/biolreprod.65.4.1252. <http://www.biolreprod.org/content/65/4/1252.long> (<http://www.biolreprod.org/content/65/4/1252.long>).

Arlt, W, R J Auchus, and W L Miller. 2001. "Thiazolidinediones but Not Metformin Directly Inhibit the Steroidogenic Enzymes P450c17 and 3 β -Hydroxysteroid Dehydrogenase." *The Journal of Biological Chemistry* 276 (20) (May 18): 16767–71. doi:10.1074/jbc.M100040200. <http://www.ncbi.nlm.nih.gov/pubmed/11278997> (<http://www.ncbi.nlm.nih.gov/pubmed/11278997>).

Barak, Y, M C Nelson, E S Ong, Y Z Jones, P Ruiz-Lozano, K R Chien, A Koder, and R M Evans. 1999. "PPAR Gamma Is Required for Placental, Cardiac, and Adipose Tissue Development." *Molecular Cell* 4 (4) (October): 585–95. <http://www.ncbi.nlm.nih.gov/pubmed/10549290> (<http://www.ncbi.nlm.nih.gov/pubmed/10549290>).

Bloomgarden, Z T, W Futterweit, and L Poretsky. 2001. "Use of Insulin-Sensitizing Agents in Patients with Polycystic Ovary Syndrome." *Endocrine Practice : Official Journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists* 7 (4): 279–86. doi:10.4158/EP.7.4.279. <http://www.ncbi.nlm.nih.gov/pubmed/11497481> (<http://www.ncbi.nlm.nih.gov/pubmed/11497481>).

Boberg, Julie, Stine Metzdorff, Rasmus Wortziger, Marta Axelstad, Leon Brokken, Anne Marie Vinggaard, Majken Dalgaard, and Christine Nellemann. 2008. "Impact of Diisobutyl Phthalate and Other PPAR Agonists on Steroidogenesis and Plasma Insulin and Leptin Levels in Fetal Rats." *Toxicology* 250 (2-3) (September 4): 75–81. doi:10.1016/j.tox.2008.05.020. <http://www.ncbi.nlm.nih.gov/pubmed/18602967> (<http://www.ncbi.nlm.nih.gov/pubmed/18602967>).

Borch, Julie, Stine Broeng Metzdorff, Anne Marie Vinggaard, Leon Brokken, and Majken Dalgaard. 2006. "Mechanisms Underlying the Anti-Androgenic Effects of Diethylhexyl Phthalate in Fetal Rat Testis." *Toxicology* 223 (1-2) (June 1): 144–55. doi:10.1016/j.tox.2006.03.015. <http://www.sciencedirect.com/science/article/pii/S0300483X0600165X> (<http://www.sciencedirect.com/science/article/pii/S0300483X0600165X>).

Corton, J Christopher, Michael L Cunningham, B Timothy Hummer, Christopher Lau, Bette Meek, Jeffrey M Peters, James A Popp, Lorenz Rhomberg, Jennifer Seed, and James E Klaunig. 2014. "Mode of Action Framework Analysis for Receptor-Mediated Toxicity: The Peroxisome Proliferator-Activated Receptor Alpha (PPAR α) as a Case Study." *Critical Reviews in Toxicology* 44 (1) (January): 1–49. doi:10.3109/10408444.2013.835784. <http://www.ncbi.nlm.nih.gov/pubmed/24180432> (<http://www.ncbi.nlm.nih.gov/pubmed/24180432>).

Corton, J. Christopher, and Paula J Lapinskas. 2004. "Peroxisome Proliferator-Activated Receptors: Mediators of Phthalate Ester-Induced Effects in the Male Reproductive Tract?" *Toxicological Sciences* 83 (1) (October 13): 4–17. doi:10.1093/toxsci/kfi011. <http://www.ncbi.nlm.nih.gov/pubmed/15496498> (<http://www.ncbi.nlm.nih.gov/pubmed/15496498>).

Couto, Janaína A, Karina L A Saraiva, Cleiton D Barros, Daniel P Udrisar, Christina A Peixoto, Juliany S B César Vieira, Maria C Lima, Suely L Galdino, Ivan R Pitta, and Maria I Wanderley. 2010. "Effect of Chronic Treatment with Rosiglitazone on Leydig Cell Steroidogenesis in Rats: In Vivo and Ex Vivo Studies." *Reproductive Biology and Endocrinology : RB&E* 8 (1) (January): 13. doi:10.1186/1477-7827-8-13. <http://www.rbej.com/content/8/1/13> (<http://www.rbej.com/content/8/1/13>).

David, RM. 2006. "Proposed Mode of Action for in Utero Effects of Some Phthalate Esters on the Developing Male Reproductive Tract." *Toxicologic Pathology*. doi:10.1080/01926230600642625. <http://tpx.sagepub.com/content/34/3/209.short> (<http://tpx.sagepub.com/content/34/3/209.short>).

Dunaif, A, D Scott, D Finegood, B Quintana, and R Whitcomb. 1996. "The Insulin-Sensitizing Agent Troglitazone Improves Metabolic and Reproductive Abnormalities in the Polycystic Ovary Syndrome." *The Journal of Clinical Endocrinology and Metabolism* 81 (9) (September): 3299–306. doi:10.1210/jcem.81.9.8784087. <http://www.ncbi.nlm.nih.gov/pubmed/8784087> (<http://www.ncbi.nlm.nih.gov/pubmed/8784087>).

Ema, Makoto. 2002. "Antiandrogenic Effects of Dibutyl Phthalate and Its Metabolite, Monobutyl Phthalate, in Rats." *Congenital Anomalies* 42 (4) (December): 297–308. doi:10.1111/j.1741-4520.2002.tb00896.x. <http://doi.wiley.com/10.1111/j.1741-4520.2002.tb00896.x> (<http://doi.wiley.com/10.1111/j.1741-4520.2002.tb00896.x>).

Furr, Johnathan R, Christy S Lambright, Vickie S Wilson, Paul M Foster, and Leon E Gray. 2014. "A Short-Term in Vivo Screen Using Fetal Testosterone Production, a Key Event in the Phthalate Adverse Outcome Pathway, to Predict Disruption of Sexual Differentiation." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 140 (2) (August 1): 403–24. doi:10.1093/toxsci/kfu081. <http://toxsci.oxfordjournals.org/content/140/2/403.full>.

Gasic, S, Y Bodenburg, M Nagamani, A Green, and R J Urban. 1998. "Troglitazone Inhibits Progesterone Production in Porcine Granulosa Cells." *Endocrinology* 139 (12) (December): 4962–6. doi:10.1210/endo.139.12.6385. <http://www.ncbi.nlm.nih.gov/pubmed/9832434> (<http://www.ncbi.nlm.nih.gov/pubmed/9832434>).

Gasic, S, M Nagamani, A Green, and R J Urban. 2001. "Troglitazone Is a Competitive Inhibitor of 3beta-Hydroxysteroid Dehydrogenase Enzyme in the Ovary." *American Journal of Obstetrics and Gynecology* 184 (4) (March): 575–9. doi:10.1067/mob.2001.111242. <http://www.sciencedirect.com/science/article/pii/S0002937801774340>.

Gazouli, M. 2002. "Effect of Peroxisome Proliferators on Leydig Cell Peripheral-Type Benzodiazepine Receptor Gene Expression, Hormone-Stimulated Cholesterol Transport, and Steroidogenesis: Role of the Peroxisome Proliferator-Activator Receptor ." *Endocrinology* 143 (7) (July 1): 2571–2583. doi:10.1210/en.143.7.2571. <http://endo.endojournals.org/content/143/7/2571> (<http://endo.endojournals.org/content/143/7/2571>).

Hannas, Bethany R, Christy S Lambright, Johnathan Furr, Nicola Evans, Paul M D Foster, Earl L Gray, and Vickie S Wilson. 2012. "Genomic Biomarkers of Phthalate-Induced Male Reproductive Developmental Toxicity: A Targeted RT-PCR Array Approach for Defining Relative Potency." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 125 (2) (February): 544–57. doi:10.1093/toxsci/kfr315. <http://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=3262859&tool=pmcentrez&rendertype=abstract> (<http://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=3262859&tool=pmcentrez&rendertype=abstract>).

Heindel, J J, D K Gulati, R C Mounce, S R Russell, and J C Lamb. 1989. "Reproductive Toxicity of Three Phthalic Acid Esters in a Continuous Breeding Protocol." *Fundamental and Applied Toxicology : Official Journal of the Society of Toxicology* 12 (3) (April): 508–18. <http://www.ncbi.nlm.nih.gov/pubmed/2731665> (<http://www.ncbi.nlm.nih.gov/pubmed/2731665>).

Johnson, Kamin J, Nicholas E Heger, and Kim Boekelheide. 2012. "Of Mice and Men (and Rats): Phthalate-Induced Fetal Testis Endocrine Disruption Is Species-Dependent." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 129 (2) (October): 235–48. doi:10.1093/toxsci/kfs206. <http://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=3491958&tool=pmcentrez&rendertype=abstract> (<http://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=3491958&tool=pmcentrez&rendertype=abstract>).

Kempná, Petra, Gaby Hofer, Primus E Mullis, and Christa E Flück. 2007. "Pioglitazone Inhibits Androgen Production in NCI-H295R Cells by Regulating Gene Expression of CYP17 and HSD3B2." *Molecular Pharmacology* 71 (3) (March): 787–98. doi:10.1124/mol.106.028902. <http://www.ncbi.nlm.nih.gov/pubmed/17138841> (<http://www.ncbi.nlm.nih.gov/pubmed/17138841>).

Kuhl, Adam J, Susan M Ross, and Kevin W Gaido. 2007. "CCAAT/enhancer Binding Protein Beta, but Not Steroidogenic Factor-1, Modulates the Phthalate-Induced Dysregulation of Rat Fetal Testicular Steroidogenesis." *Endocrinology* 148 (12) (December): 5851–64. doi:10.1210/en.2007-0930. <http://www.ncbi.nlm.nih.gov/pubmed/17884934> (<http://www.ncbi.nlm.nih.gov/pubmed/17884934>).

Lapinskas, Paula J., Sherri Brown, Lisa M. Leesnitzer, Steven Blanchard, Cyndi Swanson, Russell C. Cattley, and J. Christopher Corton. 2005. "Role of PPAR α in Mediating the Effects of Phthalates and Metabolites in the Liver." *Toxicology* 207 (1): 149–163. <http://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=S0300483X04005633> (<http://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=S0300483X04005633>).

Latini, Giuseppe, Egeria Scoditti, Alberto Verrotti, Claudio De Felice, and Marika Massaro. 2008. "Peroxisome Proliferator-Activated Receptors as Mediators of Phthalate-Induced Effects in the Male and Female Reproductive Tract: Epidemiological and Experimental Evidence." *PPAR Research* 2008 (January): 359267. doi:10.1155/2008/359267. <http://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=2225463&tool=pmcentrez&rendertype=abstract> (<http://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=2225463&tool=pmcentrez&rendertype=abstract>).

Lehmann, Kim P, Suzanne Phillips, Madhabananda Sar, Paul M D Foster, and Kevin W Gaido. 2004. "Dose-Dependent Alterations in Gene Expression and Testosterone Synthesis in the Fetal Testes of Male Rats Exposed to Di (n-Butyl) Phthalate." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 81 (1) (September 1): 60–8. doi:10.1093/toxsci/kfh169. http://toxsci.oxfordjournals.org/content/81/1/60.abstract?ijkey=99364980d6548f969a82406deb6600873a38be36&keytype2=tf_ipsecsha (http://toxsci.oxfordjournals.org/content/81/1/60.abstract?ijkey=99364980d6548f969a82406deb6600873a38be36&keytype2=tf_ipsecsha).

Minge, Cadence E, Rebecca L Robker, and Robert J Norman. 2008. "PPAR Gamma: Coordinating Metabolic and Immune Contributions to Female Fertility." *PPAR Research* 2008 (January): 243791. doi:10.1155/2008/243791. <http://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=2246065&tool=pmcentrez&rendertype=abstract> (<http://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=2246065&tool=pmcentrez&rendertype=abstract>).

Mu, Y M, T Yanase, Y Nishi, N Waseda, T Oda, A Tanaka, R Takayanagi, and H Nawata. 2000. "Insulin Sensitizer, Troglitazone, Directly Inhibits Aromatase Activity in Human Ovarian Granulosa Cells." *Biochemical and Biophysical Research Communications* 271 (3) (May 19): 710–3. doi:10.1006/bbrc.2000.2701. <http://www.ncbi.nlm.nih.gov/pubmed/10814527> (<http://www.ncbi.nlm.nih.gov/pubmed/10814527>).

Mylchreest, Eve. 2000. "Dose-Dependent Alterations in Androgen-Regulated Male Reproductive Development in Rats Exposed to Di(n-Butyl) Phthalate during Late Gestation." *Toxicological Sciences* 55 (1) (May 1): 143–151. doi:10.1093/toxsci/55.1.143. <http://www.ncbi.nlm.nih.gov/cgi/doi/10.1093/toxsci/55.1.143> (<http://www.ncbi.nlm.nih.gov/cgi/doi/10.1093/toxsci/55.1.143>).

Mylchreest, Eve, Russell C. Cattley, and Paul M. D. Foster. 1998. "Male Reproductive Tract Malformations in Rats Following Gestational and Lactational Exposure to Di(N -Butyl) Phthalate: An Antiandrogenic Mechanism?" *Toxicological Sciences* 43 (1) (May 1): 47–60. doi:10.1093/toxsci/43.1.47. <http://toxsci.oxfordjournals.org/content/43/1/47.short?rss=1&ssource=mfc> (<http://toxsci.oxfordjournals.org/content/43/1/47.short?rss=1&ssource=mfc>).

Peters, J M, M W Taubeneck, C L Keen, and F J Gonzalez. 1997. "Di(2-Ethylhexyl) Phthalate Induces a Functional Zinc Deficiency during Pregnancy and Teratogenesis That Is Independent of Peroxisome Proliferator-Activated Receptor-Alpha." *Teratology* 56 (5) (November): 311–6. doi:10.1002/(SICI)1096-9926(199711)56:5<311::AID-TERA4>3.0.CO;2-#. <http://www.ncbi.nlm.nih.gov/pubmed/9451755> (<http://www.ncbi.nlm.nih.gov/pubmed/9451755>).

Shipley, Jonathan M, and David J Waxman. 2004. "Simultaneous, Bidirectional Inhibitory Crosstalk between PPAR and STAT5b." *Toxicology and Applied Pharmacology* 199 (3) (October 15): 275–84. doi:10.1016/j.taap.2003.12.020. <http://www.ncbi.nlm.nih.gov/pubmed/15364543> (<http://www.ncbi.nlm.nih.gov/pubmed/15364543>).

Shultz, V. D. 2001. "Altered Gene Profiles in Fetal Rat Testes after in Utero Exposure to Di(n-Butyl) Phthalate." *Toxicological Sciences* 64 (2) (December 1): 233–242. doi:10.1093/toxsci/64.2.233. http://toxsci.oxfordjournals.org/content/64/2/233.abstract?ijkey=b8af27acf10695847a4e8a9b568882405d071ae&keytype2=tf_ipsecsha (http://toxsci.oxfordjournals.org/content/64/2/233.abstract?ijkey=b8af27acf10695847a4e8a9b568882405d071ae&keytype2=tf_ipsecsha).

Thompson, Christopher J, Susan M Ross, Janaan Hensley, Kejun Liu, Susanna C Heinze, S Stanley Young, and Kevin W Gaido. 2005. "Differential Steroidogenic Gene Expression in the Fetal Adrenal Gland versus the Testis and Rapid and Dynamic Response of the Fetal Testis to Di(n-Butyl) Phthalate." *Biology of Reproduction* 73 (5) (November): 908–17. doi:10.1093/biolreprod.105.042382. <http://www.ncbi.nlm.nih.gov/pubmed/15987825> (<http://www.ncbi.nlm.nih.gov/pubmed/15987825>).

Veldhuis, Johannes D, George Zhang, and James C Garmey. 2002. "Troglitazone, an Insulin-Sensitizing Thiazolidinedione, Represses Combined Stimulation by LH and Insulin of de Novo Androgen Biosynthesis by Thecal Cells in Vitro." *The Journal of Clinical Endocrinology and Metabolism* 87 (3) (March): 1129–33. doi:10.1210/jcem.87.3.8308. <http://www.ncbi.nlm.nih.gov/pubmed/11889176> (<http://www.ncbi.nlm.nih.gov/pubmed/11889176>).

Vierhapper, H, P Nowotny, and W Waldhäusl. 2003. "Reduced Production Rates of Testosterone and Dihydrotestosterone in Healthy Men Treated with Rosiglitazone." *Metabolism: Clinical and Experimental* 52 (2) (February): 230–2. doi:10.1053/meta.2003.50028. <http://www.ncbi.nlm.nih.gov/pubmed/12601638> (<http://www.ncbi.nlm.nih.gov/pubmed/12601638>).

Ward, J M, J M Peters, C M Perella, and F J Gonzalez. 1998. "Receptor and Nonreceptor-Mediated Organ-Specific Toxicity of di(2-Ethylhexyl)phthalate (DEHP) in Peroxisome Proliferator-Activated Receptor Alpha-Null Mice." *Toxicologic Pathology* 26 (2): 240–6. <http://www.ncbi.nlm.nih.gov/pubmed/9547862> (<http://www.ncbi.nlm.nih.gov/pubmed/9547862>).

Welsh, Michelle, Philippa T K Saunders, Mark Fisken, Hayley M Scott, Gary R Hutchison, Lee B Smith, and Richard M Sharpe. 2008. "Identification in Rats of a Programming Window for Reproductive Tract Masculinization, Disruption of Which Leads to Hypospadias and Cryptorchidism." *The Journal of Clinical Investigation* 118 (4) (April): 1479–90. doi:10.1172/JCI34241. <http://www.pubmedcentral.nih.gov/articlerender.fcgi?aid=2267017&tool=pmcentrez&rendertype=abstract> (<http://www.ncbi.nlm.nih.gov/pubmed/2267017>).

Wood, Charles E, Micheal P Jokinen, Crystal L Johnson, Greg R Olson, Susan Hester, Michael George, Brian N Chorley, et al. 2014. "Comparative Time Course Profiles of Phthalate Stereoisomers in Mice." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 139 (1) (May): 21–34. doi:10.1093/toxsci/kfu025. <http://www.ncbi.nlm.nih.gov/pubmed/24496636> (<http://www.ncbi.nlm.nih.gov/pubmed/24496636>).

Appendix 1

List of MIEs in this AOP

Event: 227: Activation, PPAR α (<https://aopwiki.org/events/227>)

Short Name: Activation, PPAR α

Key Event Component

Process	Object	Action
peroxisome proliferator activated receptor signaling pathway	peroxisome proliferator-activated receptor alpha	increased

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:18 - PPAR α activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	MolecularInitiatingEvent
Aop:51 - PPAR α activation leading to impaired fertility in adult male rodents (https://aopwiki.org/aops/51)	MolecularInitiatingEvent
Aop:61 - NFE2L2/FXR activation leading to hepatic steatosis (https://aopwiki.org/aops/61)	KeyEvent
Aop:37 - PPARalpha-dependent liver cancer (https://aopwiki.org/aops/37)	MolecularInitiatingEvent

Stressors

Name
Di(2-ethylhexyl) phthalate
Mono(2-ethylhexyl) phthalate

Biological Context

Level of Biological Organization
Molecular

Cell term

Cell term
eukaryotic cell

Evidence for Perturbation by Stressor

Overview for Molecular Initiating Event

Fibrates are ligands of PPAR α (Staels et al. 1998).

Phthalates

MHEP (CAS 4376-20-9) directly binds *in vitro* to PPAR α (Lapinskas et al. 2005) and activates this receptor in transactivation assays PPAR α (Lapinskas et al. 2005), (Maloney and Waxman 1999), (Hurst and Waxman 2003), (Bility et al. 2004), (Lampen, Zimnik, and Nau 2003), (Venkata et al. 2006)]. DEHP (CAS 117-81-7) has not been found to bind and activate PPAR α (Lapinskas et al. 2005), (Maloney and Waxman 1999). However, the recent studies shown activation of PPAR α (ToxCastTM Data).

Notably, PPAR α are responsive to DEHP *in vitro* as they are translocated to the nucleus (in primary Sertoli cells) (Dufour et al. 2003), (Bhattacharya et al. 2005). Expression of PPAR α [mRNA and protein] has been reported to be also modulated by phthalates: (to be up-regulated *in vivo* upon DEHP treatment (Xu et al. 2010) and down-regulated by Diisobutyl phthalate (DiBP) (Boberg et al. 2008)).

Perfluorooctanoic Acid (PFOA) is known to activate PPAR α (Vanden Heuvel et al. 2006).

Organotin

Tributyltin (TBT) activates all three heterodimers of PPAR with RXR, primarily through its interaction with RXR (le Maire et al. 2009)

Domain of Applicability

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
rat	Rattus norvegicus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)
mouse	Mus musculus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)
human	Homo sapiens	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)

PPAR α has been identified in frog (*Xenopus laevis*), mouse, human, rat, fish, hamster and chicken (reviewed in (Wahl and Desvergne 1999)).

Key Event Description

Biological state

The Peroxisome Proliferator Activated receptor α (PPAR α) belongs to the Peroxisome Proliferator Activated receptors (PPARs; NR1C) ([https://aopwiki.org/wiki/index.php/Peroxisome_Proliferator_Activated_receptors_\(PPARs;_NR1C\)](https://aopwiki.org/wiki/index.php/Peroxisome_Proliferator_Activated_receptors_(PPARs;_NR1C))) steroid/thyroid/retinoid receptor superfamily of transcription factors.

Biological compartments

PPAR α is expressed in high levels in tissues that perform significant catabolism of fatty acids (FAs), such as brown adipose tissue, liver, heart, kidney, and intestine (Michalik et al. 2006). The receptor is present also in skeletal muscle, intestine, pancreas, lung, placenta and testes (Mukherjee et al. 1997), (Schultz et al. 1999).

