
AOP ID and Title:

AOP 298: Chronic reactive oxygen species leading to human treatment-resistant gastric cancer
Short Title: Chronic ROS leading to human treatment-resistant gastric cancer

Graphical Representation

Authors

Shihori Tanabe1), Sabina Quader2), Ryuichi Ono3), Horacio Cabral4), Kazuhiko Aoyagi5), Akihiko Hirose1), Hiroshi Yokozaki6),
Hiroki Sasaki7), Ed Perkins8)

1Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Japan

2Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Japan

3Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences,
Japan

4Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Japan

5Department of Clinical Genomics, National Cancer Center Research Institute, Japan

6Department of Pathology, Kobe University of Graduate School of Medicine, Japan

7Department of Translational Oncology, National Cancer Center Research Institute, Japan

8Environmental Laboratory, US Army Engineer Research and Development Center, United States

Status

Author status OECD status OECD project SAAOP status

Open for comment. Do not cite EAGMST Under Review 1.58 Included in OECD Work Plan

Abstract

The injury or sustained reactive oxygen species (ROS) causes resistance in human gastric cancer. This AOP entitled “Chronic
reactive oxygen species leading to human treatment-resistant gastric cancer” consists of MIE (KE1753) as chronic ROS, followed
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by KE1 (KE1754) as sustained tissue damage / macrophage activation / porcupine-induced Wnt secretion, KE2 (KE1755) as
proliferation / beta-catenin activation, KE3 (KE1650) as epithelial-mesenchymal transition (EMT), and AO (KE1651) as human
treatment-resistant gastric cancer. ROS has multiple roles such as development and progression of cancer, or apoptotic induction
causing anti-tumor effects. In this AOP, we focus on the role of chronic ROS with sustained level to induce the therapy-resistance in
human gastric cancer. EMT, which is cellular phenotypic change from epithelial to mesenchymal-like feature, demonstrates cancer
stem cell-like characteristics in human gastric cancer. EMT is induced by Wnt/beta-catenin signaling, which confers rationale to
have Wnt secretion and beta-catenin activation as KE1 and KE2 on the AOP, respectively.

Summary of the AOP

Events

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Sequence Type Event
ID

Title Short name

1 MIE 1753 Chronic reactive oxygen species Chronic ROS

2 KE 1940 Increases in cellular reactive oxygen species Increases in cellular ROS

3 KE 1754
Sustained tissue damage / macrophage activation /
porcupine-induced Wnt secretion

Sustained tissue damage, macrophage
activation and Wnt secretion

4 KE 1755 Proliferation / beta-catenin activation Proliferation / beta-catenin activation

5 KE 1650 Epithelial-mesenchymal transition Epithelial-mesenchymal transition

6 AO 1651 Treatment-resistant gastric cancer Resistant gastric cancer

Key Event Relationships

Upstream Event Relationship
Type

Downstream Event Evidence Quantitative
Understanding

Chronic reactive oxygen species adjacent
Sustained tissue damage / macrophage
activation / porcupine-induced Wnt
secretion

Moderate Moderate

Increases in cellular reactive oxygen
species

adjacent
Sustained tissue damage / macrophage
activation / porcupine-induced Wnt
secretion

Moderate Moderate

Sustained tissue damage / macrophage
activation / porcupine-induced Wnt
secretion

adjacent Proliferation / beta-catenin activation Moderate Moderate

Proliferation / beta-catenin activation adjacent Epithelial-mesenchymal transition Moderate Moderate

Epithelial-mesenchymal transition adjacent Treatment-resistant gastric cancer Moderate Moderate

Stressors

Name Evidence

Wnt High

WNT2 High

Porcupine Moderate

Wntless Moderate

Ionizing Radiation Moderate

ferric nitrilotriacetate Not Specified

Wnt
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WNT induces EMT (J. Zhang, Tian, & Xing, 2016). 

WNT2

WNT2 induces EMT in cervical cancer (Zhou et al., 2016).

Porcupine

Porcupine palmitoleates Wnt and facilitates the secretion of the Wnt ligand (Yu & Virshup, 2014) .

Wntless

Wntless binds to and transport Wnt to the plasma membrane leading to the secretion of Wnt ligand (Yu & Virshup,

2014).

ferric nitrilotriacetate

Carcinogenic iron(III)-nitrilotriacetate induces reactive oxygen species production via trasfer of an electron to molecular oxygen to form reactive

oxygen species [Tsuchiya K, Akai K, Tokumura A, Abe S, Tamaki T, Takiguchi Y, Fukuzawa K. Biochim Biophys Acta. 2005 Aug
30;1725(1):111-9. doi: 10.1016/j.bbagen.2005.05.001, Akai K, Tsuchiya K, Tokumura A, Kogure K, Ueno S, Shibata A, Tamaki T, Fukuzawa K.
Free Radic Res. 2004 Sep;38(9):951-62. doi: 10.1080/1071576042000261945.].

 

Overall Assessment of the AOP

1. Support for Biological Plausibility of KERs

MIE => KE1:
Chronic ROS
leads to
Sustained tissue
damage /
macrophage
activation /
porcupine-
induced Wnt
secretion

Biological Plausibility of the MIE => KE1 is moderate.

Rationale: Sustained ROS increases caused by/causes
DNA damage, which will alter several signaling pathways
including Wnt signaling. Macrophages accumulate into
injured tissue to recover the tissue damage, which may be
followed by porcupine-induced Wnt secretion. ROS
stimulate inflammatory factor production and Wnt/beta-
catenin signaling (Vallée & Lecarpentier, 2018).

KE1 => KE2:
Sustained tissue
damage /
macrophage
activation /
porcupine-
induced Wnt
secretion leads
to Proliferation /
beta-catenin
activation

Biological Plausibility of the KE1 => KE2 is moderate.

Rationale: Secreted Wnt ligand stimulates Wnt/beta-
catenin signaling, in which beta-catenin is activated. Wnt
ligand binds to Frizzled receptor, which leads to GSK3beta
inactivation. GSK3beta inactivation leads to beta-catenin
dephosphorylation, which avoids the ubiquitination of the
beta-catenin and stabilize the beta-catenin (Clevers &
Nusse, 2012).

KE2 => KE3:
Proliferation /
beta-catenin
activation leads
to Epithelial-
mesenchymal
transition (EMT)

Biological Plausibility of the KE2 => KE3 is moderate.

Rationale: Beta-catenin activation, of which mechanism
include the stabilization of the dephosphorylated beta-
catenin and translocation of beta-catenin into the nucleus,
induces the formation of beta-catenin-TCF complex and
transcription of transcription factors such as Snail, Zeb and
Twist (Clevers & Nusse, 2012) (Ahmad et al., 2012;
Pearlman, Montes de Oca, Pal, & Afaq, 2017; Sohn et al.,
2019; W. Yang et al., 2019).

EMT-related transcription factors including Snail, ZEB and
Twist are up-regulated in cancer cells (Diaz, Vinas-Castells,
& Garcia de Herreros, 2014).  The transcription factors
such as Snail, ZEB and Twist bind to E-cadherin (CDH1)
promoter and inhibit the CDH1 transcription via the
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consensus E-boxes (5’-CACCTG-3’ or 5’-CAGGTG-3’),
which leads to EMT (Diaz et al., 2014).

KE3 => AO:
Epithelial-
mesenchymal
transition (EMT)
leads to human
treatment-
resistant gastric
cancer

Biological Plausibility of the KE3 => AO is moderate.

Rationale: Some population of the cells exhibiting EMT
demonstrates the feature of cancer stem cells (CSCs),
which are related to cancer malignancy (Shibue &
Weinberg, 2017; Shihori Tanabe, 2015a, 2015b; Tanabe,
Aoyagi, Yokozaki, & Sasaki, 2015).

EMT phenomenon is related to cancer metastasis and
cancer therapy resistance (Smith & Bhowmick, 2016;
Tanabe, 2013). The increase in expression of enzymes that
degrade the extracellular matrix components and the
decrease in adhesion to the basement membrane in EMT
induce the cell escape from the basement membrane and
metastasis (Smith & Bhowmick, 2016). Morphological
changes observed during EMT are associated with therapy
resistance (Smith & Bhowmick, 2016).  

