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Abstract

The pleiotropic cytokine IL-1 mediates its biological functions via association with the signaling receptor IL-1R1. These may include initiation of innate immunity as well as acquired immunity, which are essential for assistance of host
defense against infection. The trimeric complex consists of IL-1, IL-1R1 and IL-1R3 (a coreceptor, formerly IL-1R accessory protein) allows for the approximation of the Toll-IL-1-Receptor (TIR) domains of each receptor chain. MyD88
then binds to the TIR domains. The binding of MyD88 triggers a cascade of kinases that produce a strong pro-inflammatory signal leading to activation of NF-kB. The activation of NF-kB plays a principle role in the immunological
function of IL-1. Namely, it stimulates innate immunity such as activation of dendritic cells and macrophages. It also stimulates T cells via activated dendritic function or directly. The activation of T cells is crucial for B cell proliferation
and their antibody production. The cooperation by T cells and B cells constitutes a main part of host defense against infection.

In this AOP, we considered 2 MIEs, such as blocking IL-1 R and decreased IL-1 production. Either MIE leads to reduced IL-1 signaling. The biological plausibility of the signaling cascade from the activation of IL-1R to the activation of
NF-kB is already confirmed. In addition, the biological plausibility that suppressed NF-kB activation leads to impaired T cell activation and antibody production lead to increased susceptibility to infection is supported by quite a few
published works.

IL-1 also mediates several autoinflammatory syndromes. Therefore, several inhibitors against IL-1 signaling such as IL-1Ra (generic anakinra) , canakinumab (anti-IL-1B antibody) and rilonacept (soluble IL-1R) have been developed.
After these inhibitors became available to treat these disorders, it became clear that these inhibitors increased the frequency of serious bacterial infection. Similarly, the experiments using knockout mice revealed that the lack of IL-1
signaling led to bacterial, tuberculosis or viral infection. These data suggest that chemicals as well as drugs can suppress IL-1 signaling through their inhibitory effects on IL-1B. Taken together, developing the AOP for inhibition of IL-1
signaling is mandatory.

Background

The pleiotropic cytokine IL-1 mediates its biological functions via association with the signaling receptor IL-1R1. These may include initiation of innate immunity and assistance of host defense against infection, and sometimes,
mediation of autoinflammatory, such as cryopyrin-associated periodic syndrome, neonatal-onset multisystem inflammatory disease and familial Mediterranean fever. The trimeric complex consists of IL-1, IL-1R1 and IL-1R3 (a
coreceptor, formerly IL-1R accessory protein) allows for the approximation of the Toll-IL-1-Receptor (TIR) domains of each receptor chain. MyD88 then binds to the TIR domains. The binding of MyD88 triggers a cascade of kinases that
produce a strong pro-inflammatory signal leading to activation of NF-kB and fundamental inflammatory responses such as the induction of cyclooxygenase type 2, production of multiple cytokines and chemokines, increased
expression of adhesion molecules, or synthesis of nitric oxide. (Dinarello, 2018) (Weber et al., 2010a, b).

IL-1 also mediates autoinflammatory, such as cryopyrin-associated periodic syndrome, neonatal-onset multisystem inflammatory disease and familial Mediterranean fever. Consequently, IL-1 family cytokines have sophisticated
regulatory mechanisms to control their activities including proteolytic processing for their activation and the deployment of soluble receptors and receptor antagonists to limit their activities. Therefore, several inhibitors against IL-1
signaling have been developed. IL-1 receptor antagonist IL-1Ra was purified in 1990, and the cDNA was reported that same year. IL-1Ra binds IL-1R but does not initiate IL-1 signal transduction. (Dripps et al., 1991)Recombinant IL-1Ra
(generic anakinra) is fully active in blocking the IL-1R1, and therefore, the activities of IL-1a and IL-1B. Anakinra was approved for the treatment of rheumatoid arthritis and cryopyrin-associated periodic syndrome (CAPS). Since its
introduction in 2002 for the treatment of rheumatoid arthritis, anakinra has had a remarkable record of safety. However, Fleischmann et al. reported that serious infectious episodes were observed more frequently in the anakinra group
(2.1% versus 0.4% in the placebo group) and other authors also reported the increased susceptibility to bacterial or tuberculosis infection (Genovese et al., 2004; Kullenberg et al., 2016; Lequerre et al., 2008; Migkos et al., 2015). As
IL-1 signaling antagonists, two drugs went up to the market, canakinumab (anti-IL-1B antibody) and rilonacept (soluble IL-1R). Several reports described that the administration of these drugs led to increased susceptibility to

infection. (De Benedetti et al., 2018; Imagawa et al., 2013; Lachmann et al., 2009; Schlesinger et al., 2012; Yokota et al., 2017). In addition to these human data, the experiments using knockout mice revealed that the lack of IL-1
signaling led to bacterial, tuberculosis or viral infection. (Guler et al., 2011; Horino et al., 2009; Juffermans et al., 2000; Tian et al., 2017; Yamada et al., 2000).

In this AOP, we considered inhibition of IL-1R activation as a MIE. The biological plausibility of the signaling cascade from the activation of IL-1R to the activation of NF-kB is already accepted. In addition, the biological plausibility that
suppressed NF-kB activation leads to impaired T cell activation, resulting in impaired antibody production and impaired T cell and antibody production lead to increased susceptibility to infection is confirmed.

Summary of the AOP
Events

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)
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Sequence Type Event ID Title Short name

1 MIE 1700 Inhibition of IL-1 binding to IL-1 receptor (https://aopwiki.org/events/1700) Inhibition of IL-1 binding to IL-1 receptor

2 KE 202 Inhibition, Nuclear factor kappa B (NF-kB) (https://aopwiki.org/events/202) Inhibition, Nuclear factor kappa B (NF-kB)

3 KE 1702 Suppression of T cell activation (https://aopwiki.org/events/1702) Suppression of T cell activation

4 AO 986 Increase, Increased susceptibility to infection (https://aopwiki.org/events/986) Increase, Increased susceptibility to infection

Key Event Relationships

Upstream Event Relationship Type Downstream Event Evidence Quantitative Understanding
Inhibition of IL-1 binding to IL-1 receptor (https:/aopwiki.org/relationships/2002) adjacent Inhibition, Nuclear factor kappa B (NF-kB) High Moderate
Inhibition, Nuclear factor kappa B (NF-kB) (https://aopwiki.org/relationships/2003) adjacent Suppression of T cell activation High Moderate
Suppression of T cell activation (https://aopwiki.org/relationships/2004) adjacent Increase, Increased susceptibility to infection High Not Specified
Stressors
Name Evidence
IL-1 receptor antagonist IL-1Ra (Anakinra) High
anti-IL-1b antibody (Canakinumab) High
soluble IL-1R (Rilonacept) High
anti-IL-1b antibody (Gevokizumab) High

Overall Assessment of the AOP

Domain of Applicability
Life Stage Applicability

Life Stage Evidence

Not Otherwise Specified High

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens High NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
Mus musculus Mus musculus High NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)
Rattus norvegicus Rattus norvegicus High NCBI (http://www.ncbi.nIm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)

Sex Applicability

Sex Evidence

Mixed High

Although sex differences in immune responses are well known (Klein and Flanagan, 2016), there is no reports regarding the sex difference in IL-1 production, IL-1 function or susceptibility to infection as adverse effect of IL-1 blocking
agent. Again, age-dependent difference in IL-1 signaling is not known.