General role in biology

PPARs are activated by fatty acids and their derivatives; they are sensors of dietary lipids and are involved in lipid and carbohydrate metabolism, immune response and peroxisome proliferation (Wahl and Desvergne 1999), (Evans, Barish, & Wang, 2004). PAPR α is a also a target of hypothalamic hormone signalling and was found to play a role in embryonic development (Yessoufou and Wahl 2010).

Fibrates, activators of PPAR α , are commonly used to treat hypertriglyceridemia and other dyslipidemic states as they have been shown to decrease circulating lipid levels (Lefebvre et al. 2006).

How it is Measured or Detected

Binding of ligands to PPAR α is measured using binding assays in vitro and in silico, whereas the information about functional activation is derived from transactivation assays (e.g. transactivation assay with reporter gene) that demonstrate functional activation of a nuclear receptor by a specific compound. Binding of agonists within the ligand-binding site of PPARs causes a conformational change of nuclear receptor that promotes binding to transcriptional co-activators. Conversely, binding of antagonists results in a conformation that favours the binding of co-repressors (Yu and Reddy 2007), (Viswakarma et al. 2010). Transactivation assays are performed using transient or stably transfected cells with the PPAR α expression plasmid and a reporter plasmid, respectively. There are also other methods that have been used to measure PPAR α activity, such as the Electrophoretic Mobility Shift Assay (EMSA) or commercially available PPAR α transcription factor assay kits, see Table 1. The transactivation (stable transfection) assay provides the most applicable OECD Level 2 assay (i.e. In vitro assays providing mechanistic data) aimed at identifying the initiating event leading to an adverse outcome (LeBlanc, Norris, and Kloas 2011). Currently no internationally validated assays for regulatory purposes are available.

Key event PPAR α activation					
What is measured?	Ligand Binding		Transcriptional activity		
Method/test category	molecular modelling	binding assay	transactivation reporter gene assay		transcription factor assay
Method/test name	molecular modelling; docking	Scintillation proximity binding assay	luciferase reporter gene assay	PPAR α (mouse/rat) Reporter Assay Kit	Electrophoretic Mobility Shift Assay (EMSA)
Test environment	<i>In silico</i>	<i>In vitro</i>	<i>In vitro</i>	<i>In vitro, ex vivo</i>	
Test principle	Computational simulation of a candidate ligand binding to a receptor, Predicts the strength of association or binding affinity.	Direct binding indicating the mode of action for PPAR α	Quantifying changes in luciferase expression in the treated reporter cells provides a sensitive surrogate measure of the changes in PPAR functional activity.	PPAR α once activated by a ligand, the receptor binds to a promoter element in the gene for target gene and activates its transcription. The DNA-bound (activated) PPAR is measured.	

Test outcome	A binding interaction between a small molecule ligand and an enzyme protein may result in activation or inhibition of the enzyme. If the protein is a receptor, ligand binding may result in agonism or antagonism of the normal activity of the receptor.	Assesses the ability of compounds to bind to PPAR α . Identifies the modulators of PPAR α .	The changes in activity of reporter gene levels functionally linked to a PPAR-responsive element/promoter gives information about the nature of the PPAR activation.			Protein: DNA binding, DNA binding activity
Test background	Predicts the preferred orientation of one molecule to a second when bound to each other to form a stable complex. Knowledge of the preferred orientation in turn may be used to predict the strength of association or binding affinity between two molecules using, for example, scoring functions.	This assay determines whether compounds interact directly with PPARs. The type of beads that are involved in the SPA are microscopic in size and within the beads, there is a scintillant which emits light when it is stimulated. Stimulation occurs when radio-labelled molecules interact and bind to the surface of the bead and trigger the bead to emit light.	PPAR α / γ COS-1 cell transactivation assay (transient transfection with human or mouse PPAR α / γ expression plasmid and pHD(x3)-Luc reporter plasmid	(PPRE)3-luciferase reporter construct C2C12	Proprietary rodent cell line expressing the mouse/rat PPAR α	Gene regulation and determining protein: DNA interactions are detected by the EMSA. EMSA can be used qualitatively to identify sequence-specific DNA-binding proteins (such as transcription factors) in crude lysates and, in conjunction with mutagenesis, to identify the important binding sequences within a given gene upstream regulatory region. EMSA can also be utilized quantitatively to measure thermodynamic and kinetic parameters.
Assay type	Quantitative	Qualitative	Quantitative	Quantitative	Quantitative	Quantitative
Application domain	Virtual screening	<i>In vitro</i> screening	<i>In vitro</i> Screening, functional studies activity (reported use: agonist)		<i>In vitro</i> Screening functional activity (antagonist/agonist)	
Ref	(Feige et al. 2007), (Kaya et al. 2006)	(Lapinskas et al. 2005), (Wu, Gao, and Wang 2005)	(Maloney and Waxman 1999)	(Feige et al. 2007)	Indigobiosciences products/mouse-ppar-alpha-mppara-nr1c1/)	Abcam (http://www.abcam.com/ppar-alpha-transcription-factor-assay-kit-ab133107.html)

Table 1 Summary of the chosen methods to measure the PPAR α activation.

References

Bhattacharya, Nandini, Jannette M Dufour, My-Nuong Vo, Janice Okita, Richard Okita, and Kwan Hee Kim. 2005. "Differential Effects of Phthalates on the Testis and the Liver." *Biology of Reproduction* 72 (3) (March): 745–54. doi:10.1095/biolreprod.104.031583.

Bility, Moses T, Jerry T Thompson, Richard H McKee, Raymond M David, John H Butala, John P Vanden Heuvel, and Jeffrey M Peters. 2004. "Activation of Mouse and Human Peroxisome Proliferator-Activated Receptors (PPARs) by Phthalate Monoesters." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 82 (1) (November): 170–82. doi:10.1093/toxsci/kfh253.

Dufour, Jannette M, My-Nuong Vo, Nandini Bhattacharya, Janice Okita, Richard Okita, and Kwan Hee Kim. 2003. "Peroxisome Proliferators Disrupt Retinoic Acid Receptor Alpha Signaling in the Testis." *Biology of Reproduction* 68 (4) (April): 1215–24. doi:10.1093/biolreprod.102.010488.

Feige, Jérôme N, Laurent Gelman, Daniel Rossi, Vincent Zoete, Raphaël Métivier, Cicerone Tudor, Silvia I Anghel, et al. 2007. "The Endocrine Disruptor Monoethyl-Hexyl-Phthalate Is a Selective Peroxisome Proliferator-Activated Receptor Gamma Modulator That Promotes Adipogenesis." *The Journal of Biological Chemistry* 282 (26) (June 29): 19152–66. doi:10.1074/jbc.M702724200.

Hurst, Christopher H, and David J Waxman. 2003. "Activation of PPARalpha and PPARgamma by Environmental Phthalate Monoesters." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 74 (2) (August): 297–308. doi:10.1093/toxsci/kfg145.

Kaya, Taner, Scott C Mohr, David J Waxman, and Sandor Vajda. 2006. "Computational Screening of Phthalate Monoesters for Binding to PPARgamma." *Chemical Research in Toxicology* 19 (8) (August): 999–1009. doi:10.1021/tx050301s.

Lampen, Alfonso, Susan Zimnik, and Heinz Nau. 2003. "Teratogenic Phthalate Esters and Metabolites Activate the Nuclear Receptors PPARs and Induce Differentiation of F9 Cells." *Toxicology and Applied Pharmacology* 188 (1) (April): 14–23. doi:10.1016/S0041-008X(03)00014-0.

Lapinskas, Paula J., Sherri Brown, Lisa M. Leesnitzer, Steven Blanchard, Cyndi Swanson, Russell C. Cattley, and J. Christopher Corton. 2005. "Role of PPAR α in Mediating the Effects of Phthalates and Metabolites in the Liver." *Toxicology* 207 (1): 149–163.

Le Maire, Albane, Marina Grimaldi, Dominique Roecklin, Sonia Dagnino, Valérie Vivat-Hannah, Patrick Balaguer, and William Bourguet. 2009. "Activation of RXR-PPAR Heterodimers by Organotin Environmental Endocrine Disruptors." *EMBO Reports* 10 (4) (April): 367–73. doi:10.1038/embor.2009.8.

LeBlanc, GA, DO Norris, and W Kloas. 2011. "Detailed Review Paper State of the Science on Novel In Vitro and In Vivo Screening and Testing Methods and Endpoints for Evaluating Endocrine Disruptors" (178).

Lefebvre, Philippe, Giulia Chinetti, Jean-Charles Fruchart, and Bart Staels. 2006. "Sorting out the Roles of PPAR Alpha in Energy Metabolism and Vascular Homeostasis." *The Journal of Clinical Investigation* 116 (3) (March): 571–80. doi:10.1172/JCI27989.

Maloney, Erin K., and David J. Waxman. 1999. "Trans-Activation of PPAR α and PPAR γ by Structurally Diverse Environmental Chemicals." *Toxicology and Applied Pharmacology* 161 (2): 209–218.

Michalik, Liliane, Johan Auwerx, Joel P Berger, V Krishna Chatterjee, Christopher K Glass, Frank J Gonzalez, Paul A Grimaldi, et al. 2006. "International Union of Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors." *Pharmacological Reviews* 58 (4) (December): 726–41. doi:10.1124/pr.58.4.5.

Mukherjee, R, L Jow, G E Croston, and J R Patemiti. 1997. "Identification, Characterization, and Tissue Distribution of Human Peroxisome Proliferator-Activated Receptor (PPAR) Isoforms PPARgamma2 versus PPARgamma1 and Activation with Retinoid X Receptor Agonists and Antagonists." *The Journal of Biological Chemistry* 272 (12) (March 21): 8071–6.

Schultz, R, W Yan, J Toppari, A Völkli, J A Gustafsson, and M Pelto-Huikko. 1999. "Expression of Peroxisome Proliferator-Activated Receptor Alpha Messenger Ribonucleic Acid and Protein in Human and Rat Testis." *Endocrinology* 140 (7) (July): 2968–75. doi:10.1210/endo.140.7.6858.

Staels, B., J. Dallongeville, J. Auwerx, K. Schoonjans, E. Leitersdorf, and J.-C. Fruchart. 1998. "Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism." *Circulation* 98 (19) (November 10): 2088–2093. doi:10.1161/01.CIR.98.19.2088.

ToxCastTM Data. "ToxCastTM Data." US Environmental Protection Agency. <http://www.epa.gov/ncct/toxcast/data.html> (<http://www.epa.gov/ncct/toxcast/data.html>)

Vanden Heuvel, John P, Jerry T Thompson, Steven R Frame, and Peter J Gillies. 2006. "Differential Activation of Nuclear Receptors by Perfluorinated Fatty Acid Analogs and Natural Fatty Acids: A Comparison of Human, Mouse, and Rat Peroxisome Proliferator-Activated Receptor-Alpha, -Beta, and -Gamma, Liver X Receptor-Beta, and Retinoid X Rec." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 92 (2) (August): 476–89. doi:10.1093/toxsci/kfl014.

Venkata, Nagaraj Gopisetty, Jodie a Robinson, Peter J Cabot, Barbara Davis, Greg R Monteith, and Sarah J Roberts-Thomson. 2006. "Mono(2-Ethylhexyl)phthalate and Mono-N-Butyl Phthalate Activation of Peroxisome Proliferator Activated-Receptors Alpha and Gamma in Breast." *Toxicology Letters* 163 (3) (June 1): 224–34. doi:10.1016/j.toxlet.2005.11.001.

Viswakarma, Navin, Yuzhi Jia, Liang Bai, Aurore Vluggens, Jayme Borensztajn, Jianming Xu, and Janardan K Reddy. 2010. "Coactivators in PPAR-Regulated Gene Expression." *PPAR Research* 2010 (January). doi:10.1155/2010/250126.

Wahli, Walter, and B Desvergne. 1999. "Peroxisome Proliferator-Activated Receptors: Nuclear Control of Metabolism." *Endocrine Reviews* 20 (5) (October): 649–88. Wu, Bin, Jie Gao, and Ming-wei Wang. 2005. "Development of a Complex Scintillation Proximity Assay for High-Throughput Screening of PPARgamma Modulators." *Acta Pharmacologica Sinica* 26 (3) (March): 339–44. doi:10.1111/j.1745-7254.2005.00040.x.

Xu, Chuan, Ji-An Chen, Zhiqun Qiu, Qing Zhao, Jiaohua Luo, Lan Yang, Hui Zeng, et al. 2010. "Ovotoxicity and PPAR-Mediated Aromatase Downregulation in Female Sprague-Dawley Rats Following Combined Oral Exposure to Benzo[a]pyrene and Di-(2-Ethylhexyl) Phthalate." *Toxicology Letters* 199 (3) (December 15): 323–32. doi:10.1016/j.toxlet.2010.09.015.

Yessoufou, a, and W Wahli. 2010. "Multifaceted Roles of Peroxisome Proliferator-Activated Receptors (PPARs) at the Cellular and Whole Organism Levels." *Swiss Medical Weekly* 140 (September) (January): w13071. doi:10.4414/smw.2010.13071.

Yu, Songtao, and Janardan K Reddy. 2007. "Transcription Coactivators for Peroxisome Proliferator-Activated Receptors." *Biochimica et Biophysica Acta* 1771 (8) (August): 936–51. doi:10.1016/j.bbapap.2007.01.008.

List of Key Events in the AOP

Event: 266: Decrease, Steroidogenic acute regulatory protein (STAR) (<https://aopwiki.org/events/266>)

Short Name: Decrease, Steroidogenic acute regulatory protein (STAR)

Key Event Component

Process	Object	Action
gene expression	STAR	decreased

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:18 - PPAR α activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	KeyEvent

Biological Context

Level of Biological Organization
Cellular

Cell term

Cell term
steroid hormone secreting cell

Domain of Applicability

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
mouse	Mus musculus	Moderate	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)
human	Homo sapiens	Moderate	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
rat	Rattus norvegicus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)

StAR has been cloned from many species, and is highly conserved among mammals, birds, amphibians and fish (Bauer et al. 2000).

Key Event Description

Biological state

Steroidogenic acute regulatory protein (StAR) functions as a cholesterol transfer protein and acts directly on lipids of the outer mitochondrial membrane to promote cholesterol translocation (Stocco 2001). Reduction of the protein impacts on the amount of substrate available for steroidogenesis.

Biological compartments

StAR is expressed principally in steroidogenic tissues (Bauer et al. 2000).

General role in biology

StAR is required for cholesterol shuttling across the mitochondrial membrane and appears to regulate acute steroid production (Clark and Stocco, 1997). Transcriptional or translational inhibition of StAR expression results in a dramatic decrease in steroid biosynthesis, whereas ~10–15% of steroid synthesis appears to be mediated through StAR-independent mechanisms (Manna et al. 2001) (Clark and Stocco, 1997). In contrast, chronically regulated steroid production appears to be largely mediated by increased transcription of steroidogenic enzymes (Hum and Miller 1993).

How it is Measured or Detected

The StAR expression can be measured by RT-PCR (mRNA) and on the protein level (western blot). The StAR expression as well as other steroidogenic proteins can be measured in vitro cultured Leydig cells. The methods for culturing Leydig cells can be found in the Database Service on Alternative Methods to animal experimentation (DB-ALM): Leydig Cell-enriched Cultures [1] (http://ecvam-dbalm.jrc.ec.europa.eu/beta/index.cfm/methodsAndProtocols/index?id_met=232) Testicular Organ and Tissue Culture Systems [2] (http://ecvam-dbalm.jrc.ec.europa.eu/beta/index.cfm/methodsAndProtocols/index?id_met=515).

References

Bauer, M P, J T Bridgman, D M Langenau, A L Johnson, and F W Goetz. 2000. "Conservation of Steroidogenic Acute Regulatory (StAR) Protein Structure and Expression in Vertebrates." *Molecular and Cellular Endocrinology* 168 (1-2) (October 25): 119–25.

Hum, D W, and W L Miller. 1993. "Transcriptional Regulation of Human Genes for Steroidogenic Enzymes." *Clinical Chemistry* 39 (2) (February): 333–40.

Manna, P R, J Kero, M Tena-Sempere, P Pakarinen, D M Stocco, and I T Huhtaniemi. 2001. "Assessment of Mechanisms of Thyroid Hormone Action in Mouse Leydig Cells: Regulation of the Steroidogenic Acute Regulatory Protein, Steroidogenesis, and Luteinizing Hormone Receptor Function." *Endocrinology* 142 (1) (January): 319–31. doi:10.1210/endo.142.1.7900.

Stocco, D M. 2001. "StAR Protein and the Regulation of Steroid Hormone Biosynthesis." *Annual Review of Physiology* 63 (January): 193–213. doi:10.1146/annurev.physiol.63.1.193.

Event: 447: Reduction, Cholesterol transport in mitochondria (<https://aopwiki.org/events/447>)

Short Name: Reduction, Cholesterol transport in mitochondria

Key Event Component

AOP18

Process	Object	Action
mitochondrial transport	cholesterol	decreased

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:51 - PPAR α activation leading to impaired fertility in adult male rodents (https://aopwiki.org/aops/51)	KeyEvent
Aop:18 - PPAR α activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	KeyEvent

Biological Context

Level of Biological Organization
Cellular

Cell term

Cell term
steroid hormone secreting cell

Domain of Applicability

Taxonomic Applicability			
Term	Scientific Term	Evidence	Links
mouse	Mus musculus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)
human	Homo sapiens	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
rat	Rattus norvegicus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)

The enzymes needed for cholesterol transport were found in amphioxus and are present in vertebrates (Albalat et al. 2011).

Key Event Description

Biological state

Steroidogenesis begins with the transport of cholesterol from intracellular stores into mitochondria. This process involves a series of protein-protein interactions involving cytosolic and mitochondrial proteins located at both the outer and inner mitochondrial membranes. In steroidogenic cells the cholesterol import to the mitochondrial inner membrane is crucial for steroid synthesis (Rone, Fan, and Papadopoulos 2009). This process is facilitated by the Scavenger Receptor Class B, type 1 (SR-B1) [more relevant for rodents, than for humans] that mediates the selective uptake of cholesterol esters from high-density lipoproteins. Steroidogenic acute regulatory protein (STAR) and the translator protein (TSPO) [former peripheral benzodiazepine receptor (PBR)] mediate cholesterol transport from the outer to the inner mitochondrial membrane. The conversion of cholesterol to pregnenolone is done by Cholesterol side-chain cleavage enzyme (P450scc), the start of steroidogenesis [reviewed in (Miller and Auchus 2011)].

Biological compartments

In mitochondria of steroidogenic tissues there are two specialized mechanisms related to hormone synthesis: one by which cholesterol is delivered to the mitochondria and the other by which specialized intra-mitochondrial enzymes participate in the synthesis of hormonal steroids.

General role in biology

Systemic steroid hormones are primarily formed by the gonads, adrenal glands, and during in utero development by the placenta. Some other organs like brain (Baulieu 1998), and heart (Kayes-Wandover and White 2000) have also been identified as steroid-producing tissues, mainly for local needs. The steroid hormones are indispensable for mammalian life. They are made from cholesterol via complex biosynthetic pathways that are initiated by specialized, tissue-specific enzymes in mitochondria. These hormones include glucocorticoids (cortisol, corticosterone) and mineralocorticoids (aldosterone) produced in the adrenal cortex, estrogens (estradiol), progestins (progesterone) and androgens (testosterone, dihydrotestosterone) produced in the gonads, and calciferols (1,25-dihydroxy vitamin D [1,25OH₂D]) produced in the kidneys (Miller and Auchus 2011). Cholesterol is the precursor for the synthesis of steroid hormones in mitochondria. Steroidogenesis begins with the metabolism of cholesterol to pregnenolone facilitated by P450scc. The rate of steroid formation depends on the rate of cholesterol transport from intracellular stores to the inner mitochondrial membrane and the loading of P450scc with cholesterol (Miller and Auchus 2011). Interference with one or more of these reactions leads to reduced steroid production.

How it is Measured or Detected

This KE can be indirectly measured by:

1. Expression of the proteins involved in cholesterol transport by qPCR or Western blot.
3. Cholesterol transport to the mitochondrial inner membrane in intact cells:
 - Indirectly as pregnenolone formation by cells. The pregnenolone concentration is assayed by commercially available radioimmunoassays and reflects the amount of cholesterol transported to the mitochondrial inner membrane (Charman et al. 2010).

AOP18

- Filipin staining is one of the most widely used tools for studying intracellular cholesterol distribution. The fluorescent detergent filipin binds selectively to cholesterol (and not to cholesterol esters) (Schroeder, Holland, and Bieber 1971). Filipin can be only used for the qualitative analysis of cholesterol distribution, since its fluorescence intensity is not necessarily linearly related to cholesterol content.

The cholesterol transport can be measured *in vitro* cultured Leydig cells. The methods for culturing Leydig cells can be found in the Database Service on Alternative Methods to animal experimentation (DB-ALM): Leydig Cell-enriched Cultures [1] (http://ecvam-dbalm.jrc.ec.europa.eu/beta/index.cfm/methodsAndProtocols/index?id_met=232) Testicular Organ and Tissue Culture Systems [2] (http://ecvam-dbalm.jrc.ec.europa.eu/beta/index.cfm/methodsAndProtocols/index?id_met=515)

References

Albalat, Ricard, Frédéric Brunet, Vincent Laudet, and Michael Schubert. 2011. "Evolution of Retinoid and Steroid Signaling: Vertebrate Diversification from an Amphioxus Perspective." *Genome Biology and Evolution* 3: 985–1005. doi:10.1093/gbe/evr084.

Baulieu, E E. 1998. "Neurosteroids: A Novel Function of the Brain." *Psychoneuroendocrinology* 23 (8) (November): 963–87.