2. Support for essentiality of KEs

KE1: Sustained
tissue damage /
macrophage
activation /
porcupine-
induced Wnt
secretion

Essentiality of the KE1 is moderate.

Rationale for Essentiality of KEs in the AOP: The
sustained tissue damage, macrophage activation and Wnt
are essential for the subsequent beta-catenin activation
and cancer resistance.

KE2:
Proliferation /
beta-catenin
activation

Essentiality of the KE2 is moderate.

Rationale for Essentiality of KEs in the AOP: 
Proliferation and beta-catenin activation are essential for
the Wnt-induced cancer resistance.

KE3: Epithelial-
mesenchymal
transition (EMT)

Essentiality of the KE3 is moderate.

Rationale for Essentiality of KEs in the AOP: EMT is
essential for the Wnt-induced cancer promotion and
resistance to anti-cancer drug.

3. Empirical support for KERs

MIE => KE1:
Chronic ROS
leads to
Sustained tissue
damage /
macrophage
activation /
porcupine-
induced Wnt
secretion

Empirical Support of the MIE => KE1 is moderate.

Rationale: Production of ROS by DNA double-strand break
causes the tissue damages (Gao et al., 2019).

ROS signaling induces Wnt/beta-catenin signaling (Pérez et
al., 2017).

KE1 => KE2:
Sustained tissue
damage /
macrophage
activation /
porcupine-
induced Wnt
secretion leads
to Proliferation /
beta-catenin
activation

Empirical Support of the KE1 => KE2 is moderate.

Rationale: Sustained ROS increases caused by/causes
DNA damage, which will alter several signaling
pathways including Wnt signaling. Macrophages
accumulate into injured tissue to recover the tissue
damage, which may be followed by porcupine-induced
Wnt secretion, which then activates beta-catenin
leading to proliferation.

Wnt binds to FZD and activate the Wnt signaling (Clevers &
Nusse, 2012; Janda, Waghray, Levin, Thomas, & Garcia,
2012; Nile et al., 2017). Wnt binding towards FZD induce
the formation of the protein complex with LRP5/6 and DVL,
leading to the down-stream signaling activation including
beta-catenin (Clevers & Nusse, 2012).

Empirical Support of the KE2 => KE3 is moderate.
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KE2 => KE3:
Proliferation /
beta-catenin
activation leads
to Epithelial-
mesenchymal
transition (EMT)

Empirical Support of the KE2 => KE3 is moderate.

Rationale: Proliferation and beta-catenin activation
induces the key transcription factors in EMT.
Translocation of beta-catenin into the nucleus by
Wnt/beta-catenin signaling pathway activation
promotes EMT.

The inhibition of c-MET, which is overexpressed in diffuse-
type gastric cancer, induced increase in phosphorylated
beta-catenin, decrease in beta-catenin and Snail (Sohn et
al., 2019).

The garcinol, which has an anti-cancer effect, increases
phosphorylated beta-catenin, decreases beta-catenin and
ZEB1/ZEB2, and inhibits EMT (Ahmad et al., 2012).

The inhibition of sortilin by AF38469 (a sortilin inhibitor) or
small interference RNA (siRNA) results in a decrease in
beta-catenin and Twist expression in human glioblastoma
cells (W. Yang et al., 2019).

Histone deacetylase inhibitors affect EMT-related
transcription factors including ZEB, Twist and Snail
(Wawruszak et al., 2019).

Snail and Zeb induces EMT and suppress E-cadherin
(CDH1) (Batlle et al., 2000; Diaz et al., 2014; Peinado,
Olmeda, & Cano, 2007).

KE3 => AO:
Epithelial-
mesenchymal
transition (EMT)
leads to human
treatment-
resistant gastric
cancer

Empirical Support of the KE3 => AO is moderate.

Rationale: EMT induces the expression of genes such
as transporters of anti-cancer drug, which promotes
anti-cancer drug resistance. EMT induces migration
and metastasis of cancer cells, and share the
phenotype of cancer stem cells, which is one of the
hallmarks of human treatment-resistant gastric cancer
(Tanabe et al., 2020a, 2020b).

EMT activation induces the expression of multiple members
of the ATP-binding cassette (ABC) transporter family, which
results in the resistance to doxorubicin (Saxena, Stephens,
Pathak, & Rangarajan, 2011; Shibue & Weinberg, 2017).

TGFbeta-1 induced EMT results in the acquisition of cancer
stem cell (CSC) like properties (Pirozzi et al., 2011; Shibue
& Weinberg, 2017).

Snail-induced EMT induces cancer metastasis and
resistance to dendritic cell-mediated immunotherapy (Kudo-
Saito et al., 2009).

Zinc finger E-box-binding homeobox (ZEB1)-induced EMT
results in the relief of miR-200-mediated repression of
programmed cell death 1 ligand (PD-L1) expression, a
major inhibitory ligand for the programmed cell death
protein (PD-1) immune-checkpoint protein on CD8+
cytotoxic T lymphocyte (CTL), subsequently the CD8+ T
cell immunosuppression and metastasis (Chen et al.,
2014).

Domain of Applicability

Life Stage Applicability

Life Stage Evidence

All life stages High

Taxonomic Applicability

Term Scientific Term Evidence Links
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Homo sapiens Homo sapiens High NCBITerm Scientific Term Evidence Links
Sex Applicability

Sex Evidence

Unspecific High

Homo sapiens

Essentiality of the Key Events

Sustained ROS contributes into the initiation and development of human gastric cancer (Gu H. 2018).

Wnt signaling is involved in cancer malignancy (Tanabe, 2018).

Upon stimulation with Wnt ligand to Frizzled receptor, Wnt/beta-catenin signaling is activated. Wnt/beta-catenin
consists of GSK3 beta inactivation, beta-catenin activation and up-regulation of transcription factors such as Zeb,
Twist and Snail. The transcription factors Zeb, Twist and Snail relate to the activation of EMT-related genes. EMT is
regulated with various gene networks (Tanabe, 2015c).

Weight of Evidence Summary

 The Wnt signaling promotes EMT and cancer malignancy in colorectal cancer (Lazarova & Bordonaro, 2017).
Although the potential pathways other than Wnt signaling exist in EMT induction and the mechanism underlaid
cancer malignancy, Wnt signaling is one of the main pathways to induce EMT and cancer malignancy (Polakis,
2012).

Quantitative Consideration

Wnt signaling activates the CSCs to promote cancer malignancy (Reya & Clevers, 2005). The responses in KEs
related to Wnt signaling, Frizzled activation, GSK3beta inactivation, beta-catenin activation, Snail, Zeb, Twist
activation are dose-dependently related. The quantification of EMT and cancer malignancy would require the
further investigation.

Considerations for Potential Applications of the AOP (optional)

AOP entitled “Chronic reactive oxygen species leading to human treatment-resistant gastric cancer” might be
utilized for the development and risk assessment of anti-cancer drugs. EMT is involved in the acquisition of
drug resistance, which is one of the critical features of cancer malignancy. The assessment of EMT would be
the potential prediction of the adverse effects of anti-cancer drugs.
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Appendix 1

List of MIEs in this AOP

Event: 1753: Chronic reactive oxygen species

Short Name: Chronic ROS

Key Event Component

Process Object Action

response to reactive oxygen species reactive oxygen species increased

AOPs Including This Key Event

AOP ID and Name Event Type

Aop:298 - Chronic reactive oxygen species leading to human treatment-resistant gastric cancer MolecularInitiatingEvent

Stressors

Name

Ionizing Radiation

ferric nitrilotriacetate

Arsenic

Biological Context

Level of Biological Organization

Molecular

Cell term

Cell term

cell

Organ term
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Organ term

organ

Evidence for Perturbation by Stressor

Overview for Molecular Initiating Event

Reactive oxygen species (ROS) are generated through NADPH oxidases consisting of p47phox and p67phox. Arsenic produces ROS
[Zhang et al., 2011].

Ionizing radiation induces ROS [Kruk et al., 2017].

Iron(III)-nitrilotriacetate induces reactive oxygen species production via the transfer of an electron to molecular oxygen to form ROS
[Tsuchiya et al., 2005, Akai et al., 2004].