The IL1B gene is conserved in chimpanzee, Rhesus monkey, dog, cow, mouse, rat, and frog (https://www.ncbi.nlm.nih.gov/homologene/481 (https://www.ncbi.nlm.nih.gov/homologene/481)), and the Myd88 gene is conserved in
human, chimpanzee, Rhesus monkey, dog, cow, rat, chicken, zebrafish, mosquito, and frog (https://www.ncbi.nlm.nih.gov/homologene?Db=homologene&Cmd=Retrieve&list_uids=1849 (https://www.ncbi.nim.nih.gov/homologene?
Db=homologene&Cmd=Retrieve&list_uids=1849)).

The NFKB1 gene is conserved in chimpanzee, Rhesus monkey, dog, cow, mouse, rat, chicken, and frog.
275 organisms have orthologs with human gene NFKB1.

(https://www.ncbi.nlm.nih.gov/gene/4790 (https://www.ncbi.nlm.nih.gov/gene/4790))

The RELB gene is conserved in chimpanzee, Rhesus monkey, dog, cow, mouse, rat, and frog.

216 organisms have orthologs with human gene RELB.

(https://www.ncbi.nlm.nih.gov/gene/5971 (https://www.ncbi.nlm.nih.gov/gene/5971))

These data suggest that the proposed AOP regarding inhibition of IL-1 signaling is not dependent on life stage, sex, age or species.

Essentiality of the Key Events

The experiments using knockout mice revealed that the deficiency of IL-1 signaling led to bacterial, tuberculosis or viral infection (Guler et al., 2011; Horino et al., 2009; Juffermans et al., 2000; Tian et al., 2017; Yamada et al., 2000).

IL-1 receptor antagonist IL-1Ra was purified in 1990, and the cDNA reported that same year. IL-1Ra binds IL-1R but does not initiate IL-1 signal transduction (Dripps et al., 1991). Recombinant IL-1Ra (generic anakinra) is fully active in
blocking the IL-1R1, and therefore, the activities of IL-1a and IL-1B. Anakinra is approved for the treatment of rheumatoid arthritis and cryopyrin-associated periodic syndrome (CAPS). Since its introduction in 2002 for the treatment of
rheumatoid arthritis, anakinra has had a remarkable record of safety. However, Fleischmann et al. (Fleischmann et al., 2003) reported that serious infectious episodes were observed more frequently in the anakinra group (2.1% versus
0.4% in the placebo group) and other authors reported the increased susceptibility to bacterial or tuberculosis infection (Genovese et al., 2004; Kullenberg et al., 2016; Lequerre et al., 2008; Migkos et al., 2015). Two IL-1 signaling
antagonists, canakinumab (anti-IL-1b antibody) and rilonacept (soluble IL-1R) had been reported to increase susceptibility to infection (De Benedetti et al., 2018; Imagawa et al., 2013; Lachmann et al., 2009; Schlesinger et al., 2012).

In a similar way, defect of MyD88 signaling caused by knockout of mice gene or deficiency in human patient leads to the increased susceptibility to bacterial or tuberculosis infection (Fremond et al., 2004; Picard et al., 2010; Scanga
et al., 2004; von Bernuth et al., 2008). Although MyD88 is also known to be involved in TLR signaling pathway, several reports suggested that MyD88-dependent response was IL-1 receptor-mediated but not TLR-mediated. These data
suggest to essentiality of IL-1-MyD88 signaling pathway in host defense against infection.

Mice lacking NF-kB p50 are unable effectively to clear L. monocytogenes and are more susceptible to infection with S. peumoniae (Sha et al., 1995).

Weight of Evidence Summary

The recent review of IL-1 pathway by Weber et al. has clearly described the intracellular signaling event from the binding of IL-1a or IL-1b to IL-1R to the activation of NF-kB through the assemble of MyD88 to the trimelic complex
composed of IL-1, IL-R1, and IL-1RacP. The sequentiality and essentiality of each signaling molecule have been demonstrated by mice lacking relevant molecules (Weber et al., 2010a, b).
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There were several reports that described that administration of IL-1R antagonist or neutralizing antibody led to the suppression of downstream phenomena, which included internalization of IL-1 (Dripps et al., 1991), production of
PGE; (Hannum et al., 1990; Seckinger et al., 1990b), IL-6 (Goh et al., 2014), and T cell proliferation (Seckinger et al., 1990a).

Biological plausibility
Inhibition of IL-1 binding to IL-1 receptor leads to Inhibition, Nuclear factor kappa B (NF-kB)

IL-1ac and IL-1B independently bind the type | IL-1 receptor (IL-1R1), which is ubiquitously expressed. The IL-1R3 (formerly IL-1R accessory protein (IL-1RACP)) serves as a co-receptor that is required for signal transduction of IL-1/IL-
1RI complexes.

The initial step in IL-1 signal transduction is a ligand-induced conformational change in the first extracellular domain of the IL-1RI that facilitates recruitment of IL-1R3. the trimeric complex rapidly assembles two intracellular signaling
proteins, myeloid differentiation primary response gene 88 (MYD88) and interleukin-1 receptor—activated protein kinase (IRAK) 4. This is paralleled by the (auto)phosphorylation of IRAK4, which subsequently phosphorylates IRAK1 and
IRAK2, and then this is followed by the recruitment and oligomerization of tumor necrosis factor-associated factor (TRAF) 6. Activation of NF-kB by IL-1 requires the activation of inhibitor of nuclear factor B (IkB) kinase 2 (IKK2).
Activated IKK phosphorylates IkBa, which promotes its K48-linked polyubiquitination and subsequent degradation by the proteasome. IkB destruction allows the release of p50 and p65 NF-kB subunits and their nuclear translocation,
which is the central step in activation of NF-kB. Both NF-kBs bind to a conserved DNA motif that is found in numerous IL-1-responsive genes. (Weber et al., 2010a, b)

Inhibition, Nuclear factor kappa B (NF-kB) leads to Suppression of T cell activation

In T lineage cells, the temporal regulation of NF-kb controls the stepwise differentiation and antigen-dependent selection of conventional and specialized subsets of T cells in response to T cell receptor and costimulatory, cytokines and
growth factor signals. Cytokines include cytokines produced from macrophage or monocyte such as IL-1b. (Gerondakis et al., 2014)

Suppression of T cell activation leads to Increase, Increased susceptibility to infection

First type immunity drives resistance to viruses and intracellular bacteria, such as Listeria monocytogenes, Salmonella spp. and Mycobacteria spp., as well as to intracellular protozoan parasites such as Leishmania spp. The T helper
1 signature cytokine interferon-y has a central role in triggering cytotoxic mechanisms including macrophage polarization towards an antimicrobial response associated with the production of high levels of reactive oxygen species and
reactive nitrogen species, activation of CD8 cytotoxic T lymphocytes and natural killer cells to kill infected cells via the perforin and/or granzyme B-dependent lytic pathway or via the ligation of surface death receptors; and B cell
activation towards the production of cytolytic antibodies that target infected cells for complement and Fc receptor-mediated cellular cytotoxicity.