Charman, Mark, Barry E Kennedy, Nolan Osborne, and Barbara Karten. 2010. "MLN64 Mediates Egress of Cholesterol from Endosomes to Mitochondria in the Absence of Functional Niemann-Pick Type C1 Protein." *Journal of Lipid Research* 51 (5) (May): 1023–34. doi:10.1194/jlr.M002345.

Kayes-Wandover, K M, and P C White. 2000. "Steroidogenic Enzyme Gene Expression in the Human Heart." *The Journal of Clinical Endocrinology and Metabolism* 85 (7) (July): 2519–25. doi:10.1210/jcem.85.7.6663.

Miller, Walter L, and Richard J Auchus. 2011. "The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders." *Endocrine Reviews* 32 (1) (February): 81–151. doi:10.1210/er.2010-0013.

Rone, Malena B, Jinjiang Fan, and Vassilios Papadopoulos. 2009. "Cholesterol Transport in Steroid Biosynthesis: Role of Protein-Protein Interactions and Implications in Disease States." *Biochimica et Biophysica Acta* 1791 (7) (July): 646–58. doi:10.1016/j.bbapap.2009.03.001.

Schroeder, F, J F Holland, and L L Bieber. 1971. "Fluorometric Evidence for the Binding of Cholesterol to the Filipin Complex." *The Journal of Antibiotics* 24 (12) (December): 846–9.

Steer, C. 1984. "Detection of Membrane Cholesterol by Filipin in Isolated Rat Liver Coated Vesicles Is Dependent upon Removal of the Clathrin Coat." *The Journal of Cell Biology* 99 (1) (July 1): 315–319. doi:10.1083/jcb.99.1.315.

Event: 413: Reduction, Testosterone synthesis in Leydig cells (<https://aopwiki.org/events/413>)

Short Name: Reduction, Testosterone synthesis in Leydig cells

Key Event Component

Process	Object	Action
testosterone biosynthetic process	testosterone	decreased

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:51 - PPAR α activation leading to impaired fertility in adult male rodents (https://aopwiki.org/aops/51)	KeyEvent
Aop:18 - PPAR α activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	KeyEvent
Aop:64 - Glucocorticoid Receptor (GR) Mediated Adult Leydig Cell Dysfunction Leading to Decreased Male Fertility (https://aopwiki.org/aops/64)	KeyEvent

Biological Context

Level of Biological Organization
Cellular

Cell term

Cell term
testosterone secreting cell

Domain of Applicability

Taxonomic Applicability			
Term	Scientific Term	Evidence	Links
rat	Rattus norvegicus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)
human	Homo sapiens	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
mice	Mus sp.	Low	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095)

Key enzymes needed for testosterone production first appear in the common ancestor of amphioxus and vertebrates (Baker 2011). Consequently, this key event is

applicable to most vertebrates, including humans.

Key Event Description

Biological state

Testosterone is a steroid hormone from the androgen group and is found in humans and other vertebrates.

Biological compartments

In humans and other mammals, testosterone is secreted primarily by the testicles of males and, to a lesser extent, the ovaries of females and other steroidogenic tissues (e.g., brain, adipose). It either acts locally /or is transported to other tissues via blood circulation. Testosterone synthesis takes place within the mitochondria of Leydig cells, the testosterone-producing cells of the testis. It is produced upon stimulation of these cells by Luteinizing hormone (LH) that is secreted in pulses into the peripheral circulation by the pituitary gland in response to Gonadotropin-releasing hormone (GnRH) from the hypothalamus. Testosterone and its aromatized product, estradiol, feed back to the hypothalamus and pituitary gland to suppress transiently LH and thus testosterone production. In response to reduced testosterone levels, GnRH and LH are produced. This negative feedback cycle results in pulsatile secretion of LH followed by pulsatile production of testosterone (Ellis, Desjardins, and Fraser 1983), (Chandrashekhar and Bartke 1998).

General role in biology

Testosterone is the principal male sex hormone and an anabolic steroid. Male sexual differentiation depends on testosterone (T), dihydrotestosterone (DHT), and the expression of androgen receptors by target cells (Manson and Carr 2003). During the development secretion of androgens by Leydig cells is essential for masculinization of the foetus (Nef 2000). The foetal Leydig cells develop in utero. These cells become competent to produce testosterone in rat by gestational day (GD) 15.5, with increasing production thereafter. Peak steroidogenic activity is reached just prior to birth, on GD19 (Chen, Ge, and Zirkin 2009). Testosterone secreted by foetal Leydig cells is required for the differentiation of the male urogenital system late in gestation (Huhtaniemi and Pelliniemi 1992). Foetal Leydig cells also play a role in the scrotal descent of the testis through their synthesis of insulin-like growth factor 3 (IISl3), for review see (Nef 2000).

In humans, the first morphological sign of testicular differentiation is the formation of testicular cords, which can be seen between 6 and 7 weeks of gestation. Steroid-secreting Leydig cells can be seen in the testis at 8 weeks of gestation. At this period, the concentration of androgens in the testicular tissue and blood starts to rise, peaking at 14-16 weeks of gestation. This increase comes with an increase in the number of Leydig cells for review see (Rouiller-Fabre et al. 2009).

Adult Leydig cells, which are distinct from the foetal Leydig cells, form during puberty and supply the testosterone required for the onset of spermatogenesis, among other functions. Distinct stages of adult Leydig cell development have been identified and characterized. The stem Leydig cells are undifferentiated cells that are capable of indefinite self-renewal but also of differentiation to steroidogenic cells. These cells give rise to progenitor Leydig cells, which proliferate, continue to differentiate, and give rise to the immature Leydig cells. Immature Leydig cells synthesize high levels of testosterone metabolites and develop into terminally differentiated adult Leydig cells, which produce high levels of testosterone. With aging, both serum and testicular testosterone concentrations progressively decline, for review see (Nef 2000).

Androgens play a crucial role in the development and maintenance of male reproductive and sexual functions. Low levels of circulating androgens can cause disturbances in male sexual development, resulting in congenital abnormalities of the male reproductive tract. Later in life, this may cause reduced fertility, sexual dysfunction, decreased muscle formation and bone mineralisation, disturbances of fat metabolism, and cognitive dysfunction. Testosterone levels decrease as a process of ageing: signs and symptoms caused by this decline can be considered a normal part of ageing.

How it is Measured or Detected

OECD TG 456 [1] (http://www.oecd-ilibrary.org/environment/test-no-456-h295r-steroidogenesis-assay_9789264122642-en) is the validated test guideline for an in vitro screen for chemical effects on steroidogenesis, specifically the production of 17 β -estradiol (E2) and testosterone (T). The testosterone synthesis can be measured in vitro cultured Leydig cells. The methods for culturing Leydig cells can be found in the Database Service on Alternative Methods to animal experimentation (DB-ALM): Leydig Cell-enriched Cultures [2] (http://ecvam-dbalm.jrc.ec.europa.eu/beta/index.cfm/methodsAndProtocols/index?id_met=232), Testicular Organ and Tissue Culture Systems [3] (http://ecvam-dbalm.jrc.ec.europa.eu/beta/index.cfm/methodsAndProtocols/index?id_met=515).

Testosterone synthesis in vitro cultured cells can be measured indirectly by testosterone radioimmunoassay or analytical methods such as LC-MS.

References

Chandrashekhar, V, and A Bartke. 1998. "The Role of Growth Hormone in the Control of Gonadotropin Secretion in Adult Male Rats." *Endocrinology* 139 (3) (March): 1067–74. doi:10.1210/endo.139.3.5816.

Ellis, G B, C Desjardins, and H M Fraser. 1983. "Control of Pulsatile LH Release in Male Rats." *Neuroendocrinology* 37 (3) (September): 177–83. Huhtaniemi, I, and L J Pelliniemi. 1992. "Fetal Leydig Cells: Cellular Origin, Morphology, Life Span, and Special Functional Features." *Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)* 201 (2) (November): 125–40.

Manson, Jeanne M, and Michael C Carr. 2003. "Molecular Epidemiology of Hypospadias: Review of Genetic and Environmental Risk Factors." *Birth Defects Research. Part A, Clinical and Molecular Teratology* 67 (10) (October): 825–36. doi:10.1002/bdra.10084.

Nef, S. 2000. "Hormones in Male Sexual Development." *Genes & Development* 14 (24) (December 15): 3075–3086. doi:10.1101/gad.843800.

Rouiller-Fabre, Virginie, Vincent Muczynski, Romain Lambrot, Charlotte Lécureuil, Hervé Coffigny, Catherine Pairault, Delphine Moison, et al. 2009. "Ontogenesis of Testicular Function in Humans." *Folia Histochemica et Cytophysiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society* 47 (5) (January): S19–24. doi:10.2478/v10042-009-0065-4.

Event: 446: Reduction, testosterone level (<https://aopwiki.org/events/446>)

Short Name: Reduction, testosterone level

Key Event Component

Process	Object	Action
	testosterone	decreased

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:51 - PPAR α activation leading to impaired fertility in adult male rodents (https://aopwiki.org/aops/51)	KeyEvent
Aop:18 - PPAR α activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	KeyEvent
Aop:64 - Glucocorticoid Receptor (GR) Mediated Adult Leydig Cell Dysfunction Leading to Decreased Male Fertility (https://aopwiki.org/aops/64)	KeyEvent

Biological Context

Level of Biological Organization
Tissue

Organ term

Organ term
blood

Domain of Applicability

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
human	<i>Homo sapiens</i>	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
rat	<i>Rattus norvegicus</i>	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)
mouse	<i>Mus musculus</i>	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)

Key enzymes needed for testosterone production first appear in the common ancestor of amphioxus and vertebrates (Baker 2011). Consequently, this key event is applicable to most vertebrates, including humans.

Key Event Description

Biological state

Testosterone (T) is a steroid hormone from the androgen group. T serves as a substrate for two metabolic pathways that produce antagonistic sex steroids.

Biological compartments

Testosterone is synthesized by the gonads and other steroidogenic tissues (e.g., brain, adipose), acts locally and/or is transported to other tissues via blood circulation. Leydig cells are the testosterone-producing cells of the testis.

General role in biology

Androgens, the main male sex steroids, are the critical factors responsible for the development of the male phenotype during embryogenesis and for the achievement of sexual maturation at puberty. In adulthood, androgens remain essential for the maintenance of male reproductive function and behaviour. Apart from their effects on reproduction, androgens affect a wide variety of non-reproductive tissues such as skin, bone, muscle, and brain (Heemers, Verhoeven, & Swinnen, 2006). Androgens, principally T and 5 α -dihydrotestosterone (DHT), exert most of their effects by interacting with a specific receptor, the androgen receptor (AR), for review see (Murashima, Kishigami, Thomson, & Yamada, 2015). On the one hand, testosterone can be reduced by 5 α -reductase to produce 5 α dihydrotestosterone (DHT). On the other hand, testosterone can be aromatized to generate estrogens. Testosterone effects can also be classified by the age of usual occurrence, postnatal effects in both males and females are mostly dependent on the levels and duration of circulating free testosterone.

How it is Measured or Detected

Testosterone can be measured by immunoassays and by isotope-dilution gas chromatography-mass spectrometry in serum (Taieb et al., 2003), (Paduch et al., 2014). Testosterone levels are measured i.a. in: Fish Lifecycle Toxicity Test (FLCTT) (US EPA OPPTS 850.1500), Male pubertal assay (PP Male Assay) (US EPA OPPTS 890.1500), OECD TG 441: Hershberger Bioassay in Rats (H Assay).

References

Heemers, H. V., Verhoeven, G., & Swinnen, J. V. (2006). Androgen activation of the sterol regulatory element-binding protein pathway: Current insights. *Molecular Endocrinology* (Baltimore, Md.), 20(10), 2265–77. doi:10.1210/me.2005-0479

Murashima, A., Kishigami, S., Thomson, A., & Yamada, G. (2015). Androgens and mammalian male reproductive tract development. *Biochimica et Biophysica Acta*, 1849(2), 163–170. doi:10.1016/j.bbagen.2014.05.020

Paduch, D. A., Brannigan, R. E., Fuchs, E. F., Kim, E. D., Marmor, J. L., & Sandlow, J. I. (2014). The laboratory diagnosis of testosterone deficiency. *Urology*, 83(5), 980–8. doi:10.1016/j.urology.2013.12.024

Taieb, J., Mathian, B., Millot, F., Patricot, M.-C., Mathieu, E., Queyrel, N., ... Boudou, P. (2003). Testosterone measured by 10 immunoassays and by isotope-dilution gas chromatography-mass spectrometry in sera from 116 men, women, and children. *Clinical Chemistry*, 49(8), 1381–95.

AOP18

Event: 289: Decrease, Translocator protein (TSPO) (<https://aopwiki.org/events/289>)

Short Name: Decrease, Translocator protein (TSPO)

Key Event Component

Process	Object	Action
gene expression	translocator protein	decreased

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:18 - PPAR α activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	KeyEvent

Biological Context

Level of Biological Organization
Cellular

Cell term

Cell term
steroid hormone secreting cell

Domain of Applicability

Taxonomic Applicability			
Term	Scientific Term	Evidence	Links
Homo sapiens	Homo sapiens	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
rat	Rattus norvegicus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)
Mus musculus	Mus musculus	Moderate	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)

TSPO is a protein that shows high DNA sequence conservation from bacteria to mammals. It is expressed ubiquitously, but most abundant in steroidogenic cells (Yeliseev, Krueger, and Kaplan 1997).

Key Event Description

Biological state

Translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is a mitochondrial outer membrane protein implicated in cholesterol import to the inner mitochondrial membrane (Besman et al. 1989).

Biological compartments

The TSPO is present in virtually all mammalian peripheral tissues (Zisterer and Williams 1997), however highly prominent TSPO protein expression has been identified in steroidogenic tissues (R. R. Anholt et al. 1985), (Wang, Fan, and Papadopoulos 2012). The presence of TSOP has been confirmed in Leydig and Sertoli cells (Morohaku, Phuong, and Selvaraj 2013), granulosa cells (Amsterdam and Suh 1991) and to a lesser extent in thecal cells (Morohaku, Phuong, and Selvaraj 2013). In subcellular fractions, binding sites for the TSOP have been identified to be present in the outer mitochondrial membrane (OMM) (R. R. Anholt et al. 1985), (R. Anholt et al. 1986). Transcriptional regulation of TSPO genes has been examined and recently reviewed (Morohaku, Phuong, and Selvaraj 2013).

General role in biology: regulation of lipid transport

TSPO mediates the delivery of the substrate cholesterol to the inner mitochondrial side chain cleavage enzyme P450scc (Besman et al. 1989). TSPO ligands stimulate steroidogenesis and induce cholesterol movement from the outer mitochondrial membrane (OMM) to the inner mitochondrial membrane (IMM) (Besman et al. 1989).

How it is Measured or Detected

TSPO levels can be assayed by standard methods for assessment of gene expression levels like qPCR or direct protein levels by Western blot.

The level of TSPO as well as other steroidogenic protein can be measured *in vitro* cultured Leydig cells. The methods for culturing Leydig cells can be found in the Database Service on Alternative Methods to animal experimentation (DB-ALM): Leydig Cell-enriched Cultures [1] (http://ecvam-dbalm.jrc.ec.europa.eu/beta/index.cfm/methodsAndProtocols/index?id_met=232), Testicular Organ and Tissue Culture Systems [2] (http://ecvam-dbalm.jrc.ec.europa.eu/beta/index.cfm/methodsAndProtocols/index?id_met=515).

Uncertainties and Inconsistencies

This information needs to be moved to a key event relationship page.

TSPO -knockout mice have shown embryonic lethality (Lacapère and Papadopoulos 2003); in contrast recent findings have shown no effect on viability of foetuses (Tu et al. 2014). Aberrant TSPO levels have been linked to multiple diseases, including cancer, endocrine disorders, brain injury, neurodegeneration, ischemia-reperfusion injury and inflammatory diseases (Wang, Fan, and Papadopoulos 2012). However, recent studies have shown opposite results. Peripheral benzodiazepine receptor/translocator

AOP18

protein global knock-out mice are viable and show no effects on steroid hormone biosynthesis (Tu et al. 2014), (Morohaku et al. 2014). As stated in a recent review "At this point in time, a functional designation for TSPO is still actively being sought" (Selvaraj, Stocco, and Tu 2015).

References

Amsterdam, A. & Suh, B.S., 1991. An inducible functional peripheral benzodiazepine receptor in mitochondria of steroidogenic granulosa cells. *Endocrinology*, 129(1), pp.503–10.

Anholt, R. et al., 1986. The peripheral-type benzodiazepine receptor. Localization to the mitochondrial outer membrane. *J. Biol. Chem.*, 261(2), pp.576–583.

Anholt, R.R. et al., 1985. Peripheral-type benzodiazepine receptors: autoradiographic localization in whole-body sections of neonatal rats. *The Journal of pharmacology and experimental therapeutics*, 233(2), pp.517–26.

Besman, M.J. et al., 1989. Identification of des-(Gly-Ile)-endozepine as an effector of corticotropin-dependent adrenal steroidogenesis: stimulation of cholesterol delivery is mediated by the peripheral benzodiazepine receptor. *Proceedings of the National Academy of Sciences of the United States of America*, 86(13), pp.4897–901.

Lacapère, J.J. & Papadopoulos, V., 2003. Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. *Steroids*, 68(7-8), pp.569–85.

Morohaku, K. et al., 2014. Translocator protein/peripheral benzodiazepine receptor is not required for steroid hormone biosynthesis. *Endocrinology*, 155(1), pp.89–97.

Morohaku, K., Phuong, N.S. & Selvaraj, V., 2013. Developmental expression of translocator protein/peripheral benzodiazepine receptor in reproductive tissues. W. Yan, ed. *PLoS one*, 8(9), p.e74509.

Papadopoulos, V. et al., 1997. Targeted disruption of the peripheral-type benzodiazepine receptor gene inhibits steroidogenesis in the R2C Leydig tumor cell line. *The Journal of biological chemistry*, 272(51), pp.32129–35.

Tu, L.N. et al., 2014. Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis. *The Journal of biological chemistry*, 289(40), pp.27444–54.

Wang, H.-J., Fan, J. & Papadopoulos, V., 2012. Translocator protein (Tspo) gene promoter-driven green fluorescent protein synthesis in transgenic mice: an in vivo model to study Tspo transcription. *Cell and tissue research*, 350(2), pp.261–75.

Yeliseev, A.A., Krueger, K.E. & Kaplan, S., 1997. A mammalian mitochondrial drug receptor functions as a bacterial "oxygen" sensor. *Proceedings of the National Academy of Sciences of the United States of America*, 94(10), pp.5101–6. Zisterer, D.M. & Williams, D.C., 1997. Peripheral-type benzodiazepine receptors. *General pharmacology*, 29(3), pp.305–14.

List of Adverse Outcomes in this AOP

Event: 406: impaired, Fertility (<https://aopwiki.org/events/406>)

Short Name: impaired, Fertility

Key Event Component

Process	Object	Action
fertility		decreased

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:7 - Aromatase (Cyp19a1) reduction leading to impaired fertility in adult female (https://aopwiki.org/aops/7)	AdverseOutcome
Aop:51 - PPAR α activation leading to impaired fertility in adult male rodents (https://aopwiki.org/aops/51)	AdverseOutcome
Aop:18 - PPAR α activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	AdverseOutcome
Aop:64 - Glucocorticoid Receptor (GR) Mediated Adult Leydig Cell Dysfunction Leading to Decreased Male Fertility (https://aopwiki.org/aops/64)	AdverseOutcome

Biological Context

Level of Biological Organization
Individual

Domain of Applicability

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
rat	Rattus norvegicus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)
mouse	Mus musculus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)
human	Homo sapiens	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)

Key Event Description

Biological state

capability to produce offspring

Biological compartments

System

General role in biology

Fertility is the capacity to conceive or induce conception. Impairment of fertility represents disorders of male or female reproductive functions or capacity.

How it is Measured or Detected

As a measure, fertility rate, is the number of offspring born per mating pair, individual or population.

Regulatory Significance of the AO

Under REACH, information on reproductive toxicity is required for chemicals with an annual production/importation volume of 10 metric tonnes or more. Standard information requirements include a screening study on reproduction toxicity (OECD TG 421/422) at Annex VIII (10-100 t.p.a), a prenatal developmental toxicity study (OECD 414) on a first species at Annex IX (100-1000 t.p.a), and from March 2015 the OECD 443(Extended One-Generation Reproductive Toxicity Study) is reproductive toxicity requirement instead of the two generation reproductive toxicity study (OECD TG 416). If not conducted already at Annex IX, a prenatal developmental toxicity study on a second species at Annex X (≥ 1000 t.p.a.).

Under the Biocidal Products Regulation (BPR), information is also required on reproductive toxicity for active substances as part of core data set and additional data set (EU 2012, ECHA 2013). As a core data set, prenatal developmental toxicity study (EU TM B.31) in rabbits as a first species and a two-generation reproduction toxicity study (EU TM B.31) are required. OECD TG 443 (Extended One-Generation Reproductive Toxicity Study) shall be considered as an alternative approach to the multi-generation study.) According to the Classification, Labelling and Packaging (CLP) regulation (EC, 200; Annex I: 3.7.1.1): a) "reproductive toxicity" includes adverse effects on sexual function and fertility in adult males and females, as well as developmental toxicity in the offspring; b) "effects on fertility" includes adverse effects on sexual function and fertility; and c) "developmental toxicity" includes adverse effects on development of the offspring.

Event: 348: Malformation, Male reproductive tract (<https://aopwiki.org/events/348>)

Short Name: Malformation, Male reproductive tract

Key Event Component

Process	Object	Action
	male reproductive organ	morphological change

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:18 - PPAR α activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	AdverseOutcome

Biological Context

Level of Biological Organization
Organ

Organ term

Organ term
male reproductive system

Domain of Applicability**Taxonomic Applicability**

Term	Scientific Term	Evidence	Links
human	Homo sapiens	Moderate	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
rat	Rattus norvegicus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)

Hypospadias

Rodents (Gray et al. 2001) Human (Manson and Carr 2003) Wildlife species (Hayes et al. 2002)

AGD Across numerous species, including humans, AGD is longer in males compared to females; for review see (Barrett et al. 2014).