Ionizing Radiation

Ionizing radiation induces reactive oxygen species.

(Ref. Reactive Oxygen and Nitrogen Species in Carcinogenesis: Implications of Oxidative Stress on the Progression and
Development of Several Cancer Types

Author(s): Joanna Kruk, Hassan Y. Aboul-Enein*. Journal Name: Mini-Reviews in Medicinal Chemistry,

Volume 17 , Issue 11 , 2017, DOI : 10.2174/1389557517666170228115324)

ferric nitrilotriacetate

Iron(III)-nitrilotriacetate induces reactive oxygen species production via trasfer of an electron to molecular oxygen to form reactive

oxygen species [Tsuchiya K, Akai K, Tokumura A, Abe S, Tamaki T, Takiguchi Y, Fukuzawa K. Biochim Biophys Acta. 2005 Aug
30;1725(1):111-9. doi: 10.1016/j.bbagen.2005.05.001, Akai K, Tsuchiya K, Tokumura A, Kogure K, Ueno S, Shibata A, Tamaki T, Fukuzawa K.
Free Radic Res. 2004 Sep;38(9):951-62. doi: 10.1080/1071576042000261945.]

 

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens Moderate NCBI

Life Stage Applicability

Life Stage Evidence

All life stages Moderate

Sex Applicability

Sex Evidence

Unspecific High

Reactive oxygen species (ROS) are increased in human gastric cancer (Homo sapiens) [Gu et al., 2018].

Key Event Description

Reactive oxygen species (ROS) are radicals, ions, or molecules that have a single unpaired electron in their outermost shell of
electrons, which can be categorized into two groups: free oxygen radicals and non-radical ROS [Liou et al., 2010]. Free oxygen
radicals include superoxide (O2·-), hydroxyl radical (·OH), nitric oxide (NO·), organic radicals (R·), peroxyl radicals (ROO·), alkoxyl
radicals (RO·), thiyl radicals (RS·), sulfonyl radicals (ROS·), thiyl peroxyl radicals (RSOO·), and disulfides (RSSR). Non-radical ROS
include hydrogen peroxide (H2O2), singlet oxygen (1O2), ozone/trioxygen (O3), organic hydroperoxides (ROOH),

hypochlorite (ClO-), peroxynitrite (ONOO-), nitrosoperoxycarbonate anion (O=NOOCO2
-), nitrocarbonate anion (O2NOCO2

-),

dinitrogen dioxide (N2O2), nitronium (NO2
+), and highly reactive lipid- or carbohydrate-derived carbonyl compounds [Liou et al.,

2010].
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ROS are generated through NADPH oxidases consists of p47phox and p67phox. Arsenic produces ROS [Zhang et al., 2011]. The
primary site of action for this event is DNA or proteins etc.

ROS play an important role in tumorigenesis [Zhang et al., 2011].

Chronic low-level increased ROS can alter the tumor microenvironment and promote cancer stem cell renewal, leading to
therapeutic resistance [Gu et al., 2018].

The reason why this chronic ROS KE has been created is because it is important to have chronic ROS, but not just instant
increased ROS, since ROS have a double-edged effect.  

How it is Measured or Detected

Hydrogen peroxide (H2O2) can be detected with a colorimetric probe, which reacts with H2O2 in a 1:1 stoichiometry to produce a bright pink
colored product, followed by the detection with a standard colorimetric microplate reader with a filter in the 540-570 nm range.

ROS in the blood can be detected using superparamagnetic iron oxide nanoparticles (SPION)-based biosensor [Lee et al., 2020].

ROS can be detected by fluorescent probes such as p-methoxy-phenol derivative [Ashoka et al., 2020].
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List of Key Events in the AOP

Event: 1940: Increases in cellular reactive oxygen species

Short Name: Increases in cellular ROS

Key Event Component

Process Object Action

reactive oxygen species biosynthetic process reactive oxygen species increased

AOPs Including This Key Event
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AOP ID and Name Event Type

Aop:298 - Chronic reactive oxygen species leading to human treatment-resistant gastric cancer KeyEvent

Stressors

Name

Ionizing Radiation

ferric nitrilotriacetate

Arsenic

Heavy metals (cadmium, lead, copper, iron, nickel)

Mitochondrial ETC inhibitors

Potassium bromate

Biological Context

Level of Biological Organization

Molecular

Cell term

Cell term

cell

Organ term

Organ term

organ

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links

human Homo sapiens Moderate NCBI

human and other cells in culture human and other cells in culture Moderate NCBI

mouse Mus musculus Moderate NCBI

Life Stage Applicability

Life Stage Evidence

All life stages Moderate

Sex Applicability

Sex Evidence

Unspecific High

This KE is broadly applicable across species.

Key Event Description

Reactive oxygen species (ROS) refers to chemical species superoxide, hydrogen peroxide, and their secondary reactive products. In the
biological context, ROS are signaling molecules with important roles in cell energy metabolism, cell proliferation and fate. Therefore, balancing
ROS levels at the cellular and tissue level is an important part of many biological processes. Disbalance, mainly increase of ROS levels, can
cause cell dysfunction and irreversible cell damage.
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ROS are produced from both exogenous stressors and normal endogenous cellular processes, such as the mitochondrial electron transport
chain (ETC). Inhibition of the ETC can result in the accumulation of ROS. Exposure to chemicals, heavy metal ions, or ionizing radiation can
also result in increased production of ROS. Chemicals and heavy metal ions can deplete cellular antioxidants reducing the cell’s ability to
control cellular ROS and resulting in the accumulation of ROS. Cellular antioxidants include glutathione (GSH), protein sulfhydryl groups,
superoxide dismutase (SOD).

ROS are radicals, ions, or molecules that have a single unpaired electron in their outermost shell of electrons, which can be categorized into
two groups: free oxygen radicals and non-radical ROS [Liou et al., 2010].

<Free oxygen radicals>

superoxide O2·-

hydroxyl radical ·OH
nitric oxide NO·
organic radicals R·
peroxyl radicals ROO·
alkoxyl radicals RO·
thiyl radicals RS·
sulfonyl radicals ROS·
thiyl peroxyl radicals RSOO·
disulfides RSSR

 

<Non-radical ROS>

hydrogen peroxide H2O2

singlet oxygen 1O2

ozone/trioxygen O3

organic hydroperoxides ROOH
hypochlorite ClO-

peroxynitrite ONOO-

nitrosoperoxycarbonate anion O=NOOCO2
-

nitrocarbonate anion O2NOCO2
-

dinitrogen dioxide N2O2

nitronium NO2
+

highly reactive lipid- or carbohydrate-derived carbonyl compounds

Potential sources of ROS include NADPH oxidase, xanthine oxidase, mitochondria, nitric oxide synthase, cytochrome P450,
lipoxygenase/cyclooxygenase, and monoamine oxidase [Granger, et al., 2015]. ROS are generated through NADPH oxidases consisting of
p47phox and p67phox. ROS are generated through xanthine oxidase activation in sepsis [Ramos, et al., 2018]. Arsenic produces ROS [Zhang et
al., 2011]. Mitochondria-targeted paraquat and metformin mediate ROS production [Chowdhury, et al., 2020]. ROS are generated by bleomycin
[Lu, et al., 2010]. Radiation induces dose-dependent ROS production [Ji, et al., 2019].

ROS are generated in the course of cellular respiration, metabolism, cell signaling, and inflammation [Dickinson and Chang 2011; Egea, et al.
2017]. Hydrogen peroxide is also made by the endoplasmic reticulum in the course of protein folding. Nitric oxide (NO) is produced at the
highest levels by nitric oxide synthase in endothelial cells and phagocytes. NO production is one of the main mechanisms by which phagocytes
kill bacteria [Wang et al., 2017]. The other species are produced by reactions with superoxide or peroxide, or by other free radicals or enzymes.

ROS activity is principally local. Most ROS have short half-lives, ranging from nano- to milliseconds, so diffusion is limited, while reactive
nitrogen species (RNS) nitric oxide or peroxynitrite can survive long enough to diffuse across membranes [Calcerrada, et al. 2011].
Consequently, local concentrations of ROS are much higher than average cellular concentrations, and signaling is typically controlled by
colocalization with redox buffers [Dickinson and Chang 2011; Egea, et al. 2017].