Resistance to extracellular metazoan parasites and other large parasites is mediated and/or involves second type immunity. Pathogen neutralization is achieved via different mechanisms controlled by T 2 signature cytokines, including
interleukin-4, IL-5 and IL-13, and by additional type 2 cytokines such as thymic stromal lymphopoietin, IL-25 or IL-33, secreted by damaged cell. T 2 signature cytokines drive B cell activation towards the production of high-affinity
pathogen-specific IgG1 and IgE antibodies that function via Fc-dependent mechanisms to trigger the activation of eosinophils, mast cells and basophils, expelling pathogens across epithelia.

T17 immunity confers resistance to extracellular bacteria such as Klebsiella pneumoniae, Escherichia coli, Citrobacter rodentium, Bordetella pertussis, Porphyromonas gingivalis and Streptococcus pneumoniae, and also to fungi such
as Candida albicans, Coccidioides posadasii, Histoplasma capsulatum and Blastomyces dermatitidis. Activation of T 17 cells by cognate T cell receptor (TCR-MHC class Il interactions and activation of group 3 innate lymphoid cells
(ILC3s) via engagement of IL-1 receptor (IL-1R) by IL-1B secreted from damaged cells lead to the recruitment and activation of neutrophils. T 17 immunopathology is driven to a large extent by products of neutrophil activation, such as
ROS and elastase (reviewed by Soares et al. (Soares et al., 2017).

Based on these evidences, the insufficient T cell or B cell function causes impaired resistance to infection.
Empirical support

This table summarizes the empirical support obtained from the experiment using several inhibitor or gene targeting mice.

concordance
table
lempirical data
MIE KE1 KE2
Reference Chmical Initiator or deleted gene dose Species LZ';:)TEP of IL-1 binding to IL-1 Inhibition, Nuclear factor kappa B (NF-kB) Suppression of T cell activatior

Equilibrium binding and kinetic
experiments show that IL-1ra binds
to the 80-kDa IL-1 receptor on the

1D€r,|g1ps etal. IL-1Ra (anakinra) murine thymomcae |l line EL4 with
an affinity (Kp = 150 pM)
approximately equal to that of IL-
la and IL-1b for this receptor
Determined by its ability to inhibit

[Sigma-Aldrich the IL-1alpha stimulation of murine

ISpecification IL-1Ra (anakinra) D10S cell. The expected ED50 is

ISheet 20-40 ng/ml in the presence of 50
pg/ml of IL-1alpha.

Fleischmann . 100 mg of an?k.inra or

ot al. 2003 IL-1Ra (anakinra) placebo, administered daily by human

subcutaneous injection
treated with subcutaneous
etanercept only (25 mg twice
weekly), full-dosage etanercept (25
IL-1Ra (anakinra) mg twice weekly) plus anakinra (100 human
mg/day), or half-dosage etanercept
(25 mg once weekly) plus anakinra
(100 mg/day) for 6 months

Genovese et
al. 2004

Kullenberg et

lal. 2016 IL-1Ra (anakinra) administered as daily s.c. injections human

Lequerre et treated with anakinra (1-2 mg/kg/dayhuman

IL-1Ra (anakinra)

al. 2008 in children, 100 mg/day in adults)
Migkos et al. .
015 IL-1Ra (anakinra) human
Settas et al. .
007 IL-1Ra (anakinra) human
intrathecal pretreatment with IL-1ra (6 mg) or
. YVAD (0.5 mg) significantly inhibited NF-kB
intrathecal L L . .
. . DNA-binding activity upregulation bilaterally
Lee et al. . administration N . L N
IL-1Ra (anakinra) (Fig. 3C). The intrathecal administration of IL-
2004 of IL-1ra X " .
(6 mg) 1ra or YVAD into non-inflamed animals
9 produced no significant change in the DNA-
binding activity of NF-kB p65.
In diabetic rats treated with anakinra (100 or
. In diabetic rats treated with anakinra 160 mlg/}‘<g/day for3or7 dgys F)efore sacrilflce)
\Vallejo et al. . a partial improvement of diabetic endothelial
IL-1Ra (anakinra) (100 or 160 mg/Kg/day for 3 or 7 rat . N N
2014 days before sacrifice) dysfunction occurred, together with a reduction
4 of vascular NADPH oxidase and NF-kB
activation.
Canakinumab binds to human IL-18
with high affinity; the antibody-
antigen dissociation equilibrium
Dhimolea et ‘ constant is approximately 35—-40
lal. 2010 canakinumab pM.
. Cmax was 1.2, 1.2 and 1.5 pM for
1, 3 and 10 mg/kg antibody
respectively, at days 42-56 after
the first infusion.
De Benedetti canakinumab 150 mg subcutaneously every 4 human
etal. 2018 weeks
\magawa et either 150 mg s.c. or 2 mg/kg for
9 canakinumab patients with a body weight <40 kg human
al. 2013
every 8 weeks for 24 weeks
received
Lachmann et canakinumab 150 mg of canakinumab human
al. 2009 subcutaneously every 8 weeks for up
to 24 weeks

3113



:Ehzlg?;ger elcanakinumab
[Textbook of

Pediatric
Rheumatologyrilonacept
I(Sixth Edition),

2011

Hoffman et al.

2008 rilonacept

Roell et al. .

2010 gevokizumab (XOMA 052)
Mansouri et .

lal. 2015 gevokizumab (XOMA 052)

Issafras et al.

014 gevokizumab (XOMA 052)

Palombella et
al. 1994 MG-132

Hellerbrand et

al. 1998 MG-132

Arlt et al. 2001MG-132

Ortiz-
Lazareno et MG-132
lal. 2008

u and Malek
2001 MG-132
Wang et al.
011 MG-132
(Ohkusu-
[Tsukada et al. MG-132
2018
Satou et al. .
004 bortezomib
Orciuolo et al. .
007 bortezomib

IMatsumoto et dehydroxymethylepoxyquinomicin
lal. 2005 (DHMEQ)

Nishioka et al. dehydroxymethylepoxyquinomicin

2008 (DHMEQ)

IAlessiani et al.