Key Event Description**Biological state**

Male reproductive tract malformations (congenital malformation of male genitalia) comprise any physical abnormality of the male internal or external genitalia present at birth. Some result from excessive or deficient androgen effect, others result from teratogenic effects, or are associated with anomalies of other parts of the body in a recognizable pattern (i.e., a syndrome). The cause of many of these birth defects is unknown.

Hypospadias is a defect of the urogenital system, a malformation in which the urethra opens on the underside of the penis instead of the tip. It results from an incomplete closure of the urethral folds, leaving a split on the penis (Kalfa, Philibert, and Sultan 2009). When the urethra opens to the glans or corona of the penis, it is called distal, whereas opening to the shaft or penoscrotal area defines hypospadias as proximal. Androgens regulate the masculinization of external genitalia. Therefore any defects in androgen biosynthesis, metabolism or action during foetal development can cause hypospadias. Gene defects causing disorders of testicular differentiation, conversion of testosterone to dihydrotestosterone or mutations in the androgen receptor can also result in hypospadias (Kalfa et al. 2008). In about 20% of patients with isolated hypospadias there are signs of endocrine abnormalities by the time of diagnosis (Rey et al. 2005). The majority of hypospadias are believed to have a multifactorial etiology, although a small percentage do result from single gene mutations (Baskin, Himes, and Colborn 2001). The only treatment of hypospadias is surgery, thus, prevention is imperative.

Biological compartments: reproductive system

How it is Measured or Detected

Malformations are detected by macroscopically for any structural abnormality or pathological change. The Congenital malformation of the genitalia is a medical term referring to a broad category of conditions that for humans is classified by International Classification of Diseases (ICD) in chapter "Congenital malformations of genital organs" (Q50-Q56) e.g.Q54 Hypospadias, Q53 Undescended testicle. Hypospadias is usually diagnosed during the routine examination after birth. The hypospadias belongs to the category of "Congenital malformation of the genitalia" - a medical term referring to a broad category of conditions as classified in the International Classification of Diseases (ICD) in chapter "Congenital malformations of genital organs" (Q50-Q56) e.g. Q54 Hypospadias.

The anogenital distance (AGD) is a sexual dimorphism that results from the sex difference in foetal androgen (DHT) levels (Rhees et al., 1997). The AGD, the distance from the anus to the genitals, is widely used as biomarker of prenatal androgen exposure during a reproductive programming window (Wolf et al. 1999), (McIntyre, Barlow, and Foster 2001), (Macleod et al. 2010). The AGD is a marker of perineal growth and caudal migration of the genital tubercle. It is androgen-dependent in male rodents (Bowman et al. 2003). Measurement of AGD has also been proposed as a quantitative biomarker of foetal endocrine disruptor exposure in humans (Arbuckle et al. 2008), (Dean and Sharpe 2013). A longer (more "masculine") AGD is typically associated with favourable health outcomes, while a shorter AGD is associated with adverse health outcomes. The AGD in males is approximately double that of females. Less is known about clinical correlates of AGD in females, although one study found that in women a longer AGD was associated with increased odds of multifollicular ovaries (Mendiola et al. 2012). The AGD is reflecting the prenatal hormonal milieu and in addition a biomarker for the risk of reproductive health problems linked to that early hormonal environment (Barrett et al. 2014). In animal studies, AGD measured from the genital tubercle to the anus is a sensitive marker of in utero exposure to androgens and anti-androgens, and is used extensively in animal reproductive toxicology studies (McIntyre, Barlow, and Foster 2001). AGD of each pup should be measured on at least one occasion from pre natal day postnatal day (PND) 0 through PND 4. Pup body weight should be collected on the day the AGD is measured and the AGD should be normalized to a measure of pup size, preferably the cube root of body weight (12). AGD is influenced by the body weight of the animal and therefore, this should be taken into account when evaluating the data (Gallavan et al, 1999). Body weight as a covariate may also be used (Howdeshell et al. 2007). Decreased AGD in male rats is a hallmark of exposure to antiandrogenic substances (Noriega et al, 2009; Christiansen et al, 2010). A statistically significant change in AGD that cannot be explained by the size of the animal indicates an adverse effect of exposure and should be considered in setting the NOAEL (OECD, 2008).

The extended one-generation in vivo reproductive toxicity study OECD TG 443 [1] (http://www.oecd-ilibrary.org/environment/test-no-443-extended-one-generation-reproductive-toxicity-study_9789264122550-en) is used to investigate adverse effects of chemical substances on fertility and developmental toxicity in the rat, in which AGD is measured.

Regulatory Significance of the AO

In regulatory hazard identification and risk assessment of chemicals malformations of male genitalia are considered as a chemically induced adverse outcome that is used for risk assessment and management purposes. The prenatal developmental toxicity study (TG 414) is the method for examining embryo-foetal toxicity as a consequence of exposure during pregnancy. Parental and offspring growth, development and viability are the relevant endpoints in generation studies (OECD TG 415/416/443). These guidelines are implemented in a number of occasions where the reproductive /developmental toxicity have to be assessed in order to comply with relevant EU regulations.

Under REACH, information on reproductive toxicity is required for chemicals with an annual production/importation volume of 10 metric tonnes or more. Standard information requirements include a screening study on reproduction toxicity (OECD TG 421/422) at Annex VIII (10-100 t.p.a), a prenatal developmental toxicity study (OECD 414) on a first species at Annex IX (100-1000 t.p.a), and from March 2015 the OECD 443(Extended One-Generation Reproductive Toxicity Study) is reproductive toxicity requirement instead of the two generation reproductive toxicity study (OECD TG 416). If not conducted already at Annex IX, a prenatal developmental toxicity study on a second species at Annex X (≥ 1000 t.p.a.).

Under the Biocidal Products Regulation (BPR), information is also required on reproductive toxicity for active substances as part of core data set and additional data set (EU 2012, ECHA 2013). As a core data set, prenatal developmental toxicity study (EU TM B.31) in rabbits as a first species and a two-generation reproduction toxicity study (EU TM B.31) are required. OECD TG 443 (Extended One-Generation Reproductive Toxicity Study) shall be considered as an alternative approach to the multi-generation study.

According to the Classification, Labelling and Packaging (CLP) regulation (EC, 2000; Annex I: 3.7.1.1): a) "reproductive toxicity" includes adverse effects on sexual function and fertility in adult males and females, as well as developmental toxicity in the offspring; b) "effects on fertility" includes adverse effects on sexual function and fertility; and c) "developmental toxicity" includes adverse effects on development of the offspring.

AGD is a reproductive endpoint, assessment of AGD is mandatory in OECD TG 443, 415/416 (OECD 2012).

References

Arbuckle, Tye E, Russ Hauser, Shanna H Swan, Catherine S Mao, Matthew P Longnecker, Katharina M Main, Robin M Whyatt, et al. 2008. "Meeting Report: Measuring Endocrine-Sensitive Endpoints within the First Years of Life." *Environmental Health Perspectives* 116 (7) (July): 948–51. doi:10.1289/ehp.11226.

Barrett, Emily S, Lauren E Parlett, J Bruce Redmon, and Shanna H Swan. 2014. "Evidence for Sexually Dimorphic Associations between Maternal Characteristics and Anogenital Distance, a Marker of Reproductive Development." *American Journal of Epidemiology* 179 (1) (January 1): 57–66. doi:10.1093/aje/kwt220.

Baskin, L S, K Himes, and T Colborn. 2001. "Hypospadias and Endocrine Disruption: Is There a Connection?" *Environmental Health Perspectives* 109 (11) (November): 1175–83.

Bowman, Christopher J, Norman J Barlow, Katie J Turner, Duncan G Wallace, and Paul M D Foster. 2003. "Effects of in Utero Exposure to Finasteride on Androgen-Dependent Reproductive Development in the Male Rat." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 74 (2) (August): 393–406. doi:10.1093/toxsci/kfg128.

Dean, Afshan, and Richard M Sharpe. 2013. "Clinical Review: Anogenital Distance or Digit Length Ratio as Measures of Fetal Androgen Exposure: Relationship to Male Reproductive Development and Its Disorders." *The Journal of Clinical Endocrinology and Metabolism* 98 (6) (June): 2230–8. doi:10.1210/jc.2012-4057.

Gray, L E, J Ostby, J Furr, C J Wolf, C Lambright, L Parks, D N Veeramachaneni, et al. 2001. "Effects of Environmental Antiandrogens on Reproductive Development in Experimental Animals." *Human Reproduction Update* 7 (3): 248–64.

Hayes, Tyrone B, Atif Collins, Melissa Lee, Magdelena Mendoza, Nigel Noriega, A Ali Stuart, and Aaron Vonk. 2002. "Hermaphroditic, Demasculinized Frogs after Exposure to the Herbicide Atrazine at Low Ecologically Relevant Doses." *Proceedings of the National Academy of Sciences of the United States of America* 99 (8) (April 16): 5476–80. doi:10.1073/pnas.082121499.

Howdeshell, Kembra L, Johnathan Furr, Christy R Lambright, Cynthia V Rider, Vickie S Wilson, and L Earl Gray. 2007. "Cumulative Effects of Dibutyl Phthalate and Diethylhexyl Phthalate on Male Rat Reproductive Tract Development: Altered Fetal Steroid Hormones and Genes." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 99 (1) (September): 190–202. doi:10.1093/toxsci/kfm069.

Kalfa, Nicolas, Benchun Liu, Ophir Klein, Ming-Hsieh Wang, Mei Cao, and Laurence S Baskin. 2008. "Genomic Variants of ATF3 in Patients with Hypospadias." *The Journal of Urology* 180 (5) (November): 2183–8; discussion 2188. doi:10.1016/j.juro.2008.07.066.

Kalfa, Nicolas, Pascal Philibert, and Charles Sultan. 2009. "Is Hypospadias a Genetic, Endocrine or Environmental Disease, or Still an Unexplained Malformation?" *International Journal of Andrology* 32 (3) (June): 187–97. doi:10.1111/j.1365-2605.2008.00899.x.

Macleod, D J, R M Sharpe, M Welsh, M Fiskin, H M Scott, G R Hutchison, A J Drake, and S van den Driesche. 2010. "Androgen Action in the Masculinization Programming Window and Development of Male Reproductive Organs." *International Journal of Andrology* 33 (2) (April): 279–87. doi:10.1111/j.1365-2605.2009.01005.x.

Manson, Jeanne M, and Michael C Carr. 2003. "Molecular Epidemiology of Hypospadias: Review of Genetic and Environmental Risk Factors." *Birth Defects Research. Part A, Clinical and Molecular Teratology* 67 (10) (October): 825–36. doi:10.1002/bdra.10084.

McIntyre, B S, N J Barlow, and P M Foster. 2001. "Androgen-Mediated Development in Male Rat Offspring Exposed to Flutamide in Utero: Permanence and Correlation of Early Postnatal Changes in Anogenital Distance and Nipple Retention with Malformations in Androgen-Dependent Tissues." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 62 (2) (August): 236–49.

Mendiola, Jaime, Manuela Roca, Lidia Mínguez-Alarcón, María-Pilar Mira-Escalona, José J López-Espín, Emily S Barrett, Shanna H Swan, and Alberto M Torres-Cantero. 2012. "Anogenital Distance Is Related to Ovarian Follicular Number in Young Spanish Women: A Cross-Sectional Study." *Environmental Health : A Global Access Science Source* 11 (January): 90. doi:10.1186/1476-069X-11-90.

OECD. 2012. Test No. 443: Extended One-Generation Reproductive Toxicity Study. OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing. doi:10.1787/9789264185371-en.

Rey, Rodolfo A, Ethel Codner, Germán Iñiguez, Patricia Bedecarrás, Romina Trigo, Cecilia Okuma, Silvia Gottlieb, Ignacio Bergadá, Stella M Campo, and Fernando G Cassrola. 2005. "Low Risk of Impaired Testicular Sertoli and Leydig Cell Functions in Boys with Isolated Hypospadias." *The Journal of Clinical Endocrinology and Metabolism* 90 (11) (November): 6035–40. doi:10.1210/jc.2005-1306.

Wolf, C., C. Lambright, P. Mann, M. Price, R. L. Cooper, J. Ostby, and L. E. Gray. 1999. "Administration of Potentially Antiandrogenic Pesticides (procymidone, Linuron, Iprodione, Chlozolinate, P,p'-DDE, and Ketoconazole) and Toxic Substances (dibutyl- and Diethylhexyl Phthalate, PCB 169, and Ethane Dimethane Sulphonate) during Sexual Differen." *Toxicology and Industrial Health* 15 (1-2) (February 1): 94–118. doi:10.1177/074823379901500109.

Appendix 2

List of Key Event Relationships in the AOP

List of Adjacent Key Event Relationships

Relationship: 436: Decrease, Steroidogenic acute regulatory protein (STAR) leads to Reduction, Cholesterol transport in mitochondria (<https://aopwiki.org/relationships/436>)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
PPARα activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	adjacent	Moderate	

Evidence Supporting Applicability of this Relationship

See Table 1.

Key Event Relationship Description

Steroidogenic acute regulatory protein (StAR) mediates the cholesterol transport from the outer to the inner mitochondrial membrane, where it undergoes side chain cleavage by cytochrome P-450 enzyme (P450scc) that yields the steroid precursor, pregnenolone (Besman et al. 1989). The cholesterol transfer within the mitochondria is the rate-limiting step in the production of steroid hormones. Therefore reduced amount/activity of the StAR impairs the cholesterol delivery that is necessary for the hormone biosynthesis.

Evidence Supporting this KER

Biological Plausibility

The first step in steroidogenesis takes place within mitochondria. StAR facilitates the movement of cholesterol from the outer mitochondrial membrane (OMM) to the inner mitochondrial membrane (IMM) for steroidogenesis [reviewed in (Miller and Auchus 2011)]. It is primarily present in steroid-producing cells, including theca cells and luteal cells in the ovary, Leydig cells in the testis and cells in the adrenal cortex.

Empirical Evidence

Down-regulation of StAR and impaired steroidogenesis was reported upon exposure to phthalates i.a. (Barlow et al. 2003), (Borch et al. 2006), for details see Table 1.

			KE: StAR, decrease	KE: Cholesterol transport, decrease		
Compound	Species	Effect level			Details	References
Phthalate (DBP)	rat	LOEL=500 mg/kg/day	mRNA StAR decrease (by ~34%)	reduced Leydig cell lipid content		(Barlow et al. 2003)
Phthalate (DBP)	rat	LOEL=500 mg/kg/day (GD12-19)		decrease uptake of cholesterol Leydig cell mitochondria	decreased testosterone, decreased expression of scavenger receptor B1, P450(SCC), steroidogenic acute regulatory protein, and cytochrome p450c17	(Thompson, Ross, and Gaido 2004)
Phthalate (DBP)	rat	LOEL=500 mg/kg	mRNA and protein StAR decrease		1 dose, Time course analysis (0,5,1,2,3,6,12,18, 24h killed at GD), decreased testosterone in foetal testis	(Thompson et al. 2005)
Phthalate (DEHP)	rat	LOEL=300 mg/kg/day	mRNA StAR decrease		dose-dependently reduced StAR, TSOP mRNA (GD 21 testes), also on protein levels in Leydig cells	(Borch et al. 2006)
Phthalate (DBP)	rat	LOEL=500 mg/kg/day, (GD12 to 21)	mRNA StAR decrease		Testes examined GD 16, 19, and 21, cytochrome P450 side chain cleavage, cytochrome P450c17, decrease. Testicular testosterone and androstenedione decreased (GD 19 and 21)	(Shultz 2001)
Phthalate (MEHP)	rat	LOEC=250 µM	protein StAR decrease (immature and adult Leydig cells)	cholesterol transport, decrease (into the mitochondria of immature and adult Leydig cells)	decreased testosterone by approximately 60%, in vitro (immature and adult Leydig cells)	(Svechnikov, Svechnikova, and Söder 2008)
Phthalate (DBP)	rat	LOEL=500 mg/kg/day	mRNA StAR decrease		GD 12 -20, examinations on GD20	(Johnson et al. 2011)

Table 1 Summary table of empirical support for this KER. LOEC-lowest effect concentration, LOEL- lowest observed effect level, Dibutyl phthalate (DBP), Di-2-ethylhexyl phthalate (DEHP), mono(2-ethylhexyl) phthalate (MEHP).

Uncertainties and Inconsistencies

Some steroidogenesis is independent of StAR; when nonsteroidogenic cells are transfected with the P450scc system, they convert cholesterol to pregnenolone at about 14% of the StAR-induced rate (Lin et al. 1995). The mechanism of StAR-independent steroidogenesis is unclear (Miller and Auchus 2011). Johnson et al proposed the involvement of sterol regulatory element-binding protein (SREBP) in phthalate mediated disruption of steroidogenesis. Their study showed lipid metabolism pathways transcriptionally regulated by SREBP were inhibited in the rat but induced in the mouse, and this differential species response corresponded with repression of the steroidogenic pathway. In rats exposed to 100 or 500 mg/kg DBP from gestational days (GD) 16 to 20, a correlation was observed between GD20 testis steroidogenic inhibition and reductions of testis cholesterol synthesis endpoints including testis total cholesterol levels (Johnson et al. 2011).

References

Barlow, Norman J, Suzanne L Phillips, Duncan G Wallace, Madhabananda Sar, Kevin W Gaido, and Paul M D Foster. 2003. "Quantitative Changes in Gene Expression in Fetal Rat Testes Following Exposure to Di(n-Butyl) Phthalate." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 73 (2) (June): 431–41. doi:10.1093/toxsci/kfg087.

Besman, M J, K Yanagibashi, T D Lee, M Kawamura, P F Hall, and J E Shively. 1989. "Identification of Des-(Gly-Ile)-Endozepine as an Effector of Corticotropin-Dependent Adrenal Steroidogenesis: Stimulation of Cholesterol Delivery Is Mediated by the Peripheral Benzodiazepine Receptor." *Proceedings of the National Academy of Sciences of the United States of America* 86 (13) (July): 4897–901.

Borch, Julie, Stine Broeng Metzdorff, Anne Marie Vinggaard, Leon Brokken, and Majken Dalgaard. 2006. "Mechanisms Underlying the Anti-Androgenic Effects of Diethylhexyl Phthalate in Fetal Rat Testis." *Toxicology* 223 (1-2) (June 1): 144–55. doi:10.1016/j.tox.2006.03.015.

Johnson, Kamin J, Erin N McDowell, Megan P Viereck, and Jessie Q Xia. 2011. "Species-Specific Dibutyl Phthalate Fetal Testis Endocrine Disruption Correlates with Inhibition of SREBP2-Dependent Gene Expression Pathways." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 120 (2) (April): 460–74. doi:10.1093/toxsci/kfr020.

Lin, D, T Sugawara, J F Strauss, B J Clark, D M Stocco, P Saenger, A Rogol, and W L Miller. 1995. "Role of Steroidogenic Acute Regulatory Protein in Adrenal and Gonadal Steroidogenesis." *Science (New York, N.Y.)* 267 (5205) (March 24): 1828–31.

Miller, Walter L, and Richard J Auchus. 2011. "The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders." *Endocrine Reviews* 32 (1) (February): 81–151. doi:10.1210/er.2010-0013.

Shultz, V. D. 2001. "Altered Gene Profiles in Fetal Rat Testes after in Utero Exposure to Di(n-Butyl) Phthalate." *Toxicological Sciences* 64 (2) (December 1): 233–242. doi:10.1093/toxsci/64.2.233.

Svechnikov, Konstantin, Irina Svechnikova, and Olle Söder. 2008. "Inhibitory Effects of Mono-Ethylhexyl Phthalate on Steroidogenesis in Immature and Adult Rat Leydig Cells In Vitro." *Reproductive Toxicology (Elmsford, N.Y.)* 25 (4) (August): 485–90. doi:10.1016/j.reprotox.2008.05.057.

Thompson, Christopher J, Susan M Ross, and Kevin W Gaido. 2004. "Di(n-Butyl) Phthalate Impairs Cholesterol Transport and Steroidogenesis in the Fetal Rat Testis through a Rapid and Reversible Mechanism." *Endocrinology* 145 (3) (March): 1227–37. doi:10.1210/en.2003-1475.

Thompson, Christopher J, Susan M Ross, Jana Hensley, Kejun Liu, Susanna C Heinze, S Stanley Young, and Kevin W Gaido. 2005. "Differential Steroidogenic Gene Expression in the Fetal Adrenal Gland versus the Testis and Rapid and Dynamic Response of the Fetal Testis to Di(n-Butyl) Phthalate." *Biology of Reproduction* 73 (5) (November): 908–17. doi:10.1093/biolreprod.105.042382.

Relationship: 438: Reduction, Cholesterol transport in mitochondria leads to Reduction, Testosterone synthesis in Leydig cells (<https://aopwiki.org/relationships/438>)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
PPARα activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	adjacent	Moderate	
PPARα activation leading to impaired fertility in adult male rodents (https://aopwiki.org/aops/51)	adjacent	Moderate	

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
mice	Mus sp.	Moderate	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095)
rat	Rattus norvegicus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)
human	Homo sapiens	Low	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)

See Table 1.

Key Event Relationship Description

Production of steroid hormones depends on the availability of cholesterol in the mitochondrial matrix. A decreased amount of cholesterol inside the mitochondria (e. g by decreased expression of enzymes that transport cholesterol like StAR or TSOP) means diminished substrate for hormone (testosterone) production in testes.