Although their existence is limited temporally and spatially, ROS interact with other ROS or with other nearby molecules to produce more ROS
and participate in a feedback loop to amplify the ROS signal, which can increase RNS. Both ROS and RNS also move into neighboring cells
and ROS can increase intracellular ROS signaling in neighboring cells [Egea, et al. 2017].

How it is Measured or Detected

<Direct detection>

Many fluorescent compounds can be used to detect ROS, some of which are specific and others are less specific.

�ROS can be detected by fluorescent probes such as p-methoxy-phenol derivative [Ashoka et al., 2020].

�Chemiluminescence analysis can detect the superoxide, where some probes have a wider range for detecting hydroxyl radical, hydrogen
peroxide, and peroxynitrite [Fuloria et al., 2021].

AOP298

16/38



�ROS in the blood can be detected using superparamagnetic iron oxide nanoparticles (SPION)-based biosensor [Lee et al., 2020].

�Hydrogen peroxide (H2O2) can be detected with a colorimetric probe, which reacts with H2O2 in a 1:1 stoichiometry to produce a bright pink
colored product, followed by the detection with a standard colorimetric microplate reader with a filter in the 540-570 nm range.

�The levels of ROS can be quantified using multiple-step amperometry using a stainless steel counter electrode and non-leak Ag|AgCl reference
node [Flaherty et al., 2017].

�Singlet oxygen can be measured by monitoring the bleaching of p-nitrosodimethylaniline at 440 nm using a spectrophotometer with imidazole
as a selective acceptor of singlet oxygen [Onoue et al., 2014].

 

<Indirect Detection>

Alternative methods involve the detection of redox-dependent changes to cellular constituents such as proteins, DNA, lipids, or glutathione
[Dickinson and Chang 2011; Wang, et al. 2013; Griendling, et al. 2016]. However, these methods cannot generally distinguish between the
oxidative species behind the changes, and cannot provide good resolution for kinetics of oxidative activity.
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Event: 1754: Sustained tissue damage / macrophage activation / porcupine-induced Wnt secretion

Short Name: Sustained tissue damage, macrophage activation and Wnt secretion

Key Event Component

Process Object Action

Wnt protein secretion protein-serine O-palmitoleoyltransferase porcupine increased

AOPs Including This Key Event

AOP ID and Name Event Type

Aop:298 - Chronic reactive oxygen species leading to human treatment-resistant gastric cancer KeyEvent

Stressors

Name

Radiation

Biological Context

Level of Biological Organization

Tissue

Organ term

Organ term

organ

Evidence for Perturbation by Stressor
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Radiation

Radiation induces porcupine-induced Wnt secretion in macrophage (Saha et al., 2016a).

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens High NCBI

Mus musculus Mus musculus High NCBI

Life Stage Applicability

Life Stage Evidence

All life stages Moderate

Sex Applicability

Sex Evidence

Unspecific High

Oligomerization of FZD and low-density lipoprotein receptor-related protein 5/6 (LRP5/6) activates Wnt/beta-catenin signaling in
Homo sapiens (Hua et al., 2018).

Key Event Description

Porcupine, which is a trans-membrane endoplasmic reticulum O-acyl transferase, is important for the secretion of Wnt ligands(Saha
et al., 2016a). WNTs are secreted proteins that contain 22-24 conserved cysteine residues (Foulquier et al., 2018). The WNT
molecules consist of molecular families including WNT1, WNT2, WNT2B/WNT13, WNT3, WNT4, WNT5A, WNT5B, WNT6, WNT7A,
WNT7B, WNT8A, WNT8B, WNT10B, WNT11, and WNT16. (Clevers & Nusse, 2012; M. Katoh, 2001; Kusserow et al., 2005)

Wnt proteins consist of 350-400 amino acids (Saito-Diaz et al., 2013).

WNT ligands are known to trigger at least three different downstream signaling cascades including canonical WNT/beta-catenin
signaling pathway, non-canonical WNT/Ca2+ pathway, and planer cell polarity (PCP) pathway(De, 2011; Lai, Chien, & Moon, 2009;
Willert & Nusse, 2012). WNTs bind to Frizzled proteins, which are seven-pass transmembrane receptors with an extracellular N-
terminal cysteine-rich domain (Bhanot et al., 1996; Clevers, 2006). Wnt signaling begins with the binding of Wnt ligand towards the
Frizzled receptors (Mohammed et al., 2016).

Wnt ligands bind to Frizzled (FZD) receptors which are seven transmembrane-domain protein receptors (Nile, Mukund, Stanger,
Wang, & Hannoush, 2017). At least 10 FZD receptors are identified in human cells. FZD receptor is activated by Wnt ligand binding
(MacDonald, Tamai, & He, 2009). 

How it is Measured or Detected

Secretion of WNT requires a number of other dedicated factors including the sortin receptor Wntless (WLS), which binds to
Wnt and escorts it to the cell surface (Banziger et al., 2006; Ching & Nusse, 2006)
Wnt signaling is activated by the gene mutations of the signaling components (Ziv et al., 2017).
Wnt1, Wnt3a, and Wnt5a protein expression are measured by immunoblotting using antibodies for Wnt1, Wnt3a, and Wnt5a,
respectively (J. Du et al., 2016; B. Wang et al., 2017).
WNT2, of which expression is detected by quantitative PCR, immunoblotting, and immunohistochemistry, induces EMT (Zhou
et al., 2016).
Frizzled receptor protein level on the cell surface is measured by flow cytometry with pan-FZD antibody (Jiang et al., 2015;
Zeng et al., 2018). DVL protein level is measured by immunoblotting with anti-DVL2 antibodies (Zeng et al., 2018).
Fzd mRNA level is measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR) (Zeng et al., 2018).
The up-regulation of WNT ligand expression occurs in Homo sapiens (B. Wang et al., 2017).
The Wnt genes play an important role in the secretion from cells, glycosylation, and tight association with the cell surface and
extracellular matrix in Drosophila melanogaster (Willert & Nusse, 2012).
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Event: 1755: Proliferation / beta-catenin activation

Short Name: Proliferation / beta-catenin activation

Key Event Component

Process Object Action

regulation of beta-catenin-TCF complex assembly beta-catenin-TCF complex occurrence

AOPs Including This Key Event

AOP ID and Name Event Type

Aop:298 - Chronic reactive oxygen species leading to human treatment-resistant gastric cancer KeyEvent

Biological Context
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Level of Biological Organization

Cellular

Cell term

Cell term

cell

Organ term

Organ term

organ

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens High NCBI

Life Stage Applicability

Life Stage Evidence

All life stages Moderate

Sex Applicability

Sex Evidence

Unspecific High

Beta-catenin is stabilized and translocated into nucleus in Homo sapiens (Huang et al., 2019).

Beta-catenin is activated in Homo sapiens (Huang et al., 2019) (Naujok et al., 2014).

Key Event Description

Upon the Wnt signaling activation, beta-catenin is stabilized and activated via inhibition of the phosphorylation by
GSK3beta (Huang et al., 2019). Once the beta-catenin is stabilized, it translocates into the nucleus and enhances the
expression of target genes of Wnt/beta-catenin signaling pathway (Huang et al., 2019). Beta-catenin activation is related
to cancer (Tanabe, 2014).

Dishevelled (DVL), a positive regulator of Wnt signaling, forms the complex with FZD and leads to trigger the Wnt
signaling together with Wnt coreceptor low-density lipoprotein (LDL) receptor-related protein 6 (LRP6) (Clevers & Nusse,
2012; Jiang, et al., 2015). DVL, however, has a controversial role to promote Wnt receptor degradation (Jiang et al., 2015).
Meanwhile, DVL-dependent regulation of FZD level is involved in mTORC1 signaling suppression via Wnt/beta-catenin
signaling (Zeng et al., 2018). The recruitment of Axin to the DVL-FZD complex induces the beta-catenin stabilization and
activation. The stabilized beta-catenin translocates into the nucleus, which forms the complex with TCF to induce the
up-regulated expression of proliferation-related genes.