1991 FK 506

Fung et al.

1991 FK 506

Ekberg et al. cyclosporine

2007 yolosp
i) IL-1RI-

Guler et al. i) Autologous Qb virus-like

2011 particle-based vaccines against
IL-1aand IL-1b

Parnet et al. -

003 IL-1RI

one dose of canakinumab 150 mg

weekly subcutaneous
injections (160 mg)

receive gevokizumab
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human

human

human

human

60 mg subcutaneously every 4 weeks

for a total of three injections
(12 weeks) with a 4-week follow-up
period

repeatedly i.p. injected 200
nmol of MG132 ondays 0, 3, 5,7, 9,
11,18,15,17,and 19.

0.1 mM, 1 mM, 10 mM

ii) immunized s.c. three times before

human

human (Hela
cells stably
transfected
with a nuclear
factor-kB
(NF-kB)
luciferase
reporter
plasmid)

human (in
vitro)

rat (in vitro)
human (in

vitro)

human (in
vitro)

mice (in vitro)
human (in
vitro)

mice (in vivo)

human (in
vitro, in vivo)
human (in
vitro)

human

human (in
vitro)

human

human

human

(at week: -5, -8 and —1) and once at mice

week 10 post-infection

Rilonacept has a very high binding
affinity for IL-1 (dissociation
constant ~1 pM), and it is specific
for IL-1B and IL-1at.

XOMA 052 neutralizes IL-1b stimulation of
NFKB activation in HeLa cells stably expressing
an NFkB-luciferase reporter construct with an
ICsp of ~1 pM at the ECs for this assay (25
pg/ml IL-1b).

an average Kg value (mean+S.D., n=3) of
4.8+4.4 pM

Both MG115 and MG132 (at 20-40 mM)
markedly inhibited the formation of p50 in
Hela S100 extracts (Figure 4A, lanes 8-13).
ALLN (Fig. 3A) and MG132 (Fig. 3B)

(10 mg/mL = 21mM) reduced the cytokine-
mediated NFkB activation.

In all cell lines, gliotoxin, MG132 (10 mM) or
sulfasalazine strongly reduced VP16-induced
NF-kB-driven luciferase expression.

The increase in NF-kB activation induced by
LPS+PMA diminished significantly from 3.27-
fold to 0.94-fold in the group treated with
MG132(10 mM) and later stimulated with
LPS+PMA (P < 0.002). The activation of NF-kB
induced by LPS+PMA was blocked by MG132.

The addition of DHMEQ (10 mg/mL)
completely inhibited the activated NF-KB for at
least 8 hours.

DHMEQ (1mg/mL) blocked PHA-induced
nuclear translocation of NF-kB in Jurkat cells
via inhibition of degradation of IkBa.

Activation of NFkB in response to IL-1b was no
longer apparent in IL-1RI knockout mice,
confirming that this receptor is essential for the
transduction of IL-1 signal in the pituitary,

MG132 (50mM) stabilized IL-2
phosphorylated STAT5, which
after 2 h in culture (Fig. 5A, lan
CMV-specific cytotoxicity of CC
decreased in the presence of M
In vivo MG132 administration t
DNFB-induced dermatitis redu
maintained the level of Th1 cel
alleviation of dermatitis lesions
serum IgE hyperproduction ant
potently inhibits the growth of &
cells both in vivo and in vitro

the percentage of CD69/TNFa
with the increment of bortezom

Exposure of PBMC to PHA gre
expression

of IFN-g, IL-2 and TNF-a (Fig.
these cells with DHMEQ (1 mg.
reduced

PHA-stimulated expression of t
(Fig. 3a). Similarly, PHA increa
and IFN-c in Jurkat cells and p
cells with DHMEQ (1 mg/ml) de
by approximately half (Fig. 3b)
Five of eight deaths were due 1
Overall, 50% of patients develc
38% suffered severe ones.
The incidence of serious infect
of FK 506, has not appeared tc
incidence of serious infections
seen in a historical group of pa
is that the incidence of cytome
not appear to be increased wh:
patients on CyA.

The most commonly reported ¢
were cytomegalovirus (CMV) v
infection and lymphocele (Tabl
patients with opportunistic infec
serious) was also similar amon
cytomegalovirus infection was
opportunistic infection (Table 3
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Yamada et al.

] " ’ .
001 NF-kB p50 knockout mice mice
. RelB-deficient animals also hac
Weih et al. - . . . N .
1995 RelB knockout mice mice immunity, as observed in conte
experiments.
Both the percent and number ¢
Lin et al. 2015 Secreted IL-1a expression mice CD8+ T cells, and CD69+ CD4

the expression of secreted IL-1
IL-1b, but not IL-1a, is requirec

Gonsidaratians: for.PotentialApplications of the.AOP (optional) T cel activation and the inducti

inflammation in the delayed-tyy
responses

The impaired IL-1 signaling can lead to decreased host resistance to various infections. Therefore, the test guideline to detect chemicals that decrease IL-1 signaling is required to support regulatory decision-making. This AOP can
promote the understanding of the usefulness of the test guideline.
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Appendix 1

List of MIEs in this AOP

Event: 1700: Inhibition of IL-1 binding to IL-1 receptor (https://aopwiki.org/events/1700)
Short Name: Inhibition of IL-1 binding to IL-1 receptor

AOPs Including This Key Event

AOP ID and Name Event Type

Aop:277 - Inhibition of IL-1 binding to IL-1 receptor leading to increased susceptibility to infection (https://aopwiki.org/aops/277) MolecularlnitiatingEvent
Stressors

Name

IL-1 receptor antagonist IL-1Ra (Anakinra)
anti-IL-1b antibody (Canakinumab)

soluble IL-1R (Rilonacept)

Biological Context
Level of Biological Organization

Molecular

Cell term
Cell term

macrophage

Organ term
Organ term

immune system

Evidence for Perturbation by Stressor

Overview for Molecular Initiating Event

IL-1 is known to mediates autoinflammatory syndrome, such as cryopyrin-associated periodic syndrome, neonatal-onset multisystem inflammatory disease and familial Mediterranean fever. The stressors of this MIE, such as anakinra,
canakinumab, and rilonacept have been already used to treat these autoinflammatory syndrome associated with overactivation of IL-1 signaling (Quartier, 2011).

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links
Homo sapiens Homo sapiens High NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
Mus musculus Mus musculus High NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)
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Term Scientific Term Evidence Links

Rattus norvegicus Rattus norvegicus High NCBI (http://www.ncbi.nIm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)

Life Stage Applicability
Life Stage Evidence

Al life stages High

Sex Applicability

Sex Evidence

Unspecific High

Although sex differences in immune responses are well known (Klein and Flanagan, 2016), there is no reports regarding the sex difference in IL-1 production, IL-1 function or susceptibility to infection as adverse effect of IL-1 blocking
agent. Again, age-dependent difference in IL-1 signaling is not known.