Evidence Supporting this KER

Biological Plausibility

Steroid hormones play a critical role in sexual development, homeostasis, stress-responses, carbohydrate metabolism, tumor growth, and reproduction. These hormones are primarily produced in specialized steroidogenic tissues and are synthesized from a common precursor, cholesterol. Mitochondria are a key control point for the regulation of steroid hormone biosynthesis. The first and rate-limiting step in steroidogenesis is the transfer of cholesterol from the outer mitochondrial membrane to the inner mitochondrial membrane, a process dependent on the action of StAR (Stocco, 2001) and the subsequent transport across the inner mitochondrial space into the steroidogenic pathway, which is executed by TSPO (Hauet et al., 2005). Testosterone production by Leydig cells is primarily under the control of luteinizing hormone (LH). Stimulation of the Leydig cells results in the activation of StAR transcription and translation, which facilitates the transfer of cholesterol into the mitochondrial matrix to cholesterol side-chain cleavage cytochrome P450 (P450ccc, CYP11A), which converts cholesterol to pregnenolone. Pregnenolone diffuses to the smooth endoplasmic reticulum where it is further metabolized to testosterone via the actions of 3 β -hydroxysteroid dehydrogenase $\Delta 5$ - $\Delta 4$ -isomerase (3 β -HSD), 17 α -hydroxylase/C17-20 lyase (P450c17, CYP17), and 17 β -hydroxysteroid dehydrogenase type III (17HSD3). For review see (Payne & Hales, 2013). Decreased expression of genes that are responsible for cholesterol transport and steroidogenic enzyme activities in the Leydig cell leads to decreased testosterone production.

Empirical Evidence

There is evidence from experimental work that demonstrates a coordinated reduction in the expression of key genes and proteins that are involved in cholesterol transport and steroidogenesis, together with a corresponding reduction in testosterone in testes. For details see Table 1. Foetal Leydig cells exhibit a high rate of lipid metabolism, which is required for both synthesizing and importing the testosterone precursor cholesterol. Upon exposure to some chemicals mRNA expression of genes in these pathways are profoundly reduced e.g. following 500mg/kg phthalate (DBP) exposure (Johnson, McDowell, Viereck, & Xia, 2011), (Thompson et al., 2005). Additionally, after phthalate exposure testis cholesterol and cholesterol-containing lipid droplets in foetal Leydig cells are also reduced (Barlow et al., 2003), (Johnson et al., 2011), (Lehmann, Phillips, Sar, Foster, & Gaido, 2004).

			KE: Cholesterol transport, reduction	KE: Testosterone production/levels, reduction
Compound	Species	Effect level	Translator protein (TSPO), decrease; Steroidogenic acute regulatory protein (StAR) decrease	
Phthalate (DBP)	rat	LOEL=500 mg/kg/day	mRNA StAR decrease (by ~34%) (Barlow et al., 2003)	
Phthalate (BBP, DPeP, DEHP, DHP, DiHeP, DCHP, DINP DHeP)	rat			
Phthalate (DBP, DEHP, BBP)	Rat	LOEL=750 mg/kg/day (GD14-18)		testosterone production, reduction ex vivo fetal testes examined on GD18 (Wilson et al., 2004)
Phthalate (DBP)	rat	LOEL=500 mg/kg/day	reduced Leydig cell lipid content(Barlow et al., 2003)	
Phthalate (DBP)	rat	LOEL=500 mg/kg/day GD 12 -20, examinations on GD20	total cholesterol levels, reduction	intratesticular testosterone levels, reduction (by nearly 90%) (Johnson et al., 2011)

Phthalate (DBP)	rat	LOEL=500 mg/kg/day (GD12-19)	decrease uptake of cholesterol Leydig cell mitochondria gd 19	testosterone production, reduction ex vivo (Thompson, Ross, & Gaido, 2004)
Phthalate (DEHP)	mouse	LOEL=1 g/kg/day	reduced TSPO mRNA	testosterone levels, reduction (Gazouli, 2002)
Phthalate (DEHP)	rat	LOEL=300 mg/kg/day	dose-dependently reduced StAR, TSOP mRNA (GD 21 testes), also on protein levels in Leydig cells (Borch, Metzdorff, Vinggaard, Brokken, & Dalgaard, 2006)	
Phthalate (DEHP)	rat	LOEL=300 mg/kg/day		testosterone production, reduction (ex vivo) testosterone levels, reduction (Borch et al., 2006), (Borch, Ladefoged, Hass, & Vinggaard, 2004)
Phthalate (MEHP)	mouse	LOEC=100 µM	<ul style="list-style-type: none"> reduced TSPO mRNA levels by 50%, binding sites decreased by 50% no effect on receptor affinity inhibited the transfer or loading of cholesterol to the inner mitochondrial membrane P450scc. (Gazouli, 2002) 	
Phthalate (MEHP)	rat	IC50 =100 µM	<ul style="list-style-type: none"> inhibited formation of progesterone (Gazouli, 2002) 	
Phthalate (MEHP)	rat	LOEC=250 µM	cholesterol transport, decrease (into the mitochondria of immature and adult Leydig cells)	Testosterone, reduction by approximately 60%, in vitro (immature and adult Leydig cells) (Svechnikov, Svechnikova, & Söder, 2008)
Phthalate (DEHP)	rat	LOEL=750 mg/kg/day		testosterone production reduction, testosterone levels, reduction (testicular and whole-body T levels in fetal and neonatal male rats from GD 17 to PND 2. (Parks, 2000)
Phthalate (MEHP)	rat	LOEC=1 µM		testosterone production, reduction dose-dependent (Chauvigné et al., 2011)
Perfluoroctanoic acid (PFOA)	mouse	LOEL=5mg/kg/day		plasma testosterone, reduction (by 37%)(Li et al., 2011)
WY-14,643	mouse	LOEC=50 mg/kg/day	reduced TSPO mRNA	Serum testosterone levels, reduction (Gazouli, 2002)
WY-14,643	rat			No decrease of testosterone (ex vivo), (Furr, Lambright, Wilson, Foster, & Gray, 2014)
WY-14,643	mouse	LOEC=100 µM	Inhibited progesterone synthesis (Gazouli, 2002)	
Bezafibrate	mouse	IC50=100 µM	<ul style="list-style-type: none"> a dose-dependent 10–95% inhibition of the progesterone synthesis at 24 or 72 h inhibited the transfer or loading of cholesterol to the inner mitochondrial membrane P450scc. At 100 µM binding sites of TSPO decreased IC50 of approximately 100 µM decrease TSPO levels by 60% at 100 µM (Gazouli, 2002) 	
Bezafibrate	rat	IC50 = 30 µM	inhibited formation of progesterone (Gazouli, 2002)	
Bezafibrate	rat	IC50 ~10–4 µM		testosterone production, reduction (Gazouli, 2002)
Phthalate (DiBP)	rat	GD 19 -21	reduced StAR, (Boberg et al., 2008)	testicular testosterone production and testicular testosterone levels, (Boberg et al., 2008)

Table 1. Summary table of empirical support for this KER. IC50 half maximal inhibitory concentration, LOEC-lowest effect concentration, LOEL- lowest observed effect level, Dibutyl phthalate (DBP), diisobutyl phthalate (DiBP), Bis(2-ethylhexyl) phthalate (DEHP), Dibutyl phthalate (DBP), Bezafibrate and WY-14,643 are PPAR α ligands, n.a - not available

Uncertainties and Inconsistencies

Thompson et al investigated time course effects of phthalate on steroidogenesis gene expression and testosterone concentration. The study showed diminished concentration testosterone concentration in the foetal testis by 50% within 1h of treatment with phthalate (DBP). Surprisingly, the diminution in testosterone concentration preceded any alteration in expression of genes in the steroidogenesis pathway. Star mRNA was significantly diminished 2 h after DBP exposure, but Cyp11a1, Cyp17a1, and Scarb1 did not show a significant decrease in expression until 6 h after DBP exposure (Thompson et al., 2005). In utero exposure of rats to PFOA 20 mg/kg did not

cause any effect on fetal testosterone (Boberg et.al. 2008) although in mice (adult) the decrease level of testosterone was observed. Testosterone production may also be diminished due to reduction/inhibition of other genes involved in steroidogenesis (e.g. P450scc, Cyp17a1) (Thompson et al., 2004), (Boberg et al., 2008), (Chauvigné et al., 2009), (Chauvigné et al., 2011).

References

Barlow, N. J., Phillips, S. L., Wallace, D. G., Sar, M., Gaido, K. W., & Foster, P. M. D. (2003). Quantitative changes in gene expression in fetal rat testes following exposure to di(n-butyl) phthalate. *Toxicological Sciences : An Official Journal of the Society of Toxicology*, 73(2), 431–41. doi:10.1093/toxsci/kfg087

Boberg, J., Metzdorff, S., Wörtziger, R., Axelstad, M., Brokken, L., Vinggaard, A. M., ... Nellemann, C. (2008). Impact of diisobutyl phthalate and other PPAR agonists on steroidogenesis and plasma insulin and leptin levels in fetal rats. *Toxicology*, 250(2-3), 75–81. doi:10.1016/j.tox.2008.05.020

Borch, J., Ladefoged, O., Hass, U., & Vinggaard, A. M. (2004). Steroidogenesis in fetal male rats is reduced by DEHP and DINP, but endocrine effects of DEHP are not modulated by DEHA in fetal, prepubertal and adult male rats. *Reproductive Toxicology* (Elmsford, N.Y.), 18(1), 53–61. doi:10.1016/j.reprotox.2003.10.011

Borch, J., Metzdorff, S. B., Vinggaard, A. M., Brokken, L., & Dalgaard, M. (2006). Mechanisms underlying the anti-androgenic effects of diethylhexyl phthalate in fetal rat testis. *Toxicology*, 223(1-2), 144–55. doi:10.1016/j.tox.2006.03.015

Chauvigné, F., Plummer, S., Lesné, L., Cravedi, J.-P., Dejucq-Rainsford, N., Fostier, A., & Jégou, B. (2011). Mono-(2-ethylhexyl) phthalate directly alters the expression of Leydig cell genes and CYP17 lyase activity in cultured rat fetal testis. *PloS One*, 6(11), e27172. doi:10.1371/journal.pone.0027172

Furr, J. R., Lambright, C. S., Wilson, V. S., Foster, P. M., & Gray, L. E. (2014). A short-term in vivo screen using fetal testosterone production, a key event in the phthalate adverse outcome pathway, to predict disruption of sexual differentiation. *Toxicological Sciences : An Official Journal of the Society of Toxicology*, 140(2), 403–24. doi:10.1093/toxsci/kfu081

Gazouli, M. (2002). Effect of Peroxisome Proliferators on Leydig Cell Peripheral-Type Benzodiazepine Receptor Gene Expression, Hormone-Stimulated Cholesterol Transport, and Steroidogenesis: Role of the Peroxisome Proliferator-Activator Receptor . *Endocrinology*, 143(7), 2571–2583. doi:10.1210/en.143.7.2571

Hauet, T., Yao, Z.-X., Bose, H. S., Wall, C. T., Han, Z., Li, W., ... Papadopoulos, V. (2005). Peripheral-type benzodiazepine receptor-mediated action of steroidogenic acute regulatory protein on cholesterol entry into leydig cell mitochondria. *Molecular Endocrinology* (Baltimore, Md.), 19(2), 540–54. doi:10.1210/me.2004-0307

Johnson, K. J., McDowell, E. N., Viereck, M. P., & Xia, J. Q. (2011). Species-specific dibutyl phthalate fetal testis endocrine disruption correlates with inhibition of SREBP2-dependent gene expression pathways. *Toxicological Sciences : An Official Journal of the Society of Toxicology*, 120(2), 460–74. doi:10.1093/toxsci/kfr020

Lehmann, K. P., Phillips, S., Sar, M., Foster, P. M. D., & Gaido, K. W. (2004). Dose-dependent alterations in gene expression and testosterone synthesis in the fetal testes of male rats exposed to di (n-butyl) phthalate. *Toxicological Sciences : An Official Journal of the Society of Toxicology*, 81(1), 60–8. doi:10.1093/toxsci/kfh169

Li, Y., Ramdhan, D. H., Naito, H., Yamagishi, N., Ito, Y., Hayashi, Y., ... Nakajima, T. (2011). Ammonium perfluorooctanoate may cause testosterone reduction by adversely affecting testis in relation to PPAR α . *Toxicology Letters*, 205(3), 265–72. doi:10.1016/j.toxlet.2011.06.015 Miller, W. L. (2007). Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. *Biochimica et Biophysica Acta*, 1771(6), 663–76. doi:10.1016/j.bbapap.2007.02.012

Parks, L. G. (2000). The Plasticizer Diethylhexyl Phthalate Induces Malformations by Decreasing Fetal Testosterone Synthesis during Sexual Differentiation in the Male Rat. *Toxicological Sciences*, 58(2), 339–349. doi:10.1093/toxsci/58.2.339

Payne, A. H., & Hales, D. B. (2013). Overview of Steroidogenic Enzymes in the Pathway from Cholesterol to Active Steroid Hormones. *Endocrine Reviews*. Stocco, D. M. (2001). StAR protein and the regulation of steroid hormone biosynthesis. *Annual Review of Physiology*, 63, 193–213. doi:10.1146/annurev.physiol.63.1.193

Svechnikov, K., Svechnikova, I., & Söder, O. (2008). Inhibitory effects of mono-ethylhexyl phthalate on steroidogenesis in immature and adult rat Leydig cells in vitro. *Reproductive Toxicology* (Elmsford, N.Y.), 25(4), 485–90. doi:10.1016/j.reprotox.2008.05.057

Thompson, C. J., Ross, S. M., & Gaido, K. W. (2004). Di(n-butyl) phthalate impairs cholesterol transport and steroidogenesis in the fetal rat testis through a rapid and reversible mechanism. *Endocrinology*, 145(3), 1227–37. doi:10.1210/en.2003-1475

Thompson, C. J., Ross, S. M., Hensley, J., Liu, K., Heinze, S. C., Young, S. S., & Gaido, K. W. (2005). Differential steroidogenic gene expression in the fetal adrenal gland versus the testis and rapid and dynamic response of the fetal testis to di(n-butyl) phthalate. *Biology of Reproduction*, 73(5), 908–17. doi:10.1095/biolreprod.105.042382

Wilson, V. S., Lambright, C., Furr, J., Ostby, J., Wood, C., Held, G., & Gray, L. E. (2004). Phthalate ester-induced gubernacular lesions are associated with reduced insl3 gene expression in the fetal rat testis. *Toxicology Letters*, 146(3), 207–15.

Relationship: 439: Reduction, Testosterone synthesis in Leydig cells leads to Reduction, testosterone level (<https://aopwiki.org/relationships/439>)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
PPARα activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	adjacent	High	
PPARα activation leading to impaired fertility in adult male rodents (https://aopwiki.org/aops/51)	adjacent	High	
Glucocorticoid Receptor (GR) Mediated Adult Leydig Cell Dysfunction Leading to Decreased Male Fertility (https://aopwiki.org/aops/64)	adjacent		

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
rat	Rattus norvegicus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)
human	Homo sapiens	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
mice	Mus sp.	Moderate	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095)

Ses Table 1.

Key Event Relationship Description

Impairment of testosterone production in testes directly impacts on testosterone levels.

Evidence Supporting this KER**Biological Plausibility**

Within the testes, steroid synthesis takes place within the mitochondria of Leydig cells. Testosterone production by Leydig cells is primarily under the control of LH. LH indirectly stimulates the transfer of cholesterol into the mitochondrial matrix to cholesterol side-chain cleavage cytochrome P450 (P450ccc, CYP11A), which converts cholesterol to pregnenolone. Pregnenolone diffuses to the smooth endoplasmic reticulum where it is further metabolized to testosterone via the actions of 3 β -hydroxysteroid dehydrogenase Δ 5- Δ 4-isomerase (3 β -HSD), 17 α -hydroxylase/C17-20 lyase (P450c17, CYP17), and 17 β -hydroxysteroid dehydrogenase type III (17HSD3). For review see (Payne & Hales, 2013). Therefore, inhibition or impairment of the testosterone production directly impacts on the levels of testosterone.

Empirical Evidence

There is evidence from experimental work that demonstrates a coordinated, dose-dependent reduction in the production of testosterone and consecutive reduction of testosterone levels in foetal testes and in serum, see Table 1.

			KE: testosterone synthesis, reduction	KE: testosterone, reduction		
Compound	Species	Effect level			Details	References
Phthalates (DEHP)	rat	LOEL =300 mg/kg/day	testicular testosterone production, reduction (ex vivo)	testicular testosterone levels, reduction, no change plasma testosterone	testosterone levels at GD 21 in male rat fetuses exposed to 0, 10, 30, 100, or 300 mg /kg bw/day from GD 7 to GD 21 testicular testosterone production ex vivo	(Borch, Metzdorff, Vinggaard, Brokken, & Dalgaard, 2006)
Phthalates (DBP)	rat	LOEL =50 mg/kg/day		testicular testosterone levels, reduction,	Testicular testosterone was reduced >50 mg/kg/day	(Shultz, 2001)
Phthalates (DEHP)	rat	LOEL=300 mg/kg/day	fetal testicular testosterone production, reduction			(Borch, Ladefoged, Hass, & Vinggaard, 2004)
Phthalates (DEHP)	rat	LOEL=300 mg/kg/day		testicular testosterone levels, reduction,		(Borch et al., 2004)
Phthalates (DEHP)	rat	LOEL=300 mg/kg/day		No change plasma testosterone		(Borch et al., 2004)
Phthalates (DEHP)	rat	LOEL=100 mg/kg/day		Serum testosterone levels, reduction,		(Akingbemi, 2001)
Phthalates (DEHP)	rat	LOEL=750 mg /kg /day		testicular testosterone levels, reduction, by 60 – 85%		(Parks, 2000)
Phthalates (DEHP)	rat	LOEL=750 mg /kg/day		testosterone levels, reduction, fetuses on GD 17 (71% lower than controls) and 18 (47% lower than controls)		(Parks, 2000)
Phthalates (DEHP)	rat	LOEL=750mg/kg/day	ex vivo testosterone production, reduction by 50%			(Wilson et al., 2004)
Phthalates (DEHP)	rat	LOEL=234 mg/kg/day		serum testosterone levels, reduction,		(Culty et al., 2008)
Phthalates (DEHP)	rat	LOEL=1250 mg/kg/day	ex vivo foetal testicular production			(Culty et al., 2008)
Phthalates (DEHP)	rat	ED50=444,2 mg/kg/day	ex vivo foetal testicular production, reduction			(Hannas et al., 2012)

Phthalates (DHP)	rat	ED50=75.25 mg/kg/day	<i>ex vivo</i> foetal testicular production, reduction			(Hannas et al., 2012)
------------------	-----	----------------------	--	--	--	-----------------------

Table 1. Summary table for empirical support for this KER. ED50 - half maximal effective concentration, LOEL- lowest observed effect level, Dibutyl phthalate (DBP), Bis(2-ethylhexyl) phthalate (DEHP), Dihexyl Phthalate (DHP).

References

Akingbemi, B. T. 2001. "Modulation of Rat Leydig Cell Steroidogenic Function by Di(2-Ethylhexyl)Phthalate." *Biology of Reproduction* 65 (4) (October 1): 1252–1259. doi:10.1093/biolreprod.65.4.1252.

Borch, Julie, Ole Ladefoged, Ulla Hass, and Anne Marie Vinggaard. 2004. "Steroidogenesis in Fetal Male Rats Is Reduced by DEHP and DINP, but Endocrine Effects of DEHP Are Not Modulated by DEHA in Fetal, Prepubertal and Adult Male Rats." *Reproductive Toxicology* (Elmsford, N.Y.) 18 (1): 53–61. doi:10.1016/j.reprotox.2003.10.011.

Borch, Julie, Stine Broeng Metzdorff, Anne Marie Vinggaard, Leon Brokken, and Majken Dalgaard. 2006. "Mechanisms Underlying the Anti-Androgenic Effects of Diethylhexyl Phthalate in Fetal Rat Testis." *Toxicology* 223 (1-2) (June 1): 144–55. doi:10.1016/j.tox.2006.03.015.

Culty, Martine, Raphael Thuillier, Wenping Li, Yan Wang, Daniel B Martinez-Arguelles, Carolina Gesteira Benjamin, Kostantinos M Triantafilou, Barry R Zirkin, and Vassilios Papadopoulos. 2008. "In Utero Exposure to Di-(2-Ethylhexyl) Phthalate Exerts Both Short-Term and Long-Lasting Suppressive Effects on Testosterone Production in the Rat." *Biology of Reproduction* 78 (6) (June): 1018–28. doi:10.1093/biolreprod.107.065649.

Hannas, Bethany R, Christy S Lambright, Johnathan Furr, Nicola Evans, Paul M D Foster, Earl L Gray, and Vickie S Wilson. 2012. "Genomic Biomarkers of Phthalate-Induced Male Reproductive Developmental Toxicity: A Targeted RT-PCR Array Approach for Defining Relative Potency." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 125 (2) (February): 544–57. doi:10.1093/toxsci/kfr315.

Parks, L. G. 2000. "The Plasticizer Diethylhexyl Phthalate Induces Malformations by Decreasing Fetal Testosterone Synthesis during Sexual Differentiation in the Male Rat." *Toxicological Sciences* 58 (2) (December 1): 339–349. doi:10.1093/toxsci/58.2.339.

Shultz, V. D. 2001. "Altered Gene Profiles in Fetal Rat Testes after in Utero Exposure to Di(n-Butyl) Phthalate." *Toxicological Sciences* 64 (2) (December 1): 233–242. doi:10.1093/toxsci/64.2.233.

Wilson, Vickie S., Christy Lambright, Johnathan Furr, Joseph Ostby, Carmen Wood, Gary Held, and L. Earl Gray. 2004. "Phthalate Ester-Induced Gubernacular Lesions Are Associated with Reduced *insl3* Gene Expression in the Fetal Rat Testis." *Toxicology Letters* 146 (3) (February): 207–215. doi:10.1016/j.toxlet.2003.09.012.