How it is Measured or Detected

The beta-catenin level in nucleus is measured by immunoblotting with anti-beta-catenin antibody (Huang et al., 2019).

The beta-catenin nuclear translocation is measured by immunofluorescence assay (Huang et al., 2019).

Activity of beta-catenin is measured by Wnt/beta-catenin activity assay, in which the vector containing the firefly luciferase gene
controlled by TCF/LEF binding sites is transfected in the cells (Naujok et al., 2014).
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Event: 1650: Epithelial-mesenchymal transition

Short Name: Epithelial-mesenchymal transition

Key Event Component

Process Object Action

epithelial to mesenchymal transition cellular_component occurrence

AOPs Including This Key Event

AOP ID and Name Event Type

Aop:298 - Chronic reactive oxygen species leading to human treatment-resistant gastric cancer KeyEvent

Aop:452 - Adverse outcome pathway of PM-induced respiratory toxicity KeyEvent

Stressors

Name

GOLPH3

LiCl

D-2-hydroxyglutarate

Biological Context

Level of Biological Organization

Cellular

Cell term

Cell term

cell

Organ term

Organ term

organ

Evidence for Perturbation by Stressor
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GOLPH3

GOLPH3 induces EMT (Sun et al., 2017).

LiCl

LiCl induces EMT (Fang et al., 2018).

D-2-hydroxyglutarate

D-2-hydroxyglutarate induces EMT (Colvin et al., 2016).

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens High NCBI

Life Stage Applicability

Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

Wnt5a expression leads to epithelial-mesenchymal transition (EMT) and metastasis in non-small-cell lung cancer in Homo
sapiens (Wang et al., 2017).
WNT2 expression lead to EMT induction in Homo sapiens (Zhou et al., 2016).
EMT is induced in cancer and involved in cancer metastasis in Homo sapiens (Suarez-Carmona, Lesage, Cataldo, & Gilles,
2017) (Du & Shim, 2016).

Key Event Description

Epithelial-mesenchymal transition (EMT) is a phenomenon in which the cells transit from epithelial-like into mesenchymal-like
phenotypes (Huan et al., 2022; Tanabe, 2017; Tanabe et al., 2015). In cancer, cells exhibiting EMT features contribute to
metastasis and drug resistance.

It is known that D-2-hydroxyglurate induces EMT (Guerra et al., 2017; Jia et al., 2018; Mishra et al., 2018; Sciacovelli & Frezza,
2017). D-2-hydroxyglurate, an inhibitor of Jumonji-family histone demethylase, increased the trimethylation of histone H3 lysine 4
(H3K4) in the promoter region of the zinc finger E-box-binding homeobox 1 (ZEB1), followed by the induction of EMT (Colvin et al.,
2016).

Wnt5a induces EMT and metastasis in non-small-cell lung cancer (Wang et al., 2017).

EMT is related to Wnt/beta-catenin signaling and is important for treatment-resistant cancer (Tanabe et al., 2016)

TGFbeta induces EMT (Wendt et al., 2010).

ZEB is one of the critical transcription factors for EMT regulation (Zhang et al., 2015).

SNAI1 (Snail) is an important transcription factor for cell differentiation and survival. The phosphorylation and nuclear localization of
Snail1 induced by Wnt signaling pathways are critical for the regulation of EMT (Kaufhold & Bonavida, 2014).

Transcription factors SNAI1 and TWIST1 induce EMT (Hodge et al., 2018) (Mani et al., 2008)

It is suggested that Sp1, a transcription factor involved in cell growth and metastasis, is induced by cytochrome P450 1B1
(CYP1B1), and promotes EMT, which leads to cell proliferation and metastasis (Kwon et al., 2016).

How it is Measured or Detected

EMT can be detected by immunostaining with pro-surfactant protein-C (pro-SPC) and N-cadherin in idiopathic pulmonary
fibrosis (IPF) lung in vivo (Kim et al., 2006).
EMT can be detected by immunostaining with vimentin in lung alveola in vivo (Kim et al., 2006).
EMT can be detected as the increased level of the transcription factors, zinc finger E-box-binding homeobox (ZEB), Twist and
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Snail (Huang et al., 2022).
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List of Adverse Outcomes in this AOP

Event: 1651: Treatment-resistant gastric cancer

Short Name: Resistant gastric cancer

Key Event Component

Process Object Action

regulation of cellular response to drug occurrence

AOPs Including This Key Event

AOP ID and Name Event Type

Aop:298 - Chronic reactive oxygen species leading to human treatment-resistant gastric cancer AdverseOutcome

Biological Context

Level of Biological Organization

Tissue

Organ term

Organ term

organ

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens High NCBI

Life Stage Applicability

Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

Drug resistance occurs in Homo sapiens (Du & Shim, 2016).

Key Event Description

It is known that diffuse-type gastric cancer, which has a poor prognosis, is treatment-resistant and more malignant compared to
intestinal-type gastric cancer (Tanabe et al., 2014). Drug resistance is involved in EMT, which is an important phenomenon
exhibiting features similar to cancer stem cells (CSCs) (Du & Shim, 2016).

EMT is involved in metastasis and cancer therapy resistance (Smith & Bhowmick, 2016).

How it is Measured or Detected
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Treatment-resistant gastric cancer and EMT can be detected with biomarkers (Zeisberg & Neilson, 2009).

Treatment-resistant gastric cancer which exhibits EMT phenotype can be detected as the increased level of the transcription
factors, zinc finger E-box-binding homeobox 1/2 (ZEB1/2), SNAI1/2, and TWIST2 which are associated with the activation of EMT-
related genes (Tanabe et al., 2022a and 2022b).

Regulatory Significance of the AO

Drug resistance is very important in cancer treatment since cancer metastasis and recurrence are some of the main obstacles to
treating cancer. Cancer stem cells that share the phenotype of EMT may be targeted in anti-cancer drug development. 
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Appendix 2

List of Key Event Relationships in the AOP

List of Adjacent Key Event Relationships

Relationship: 2069: Chronic ROS leads to Sustained tissue damage, macrophage activation and Wnt
secretion

AOPs Referencing Relationship

AOP Name Adjacency Weight of
Evidence

Quantitative
Understanding

Chronic reactive oxygen species leading to human treatment-resistant
gastric cancer

adjacent Moderate Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens Moderate NCBI

Life Stage Applicability

Life Stage Evidence

All life stages Moderate

Sex Applicability

Sex Evidence

Unspecific High
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Prolonged ROS induces inflammation and tissue damage in Homo sapiens (Vallée & Lecarpentier, 2018). 

Key Event Relationship Description

ROS production causes tissue damage (Gao, Zhou, Lin, Paus, & Yue, 2019). ROS production is involved in Wnt-driven tumorigenesis (Myant et
al., 2013). The prolonged ROS induces inflammation leading to carcinogenesis (Vallée & Lecarpentier, 2018). 

Injury causes the Porcupine-induced Wnt secretion (Saha et al., 2016).

 

Evidence Supporting this KER

Biological Plausibility

Sustained ROS increase caused by/causes DNA damage, which will alter several signaling pathways including Wnt signaling.
Macrophages accumulate into injured tissue to recover the tissue damage, which may be followed by porcupine-induced Wnt
secretion. ROS stimulate inflammatory factor production and Wnt/beta-catenin signaling (Vallée & Lecarpentier, 2018).

Empirical Evidence

Incidence concordance

Production of ROS by DNA double-strand break causes tissue damages (Gao et al., 2019).

ROS signaling induces Wnt/beta-catenin signaling (Pérez, Taléns-Visconti, Rius-Pérez, Finamor, & Sastre, 2017).

Uncertainties and Inconsistencies

The balance of ROS signaling is important, and dual effects of ROS should be taken in consideration. The ROS may enhance Wnt/beta-catenin
proliferating pathways to promote tumorigenesis, while ROS may disrupt tumor progression by different pro-apoptotic mechanisms (Pérez et al.,
2017). It is also known that Wnt signaling induces ROS signaling (Cheung et al., 2016). Wnt/beta-catenin signaling control by ROS needs to be
further investigated (Caliceti, Nigro, Rizzo, & Ferrari, 2014).