The IL1B gene is conserved in chimpanzee, rhesus monkey, dog, cow, mouse, rat, and frog (https://www.ncbi.nlm.nih.gov/homologene/481 (https://www.ncbi.nim.nih.gov/homologene/481)), and the Myd88 gene is conserved in human,
chimpanzee, rhesus monkey, dog, cow, rat, chicken, zebrafish, mosquito, and frog (https://www.ncbi.nim.nih.gov/homologene?Db=homologene&Cmd=Retrieve&list_uids=1849 (https://www.ncbi.nlm.nih.gov/homologene?
Db=homologene&Cmd=Retrieve&list_uids=1849)).

These data suggest that the proposed AOP regarding inhibition of IL-1 signaling is not dependent on life stage, sex, age or species.

Key Event Description

IL-1a and IL-1B independently bind the type | IL-1 receptor (IL-1R1), which is ubiquitously expressed. IL-1Ra binds IL-1R but does not initiate IL-1 signal transduction (Dripps et al., 1991). Recombinant IL-1Ra (anakinra) is fully active in
blocking the IL-1R1, and therefore, the biological activities of IL-1a and IL-1B. The binding of IL-1a and IL-1B to IL-1R1 can be suppressed by soluble IL-1R like rilonacept (Kapur and Bonk, 2009). The binding of IL-1B to IL-1R1 can be
inhibited by anti-IL-1B antibody (anti-IL-1B antibody) (Church and McDermott, 2009).

How it is Measured or Detected

1. Competitive inhibition binding experiments using '25I-IL-1a to type | IL-1R present on EL4 thymoma cells, 3T3 fibroblasts, hepatocytes, and Chinese hamster ovary cells expressing recombinant mouse type | IL-1R (McIntyre et
al., 1991; Shuck et al., 1991).
2. Measure the ability of the reagent to neutralize the bioactivity of human IL-1B on primary human fibroblasts in vitro(Alten et al., 2008)
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List of Key Events in the AOP

Event: 202: Inhibition, Nuclear factor kappa B (NF-kB) (https:/aopwiki.org/events/202)
Short Name: Inhibition, Nuclear factor kappa B (NF-kB)

Key Event Component

Process Object Action

I-kappaB kinase/NF-kappaB signaling transcription factor NF-kappa-B subunit decreased

AOPs Including This Key Event

AOP ID and Name Event Type

Aop:14 - Glucocorticoid Receptor Activation Leading to Increased Disease Susceptibility (https://aopwiki.org/aops/14) KeyEvent

Aop:278 - IKK complex inhibition leading to liver injury (https:/aopwiki.org/aops/278) KeyEvent

Aop:277 - Inhibition of IL-1 binding to IL-1 receptor leading to increased susceptibility to infection (https://aopwiki.org/aops/277) KeyEvent
Stressors

Name

IL-1 receptor antagonist IL-1Ra (Anakinra)
anti-IL-1b antibody (Canakinumab)

soluble IL-1R (Rilonacept)

Biological Context
Level of Biological Organization

Molecular

Cell term
Cell term

macrophage

Organ term
Organ term

immune system
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Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens High NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
Mus musculus Mus musculus High NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)
Rattus norvegicus Rattus norvegicus High NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)

Life Stage Applicability

Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

The binding of sex steroids to their respective steroid receptors directly influences NF-kB signaling, resulting in differential production of cytokines and chemokines (McKay and Cidlowski, 1999; Pemis, 2007). 17b-estradiol regulates
pro-inflammatory responses that are transcriptionally mediated by NF-kB through a negative feedback and/or transrepressive interaction with NF-kB (Straub, 2007). Progesterone suppresses innate immune responses and NF-«kB
signal transduction reviewed by Klein et al. (Klein and Flanagan, 2016). Androgen-receptor signaling antagonises transcriptional factors NF-kB(McKay and Cidlowski, 1999).

Key Event Description

The NF-kB pathway consists of a series of events where the transcription factors of the NF-kB family play the key role. The NF-kB pathway can be activated by a range of stimuli, including TNF receptor activation by TNF-a, or IL-1R1
activation by IL-1a or b. Upon pathway activation, the IKK complex will be phosphorylated, which in turn phosphorylates IkBa. This NF-kB inhibitor will be K48-linked ubiquitinated and degradated, allowing NF-kB to translocate to the
nucleus. There, this transcription factor can express pro-inflammatory and anti-apoptotic genes. Furthermore, negative feedback genes are also transcribed and include IkBa and A20. When the NF-kB pathway is inhibited, its
translocation will be delayed (or absent), resulting in less or no regulation of NF-kB target genes. This can be achieved by IKK inhibitors, proteasome inhibitors, nuclear translocation inhibitors or DNA-binding inhibitors. (Frederiksson
2012)(Gupta et al. 2010)(Huppelschoten 2017)(Liu et al. 2017). Therefore, inhibition of IL-1R1 activation suppresses activation of NF-kB.

How itis Measured or Detected

NF-kB transcriptional activity: Beta lactamase reporter gene assay (Miller et al. 2010). NF-kB transcription: Lentiviral NF-kB GFP reporter with flow cytometry (Moujalled et al. 2012)
NF-kB translocation: RelA-GFP reporter assay (Frederiksson 2012) (Huppelschoten 2017)

IkBa phosphorylation: Western blotting (Miller et al. 2010)

NF-kB p65 (Total/Phospho) ELISA

ELISA for IL-6, IL-8, and Cox
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Event: 1702: Suppression of T cell activation (https:/aopwiki.org/events/1702)
Short Name: Suppression of T cell activation
AOPs Including This Key Event

AOP ID and Name Event Type

Aop:277 - Inhibition of IL-1 binding to IL-1 receptor leading to increased susceptibility to infection (https://aopwiki.org/aops/277) KeyEvent

Biological Context
Level of Biological Organization

Cellular

Cell term
Cell term

T cell

Organ term
Organ term

immune system
Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links
Homo sapiens Homo sapiens High NCBI (http://www.ncbi.nIm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
Mus musculus Mus musculus High NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)
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Term Scientific Term Evidence Links

Rattus norvegicus Rattus norvegicus High NCBI (http://www.ncbi.nIm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)

Life Stage Applicability
Life Stage Evidence

Al life stages High

Sex Applicability

Sex Evidence

Unspecific High

Key Event Description

T cells are key orchestrators of the response against pathogens and are also fundamental in maintaining self-tolerance. A number of clinically important conditions have been described in which T-cell functions are altered, as in AIDS
or upon immunosuppression after application of various immunosuppressive drugs to treat autoimmune disorders or allogeneic graft rejection. T-cell progenitors differentiate in the thymus into immature T cells that acquire the
expression of the T-cell receptor (TCR), which recognizes antigen peptides from pathogens presented along with major histocompatibility complex (MHC). In addition to the TCR, T cells are characterized by expression of the co-
receptor molecules CD4 and CD8 on their cell surface. CD4+ T cells, also called T helper (Th) cells, recognize antigen/MHC-1I complexes on antigen presenting cells (APCs) and coordinate the activation of other immune cells including
B cells, macrophages, etc.