Relationship: 437: Decrease, Translocator protein (TSPO) leads to Reduction, Cholesterol transport in mitochondria (<https://aopwiki.org/relationships/437>)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
PPARα activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	adjacent	Low	

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
rat	Rattus norvegicus	Moderate	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)
human	Homo sapiens	Low	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
mice	Mus sp.	Low	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095)

Rat (Papadopoulos et al., 1997)

Key Event Relationship Description

Translocator Protein (TSPO) mediates the first step of cholesterol transport to the inner mitochondrial membrane cytochrome P-450 side chain cleavage enzyme (P450scc) (Besman et al. 1989). TSPO ligands stimulate steroidogenesis and induce cholesterol movement from the outer mitochondrial membrane (OMM) to the inner mitochondrial membrane (IMM) (Besman et al. 1989). Therefore reduced amount/activity of the TSPO impairs the cholesterol delivery that is necessary for the hormone biosynthesis.

Evidence Supporting this KER

Biological Plausibility

The TSPO was first identified as a peripheral tissue diazepam binding site [known as peripheral-type benzodiazepine receptor (PBR)] and since then it has been implicated in many cellular processes. Amongst these are steroid biosynthesis, protein import, heme biosynthesis, immunomodulation, cellular respiration and oxidative processes. The TSPO is present in virtually all mammalian peripheral tissues (Zisterer and Williams 1997), however highly prominent TSPO protein expression has been identified in steroidogenic tissues (R. R. Anholt et al. 1985), (Wang, Fan, and Papadopoulos 2012). The presence of TSPO was confirmed in Leydig and Sertoli cells (Morohaku, Phuong, and Selvaraj 2013), granulosa cells (Amsterdam and Suh 1991) and to lesser extent in thecal cells (Morohaku, Phuong, and Selvaraj 2013). In subcellular fractions, binding sites for the TSPO were identified to be present in the OMM (R. R. Anholt et al. 1985), (R. Anholt et al. 1986).

Empirical Evidence

The decreased TSPO protein levels leads to decreased cholesterol transport into Leydig cells (Gazouli 2002), (Borch et al. 2006). Moreover, Thompson et al., observed decreased uptake of cholesterol in Leydig cell mitochondria upon exposure to phthalates (Thompson, Ross, and Gaido 2004).

Uncertainties and Inconsistencies

Targeted disruption of TSPO in rat Leydig R2C cells reduced steroidogenesis (Papadopoulos et al. 1997). However, recent experiments with TSPO knockdown in steroidogenic cells was not shown to affect steroid hormone biosynthesis (Tu et al. 2014) as well as in a specific deletion of TSPO in steroidogenic Leydig cells did not impair their synthesis of testosterone (Morohaku et al. 2014). As stated in the recent review "At this point in time, a functional designation for TSPO is still actively being sought" (Selvaraj, Stocco, and Tu 2015).

References

Amsterdam, A., & Suh, B. S. (1991). An inducible functional peripheral benzodiazepine receptor in mitochondria of steroidogenic granulosa cells. *Endocrinology*, 129(1), 503–10. doi:10.1210/endo-129-1-503

Anholt, R., Pedersen, P., De Souza, E., & Snyder, S. (1986). The peripheral-type benzodiazepine receptor. Localization to the mitochondrial outer membrane. *J. Biol. Chem.*, 261(2), 576–583.

Anholt, R. R., De Souza, E. B., Oster-Granite, M. L., & Snyder, S. H. (1985). Peripheral-type benzodiazepine receptors: autoradiographic localization in whole-body sections of neonatal rats. *The Journal of Pharmacology and Experimental Therapeutics*, 233(2), 517–26.

Besman, M. J., Yanagibashi, K., Lee, T. D., Kawamura, M., Hall, P. F., & Shively, J. E. (1989). Identification of des-(Gly-Ile)-endozepine as an effector of corticotropin-dependent adrenal steroidogenesis: stimulation of cholesterol delivery is mediated by the peripheral benzodiazepine receptor. *Proceedings of the National Academy of Sciences of the United States of America*, 86(13), 4897–901.

Borch, J., Metzdorff, S. B., Vinggaard, A. M., Brokken, L., & Dalgaard, M. (2006). Mechanisms underlying the anti-androgenic effects of diethylhexyl phthalate in fetal rat testis. *Toxicology*, 223(1-2), 144–55. doi:10.1016/j.tox.2006.03.015

Gazouli, M. (2002). Effect of Peroxisome Proliferators on Leydig Cell Peripheral-Type Benzodiazepine Receptor Gene Expression, Hormone-Stimulated Cholesterol Transport, and Steroidogenesis: Role of the Peroxisome Proliferator-Activator Receptor. *Endocrinology*, 143(7), 2571–2583. doi:10.1210/en.143.7.2571

Morohaku, K., Pelton, S. H., Daugherty, D. J., Butler, W. R., Deng, W., & Selvaraj, V. (2014). Translocator protein/peripheral benzodiazepine receptor is not required for steroid hormone biosynthesis. *Endocrinology*, 155(1), 89–97. doi:10.1210/en.2013-1556

Morohaku, K., Phuong, N. S., & Selvaraj, V. (2013). Developmental expression of translocator protein/peripheral benzodiazepine receptor in reproductive tissues. *PLoS One*, 8(9), e74509. doi:10.1371/journal.pone.0074509

Papadopoulos, V., Amri, H., Li, H., Boujrad, N., Vidic, B., & Garnier, M. (1997). Targeted disruption of the peripheral-type benzodiazepine receptor gene inhibits steroidogenesis in the R2C Leydig tumor cell line. *The Journal of Biological Chemistry*, 272(51), 32129–35.

Selvaraj, V., Stocco, D. M., & Tu, L. N. (2015). TRANSLOCATOR PROTEIN (TSPO) AND STEROIDOGENESIS: A REAPPRAISAL. *Molecular Endocrinology* (Baltimore, Md.), me20151033. doi:10.1210/me.2015-1033

Thompson, C. J., Ross, S. M., & Gaido, K. W. (2004). Di(n-butyl) phthalate impairs cholesterol transport and steroidogenesis in the fetal rat testis through a rapid and reversible mechanism. *Endocrinology*, 145(3), 1227–37. doi:10.1210/en.2003-1475

Tu, L. N., Morohaku, K., Manna, P. R., Pelton, S. H., Butler, W. R., Stocco, D. M., & Selvaraj, V. (2014). Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis. *The Journal of Biological Chemistry*, 289(40), 27444–54. doi:10.1074/jbc.M114.578286

Wang, H.-J., Fan, J., & Papadopoulos, V. (2012). Translocator protein (Tspo) gene promoter-driven green fluorescent protein synthesis in transgenic mice: an in vivo model to study Tspo transcription. *Cell and Tissue Research*, 350(2), 261–75. doi:10.1007/s00441-012-1478-5

Zisterer, D. M., & Williams, D. C. (1997). Peripheral-type benzodiazepine receptors. *General Pharmacology*, 29(3), 305–14.

Relationship: 405: Malformation, Male reproductive tract leads to impaired, Fertility (<https://aopwiki.org/relationships/405>)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
PPARα activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	adjacent	High	

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
rat	Rattus norvegicus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)
human	Homo sapiens	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
mice	Mus sp.	Low	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095)

Human and Rat see "Empirical Support for Linkage"

Key Event Relationship Description

Impairment in the normal development of the male reproductive tract (e.g. genital abnormality and/or cryptorchidism) can impact on fertility later in life.

Evidence Supporting this KER

Biological Plausibility

Hypospadias next to cryptorchidism belongs to the most common male reproductive disorders that manifest at birth and may have a common origin in foetal life (Skakkebaek, Rajpert-De Meyts, and Main 2001) and are associated with decreased fertility (Thorup et al. 2010).

Empirical Evidence

Human

Asklund et al that semen quality was reduced in men with hypospadias and additional genital disorders, predominately cryptorchidism (Asklund et al. 2010). In another study by Bracka, 25% of 41 hypospadias patients including 26 patients also with cryptorchidism had a lower sperm density (Bracka 1989). Men with a history of cryptorchidism have an increased risk of infertility (Thorup et al. 2010). Eisenberg et al. found shorter AGD among infertile men as compared with fertile men (Eisenberg et al. 2011).

Rat

In rodents in utero exposure to agents known to disrupt androgen mediated pathways corrupts normal male genital development with a decrease in genital length (ie phallus length, AGD) and impaired testosterone and sperm production (Macleod et al. 2010), (Cowin et al. 2010), including exposure to phthalates (NTP 2005).

References

Asklund, C, T K Jensen, K M Main, T Sobotka, N E Skakkebaek, and N Jørgensen. 2010. "Semen Quality, Reproductive Hormones and Fertility of Men Operated for Hypospadias." *International Journal of Andrology* 33 (1) (February): 80–7. doi:10.1111/j.1365-2605.2009.00957.x.

Bracka, A. 1989. "A Long-Term View of Hypospadias." *British Journal of Plastic Surgery* 42 (3) (May): 251–5.

Cowin, Prue A, Elspeth Gold, Jasna Aleksova, Moira K O'Bryan, Paul M D Foster, Hamish S Scott, and Gail P Risbridger. 2010. "Vinclozolin Exposure in Utero Induces Postpubertal Prostatitis and Reduces Sperm Production via a Reversible Hormone-Regulated Mechanism." *Endocrinology* 151 (2) (February): 783–92. doi:10.1210/en.2009-0982.

Eisenberg, Michael L, Michael H Hsieh, Rustin Chanc Walters, Ross Krasnow, and Larry I Lipshultz. 2011. "The Relationship between Anogenital Distance, Fatherhood, and Fertility in Adult Men." *PLoS One* 6 (5) (January): e18973. doi:10.1371/journal.pone.0018973.

Macleod, D J, R M Sharpe, M Welsh, M Fiskin, H M Scott, G R Hutchison, A J Drake, and S van den Driesche. 2010. "Androgen Action in the Masculinization Programming Window and Development of Male Reproductive Organs." *International Journal of Andrology* 33 (2) (April): 279–87. doi:10.1111/j.1365-2605.2009.01005.x.

Mendiola, Jaime, Richard W Stahlhut, Niels Jørgensen, Fan Liu, and Shanna H Swan. 2011. "Shorter Anogenital Distance Predicts Poorer Semen Quality in Young Men in Rochester, New York." *Environmental Health Perspectives* 119 (7) (July): 958–63. doi:10.1289/ehp.1103421.

NTP. 2005. "Multigenerational Reproductive Assessment by Continuous Breeding When Diethylhexylphthalate (CAS 117-81-7)."

Skakkebaek, N E, E Rajpert-De Meyts, and K M Main. 2001. "Testicular Dysgenesis Syndrome: An Increasingly Common Developmental Disorder with Environmental Aspects." *Human Reproduction* (Oxford, England) 16 (5) (May): 972–8.

Thorup, Jorgen, Robert McLachlan, Dina Cortes, Tamara R. Nation, Adam Balic, Bridget R. Southwell, and John M. Hutson. 2010. "What Is New in Cryptorchidism and Hypospadias - A Critical Review on the Testicular Dysgenesis Hypothesis." *Journal of Pediatric Surgery*. doi:10.1016/j.jpedsurg.2010.07.030.

List of Non Adjacent Key Event Relationships

Relationship: 369: Activation, PPAR α leads to Decrease, Steroidogenic acute regulatory protein (STAR) (<https://aopwiki.org/relationships/369>)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
PPARα activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	non-adjacent	Moderate	

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
rat	Rattus norvegicus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)
mouse	Mus musculus	Moderate	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)
human	Homo sapiens	Low	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)

See Table 1.

Key Event Relationship Description

The direct link of PPAR α in regulation of the cholesterol transport in mitochondria and hormone synthesis derives from studies demonstrating that PPAR α may act as indirect transrepressor of the key steroidogenic factor-1 (SF-1) (S. Plummer et al. 2007), (S. M. Plummer et al. 2013). SF-1 is a transcription factor essential for expression of genes involved in steroidogenesis (including Steroidogenic acute regulatory protein (StAR)).

Evidence Supporting this KER**Biological Plausibility**

The PPAR α is expressed in foetal rat Leydig cells (Boberg et al. 2008), (S. M. Plummer et al. 2013) and in adult rat Leydig cells (Schultz et al. 1999). Recent studies have shown that foetal testes contained PPAR α protein-binding peaks in CYP11a, StAR, and CYP17a regulatory regions (S. M. Plummer et al. 2013). Binding of PPAR α to promoter of steroidogenic gene occurs at binding sites different from those of SF-1, indicating that PPAR α may be an indirect repressor of SF1 binding. Moreover, it is possible that PPAR α could act via sequestration of the shared coactivator CBP (S. M. Plummer et al. 2013). PPAR α and SF-1 share a common coactivator, CREB-binding protein (CBP), which is present in limited concentrations (McCormick 2000). Binding of CBP to PPAR α could therefore starve SF-1 from a cofactor essential for its transactivation functions. SF-1 controls transcription of the StAR gene (Sugawara et al. 1996). Steroidogenic acute regulatory (StAR) protein plays a critical role in the movement of cholesterol from the outer to the inner mitochondrial membrane (Stocco 2001). Hence, it seems likely that the ability of PPAR α to interfere with SF-1 binding/transactivation caused by exposure to chemicals (e.g. phthalates) could affect the StAR expression and the cholesterol transport in mitochondria.

Empirical Evidence

PPAR α agonists can suppress Leydig cell steroidogenesis (Gazouli 2002), and downregulate steroidogenic genes including StAR (Borch et al. 2006), (Lehmann et al. 2004), (Liu et al. 2005), for details see Table 1. Moreover, PPAR α agonists, which do not directly transrepress the StAR promoter, have been found to downregulate the expression of this gene in steroidogenic tissues (in mice ovaries) (Toda et al. 2003).

Compound	species	KE: PPAR α , Activation	KE: StAR, Decrease
----------	---------	--------------------------------	--------------------

Phthalate (MBzP)	human	EC50 = 30 μ M human (Hurst and Waxman 2003)	n.a.
Phthalate (DBP)	rodent	EC50 = 21 μ M MBzP EC50 = 63 μ M (Hurst and Waxman 2003) MBuP	LOEC=50 mg/kg/day (Borch et al. 2006) (Lehmann et al. 2004), (Shultz 2001)
Phthalate (MEHP)	rodent	LOEC=30 μ M (Bility et al. 2004)	LOEC=300 mg/kg/day (Borch et al. 2006)
Phthalate (MEHP)	human	Ki=15 μ M (Lapinskas et al. 2005) EC50 = 3.2 μ M (Hurst and Waxman 2003)	n.a.
Phthalate (DiBP)	rat	LOEC=600 mg/kg/day, decrease of PPAR α mRNA, at GD 19 and 21 in testes of foetuses (Boberg et al. 2008)	LOEC=600 mg/kg/day, decrease of StAR mRNA at GD 19 and 21 in testes of foetuses (Boberg et al. 2008)
Econazole	rodent	AC50=0.0729 μ M (ToxCastTM Data)	LOEC=25 μ M, mouse MA-10 Leydig tumor cell line, Decrease in StAR activity and/or expression (Walsh, Kuratko, and Stocco 2000)
Perfluorooctanoate (PFOA)	mice	3T3-L1 cells transfected with human, mouse and rat PPAR α (Vanden Heuvel et al. 2006)	LOEC= 5.0 mg/kg/day mRNA StAR decrease in the testis of wild-type mice, LOEC=1.0 mg/kg/day mRNA StAR decrease in testis of PPAR α -humanized mice (not in the PPAR α -null mice) (Li et al. 2011)
Fenofibrate	mice	PPAR agonist Increase PPAR α protein (Toda et al. 2003).	Decrease of StAR (protein level, in mice ovaries) (Toda et al. 2003)

Table 1. Summary table for empirical support of KER. ED50 - half maximal effective concentration, LOEC-lowest observed effect concentration, Bis(2-ethylhexyl) phthalate (DEHP), Dibutyl phthalate (DBP), diisobutyl phthalate (DiBP), mono-sec-butyl phthalate (MBuP), n.a - not available.

Uncertainties and Inconsistencies

Uncertainties

PPAR α was also shown to regulate Translator protein (TSPO), which is a mitochondrial outer membrane protein implicated in cholesterol import to the inner mitochondrial (for details see Relationship:370 (<https://aopwiki.org/wiki/index.php/Relationship:370>)). Moreover, there is evidence that activated PPAR α regulates the expression of enzymes involved in steroid metabolism (17 β -hydroxysteroid dehydrogenase IV, 11 β -hydroxysteroid dehydrogenase I, and 3 β -hydroxysteroid dehydrogenase V (Hermanowski-Vosatka et al. 2000), (Corton et al. 1996), (Wong et al. 2002)).

Inconsistencies In utero rat exposure to the PPAR α agonist Wy-14,643 did not reduce fetal testis steroidogenic gene expression or testosterone production (Hannas et al. 2012).

References

Bility, Moses T, Jerry T Thompson, Richard H McKee, Raymond M David, John H Butala, John P Vanden Heuvel, and Jeffrey M Peters. 2004. "Activation of Mouse and Human Peroxisome Proliferator-Activated Receptors (PPARs) by Phthalate Monoesters." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 82 (1) (November): 170–82. doi:10.1093/toxsci/kfh253. <http://www.ncbi.nlm.nih.gov/pubmed/15310864> (<http://www.ncbi.nlm.nih.gov/pubmed/15310864>).

Boberg, Julie, Stine Metzdorff, Rasmus Wortziger, Marta Axelstad, Leon Brokken, Anne Marie Vinggaard, Majken Dalgaard, and Christine Nellemann. 2008. "Impact of Diisobutyl Phthalate and Other PPAR Agonists on Steroidogenesis and Plasma Insulin and Leptin Levels in Fetal Rats." *Toxicology* 250 (2-3) (September 4): 75–81. doi:10.1016/j.tox.2008.05.020. <http://www.ncbi.nlm.nih.gov/pubmed/18602967> (<http://www.ncbi.nlm.nih.gov/pubmed/18602967>).

Borch, Julie, Stine Broeng Metzdorff, Anne Marie Vinggaard, Leon Brokken, and Majken Dalgaard. 2006. "Mechanisms Underlying the Anti-Androgenic Effects of Diethylhexyl Phthalate in Fetal Rat Testis." *Toxicology* 223 (1-2) (June 1): 144–55. doi:10.1016/j.tox.2006.03.015. <http://www.sciencedirect.com/science/article/pii/S0300483X0600165X> (<http://www.sciencedirect.com/science/article/pii/S0300483X0600165X>).

Corton, JC, C Bocos, ES Moreno, A Merritt, DS Marsman, PJ Sausen, RC Cattley, and JA Gustafsson. 1996. "Rat 17 Beta-Hydroxysteroid Dehydrogenase Type IV Is a Novel Peroxisome Proliferator-Inducible Gene." *Mol. Pharmacol.* 50 (5) (November 1): 1157–1166. http://molpharm.aspetjournals.org/content/50/5/1157.abstract?ijkey=a767a7a5a99dd83cc9fe3e4b601372c7ea4caa62&keytype2=tf_ipsecsha (http://molpharm.aspetjournals.org/content/50/5/1157.abstract?ijkey=a767a7a5a99dd83cc9fe3e4b601372c7ea4caa62&keytype2=tf_ipsecsha).

Gazouli, M. 2002. "Effect of Peroxisome Proliferators on Leydig Cell Peripheral-Type Benzodiazepine Receptor Gene Expression, Hormone-Stimulated Cholesterol Transport, and Steroidogenesis: Role of the Peroxisome Proliferator-Activator Receptor ." *Endocrinology* 143 (7) (July 1): 2571–2583. doi:10.1210/en.143.7.2571. <http://endo.endojournals.org/content/143/7/2571> (<http://endo.endojournals.org/content/143/7/2571>).

Hannas, Bethany R, Christy S Lambright, Johnathan Furr, Nicola Evans, Paul M D Foster, Earl L Gray, and Vickie S Wilson. 2012. "Genomic Biomarkers of Phthalate-Induced Male Reproductive Developmental Toxicity: A Targeted RT-PCR Array Approach for Defining Relative Potency." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 125 (2) (February): 544–57. doi:10.1093/toxsci/kfr315. <http://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=3262859&tool=pmcentrez&rendertype=abstract> (<http://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=3262859&tool=pmcentrez&rendertype=abstract>).

Hermanowski-Vosatka, A, D Gerhold, S S Mundt, V A Loving, M Lu, Y Chen, A Elbrecht, et al. 2000. "PPAR α Agonists Reduce 11beta-Hydroxysteroid Dehydrogenase Type 1 in the Liver." *Biochemical and Biophysical Research Communications* 279 (2) (December 20): 330–6. doi:10.1006/bbrc.2000.3966. <http://www.ncbi.nlm.nih.gov/pubmed/11118287> (<http://www.ncbi.nlm.nih.gov/pubmed/11118287>).

Hurst, Christopher H, and David J Waxman. 2003. "Activation of PPAR α and PPAR γ by Environmental Phthalate Monoesters." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 74 (2) (August): 297–308. doi:10.1093/toxsci/kfg145. <http://www.ncbi.nlm.nih.gov/pubmed/12805656> (<http://www.ncbi.nlm.nih.gov/pubmed/12805656>).

Lapinskas, Paula J., Sherri Brown, Lisa M. Leesnitzer, Steven Blanchard, Cyndi Swanson, Russell C. Cattley, and J. Christopher Corton. 2005. "Role of PPAR α in Mediating the Effects of Phthalates and Metabolites in the Liver." *Toxicology* 207 (1): 149–163. <http://www.sciencedirect.com/science/article/pii/S0300483X04005633> (<http://www.sciencedirect.com/science/article/pii/S0300483X04005633>).

Lehmann, Kim P, Suzanne Phillips, Madhabananda Sar, Paul M D Foster, and Kevin W Gaido. 2004. "Dose-Dependent Alterations in Gene Expression and Testosterone Synthesis in the Fetal Testes of Male Rats Exposed to Di (n-Butyl) Phthalate." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 81 (1) (September 1): 60–8. doi:10.1093/toxsci/kfh169. http://toxsci.oxfordjournals.org/content/81/1/60.abstract?ijkey=99364980d6548f969a82406deb6600873a38be36&keytype2=tf_ipsecsha (http://toxsci.oxfordjournals.org/content/81/1/60.abstract?ijkey=99364980d6548f969a82406deb6600873a38be36&keytype2=tf_ipsecsha).