Quantitative Understanding of the Linkage

Response-response relationship

ROS induces inflammatory responses (Bhattacharyya, Chattopadhyay, Mitra, & Crowe, 2014). Oxidant induces ROS generation and p38 MAPK
activation in macrophages (Conway & Kinter, 2006). ROS induce tissue damage in cardiac myocytes (Miller & Cheung, 2016; Yang et al.,
2006).

Time-scale

For the colony formation assay, cells were treated with 400 microM/L H2O2 for 1 week, where the medium was changed every three days
(Wang et al., 2019).

Known modulating factors

GPX2, an activator of Wnt/beta-catenin signaling, is identified as a key regulator of intracellular H2O2 levels and an inhibitor of apoptosis (Wang
et al., 2019).

Known Feedforward/Feedback loops influencing this KER

The reduction in ROS levels in the human serum albumin-treated cerebral ischemia/reperfusion-induced injury may be mediated by Wnt/beta-
catenin signaling (Tang, Shen, Zhang, Yang, & Liu, 2019).
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Relationship: 2526: Increases in cellular ROS leads to Sustained tissue damage, macrophage activation and
Wnt secretion

AOPs Referencing Relationship

AOP Name Adjacency Weight of
Evidence

Quantitative
Understanding

Chronic reactive oxygen species leading to human treatment-resistant
gastric cancer

adjacent Moderate Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens Moderate NCBI

Life Stage Applicability

Life Stage Evidence

All life stages Moderate

Sex Applicability

Sex Evidence

Unspecific Moderate

Prolonged ROS induces inflammation and tissue damage in Homo sapiens (Vallée & Lecarpentier, 2018). 

Key Event Relationship Description

ROS production causes tissue damage (Gao, Zhou, Lin, Paus, & Yue, 2019). ROS production is involved in Wnt-driven
tumorigenesis (Myant et al., 2013).

Evidence Supporting this KER

Biological Plausibility

Sustained ROS increase caused by/causes DNA damage, which will alter several signaling pathways including Wnt signaling.

Macrophages accumulate into injured tissue to recover the tissue damage, which may be followed by porcupine-induced Wnt
secretion. ROS stimulate inflammatory factor production and Wnt/beta-catenin signaling (Vallée & Lecarpentier, 2018).

Empirical Evidence
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Production of ROS by DNA double-strand break causes tissue damages (Gao et al., 2019).

ROS signaling induces Wnt/beta-catenin signaling (Pérez, Taléns-Visconti, Rius-Pérez, Finamor, & Sastre, 2017).

Uncertainties and Inconsistencies

The balance of ROS signaling is important, and dual effects of ROS should be taken in consideration. The ROS may enhance
Wnt/beta-catenin proliferating pathways to promote tumorigenesis, while ROS may disrupt tumor progression by different pro-
apoptotic mechanisms (Pérez et al., 2017). It is also known that Wnt signaling induces ROS signaling (Cheung et al., 2016).
Wnt/beta-catenin signaling control by ROS needs to be further investigated (Caliceti, Nigro, Rizzo, & Ferrari, 2014).

Quantitative Understanding of the Linkage

Response-response relationship

ROS induces inflammatory responses (Bhattacharyya, Chattopadhyay, Mitra, & Crowe, 2014). Oxidant induces ROS generation
and p38 MAPK activation in macrophages (Conway & Kinter, 2006). ROS induce tissue damage in cardiac myocytes (Miller &
Cheung, 2016; Yang et al., 2006).

Time-scale

For the colony formation assay, cells were treated with 400 microM/L H2O2 for 1 week, where the medium was changed every
three days (Wang et al., 2019).

Known modulating factors

GPX2, an activator of Wnt/beta-catenin signaling, is identified as a key regulator of intracellular H2O2 levels and an inhibitor of
apoptosis (Wang et al., 2019).

Known Feedforward/Feedback loops influencing this KER

The reduction in ROS levels in the human serum albumin-treated cerebral ischemia/reperfusion-induced injury may be mediated by
Wnt/betacatenin signaling (Tang, Shen, Zhang, Yang, & Liu, 2019).
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Relationship: 2070: Sustained tissue damage, macrophage activation and Wnt secretion leads to Proliferation
/ beta-catenin activation

AOPs Referencing Relationship

AOP Name Adjacency Weight of
Evidence

Quantitative
Understanding

Chronic reactive oxygen species leading to human treatment-resistant
gastric cancer

adjacent Moderate Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens High NCBI

Life Stage Applicability

Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

Wnt/beta-catenin signaling, which regulates key cellular functions including proliferation, is a highly conserved pathway through
evolution (Pai et al., 2017).

Key Event Relationship Description

Secreted Wnt ligand stimulates Wnt/beta-catenin signaling, in which beta-catenin is activated. Wnt ligand binds to Frizzled receptor,
which leads to GSK3beta inactivation. GSK3beta inactivation leads to beta-catenin dephosphorylation, which avoids the
ubiquitination of the beta-catenin and stabilizes the beta-catenin (Clevers & Nusse, 2012). The translocation of stabilized beta-
catenin induces the transcription of genes involved in proliferation (Pai et al., 2017).

Evidence Supporting this KER

Biological Plausibility

Canonical Wnt pathway consists of Wnt, GSK3beta, and beta-catenin cascade (Clevers & Nusse, 2012; Hatsell, Rowlands,
Hiremath, & Cowin, 2003).

GSK3beta recruitment to LRP6 leads to form un-phosphorylated beta-catenin inducing the stabilization and translocation of the
beta-catenin (MacDonald, Tamai, & He, 2009).

Stabilized beta-catenin accumulates in cytosol and translocates into the nucleus leading to beta-catenin activation (MacDonald et
al., 2009).

Empirical Evidence

[Incidence concordance]

Dishevelled (DVL), a positive regulator of Wnt signaling, form the complex with FZD and lead to trigger the Wnt signaling together
with Wnt coreceptor low-density lipoprotein (LDL) receptor-related protein 6 (LRP6) (Clevers & Nusse, 2012; Jiang, Charlat,
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Zamponi, Yang, & Cong, 2015). Wnt binds to FZD and activates the Wnt signaling (Clevers & Nusse, 2012; Janda, Waghray, Levin,
Thomas, & Garcia, 2012; Nile, Mukund, Stanger, Wang, & Hannoush, 2017). Wnt binding towards FZD induces the formation of the
protein complex with LRP5/6 and DVL, leading to the downstream signaling activation including beta-catenin (Clevers & Nusse,
2012).

Uncertainties and Inconsistencies

Some Wnt ligands bind to FZD, leading to Wnt/beta-catenin signaling inactivation. DVL, a positive regulator of Wnt signaling, has a
controversial role to promote Wnt receptor degradation (Jiang et al., 2015). DVL-dependent regulation of FZD level is involved in
mTORC1 signaling suppression via Wnt/beta-catenin signaling (Zeng et al., 2018)

GSK3beta phosphorylates LRP6 as well as remaining GSK3 beta phosphorylates beta-catenin which would be ubiquitinated and
degradated (MacDonald et al., 2009).

Quantitative Understanding of the Linkage

Response-response relationship

Wnt3 promotes proliferation and survival in HUVECs (Shen et al., 2018).

GSK3beta inhibition by 1 uM of SB216763 or 5 uM of BRD3731 results in the decreased phosphorylation and stabilization of beta-
catenin (Stump et al., 2019). The level of beta-catenin is increased by the inhibition of GSK3beta kinase activity (Stump et al.,
2019). GSK3beta inhibition by small interference RNA (siRNA) of GSK3beta results in the decreased phosphorylation and increased
expression of beta-catenin (Stump et al., 2019).

Time-scale

FZD7 enhances the activity of canonical Wnt/beta-catenin signaling with the treatment of WNT3A for 1 to 6 hrs (Cao et al., 2017).
The treatment with SB216763 or BRD3731, GSK3beta inhibitors, decreases phosphorylated beta-catenin and increased beta-
catenin expression in 48 hours (Stump et al., 2019). The cells are treated with GSK3beta small interference RNA (siRNA) for 48
hours to silence the expression of GSK3beta, which results in the activation of beta-catenin pathway (Stump et al., 2019).