Therefore, CD4+ T cells are crucial for coordination of the immune response and for the elimination of invading pathogens. On the other hand, CD8+ T cells, referred to as T cytotoxic cells, recognize antigen/MHC-I complexes and are
responsible for the killing of pathogen-infected cells.

T-cell activation and differentiation depends on antigen presenting cells (APCs) such as dendritic cells (DCs), macrophages and B cells. depending on the insult affecting a given tissue. Different subsets of DCs can be generated that
in turn are able to coordinate the differentiation of a particular Th subset. To date, the following Th subsets have been described: Th1, Th2, Th9, Th17, Th22, Tth (follicular helper T cells), Tr1 (type 1regulatory T cells) and Treg
(regulatory T cells), each possessing a specific function in the elimination of pathogens. (reviewed by Simeoni et al. (Simeoni et al., 2016))

Although CD4 T cells are able to commit to Th1, Th2 and Th17 lineages in the absence of IL-1R signaling at steady state, these committed CD4 T cells are unable to effectively secrete their cytokines upon TCR ligation. Namely, IL-1
is indispensable for CD4 T cell effector function. (Lin et al, 2015)

Moreover, since full activation of B cells and antibody production and class switch depends on T cell help. The impaired activation of T cells leads to impaired B cell activation and antibody production (reviewed by Mok (Mok, 2010)).

How itis Measured or Detected
T cell activation can be evaluated by measuring IL-2 production by ELISA or T cell proliferation by incorporation of the analysis of CFSE labeled T cells or [*H]thymidine incorporation.
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List of Adverse Outcomes in this AOP

Event: 986: Increase, Increased susceptibility to infection (https://aopwiki.org/events/986)
Short Name: Increase, Increased susceptibility to infection
AOPs Including This Key Event

AOP ID and Name Event Type

Aop:277 - Inhibition of IL-1 binding to IL-1 receptor leading to increased susceptibility to infection (https://aopwiki.org/aops/277) AdverseOutcome
Stressors

Name

IL-1 receptor antagonist IL-1Ra (Anakinra)
anti-IL-1b antibody (Canakinumab)

soluble IL-1R (Rilonacept)

Biological Context
Level of Biological Organization

Individual

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens High NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
Mus musculus Mus musculus High NCBI (http://www.ncbi.nIm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)
Rattus norvegicus Rattus norvegicus High NCBI (http://www.ncbi.nIm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)

Life Stage Applicability
Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

The increased susceptibility to infection caused by IL-1RA or anti-IL-1 antibody has been reported in both humans and mice. (Fleischmann et al., 2003; De Benedetti et al., 2018; Hirsch et al., 1996)

Key Event Description

The protection of host against microbial infection depends on both innate and acquired immunity. In particular, both T cell and antibody production by B cells play a principal role.
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How it is Measured or Detected

By comparison of the incidence of infection between individuals exposed to stressors and non-exposed individuals.

Regulatory Significance of the AO

After L-1R antagonist or neutralizing antibody such as IL-1Ra (generic anakinra), canakinumab (anti-IL-1b antibody) and rilonacept (soluble IL-1R) became available to treat some of autoinflammatory syndromes, it became clear that
these inhibitors increased the frequency of serious bacterial infection (De Benedetti et al., 2018; Genovese et al., 2004; Imagawa et al., 2013; Kullenberg et al., 2016; Lachmann et al., 2009; Lequerre et al., 2008; Migkos et al., 2015;
Schlesinger et al., 2012; Yokota et al., 2017).
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Appendix 2
List of Key Event Relationships in the AOP

List of Adjacent Key Event Relationships
Relationship: 2002: Inhibition of IL-1 binding to IL-1 receptor leads to Inhibition, Nuclear factor kappa B (NF-kB) (https:/aopwiki.org/relationships/2002)
AOPs Referencing Relationship
AOP Name Adjacency Weight of Evidence Quantitative Understanding

Inhibition of IL-1 binding to IL-1 r leading to i d ptibility to infection (https://aopwiki.org/aops/277) adjacent High Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens High NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
Mus musculus Mus musculus High NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)
Rattus norvegicus Rattus norvegicus High NCBI (http://www.ncbi.nIm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)

Life Stage Applicability
Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

Key Event Relationship Description

The initial step in IL-1 signal transduction is a ligand-induced conformational change in the first extracellular domain of the IL-1RI that facilitates recruitment of IL-1RacP. Through conserved cytosolic regions called Toll- and IL-1R-like
(TIR) domains, the trimeric complex rapidly assembles two intracellular signaling proteins, myeloid differentiation primary response gene 88 (MYD88) and interleukin-1 receptor—activated protein kinase (IRAK) 4. IL-1, IL-1RI, IL-RAcP,
MYD88, and IRAK4 form a stable IL-1-induced first signaling module. The binding of MyD88 triggers a cascade of kinases that produce a strong pro-inflammatory signal leading to activation of NF-kB. reviewed by Brikos et al. (Brikos
et al., 2007) and Weber et al. (Weber et al., 2010).

Therefore, the suppression of the binding of IL-1 to IL-1R1 suppresses activation of NF-kB.
Evidence Supporting this KER

Biological Plausibility

IL-1a and IL-1B independently bind the type | IL-1 receptor (IL-1R1), which is ubiquitously expressed. IL-1Ra binds IL-1R but does not initiate IL-1 signal transduction (Dripps et al., 1991). Recombinant IL-1Ra (anakinra) is fully active in
blocking the IL-1R1, and therefore, the biological activities of IL-1a and IL-1B. The binding of IL-1a and IL-1B to IL-1R1 can be suppressed by soluble IL-R like rilonacept. The binding of IL-1B to IL-1R1 can also be inhibited by anti-IL-1B
antibody (anti-IL-1B antibody). Therefore, the inhibition of IL-1 binding to IL-1R1 cannot activate NF-kB.