Li, Yufei, Doni Hikmat Ramdhan, Hisao Naito, Nozomi Yamagishi, Yuki Ito, Yumi Hayashi, Yukie Yanagiba, et al. 2011. "Ammonium Perfluorooctanoate May Cause Testosterone Reduction by Adversely Affecting Testis in Relation to PPAR α ." *Toxicology Letters* 205 (3) (September 10): 265–72. doi:10.1016/j.toxlet.2011.06.015. <http://www.ncbi.nlm.nih.gov/pubmed/21712084> (<http://www.ncbi.nlm.nih.gov/pubmed/21712084>).

Liu, Kejun, Kim P Lehmann, Madhabananda Sar, S Stanley Young, and Kevin W Gaido. 2005. "Gene Expression Profiling Following in Utero Exposure to Phthalate Esters Reveals New Gene Targets in the Etiology of Testicular Dysgenesis." *Biology of Reproduction* 73 (1) (July): 180–92. doi:10.1093/biolreprod.104.039404. <http://www.ncbi.nlm.nih.gov/pubmed/15728792> (<http://www.ncbi.nlm.nih.gov/pubmed/15728792>).

McCormick, A. 2000. "CREB-Binding Protein Sequestration by Expanded Polyglutamine." *Human Molecular Genetics* 9 (14) (September 1): 2197–2202. doi:10.1093/hmg/9.14.2197. http://hmg.oxfordjournals.org/content/9/14/2197.abstract?ijkey=c35580e57df64d1fc98fb242bf4ed19362a4a3ce&keytype2=tf_ipsecsha (http://hmg.oxfordjournals.org/content/9/14/2197.abstract?ijkey=c35580e57df64d1fc98fb242bf4ed19362a4a3ce&keytype2=tf_ipsecsha).

Plummer, Simon M, Dhritiman Dan, Joanne Quinney, Nina Hallmark, Richard D Phillips, Michael Millar, Sheila Macpherson, and Clifford R Elcombe. 2013. "Identification of Transcription Factors and Coactivators Affected by Diethylphthalate Interactions in Fetal Rat Testes." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 132 (2) (April): 443–57. doi:10.1093/toxsci/kft016. <http://www.ncbi.nlm.nih.gov/pubmed/23358192> (<http://www.ncbi.nlm.nih.gov/pubmed/23358192>).

Plummer, Simon, Richard M Sharpe, Nina Hallmark, Isobel Kim Mahood, and Cliff Elcombe. 2007. "Time-Dependent and Compartment-Specific Effects of in Utero Exposure to Di(n-Butyl) Phthalate on Gene/protein Expression in the Fetal Rat Testis as Revealed by Transcription Profiling and Laser Capture Microdissection." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 97 (2) (June 1): 520–32. doi:10.1093/toxsci/kfm062. <http://www.ncbi.nlm.nih.gov/pubmed/17379624> (<http://www.ncbi.nlm.nih.gov/pubmed/17379624>).

Schultz, R, W Yan, J Toppari, A Völkli, J A Gustafsson, and M Pelto-Huikko. 1999. "Expression of Peroxisome Proliferator-Activated Receptor Alpha Messenger Ribonucleic Acid and Protein in Human and Rat Testis." *Endocrinology* 140 (7) (July): 2968–75. doi:10.1210/endo.140.7.6858. <http://www.ncbi.nlm.nih.gov/pubmed/10385388> (<http://www.ncbi.nlm.nih.gov/pubmed/10385388>).

Shultz, V. D. 2001. "Altered Gene Profiles in Fetal Rat Testes after in Utero Exposure to Di(n-Butyl) Phthalate." *Toxicological Sciences* 64 (2) (December 1): 233–242. doi:10.1093/toxsci/64.2.233. http://toxsci.oxfordjournals.org/content/64/2/233.abstract?ijkey=b8af27acf106958474e8a9b568882405d071ae&keytype2=tf_ipsecsha (http://toxsci.oxfordjournals.org/content/64/2/233.abstract?ijkey=b8af27acf106958474e8a9b568882405d071ae&keytype2=tf_ipsecsha). Stocco, D M. 2001. "StAR Protein and the Regulation of Steroid Hormone Biosynthesis." *Annual Review of Physiology* 63 (January): 193–213. doi:10.1146/annurev.physiol.63.1.193. <http://www.ncbi.nlm.nih.gov/pubmed/11181954> (<http://www.ncbi.nlm.nih.gov/pubmed/11181954>).

Sugawara, T, J A Holt, M Kiriakidou, and J F Strauss. 1996. "Steroidogenic Factor 1-Dependent Promoter Activity of the Human Steroidogenic Acute Regulatory Protein (StAR) Gene." *Biochemistry* 35 (28) (July 16): 9052–9. doi:10.1021/bi960057r. <http://www.ncbi.nlm.nih.gov/pubmed/8703908> (<http://www.ncbi.nlm.nih.gov/pubmed/8703908>).

Toda, Katsumi, Teruhiko Okada, Chisata Miyaura, and Toshiji Saibara. 2003. "Fenofibrate, a Ligand for PPAR α , Inhibits Aromatase Cytochrome P450 Expression in the Ovary of Mouse." *Journal of Lipid Research* 44 (2) (February): 265–70. doi:10.1194/jlr.M200327-JLR200. <http://www.ncbi.nlm.nih.gov/pubmed/12576508> (<http://www.ncbi.nlm.nih.gov/pubmed/12576508>). ToxCastTM Data. "ToxCastTM Data." US Environmental Protection Agency. <http://www.epa.gov/ncct/toxcast/data.html> (<http://www.epa.gov/ncct/toxcast/data.html>).

Vanden Heuvel, John P, Jerry T Thompson, Steven R Frame, and Peter J Gillies. 2006. "Differential Activation of Nuclear Receptors by Perfluorinated Fatty Acid Analogs and Natural Fatty Acids: A Comparison of Human, Mouse, and Rat Peroxisome Proliferator-Activated Receptor-Alpha, -Beta, and -Gamma, Liver X Receptor-Beta, and Retinoid X Rec." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 92 (2) (August): 476–89. doi:10.1093/toxsci/kfl014. <http://www.ncbi.nlm.nih.gov/pubmed/16731579> (<http://www.ncbi.nlm.nih.gov/pubmed/16731579>).

Walsh, L P, C N Kuratko, and D M Stocco. 2000. "Econazole and Miconazole Inhibit Steroidogenesis and Disrupt Steroidogenic Acute Regulatory (StAR) Protein Expression Post-Transcriptionally." *The Journal of Steroid Biochemistry and Molecular Biology* 75 (4-5) (December 31): 229–36. <http://www.ncbi.nlm.nih.gov/pubmed/11282276> (<http://www.ncbi.nlm.nih.gov/pubmed/11282276>).

Wong, Jean S, Xiaoqin Ye, Christy R Muhlenkamp, and Sarjeet S Gill. 2002. "Effect of a Peroxisome Proliferator on 3 Beta-Hydroxysteroid Dehydrogenase." *Biochemical and Biophysical Research Communications* 293 (1) (April 26): 549–53. doi:10.1016/S0006-291X(02)00235-8. <http://www.ncbi.nlm.nih.gov/pubmed/12054636> (<http://www.ncbi.nlm.nih.gov/pubmed/12054636>).

Relationship: 370: Activation, PPAR α leads to Decrease, Translocator protein (TSPO) (<https://aopwiki.org/relationships/370>)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
PPARα activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	non-adjacent	Low	

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
rat	Rattus norvegicus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)
mice	Mus sp.	Low	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095)
human	Homo sapiens	Low	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)

See Table 1.

Key Event Relationship Description

Activation of PPAR α leads to decreased expression of cholesterol transport (TSPO) gene in steroidogenic cells (e.g. Leydig cell) and as a consequence the amount of cholesterol transported into mitochondria decreases (impact on steroid production).

Evidence Supporting this KER

Biological Plausibility

PPARs are nuclear receptors that among many other functions regulate genes involved in cholesterol uptake and transport (Xie, Yang, and DePierre 2002), (Gazouli 2002), (Campioli et al. 2011). The indirect link of PPAR receptors in regulation of the cholesterol transport in mitochondria derives from studies demonstrating PPAR α dependent control of TSOP (Gazouli 2002), (Campioli et al. 2011). PPAR α is present in steroidogenic cells e.g. of the testes during its development as well as in adult testes

(Schultz et al. 1999), (Boberg et al. 2008) and modulation of its activity has been shown to impact on TSOP transcriptional activity (Gazouli 2002). The exact mechanisms of this relationship are not known.

Empirical Evidence

Gazouli et al showed that PPAR activators (Bezafibrate, MEHP) inhibited the transfer or loading of cholesterol to the inner mitochondrial membrane in MA-10 mouse Leydig tumor cells and decreased levels of TSOP protein. Additionally, in R2C (Leydig tumor cell line) inhibited the formation of progesterone. The levels of the TSPO protein were decreased in testes of adult mice exposed to and DEHP (Gazouli 2002). Moreover, the finding that bezafibrate and phthalates inhibit the hormone-induced and constitutively sustained steroidogenesis with similar IC50 values indicates that these compounds act on a common regulatory component of the steroidogenic pathway (Gazouli 2002). In *in vivo* studies with rats exposed to DEHP the levels of TSOP (mRNA) were decreased dose-dependently in foetal testes (GD 21 testes), also on protein levels in Leydig cells (Borch et al. 2006). For details see Table1.

Compound	KE: PPAR α , Activation	KE: TSPO, Decrease	species	Details	References
Phthalate (DBP)	EC50=30 μ M	n.a.	human	Monobenzyl phthalate (MBzP) metabolite of DBP	(Hurst and Waxman 2003)
Phthalate (DBP)	EC50=21 μ M *	LOEC=100 μ M	rodent	*MBzP	(Hurst and Waxman 2003), (Gazouli 2002)
	EC50=63 μ M**			**mono-sec-butyl phthalate (MBuP) metabolite of DBP	
Phthalate (DEHP)	LOEC=30 μ M	LOEC=300 mg/kg /d	rodent	MEHP metabolite of DEHP	(Bility et al. 2004), (Gazouli 2002), (Borch et al. 2006)
Phthalate (DEHP)	Ki=15 μ M; EC50 = 3.2 μ M	n.a.	human	MEHP metabolite of DEHP	(Lapinskas et al. 2005), (Hurst and Waxman 2003)
Bezafibrate	EC50=55 μ M	LOEC=100 μ M	rodent	TSPO decreased by 80% in MA-10 Leydig cells	(Willson et al. 2000), (Gazouli 2002)
WY-14,643	EC50=0.00027 μ M	LOEC=50 mg/kg/d	rodent		(Pinelli et al. 2005), (Gazouli 2002)

Table 1. Summary table of empirical support for this KER. ED50 - half maximal effective dose, LOEC-lowest observed effect concentration, Bis(2-ethylhexyl) phthalate (DEHP), Dibutyl phthalate (DBP), WY-14,643 and Bezafibrate ligands of PPAR α , n.a.- not available

Uncertainties and Inconsistencies

The exact mechanisms of this relationship are not known.

Treatment of adult mice with PPAR α activator (DEHP or WY-14,643) resulted in reduced levels of circulating testosterone and testis TSPO mRNA, consistent with the *in vitro* effects (Gazouli 2002). In contrast, liver TSPO mRNA levels have been increased, indicating a tissue-specific regulation of TSOP expression by PPAR α activator (Gazouli 2002). In the PPAR α -null mice, compared with the wild-type controls, circulating testosterone levels were decreased suggesting a positive constitutive role for PPAR α in maintaining Leydig cell steroid formation. Surprisingly, treatment of the PPAR α -null mice with PPAR α activators (DEHP and WY-14,643) restored testosterone formation and TSPO mRNA returned to normal levels, suggesting PPAR α -independent pathways might be involved in the regulation of TSPO genes and steroidogenesis (Gazouli 2002). In support of this hypothesis, an other study demonstrated that part of the toxic effect of phthalate (DEHP) on testis was retained in PPAR α -null mice (Ward et al. 1998).

There is some evidence involving additional PPARs in transcriptional regulation of TSPO:

- PPAR $\beta/6$ (Campioli et al. 2011);
- PPAR γ isoform was also detected in testes (Boberg et al. 2008) and it was reduced by treatment of DEHP in parallel with the reduction of TSPO regulation (Borch et al. 2006).

A genomic study does not support the hypothesis that activation of PPAR α/γ pathways is involved in the effects of phthalates on sexual differentiation of the male rat, as WY-14,643 (PPAR α activator) has no effect on testosterone production and the PPAR γ isoform has not been detected in testes at gestation day 14-18 (Hannas et al. 2012). Differential patterns of TSPO expression in the foetal rat testis have been observed upon phthalate (DBP) treatment, whereas TSPO mRNA up-regulated protein levels were decreased in Leydig cells (Lehmann et al. 2004).

References

Bility, Moses T, Jerry T Thompson, Richard H McKee, Raymond M David, John H Butala, John P Vanden Heuvel, and Jeffrey M Peters. 2004. "Activation of Mouse and Human Peroxisome Proliferator-Activated Receptors (PPARs) by Phthalate Monoesters." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 82 (1) (November): 170–82. doi:10.1093/toxsci/kfh253.

Boberg, Julie, Stine Metzdorff, Rasmus Wörtziger, Marta Axelstad, Leon Brokken, Anne Marie Vinggaard, Majken Dalgaard, and Christine Nellemann. 2008. "Impact of Diisobutyl Phthalate and Other PPAR Agonists on Steroidogenesis and Plasma Insulin and Leptin Levels in Fetal Rats." *Toxicology* 250 (2-3) (September 4): 75–81. doi:10.1016/j.tox.2008.05.020.

Borch, Julie, Stine Broeng Metzdorff, Anne Marie Vinggaard, Leon Brokken, and Majken Dalgaard. 2006. "Mechanisms Underlying the Anti-Androgenic Effects of Diethylhexyl Phthalate in Fetal Rat Testis." *Toxicology* 223 (1-2) (June 1): 144–55. doi:10.1016/j.tox.2006.03.015.

Campioli, Enrico, Amani Batarseh, Jiehan Li, and Vassilios Papadopoulos. 2011. "The Endocrine Disruptor Mono-(2-Ethylhexyl) Phthalate Affects the Differentiation of Human Liposarcoma Cells (SW 872)." Edited by Vasu D. Appanna. *PLoS One* 6 (12) (January 21): e28750. doi:10.1371/journal.pone.0028750.

Gazouli, M. 2002. "Effect of Peroxisome Proliferators on Leydig Cell Peripheral-Type Benzodiazepine Receptor Gene Expression, Hormone-Stimulated Cholesterol Transport, and Steroidogenesis: Role of the Peroxisome Proliferator-Activator Receptor ." *Endocrinology* 143 (7) (July 1): 2571–2583. doi:10.1210/en.143.7.2571.

Hannas, Bethany R, Christy S Lambright, Johnathan Furr, Nicola Evans, Paul M D Foster, Earl L Gray, and Vickie S Wilson. 2012. "Genomic Biomarkers of Phthalate-Induced Male Reproductive Developmental Toxicity: A Targeted RT-PCR Array Approach for Defining Relative Potency." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 125 (2) (February): 544–57. doi:10.1093/toxsci/kfr315.

Hurst, Christopher H, and David J Waxman. 2003. "Activation of PPAR α and PPAR γ by Environmental Phthalate Monoesters." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 74 (2) (August): 297–308. doi:10.1093/toxsci/kfg145.

Lapinskas, Paula J., Sherri Brown, Lisa M. Leesnitzer, Steven Blanchard, Cyndi Swanson, Russell C. Cattley, and J. Christopher Corton. 2005. "Role of PPAR α in Mediating the Effects of Phthalates and Metabolites in the Liver." *Toxicology* 207 (1): 149–163.

Lehmann, Kim P, Suzanne Phillips, Madhabananda Sar, Paul M D Foster, and Kevin W Gaido. 2004. "Dose-Dependent Alterations in Gene Expression and Testosterone Synthesis in the Fetal Testes of Male Rats Exposed to Di (n-Butyl) Phthalate." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 81 (1) (September 1): 60–8. doi:10.1093/toxsci/kfh169.

Pinelli, Alessandra, Cristina Godio, Antonio Laghezza, Nico Mitro, Giuseppe Fracchiolla, Vincenzo Tortorella, Antonio Lavecchia, et al. 2005. "Synthesis, Biological Evaluation, and Molecular Modeling Investigation of New Chiral Fibrates with PPAR α and PPAR γ Agonist Activity." *Journal of Medicinal Chemistry* 48 (17) (August 25): 5509–19. doi:10.1021/jm0502844.

Schultz, R, W Yan, J Toppari, A Völkli, J A Gustafsson, and M Peltó-Huikko. 1999. "Expression of Peroxisome Proliferator-Activated Receptor Alpha Messenger Ribonucleic Acid and Protein in Human and Rat Testis." *Endocrinology* 140 (7) (July): 2968–75. doi:10.1210/endo.140.7.6858.

Ward, J M, J M Peters, C M Perella, and F J Gonzalez. 1998. "Receptor and Nonreceptor-Mediated Organ-Specific Toxicity of di(2-Ethylhexyl)phthalate (DEHP) in Peroxisome Proliferator-Activated Receptor Alpha-Null Mice." *Toxicologic Pathology* 26 (2): 240–6.

Willson, T M, P J Brown, D D Sternbach, and B R Henke. 2000. "The PPARs: From Orphan Receptors to Drug Discovery." *Journal of Medicinal Chemistry* 43 (4) (February 24): 527–50.

Xie, Yi, Qian Yang, and Joseph W DePierre. 2002. "The Effects of Peroxisome Proliferators on Global Lipid Homeostasis and the Possible Significance of These Effects to Other Responses to These Xenobiotics: An Hypothesis." *Annals of the New York Academy of Sciences* 973 (November): 17–25.

Relationship: 608: Reduction, testosterone level leads to Malformation, Male reproductive tract (<https://aopwiki.org/relationships/608>)
AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
PPARα activation in utero leading to impaired fertility in males (https://aopwiki.org/aops/18)	non-adjacent	High	

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
human	<i>Homo sapiens</i>	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
rat	<i>Rattus norvegicus</i>	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)
mice	<i>Mus sp.</i>	Low	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095)

Hypospadias

Maternal exposure to estrogenic and antiandrogenic endocrine disrupting compounds has been implicated in increased risk of cryptorchidism and hypospadias in human male offspring without statistical significance (Morales-Suárez-Varela et al. 2011).

AGD

Across numerous species, including humans, AGD is longer in males compared to females; for review see (Barrett et al. 2014).

Key Event Relationship Description

Male sexual differentiation in general depends on testosterone (T), dihydrotestosterone (DHT), and the expression of androgen receptors by target cells (Manson and Carr 2003). Disturbances in the balance of this endocrine system by either endogenous or exogenous factors may lead to male reproductive tract, malformations (e.g. hypospadias, cryptorchidism). Reduction in T levels during foetal development subsequently lower levels of its metabolite DHT lead also to impaired growth of the perineum with reduced anogenital distance (AGD) (Bowman et al. 2003).

Evidence Supporting this KER

Biological Plausibility

Hypospadias

The role of foetal androgens (T and DHT) is crucial for the development of the male reproductive tract especially during the first trimester of pregnancy. Androgens regulate masculinization of external genitalia. T is necessary for stabilization and differentiation of the Wolffian structures (e.g., the epididymis, vas deferens and seminal vesicles) and also for normal development of the foetal testes; DHT, produced locally from testosterone, is required for normal development of the genital tubercle and urogenital sinus into the external genitalia and prostate (Murashima et al. 2015). Therefore any defects in androgen biosynthesis, metabolism or action during development can cause hypospadias (Rey et al. 2005). The environmental factors with anti-androgenic activity may alter the complex regulation of male sex differentiation during foetal life (Kalfa et al., 2008). Although the cause in most cases is unknown, hypospadias has been associated with aberrant androgen signalling during development (Wolf et al. 1999). The aetiology of this frequent malformation has not been elucidated despite intensive investigation (Kalfa, Philibert, and Sultan 2009). Hypospadias thus appears at the crossroads of genetic, endocrine and environmental mechanisms (Kalfa, Philibert, and Sultan 2009).

Anogenital distance (AGD)

The anogenital distance (AGD) is a sexual dimorphism that results from the sex difference in foetal androgen (DHT) levels (Rhees et al., 1997). The AGD is a marker of perineal growth and caudal migration of the genital tubercle. It is androgen-dependent in male rodents (Bowman et al. 2003). During development, androgens stimulate the growth of the perineal region between the sex papilla and the anus, resulting in an increased AGD in male offspring (Bowman et al. 2003). The AGD, is believed to be a biomarker of prenatal androgen exposure in many species, and in humans it has been associated with several adverse reproductive health outcomes in adults. AGD reflects foetal androgen exposure only within a discrete masculinization programming window (MPW), during which development of male reproductive organs is taking place (Wolf et al. 1999), (MacLeod et al. 2010).

Cryptorchidism

Undescended testis (UDT), also called cryptorchidism, is the most frequent congenital malformation in males, occurring in 2–5% of full-term male births (Hadziselimovic 2002) (Brucker-Davis et al. 2008). Testosterone and insulin-like peptide 3 (INSL3) are two major Leydig cell hormones that regulate physiological testicular descent during foetal development (Virtanen et al. 2007). Most cases of cryptorchidism remain idiopathic but epidemiological and experimental studies have suggested a role of both genetic and environmental factors. Studies e. g.(Gray et al. 2000) have shown that maternal administration of certain chemicals (phthalate esters) during the critical intrauterine period of sexual differentiation alters development of both androgen- and insl3-dependent tissues. Cryptorchidism is shown to be linked with increased risk of hypofertility and testicular cancer (Fénichel et al. 2015).