Known modulating factors

FZD5 can activate WNT3A/beta-catenin signaling in a dose-dependent manner (Hua et al., 2018). The increase in FZD5 protein
enhances cell response to WNT3A. (Hua et al., 2018). LRP5 can augment WNT3A/beta-catenin signaling in a dose-dependent
manner (Hua et al., 2018). The binding of Wnt and FZD induce the formation of the protein complex with the Dvl, Axin, CK1 GSK3,
beta-catenin and APC to induce the beta-catenin translocation into the nucleus (Clevers & Nusse, 2012).

Known Feedforward/Feedback loops influencing this KER

Beta-catenin is required and sufficient for the sequestration of GSK3 in acidic cytoplasmic endosomes (Taelman et al., 2010). Beta-
catenin, of which level increases in Wnt signaling, facilitates GSK3 sequestration leading to feed-forward loop formation (Taelman et
al., 2010). The Wnt ligand is antagonized with secreted Frizzled-related proteins (sFRPs) and Wnt inhibitory protein (WIF), both of
which can bind Wnts and inhibit interactions between WNT and FZD (Bovolenta, Esteve, Ruiz, Cisneros, & Lopez-Rios, 2008;
Clevers & Nusse, 2012). The Dickkopf 1 (DKK1) can disrupts Wnt-induced FZD-LRP6 complex formation (Clevers & Nusse, 2012;
Ellwanger et al., 2008; Semenov, Zhang, & He, 2008).
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Relationship: 2071: Proliferation / beta-catenin activation leads to Epithelial-mesenchymal transition

AOPs Referencing Relationship

AOP Name Adjacency Weight of
Evidence

Quantitative
Understanding

Chronic reactive oxygen species leading to human treatment-resistant
gastric cancer

adjacent Moderate Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens High NCBI

Life Stage Applicability

Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

The inhibition of c-MET decreases the expression of beta-catenin and Snail in human diffuse-type gastric cancer (Homo
sapiens) (Sohn et al., 2019).
The treatment with garcinol decreases the expression of beta-catenin and ZEB1/ZEB2 in human breast cancer cells (Homo
sapiens) (Ahmad et al., 2012).
Zeb1 activation leads to EMT via Prex1 activation in NCH421k, NCH441, and NCH644 human glioblastoma model cells
(Homo sapiens) (Rosmaninho et al., 2018).
Zeb1 siRNA induced the suppression of EMT in SGC-7901 human gastric cancer cell line (Homo sapiens) (Xue et al., 2019).
Snail induces EMT in SAS and HSC-4 human head and neck squamous cancer cells (Homo sapiens) (Ota et al., 2016).
Snail induces EMT in B16-F10 murine melanoma cells (Mus musculus) (Kudo-Saito, Shirako, Takeuchi, & Kawakami, 2009;
Wang, Shi, Chai, Ying, & Zhou, 2013).
Twist1 is related to EMT in MCF-7 and MDA-MB-231 human breast cancer cell lines (Homo sapiens) (Menendez-Menendez
et al., 2019).
Twist induces EMT in Huh7 human hepatocellular carcinoma cell lines (Homo sapiens) (Hu et al., 2019).

Key Event Relationship Description

Beta-catenin activation, of which mechanism include the stabilization of the dephosphorylated beta-catenin and translocation of
beta-catenin into the nucleus, induce the formation of beta-catenin-TCF complex and transcription of transcription factors such as
Snail, Zeb and Twist (Clevers & Nusse, 2012) (Ahmad et al., 2012; Pearlman, Montes de Oca, Pal, & Afaq, 2017; Sohn et al., 2019;
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Yang et al., 2019).

EMT-related transcription factors including Snail, ZEB and Twist are up-regulated in cancer cells (Diaz, Vinas-Castells, & Garcia de
Herreros, 2014). The transcription factors such as Snail, ZEB and Twist bind to E-cadherin (CDH1) promoter and inhibit the CDH1
transcription via the consensus E-boxes (5’-CACCTG-3’ or 5’-CAGGTG-3’), which leads to EMT (Diaz et al., 2014).

Evidence Supporting this KER

Biological Plausibility

The treatment of human gastric cancer cells with INC280, which inhibits c-MET overexpressed in diffuse-type gastric cancer with
poor prognosis, shows downregulation in beta-catenin and Snail expression,(Sohn et al., 2019).

The treatment with garcinol, a polyisoprenylated benzophenone derivative that is obtained from Garcinia indica extract, induced
ZEB1 and ZEB2 down-regulation, increase in phosphorylated beta-catenin, and decrease in nuclear beta-catenin in human breast
cancer cells (Ahmad et al., 2012).

Sortilin, a member of the Vps10p sorting receptor family which is highly expressed in high-grade malignant glioma, positively
regulates GSK-3beta/beta-catenin/Twist signaling pathway in glioblastoma (Yang et al., 2019).

TM4SF1 promotes EMT via Wnt/beta-catenin/SOX2 pathway in colorectal cancer (Yang et al., 2020).

The transcription factors such as Snail, Zeb, and Twist inhibit the CDH1 expression through their binding towards the promoter of
CDH1, which leads to inhibition of cell adhesion and EMT (Diaz et al., 2014)

Empirical Evidence

[Dose concordance]

The inhibition of sortilin by AF38469 (a sortilin inhibitor) or small interference RNA (siRNA) results in a decrease in beta-catenin and
Twist expression in human glioblastoma cells (Yang et al., 2019).

[Time concordance]

The complex of beta-catenin and TCF4 induces epithelial-mesenchymal transition (EMT)-activator ZEB (Sanchez-Tillo E et al.,
2011).

[Incidence concordance]

The inhibition of c-MET, which is overexpressed in diffuse-type gastric cancer, induced an increase in phosphorylated beta-catenin,
decrease in beta-catenin and Snail (Sohn et al., 2019).

The garcinol, which has an anti-cancer effect, increases phosphorylated beta-catenin, decreases beta-catenin and ZEB1/ZEB2, and
inhibits EMT (Ahmad et al., 2012).

Histone deacetylase inhibitors affect EMT-related transcription factors including ZEB, Twist, and Snail (Wawruszak et al., 2019).

Snail and Zeb induces EMT and suppress E-cadherin (CDH1) (Batlle et al., 2000; Diaz et al., 2014; Peinado, Olmeda, & Cano,
2007).

Uncertainties and Inconsistencies

It is possible that the inhibition of ZEB1 and ZEB2 by garcinol treatment is caused by down-regulation of NFkappaB and Wnt/beta-
catenin signaling (Ahmad et al., 2012).

The EMT is induced different transcription factors other than Zeb, Twist, and Snail, which includes E47 and KLF8 (Diaz et al.,
2014).

Zeb, Twist, and Snail may activate or inactivate different genes or molecules to induce phenomena related to EMT and other
phenomena other than EMT (Li & Balazsi, 2018).

Quantitative Understanding of the Linkage

Response-response relationship

The treatment with AF38469, a sortilin inhibitor, in 0, 100, 200, 400, 800, and 1600 nM concentration inhibited beta-catenin and
Twist (EMT regulator) expression dose-dependently in human glioblastoma cells (Yang et al., 2019).

Snail (SNAI1, a key transcription factor of EMT induced by beta-catenin) mRNA is methylated, and N6-methyladenosine (m6A) in its
coding region (CDS) and 3’ untranslated region (3’UTR) are significantly enriched during EMT progression (Lin et al., 2019). The
m6A enrichment fold of SNAI1 mRNA in EMT cells is about 2.3-fold greater than in control cells (Lin et al., 2019).
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Time-scale

Nuclear accumulation of beta-catenin induces endogenous ZEB1 in 15 and 30 min (Sanchez-Tillo E et al., 2011).

The treatment with 25 uM of garcinol for 48 hours induced an increase in phosphorylated beta-catenin and decreased nuclear beta-
catenin protein and ZEB1/ZEB2 mRNA in human breast cancer cells (Ahmad et al., 2012).