Empirical Evidence
IL-1Ra blocks IL-1 signaling:

IL-1Ra down-modulates EGF receptor (3 nM of ED50) by IL-1 stimulation (Dripps et al., 1991)
IL-1Ra suppresses IL-1-induced endothelial cell-leukocyte adhesion (approximately 10 ng/ml of ED50) (Dripps et al., 1991)
IL-1Ra suppresses rhiL-1a-induced mouse thymocytes proliferation (ED50 almost 3 mg/mL) (Arend et al., 1990)

IL-1Ra competed for binding of 25|-IL-1a to type | IL-1R present on EL4 thymoma cells, 3T3 fibroblasts, hepatocytes, and Chinese hamster ovary cells expressing recombinant mouse type | IL-1R. The IC50 values for IL-1ra binding
(ranging from 2 to 4 ng/ml) were similar to those of IL-1a. (MclIntyre et al., 1991)

Recombinant mIL-1Ra competitively inhibited 125|-labeled IL-1 alpha binding to murine type | IL-1R present on EL4 6.1 cells (Ki value of 0.21 nM) and antagonized IL-1-stimulated co-mitogenesis in murine thymocytes (0.7 x 10(6)-1.1 x
10(6) units/mg). (Shuck et al., 1991)
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Peripheral blood mononuclear cells (PBMC) obtained after completion of the IL-Ira infusion synthesized significantly less interleukin 6 ex vivo than PBMC from saline-injected controls. (Granowitz et al., 1992)
Canakinumab (ACZ885, llaris) blocks IL-1 signaling
Canakinumab binds to human IL-1B with high affinity; the antibody-antigen dissociation equilibrium constant is approximately 35—40 pM(Dhimolea, 2010).

The antibody binds to human IL-1B with high affinity (about 40 pmol/l). The antibody was found to neutralize the bioactivity of human IL-1B on primary human fibroblasts in vitro 44.6 pmol/l (7.1 + 0.56 ng/ml; n = 6) of ED50. Application
of Canakinumab intraperitoneally 2 hours before injecting the IL-1B producing cells completely suppressed joint swelling (0.06 mg/kg of EC50) (Alten et al., 2008).

Primary human fibroblasts are stimulated with recombinant IL-1b or conditioned medium obtained from LPS-stimulated human PBMCs in the presence of various concentrations of Cankinumab or IL-1RA ranging from 6 to 18,000 pM.
Supernatant is taken after 16 h stimulation and assayed for IL-6 by ELISA. Canakinumab typically have 1 nM or less of EC50 for inhibition of IL-6 production (Canakinumab Patent Application WO02/16436.)

Rilonacept (IL-1 Trap, Arcalyst) blocks IL-1 signaling:

Incubation of the human MRCS fibroblastic cell line with IL-1B induces secretion of IL-6. At a constant amount of IL-1B (4 pM), the IC50 of the IL-1 trap is ~2 pM. Another unique property of the IL-1 trap is that it not only blocks IL-18,
but also blocks IL-1a with high affinity (KD = ~3 pM; data not shown). The titration curve of IL-1 trap in the presence of 10 pM IL-1B shows an IC50 of 6.5 pM, which corresponds to a calculated KD of 1.5 pM (This affinity is 100 times
higher than that of the soluble single component receptor IL-1RI (Economides et al., 2003).

Quantitative Understanding of the Linkage

See Empirical Evidence.

IL-1Ra blocks IL-1 signaling:

Suppression of IL-1-induced IL-1, TNFa, or IL-6 synthesis was dose-dependent (P = .0001). At a twofold molar excess, IL-Ira inhibited IL-1-induced IL-1 or TNFa synthesis by 50% (P < .01); an equimolar concentration of IL-Ira inhibited
synthesis of these two cytokines by over 20% (P < .05). A 10-fold molar excess of IL-Ira over IL-Ib reduced IL-Ib-induced IL-la by 95% (P = .01) and IL-la-induced IL-1b by 73% (P < .01). In elutriated monocytes, a 10-fold molar excess
of IL-Ira reduced IL-Ib-induced IL-la by 82% (P < .05), TNFa by 64% (P = .05), and IL-6 by 47% (P < .05). (Granowitz et al., 1992)

Rilonacept (IL-1 Trap, Arcalyst) blocks IL-1 signaling:

The titration curve of IL-1 trap in the presence of 10 pM IL-1B shows an IC50 of 6.5 pM, which corresponds to a calculated KD of 1.5 pM (This affinity is 100 times higher than that of the soluble single component receptor IL-1RI
(Economides et al., 2003).
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Relationship: 2003: Inhibition, Nuclear factor kappa B (NF-kB) leads to Suppression of T cell activation (https:/aopwiki.org/relationships/2003)
AOPs Referencing Relationship

AOP Name Adjacency Weight of Evid Qu itative Ur di

Inhibition of IL-1 binding to IL-1

p leading to i ptibility to i ion (http pwiki.org/aops/277) adjacent High Moderate
Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens High NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
Mus musculus Mus musculus High NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)
Rattus norvegicus Rattus norvegicus High NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)

Life Stage Applicability

Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

Key Event Relationship Description

In T cells, NF-kB can be activated by several pathways of signal transduction. The engagement of the TCR by major histocompatibility complex (MHC) plus antigen initiates downstream CD3 immunotyrosine activation motif (ITAM)
phosphorylation by the Src family kinases, FYN and leukocyte C-terminal src kinase (LCK). Phosphorylated CD3 activates the T cell specific tyrosine kinase, zeta-chain associated protein kinase (ZAP-70), which ultimately trigger
calcium release and protein kinase (PK)C activation, respectively. Activation of a specific PKC isoform, PKCu, connects the above described TCR proximal signaling events to distal events that ultimately lead to NF-kB activation.
Importantly, PKCu activation is also driven by engagement of the T cell co-stimulatory receptor CD28 by B7 ligands on antigen presenting cells (APCs). In addition, the stimulation of T cells by IL-1 activates NF-kB as already
described before. Once in the nucleus, NF-kB governs the transcription of numerous genes involved in T cell survival, proliferation, and effector functions (Paul and Schaefer, 2013).

Evidence Supporting this KER

Biological Plausibility
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Although CD4 T cells are able to commit to Th1, Th2 and Th17 lineages in the absence of IL-1R signaling at steady state, these committed CD4 T cells are unable to effectively secrete their cytokines upon TCR ligation. Namely, IL-1
is indispensable for CD4 T cell effector function. (Lin et al, 2015)

RelB deficient mice had an impaired cellular immunity, as observed in contact sensitivity reaction (Weih et al., 1995).

Delayed-type hypersensitivity (DTH) responses were significantly suppressed in IL-1b-deficient and IL-1a/b-deficient mice. Lymph node cells derived from antigen-sensitized IL-1b-deficient and IL-1a/b-deficient mice and IL-1R type I-
deficient mice, exhibited reduced proliferative responses against antigen. (Nambu et al., 2006).

Empirical Evidence
RelB deficient mice had an impaired cellular immunity, as observed in contact sensitivity reaction (Weih et al., 1995).

Quite a few NF-kB inhibitors have been reported. MG132, bortezomib, curcumin, DHMEQ(Dehydroxymethylepoxyquinomicin), naringin, sorafenib, genistein and parthenolide are some of representatives (Pordanjani and Hosseinimehr,
2016).

Interferon-y (IFN-y) production in response to CMV-infected fibroblasts was reduced under the influence of MG132 in a dose-dependent manner. A marked reduction was observed at 0.5 uM. Likewise, CMV-specific cytotoxicity of
CD8(+) T cells was decreased in the presence of MG132 (Wang et al., 2011).