Empirical Evidence

Hypospadias

Reduced T production during the male rat development lead to hypospadias (Mylchreest, Cattley, and Foster 1998), (Mylchreest 2000), (Gray et al. 2000), (Parks 2000), (Wilson et al. 2004); this outcome is associated with Leydig cell function.

Anogenital distance (AGD)

The decreased AGD has been associated with the perturbation of androgen-mediated development of the reproductive tract in rat males which were exposed to anti-androgens in utero (Wolf et al. 1999), (McIntyre et al. 2000), (McIntyre, Barlow, and Foster 2001). Several studies have demonstrated that exposure to phthalates results in decreased anogenital distance in human males (S. H. Swan et al. 2015), (Bornehag et al. 2015), presumably due to lowered testosterone levels (Suzuki et al. 2012), (Jurewicz and Hanke 2011), (Shanna H Swan et al. 2005), for details see Table 1.

			KE: testosterone, reduction	KE: AGD, decreased		
Compound	Species and strain: Doses: duration, [measurement day]	Effect level			Details	References
Phthalates (DEHP)	rat, 0, 10, 30, 100, or 300 mg /kg bw/day : 7- 21 GD, [GD 21]	LOEL=-300 mg /kg bw/day	Testicular testosterone levels, reduction, no change plasma testosterone			(Borch et al. 2006)
Phthalates (DEHP)	rat, GD 3- PND 21	LOEL=750 mg /kg bw/day		Anogenital distance decreased	Gestational and lactational	(Moore et al. 2001)
Phthalates (DEHP)	rat	LOEL=750 mg /kg bw/day	reduction in T production, and reduced testicular and whole-body T levels in fetal and neonatal male	Anogenital distance decreased	Exposure from (GD) 14 to postnatal day (PND) 3, AGD reduced by 36% in exposed male	(Parks 2000)
Phthalates (DEHP)	rat	LOEL=15 mg /kg bw/day	Decreased testosterone levels	Effects on Sperm production		(Andrade et al. 2006)
Phthalates (DEHP)	rat	LOEL=5 mg /kg bw/day		cryptorchidism		(Andrade et al. 2006)
Phthalates (DEHP)	rat	LOEL=1.215 mg /kg bw/day	Decreased testosterone levels	Effects on Sperm production		(Andrade et al. 2006)
Phthalates (DnHP)	rat	LOEL=250 mg /kg bw/day		Anogenital distance decreased		(Saillenfait, Gallissot, and Sabaté 2009)
Phthalates (DEHP)	rat	LOEL=300 mg/kg/day		Anogenital distance decreased		(Jarfelt et al. 2005)
Phthalates (DBP)	rat	LOEL=500 mg/kg/day		Anogenital distance decreased	throughout pregnancy until postnatal day 20	(Mylchreest, Cattley, and Foster 1998)
Phthalates dicyclohexyl phthalate (DCHP)	rat	LOEL=6000 ppm		Anogenital distance decreased	F1 and F2 6000 ppm, and decrease of AGD and appearance of areola mammae were observed in the F1 male 6000 ppm and F2 male receiving doses of 1200 ppm or 6000 ppm.	(Hoshino, Iwai, and Okazaki 2005)
Phthalate (DBP)	rat	LOEL=500 mg/kg/day	intratesticular testosterone levels, reduction (by nearly 90%)	Anogenital distance decreased	GD 12 -20, examinations on GD20	(Johnson et al. 2011)
Phthalates (MEHP)	Human			Anogenital index decreased	Urine concentration of phthalates metabolites MEHP associated with reduced AGI, suggestive association of sum of DEHP metabolites with reduced AGI	(Suzuki et al. 2012),
Phthalates (MEP), (MBP), (MBzP), (MiBP)	human			Urinary concentrations of phthalate metabolites inversely related to AGI	134 boys 2-36 months of age	(Shanna H Swan et al. 2005)

Phthalates (MEHP, MBP)	human	MBP= 78.4 ng/mL* in urine; 85.2 ng/mL* in amniotic fluid MEHP =24.9 ng/mL * in urine; 22.8 ng/mL* in amniotic fluid		In girls, decreased AGD in relation to amniotic fluid levels of MBP and MEHP. No associations found in boys	Amniotic fluid and urine concentrations of phthalate metabolites	(Huang et al. 2009)
------------------------------	-------	--	--	---	---	------------------------

Table 1 Summary of experimental evidence for the KER. Lowest-Observed-Effect-Level (LOEL), Dibutyl phthalate (DBP), diisobutyl phthalate (DiBP), di-n-hexyl phthalate (DnHP), monobutyl phthalate (MBP); Bis(2-ethylhexyl) phthalate (DEHP) mono-(2-ethylhexyl) phthalate (MEHP); monoethyl phthalate (MEP), monobenzyl phthalate (MBzP), monoisobutyl phthalate (MiBP); anogenital index (AGI)-weight normalised index of AGD median.

Uncertainties and Inconsistencies

Hypospadias

Epidemiological studies have demonstrated an association between foetal estrogen exposure and hypospadias (Klip et al. 2002), (Brouwers et al. 2007). However, the molecular mechanism underlying this association is unknown (Wang and Baskin 2008), (Blaschko, Cunha, and Baskin 2012).

Anogenital distance (AGD)

Study by Huang et al did not found associations with the phthalates metabolites in the male AGD, however in females in relation to amniotic fluid levels of MBP and MEHP (Huang et al. 2009).

References

Andrade, Anderson J M, Simone W Grande, Chris E Talsness, Konstanze Grote, and Ibrahim Chahoud. 2006. "A Dose-Response Study Following in Utero and Lactational Exposure to Di-(2-Ethylhexyl)-Phthalate (DEHP): Non-Monotonic Dose-Response and Low Dose Effects on Rat Brain Aromatase Activity." *Toxicology* 227 (3) (October 29): 185–92. doi:10.1016/j.tox.2006.07.022. <http://www.ncbi.nlm.nih.gov/pubmed/16949715> (<http://www.ncbi.nlm.nih.gov/pubmed/16949715>).

Barrett, Emily S, Lauren E Parlett, J Bruce Redmon, and Shanna H Swan. 2014. "Evidence for Sexually Dimorphic Associations between Maternal Characteristics and Anogenital Distance, a Marker of Reproductive Development." *American Journal of Epidemiology* 179 (1) (January 1): 57–66. doi:10.1093/aje/kwt220. <http://www.ncbi.nlm.nih.gov/article/abstract?artid=3864710&tool=pmcentrez&rendertype=abstract> (<http://www.ncbi.nlm.nih.gov/article/abstract?artid=3864710&tool=pmcentrez&rendertype=abstract>).

Blaschko, Sarah D, Gerald R Cunha, and Laurence S Baskin. 2012. "Molecular Mechanisms of External Genitalia Development." *Differentiation; Research in Biological Diversity* 84 (3) (October): 261–8. doi:10.1016/j.diff.2012.06.003. <http://www.ncbi.nlm.nih.gov/article/abstract?artid=3443292&tool=pmcentrez&rendertype=abstract> (<http://www.ncbi.nlm.nih.gov/article/abstract?artid=3443292&tool=pmcentrez&rendertype=abstract>).

Borch, Julie, Stine Broeng Metzdorff, Anne Marie Vinggaard, Leon Brokken, and Majken Dalgaard. 2006. "Mechanisms Underlying the Anti-Androgenic Effects of Diethylhexyl Phthalate in Fetal Rat Testis." *Toxicology* 223 (1-2) (June 1): 144–55. doi:10.1016/j.tox.2006.03.015. <http://www.ncbi.nlm.nih.gov/article/abstract?artid=4286276&tool=pmcentrez&rendertype=abstract> (<http://www.ncbi.nlm.nih.gov/article/abstract?artid=4286276&tool=pmcentrez&rendertype=abstract>).

Bornehag, Carl-Gustaf, Fredrik Carlstedt, Bo Ag Jönsson, Christian H Lindh, Tina K Jensen, Anna Bodin, Carin Jonsson, Staffan Janson, and Shanna H Swan. 2015. "Prenatal Phthalate Exposures and Anogenital Distance in Swedish Boys." *Environmental Health Perspectives* 123 (1) (January): 101–7. doi:10.1289/ehp.1408163. <http://www.ncbi.nlm.nih.gov/article/abstract?artid=4286276&tool=pmcentrez&rendertype=abstract> (<http://www.ncbi.nlm.nih.gov/article/abstract?artid=4286276&tool=pmcentrez&rendertype=abstract>).

Bowman, Christopher J, Norman J Barlow, Katie J Turner, Duncan G Wallace, and Paul M D Foster. 2003. "Effects of in Utero Exposure to Finasteride on Androgen-Dependent Reproductive Development in the Male Rat." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 74 (2) (August): 393–406. doi:10.1093/toxsci/kfg128. <http://www.ncbi.nlm.nih.gov/pubmed/12773767> (<http://www.ncbi.nlm.nih.gov/pubmed/12773767>).

Brouwers, Marijn M, Wouter F J Feitz, Luc A J Roelofs, Lambertus A L M Kiemeneij, Robert P E de Gier, and Nel Roeleveld. 2007. "Risk Factors for Hypospadias." *European Journal of Pediatrics* 166 (7) (July): 671–8. doi:10.1007/s00431-006-0304-z. <http://www.ncbi.nlm.nih.gov/pubmed/17103190>.

Brucker-Davis, Françoise, Kathy Wagner-Mahler, Isabelle Delattre, Béatrice Ducot, Patricia Ferrari, André Bongain, Jean-Yves Kurzenne, Jean-Christophe Mas, and Patrick Férichel. 2008. "Cryptorchidism at Birth in Nice Area (France) Is Associated with Higher Prenatal Exposure to PCBs and DDE, as Assessed by Colostrum Concentrations." *Human Reproduction* (Oxford, England) 23 (8) (August): 1708–18. doi:10.1093/humrep/den186. <http://www.ncbi.nlm.nih.gov/pubmed/18503055> (<http://www.ncbi.nlm.nih.gov/pubmed/18503055>).

Eisenberg, Michael L, Tina K Jensen, R Chanc Walters, Niels E Skakkebaek, and Larry I Lipshultz. 2011. "The Relationship between Anogenital Distance and Reproductive Hormone Levels in Adult Men." *The Journal of Urology* 187 (2) (February): 594–8. doi:10.1016/j.juro.2011.10.041. <http://www.ncbi.nlm.nih.gov/pubmed/22177168> (<http://www.ncbi.nlm.nih.gov/pubmed/22177168>).

Fénichel, Patrick, Najiba Lahou, Patrick Coquillard, Patricia Panaïa-Ferrari, Kathy Wagner-Mahler, and Françoise Brucker-Davis. 2015. "Cord Blood Insulin-like Peptide 3 (INSL3) but Not Testosterone Is Reduced in Idiopathic Cryptorchidism." *Clinical Endocrinology* 82 (2) (February): 242–7. doi:10.1111/cen.12500. <http://www.ncbi.nlm.nih.gov/pubmed/24826892> (<http://www.ncbi.nlm.nih.gov/pubmed/24826892>).

Gray, L E, J Ostby, J Furr, M Price, D N Veeramachaneni, and L Parks. 2000. "Perinatal Exposure to the Phthalates DEHP, BBP, and DINP, but Not DEP, DMP, or DOTP, Alters Sexual Differentiation of the Male Rat." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 58 (2) (December): 350–65. <http://www.ncbi.nlm.nih.gov/pubmed/11099647> (<http://www.ncbi.nlm.nih.gov/pubmed/11099647>).

Hadziselimovic, F. 2002. "Cryptorchidism, Its Impact on Male Fertility." *European Urology* 41 (2) (February): 121–3. <http://www.ncbi.nlm.nih.gov/pubmed/12074397> (<http://www.ncbi.nlm.nih.gov/pubmed/12074397>).

Hoshino, Nobuhito, Mayumi Iwai, and Yoshimasa Okazaki. 2005. "A Two-Generation Reproductive Toxicity Study of Dicyclohexyl Phthalate in Rats." *The Journal of Toxicological Sciences* 30 Spec No (December): 79–96. <http://www.ncbi.nlm.nih.gov/pubmed/16641545> (<http://www.ncbi.nlm.nih.gov/pubmed/16641545>).

Huang, Po-Chin, Pao-Lin Kuo, Yen-Yin Chou, Shio-Jean Lin, and Ching-Chang Lee. 2009. "Association between Prenatal Exposure to Phthalates and the Health of Newborns." *Environment International* 35 (1) (January): 14–20. doi:10.1016/j.envint.2008.05.012. <http://www.ncbi.nlm.nih.gov/pubmed/18640725> (<http://www.ncbi.nlm.nih.gov/pubmed/18640725>).

Jarfelt, Kirsten, Majken Dalgaard, Ulla Hass, Julie Borch, Helene Jacobsen, and Ole Ladefoged. 2005. "Antiandrogenic Effects in Male Rats Perinatally Exposed to a Mixture of di(2-Ethylhexyl) Phthalate and di(2-Ethylhexyl) Adipate." *Reproductive Toxicology* (Elmsford, N.Y.) 19 (4): 505–15. doi:10.1016/j.reprotox.2004.11.005. <http://www.ncbi.nlm.nih.gov/pubmed/15749265> (<http://www.ncbi.nlm.nih.gov/pubmed/15749265>).

Johnson, Kamin J, Erin N McDowell, Megan P Viereck, and Jessie Q Xia. 2011. "Species-Specific Dibutyl Phthalate Fetal Testis Endocrine Disruption Correlates with Inhibition of SREBP2-Dependent Gene Expression Pathways." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 120 (2) (April): 460–74. doi:10.1093/toxsci/kfr020. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138201/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138201/?tool=pmcentrez&rendertype=abstract).

Jurewicz, Joanna, and Wojciech Hanke. 2011. "Exposure to Phthalates: Reproductive Outcome and Children Health. A Review of Epidemiological Studies." *International Journal of Occupational Medicine and Environmental Health* 24 (2) (June): 115–41. doi:10.2478/s13382-011-0022-2. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138201/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138201/?tool=pmcentrez&rendertype=abstract).

Kalfa, Nicolas, Pascal Philibert, and Charles Sultan. 2009. "Is Hypospadias a Genetic, Endocrine or Environmental Disease, or Still an Unexplained Malformation?" *International Journal of Andrology* 32 (3) (June): 187–97. doi:10.1111/j.1365-2605.2008.00899.x. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Klip, Helen, Janneke Verlooy, Jan D van Gool, Marlies E T A Koster, Curt W Burger, and Flora E van Leeuwen. 2002. "Hypospadias in Sons of Women Exposed to Diethylstilbestrol in Utero: A Cohort Study." *Lancet* 359 (9312) (March 30): 1102–7. doi:10.1016/S0140-6736(02)08152-7. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

MacLeod, D J, R M Sharpe, M Fiskin, H M Scott, G R Hutchison, A J Drake, and S van den Driesche. 2010. "Androgen Action in the Masculinization Programming Window and Development of Male Reproductive Organs." *International Journal of Andrology* 33 (2) (April): 279–87. doi:10.1111/j.1365-2605.2009.01005.x. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Manson, Jeanne M, and Michael C Carr. 2003. "Molecular Epidemiology of Hypospadias: Review of Genetic and Environmental Risk Factors." *Birth Defects Research. Part A, Clinical and Molecular Teratology* 67 (10) (October): 825–36. doi:10.1002/bdra.10084. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

McIntyre, B S, N J Barlow, and P M Foster. 2001. "Androgen-Mediated Development in Male Rat Offspring Exposed to Flutamide in Utero: Permanence and Correlation of Early Postnatal Changes in Anogenital Distance and Nipple Retention with Malformations in Androgen-Dependent Tissues." *Toxicological Sciences : An Official Journal of the Society of Toxicology* 62 (2) (August): 236–49. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

McIntyre, B S, N J Barlow, D G Wallace, S C Maness, K W Gaido, and P M Foster. 2000. "Effects of in Utero Exposure to Linuron on Androgen-Dependent Reproductive Development in the Male Crl:CD(SD)BR Rat." *Toxicology and Applied Pharmacology* 167 (2) (September 1): 87–99. doi:10.1006/taap.2000.8998. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Moore, R W, T A Rudy, T M Lin, K Ko, and R E Peterson. 2001. "Abnormalities of Sexual Development in Male Rats with in Utero and Lactational Exposure to the Antiandrogenic Plasticizer Di(2-Ethylhexyl) Phthalate." *Environmental Health Perspectives* 109 (3) (March): 229–37. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Morales-Suárez-Varela, María M, Gunnar V Toft, Morten S Jensen, Cecilia Ramlau-Hansen, Linda Kaerlev, Ane-Marie Thulstrup, Agustín Llopis-González, Jørn Olsen, and Jens P Bonde. 2011. "Parental Occupational Exposure to Endocrine Disrupting Chemicals and Male Genital Malformations: A Study in the Danish National Birth Cohort Study." *Environmental Health : A Global Access Science Source* 10 (1) (January): 3. doi:10.1186/1476-069X-10-3. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Murashima, Aki, Satoshi Kishigami, Axel Thomson, and Gen Yamada. 2015. "Androgens and Mammalian Male Reproductive Tract Development." *Biochimica et Biophysica Acta* 1849 (2) (February): 163–170. doi:10.1016/j.bbagen.2014.05.020. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Mylchreest, Eve. 2000. "Dose-Dependent Alterations in Androgen-Regulated Male Reproductive Development in Rats Exposed to Di(n-Butyl) Phthalate during Late Gestation." *Toxicological Sciences* 55 (1) (May 1): 143–151. doi:10.1093/toxsci/55.1.143. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Mylchreest, Eve, Russell C. Cattley, and Paul M. D. Foster. 1998. "Male Reproductive Tract Malformations in Rats Following Gestational and Lactational Exposure to Di(n-Butyl) Phthalate: An Antiandrogenic Mechanism?" *Toxicological Sciences* 43 (1) (May 1): 47–60. doi:10.1093/toxsci/43.1.47. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Parks, L. G. 2000. "The Plasticizer Diethylhexyl Phthalate Induces Malformations by Decreasing Fetal Testosterone Synthesis during Sexual Differentiation in the Male Rat." *Toxicological Sciences* 58 (2) (December 1): 339–349. doi:10.1093/toxsci/58.2.339. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Rey, Rodolfo A, Ethel Codner, Germán Iñíguez, Patricia Bedecarrás, Romina Trigo, Cecilia Okuma, Silvia Gottlieb, Ignacio Bergadá, Stella M Campo, and Fernando G Cassorla. 2005. "Low Risk of Impaired Testicular Sertoli and Leydig Cell Functions in Boys with Isolated Hypospadias." *The Journal of Clinical Endocrinology and Metabolism* 90 (11) (November): 6035–40. doi:10.1210/jc.2005-1306. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Sailenfait, Anne-Marie, Frédéric Gallissot, and Jean-Philippe Sabaté. 2009. "Differential Developmental Toxicities of Di-N-Hexyl Phthalate and Dicyclohexyl Phthalate Administered Orally to Rats." *Journal of Applied Toxicology : JAT* 29 (6) (August): 510–21. doi:10.1002/jat.1436. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Suzuki, Y, J Yoshinaga, Y Mizumoto, S Serizawa, and H Shiraishi. 2012. "Foetal Exposure to Phthalate Esters and Anogenital Distance in Male Newborns." *International Journal of Andrology* 35 (3) (June): 236–44. doi:10.1111/j.1365-2605.2011.01190.x. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Swan, S. H., S. Sathyarayana, E. S. Barrett, S. Janssen, F. Liu, R. H. N. Nguyen, and J. B. Redmon. 2015. "First Trimester Phthalate Exposure and Anogenital Distance in Newborns." *Human Reproduction* 30 (4) (February 18): 963–72. doi:10.1093/humrep/deu363. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Swan, Shanna H, Katharina M Main, Fan Liu, Sara L Stewart, Robin L Kruse, Antonia M Calafat, Catherine S Mao, et al. 2005. "Decrease in Anogenital Distance among Male Infants with Prenatal Phthalate Exposure." *Environmental Health Perspectives* 113 (8) (August): 1056–61. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Virtanen, Helena E, Dina Cortes, Ewa Rajpert-De Meyts, E Martin Ritzén, Agneta Nordenskjöld, Niels E Skakkebaek, and Jorma Toppari. 2007. "Development and Descent of the Testis in Relation to Cryptorchidism." *Acta Paediatrica (Oslo, Norway : 1992)* 96 (5) (May): 622–7. doi:10.1111/j.1651-2227.2007.00244.x. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Wang, Ming-Hsien, and Laurence S Baskin. 2008. "Endocrine Disruptors, Genital Development, and Hypospadias." *Journal of Andrology* 29 (5): 499–505. doi:10.2164/jandrol.108.004945. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Wilson, Vickie S, Christy Lambright, Johnathan Furr, Joseph Ostby, Carmen Wood, Gary Held, and L Earl Gray. 2004. "Phthalate Ester-Induced Gubernacular Lesions Are Associated with Reduced *insl3* Gene Expression in the Fetal Rat Testis." *Toxicology Letters* 146 (3) (March 2): 207–15. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/> (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693257/?tool=pmcentrez&rendertype=abstract).

Wolf, C., C. Lambright, P. Mann, M. Price, R. L. Cooper, J. Ostby, and L. E. Gray. 1999. "Administration of Potentially Antiandrogenic Pesticides (procymidone, Linuron, Iprodione, Chlozolinate, P,p'-DDE, and Ketoconazole) and Toxic Substances (dibutyl- and Diethylhexyl Phthalate, PCB 169, and Ethane Dimethane Sulphonate) during Sexual Differentiation." *Toxicology and Industrial Health* 15 (1-2) (February 1): 94–118. doi:10.1177/074823379901500109. <http://tih.sagepub.com/content/15/1-2/94.abstract>.

ijkey=9190cbc3a5effe489f5f27911b833ff5e3f1a689&keytype2=tf_ipsecsha (http://tih.sagepub.com/content/15/1-2/94.abstract?ijkey=9190cbc3a5effe489f5f27911b833ff5e3f1a689&keytype2=tf_ipsecsha).