The treatment with AF38469, a sortilin inhibitor, for 0, 2, 4, 8, 16, or 24 hours shows that the expression of beta-catenin and Twist
decrease in 8 hours followed by the subsequent decrease in 16 and 24 hours in human glioblastoma cells (Yang et al., 2019).

Snail (SNAI1) transfection for 48 hours induces the repression of E-cadherin (CDH1) protein expression (Lin et al., 2019).

SNAI1 mRNA in polysome is up-regulated in EMT-undergoing HeLa cells treated with 10 ng/ml of TGF-beta for 3 days compared
with control cells (Lin et al., 2019).

Known modulating factors

The proto-oncogene MET regulates beta-catenin and Snail expression (Sohn et al., 2019).

The inhibition of GSK3beta by SB216763 induced expression of beta-catenin and Twist, as well as mesenchymal markers such as
N-cadherin, vimentin, and MMP9 (Yang et al., 2019).

The decrease in E-cadherin (CDH1), a cell adhesion molecule, is related to EMT (Diaz et al., 2014).

Methyltransferase-like 3 (METTL3) modulates methylation of Snail (SNAI1) mRNA and EMT (Lin et al., 2019).

The binding of beta-catenin to members of the TCF/LEF family transcription factors increase gene expression related to EMT such
as Twist and decrease E-cadherin protein expression (Qualtrough, Rees, Speight, Williams, & Paraskeva, 2015).

Known Feedforward/Feedback loops influencing this KER

The inhibited expression of phosphorylated GSK3beta, beta-catenin, and Twist by sortilin inhibition is reversed by GSK3beta
inhibition. Furthermore, twist overexpression by lentivirus increased the inhibited expression of N-cadherin, MMP9, and vimentin
and reverses the inhibitory effect of AF38469 on sortilin, which suggests that sortilin induces glioblastoma invasion mainly via
GSK3beta/beta-catenin/Twist induced mesenchymal transition (Yang et al., 2019).

The inhibition of Hedgehog signaling pathway with cyclopamine reduces beta-catenin-TCF transcriptional activity, decreases the
Twist expression, induces E-cadherin expression, and inhibits EMT (Qualtrough et al., 2015).
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Relationship: 1929: Epithelial-mesenchymal transition leads to Resistant gastric cancer
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EMT induces cancer invasion, metastasis (Homo sapiens)(P. Zhang et al., 2015).
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EMT is related to cancer drug resistance in MCF-7 human breast cancer cells (Homo sapiens)(B. Du & Shim, 2016).

 

Key Event Relationship Description

Some population of the cells exhibiting EMT demonstrates the feature of cancer stem cells (CSCs), which are related to cancer
malignancy (Shibue & Weinberg, 2017; Shihori Tanabe, 2015a, 2015b; Tanabe, Aoyagi, Yokozaki, & Sasaki, 2015).

EMT phenomenon is related to cancer metastasis and cancer therapy resistance (Smith & Bhowmick, 2016; Tanabe, 2013). The
increased expression of enzymes that degrade the extracellular matrix components and the decrease in adhesion to the basement
membrane in EMT induces the cell to escape from the basement membrane and metastasis (Smith & Bhowmick, 2016).
Morphological changes observed during EMT are associated with therapy resistance (Smith & Bhowmick, 2016).

Evidence Supporting this KER

Biological Plausibility

The morphological and physiological changes associated with EMT are involved in invasiveness and drug resistance (Shibue &
Weinberg, 2017). The EMT-activated particular carcinoma cells in primary tumors invade the surrounding stroma (Shibue &
Weinberg, 2017). The EMT –activated carcinoma cells interact with the surrounding extracellular matrix protein to induce focal
adhesion kinase and extracellular signal-related kinase activation, followed by the transforming growth factor-beta (TGFbeta) and
canonical and/or noncanonical Wnt pathways to induce cancer stem cell (CSC) properties which contribute to the drug resistance
(Shibue & Weinberg, 2017).

EMT-associated down-regulation of multiple apoptotic signaling pathways induces drug efflux and slows cell proliferation to induce
the general resistance of carcinoma cells to anti-cancer drugs (Shibue & Weinberg, 2017).

Snail, an EMT-related transcription factor, induces the expression of the AXL receptor tyrosine kinase, which enables the cancer
cells to survive by the activation of AXL signaling triggered by the binding of its ligand growth arrest-specific protein 6 (GAS6)
(Shibue & Weinberg, 2017).

The EMT-activated cells evade the lethal effect of cytotoxic T cells, which include the elevated expression of programmed cell death
1 ligand (PD-L1) which binds to the programmed cell death protein 1 (PD-1) inhibitory immune-checkpoint receptor on the cell
surface of cytotoxic T cells (Shibue & Weinberg, 2017).

Empirical Evidence

Incidence concordance

Slug/Snai2, a ces-1-related zinc finger transcription factor gene, confers resistance to p53-mediated apoptosis of hematopoietic
progenitors by repressing PUMA (also known as BBC3, encoding Bcl-2-binding component 3) (Inukai et al., 1999; Shibue &
Weinberg, 2017; W.-S. Wu et al., 2005).

EMT activation induces the expression of multiple members of the ATP-binding cassette (ABC) transporter family, which results in
the resistance to doxorubicin (Saxena, Stephens, Pathak, & Rangarajan, 2011; Shibue & Weinberg, 2017) 

TGFbeta-1 induced EMT results in the acquisition of cancer stem cell (CSC) like properties (Pirozzi et al., 2011; Shibue & Weinberg,
2017).

Snail-induced EMT induces cancer metastasis and resistance to dendritic cell-mediated immunotherapy (Kudo-Saito, Shirako,
Takeuchi, & Kawakami, 2009).

Zinc finger E-box-binding homeobox (ZEB1)-induced EMT results in the relief of miR-200-mediated repression of programmed cell
death 1 ligand (PD-L1) expression, a major inhibitory ligand for the programmed cell death protein (PD-1) immune-checkpoint
protein on CD8+ cytotoxic T lymphocyte (CTL), subsequently the CD8+ T cell immunosuppression and metastasis (Chen et al.,
2014).

Uncertainties and Inconsistencies

The reversing process of EMT, which names as a mesenchymal-epithelial transition (MET), maybe one of the candidates for the
anti-cancer therapy, where the plasticity of the cell phenotype is of importance and under investigation (Shibue & Weinberg, 2017).

Quantitative Understanding of the Linkage

Response-response relationship

Induction of EMT by TGFbeta and Twist increases the gene expression of EMT markers such as Snail, Vimentin, N-cadherin, and
ABC transporters including ABCA3, ABCC1, ABCC3, and ABCC10 (Saxena et al., 2011).
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Human mammary epithelial cells (HMLE) stably expressing Twist, FOXC2 or Snail demonstrates the increased cell viability
compared to control HMLE in the treatment with about 0.3, 3, 30 mM of doxorubicin, dose-dependently (Saxena et al., 2011).

Time-scale

The treatment with doxorubicin for 48 hours demonstrates the increase in the cell viability in Twist/FOXC2/Snail overexpressed
HMLE compared to control HMLE (Saxena et al., 2011).

The inhibition of Twist or Zeb1 with small interference RNA (siRNA) induced the inhibition of cell viability compared to control
MDAMB231 cells treated with doxorubicin for 48 hours (Saxena et al., 2011).

Known modulating factors

ABC transporters that are related to drug resistance are overexpressed in the EMT-activated cells (Saxena et al., 2011). The
expression of PD-L1, which binds to the PD-1 on the cytotoxic T cells, is up-regulated in EMT-activated cells, which results in the
inhibition of cancer immunity and the resistance to cancer therapy (Shibue & Weinberg, 2017).

Known Feedforward/Feedback loops influencing this KER

The investigation of EMT-CSC relations is important to understand the relationship between EMT and cancer malignancy. Non-
CSCs in cancer can spontaneously undergo EMT and dedifferentiate into new CSC, subsequently induce the regeneration of
tumorigenic potential (Marjanovic, Weinberg, & Chaffer, 2013; Shibue & Weinberg, 2017).

The plastic CSC theory demonstrates the bidirectional conversions between non-CSCs and CSCs, which may contribute to the
acquisition of cancer malignancy in EMT-activated cells (Marjanovic et al., 2013).
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