In vivo MG132 administration to NC/Nga mice with DNFB-induced dermatitis reduced Th17 cells but maintained the level of Th1 cells, resulting in the alleviation of dermatitis lesions by decreasing both serum IgE hyperproduction and
mast cell migration (Ohkusu-Tsukada et al., 2018).

Proteasome inhibitor, bortezomib, potently inhibits the growth of adult T-cell leukemia cells both in vivo and in vitro (Satou et al., 2004). Bortezomib inhibits T-cell function versus infective antigenic stimuli in a dose-dependent manner
in vitro (Orciuolo et al., 2007).

DHMEQ, a novel nuclear factor-kappaB inhibitor, induces selective depletion of alloreactive or phytohaemagglutinin-stimulated peripheral blood mononuclear cells, decreases production of T helper type 1 cytokines, and blocks
maturation of dendritic cells (Nishioka et al., 2008).

Regarding the suppression of NF-kB by impaired IL-1 signaling, it was reported that delayed-type hypersensitivity (DTH) responses were significantly suppressed in IL-1b-deficient and IL-1a/b-deficient mice. Lymph node cells derived

from antigen-sensitized IL-1b-deficient and IL-1a/b-deficient mice and IL-1R type I-deficient mice, exhibited reduced proliferative responses against antigen. These data suggest that IL-1b is necessary for the efficient priming of T cells.
In addition, CD4+ T cell-derived IL-1 plays an important role in the activation of DCs during the elicitation phase, resulting in the production of TNF, that activate allergen-specific T cells (Nambu et al., 2006).

Quantitative Understanding of the Linkage

A representative NF-kB inhibitor, MG132 that suppresses NF-kB activity at more than 10 mM (Fiedler et al. 1998) suppresses IL-2-induced activation of STAT5 at 50 mM. (Yu and Malek 2001)
A representative NF-kB inhibitor, DHMEQ (1mg/mL) blocked PHA-induced nuclear translocation of NF-kB in Jurkat cells via inhibition of degradation of IkBa. Preincubation of peripheral blood mononuclear cells with DHMEQ (1 mg/ml,
3 hr) greatly reduced PHA-stimulated expression of IFN-g, IL-2 and TNF-a genes.

Interferon-y (IFN-y) production in response to CMV-infected fibroblasts was reduced under the influence of MG132 in a dose-dependent manner. A marked reduction was observed at 0.5 uM. Likewise, CMV-specific cytotoxicity of
CD8(+) T cells was decreased in the presence of MG132 (Wang et al., 2011).

Bortezomib inhibits T-cell function versus infective antigenic stimuli in a dose-dependent manner in vitro (Orciuolo et al., 2007).
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Relationship: 2004: Suppression of T cell activation leads to Increase, Increased susceptibility to infection (https://aopwiki.org/relationships/2004)
AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence  Quantitative Understanding

Inhibition of IL-1 binding to IL-1r

ptor leading to i ptibility to infection (https: pwiki.org/aops/277) adjacent High Not Specified

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links
Homo sapiens Homo sapiens High NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
Mus musculus Mus musculus High NCBI (http://www.ncbi.nIm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)

Rattus norvegicus Rattus norvegicus High NCBI (http://www.ncbi.nIm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116)

Life Stage Applicability

Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

Key Event Relationship Description

Normal T cell and B cell function is indispensable for host defense mechanism.

Evidence Supporting this KER

The experiments using knockout mice revealed that the lack of IL-1 signaling led to bacterial, tuberculosis or viral infection (Guler et al., 2011; Horino et al., 2009; Juffermans et al., 2000; Tian et al., 2017; Yamada et al., 2000).

Biological Plausibility
To protect the infection from different pathogens, different types of immune response depending on the pathogens are required.

1). Type 1 immunity drives resistance to viruses and intracellular bacteria, such as Listeria monocytogenes, Salmonella spp. and Mycobacteria spp., as well as to intracellular protozoan parasites such as Leishmania spp. The T helper
1 (Tw1) signature cytokine interferon-y (IFNy) has a central role in triggering cytotoxic mechanisms including macrophage polarization towards an antimicrobial response associated with the production of high levels of reactive oxygen
species (ROS) and reactive nitrogen species (RNS), activation of CD8* cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells to kill infected cells via the perforin and/or granzyme B-dependent lytic pathway or via the ligation of
surface death receptors; and B cell activation towards the production of cytolytic antibodies that target infected cells for complement and Fc receptor-mediated cellular cytotoxicity.

2) Resistance to extracellular metazoan parasites and other large parasites is mediated and/or involves type 2 immunit. Pathogen neutralization is achieved via different mechanisms controlled by T2 signature cytokines, including
interleukin-4 (IL-4), IL-5 and IL-13, and by additional type 2 cytokines such as thymic stromal lymphopoietin (TSLP), IL-25 or IL-33, secreted by damaged cell. T42 signature cytokines drive B cell activation towards the production of
high-affinity pathogen-specific IgG1 and IgE antibodies that function via Fc-dependent mechanisms to trigger the activation of eosinophils, mast cells and basophils, expelling pathogens across epithelia.
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3) Tu17 immunity confers resistance to extracellular bacteria such as Klebsiella pneumoniae, Escherichia coli, Citrobacter rodentium, Bordetella pertussis, Porphyromonas gingivalis and Streptococcus pneumoniae, and also to fungi
such as Candida albicans, Coccidioides [ ii, Hi: and Blastomyces dermatitidis. Activation of Ti17 cells by cognate T cell receptor (TCR-MHC class Il interactions and activation of group 3 innate lymphoid
cells (ILC3s) via engagement of IL-1 receptor (IL-1R) by IL-1B secreted from damaged cells lead to the recruitment and activation of neutrophils. Ty17 immunopathology is driven to a large extent by products of neutrophil activation,
such as ROS and elastase (reviewed by Soares et al. (Soares et al., 2017)).

Based on these evidences, the insufficient T cell or B cell function causes impaired resistance to infection.

Empirical Evidence
Administration of IL-1R antagonist or neutralizing antibody such as IL-1Ra (generic anakinra), canakinumab (anti-IL-1B antibody) and rilonacept (soluble IL-1R) led to the suppression of downstream phenomena, which included
internalization of IL-1 (Dripps et al., 1991), production of PGE, (Hannum et al., 1990; Seckinger et al., 1990), IL-6 (Goh et al., 2014), and T cell proliferation (Seckinger et al., 1990).

Since these inhibitors became available to treat some of autoinflammatory syndromes, it became clear that these inhibitors increased the frequency of serious bacterial infection (De Benedetti et al., 2018; Genovese
et al., 2004; Imagawa et al., 2013; Kullenberg et al., 2016; Lachmann et al., 2009; Lequerre et al., 2008; Migkos et al., 2015; Schlesinger et al., 2012; Yokota et al., 2017).
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