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Abstract

The injury causes resistance in human gastric cancer. This AOP entitled “Increases in cellular reactive oxygen species
(ROS) and chronic ROS leading to human treatment-resistant gastric cancer” consists of MIE as KE1940 “Increases in
cellular ROS” and KE1753 “Chronic ROS”, followed by KE1 as KE1754 “porcupine-induced Wnt secretion and Wnt
signaling activation”, KE2 as KE1755 “beta-catenin activation”, KE3 as KE1457 “EMT"”, and AO as KE1651 “human
treatment-resistant GC”. ROS has multiple roles in disease such as development and progression of cancer, or
apoptotic induction causing anti-tumor effects. In this AOP, we focus on the role of sustained levels of chronic ROS to
induce the therapy-resistance in human gastric cancer. EMT, which is cellular phenotypic change from epithelial to
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mesenchymal-like features, demonstrates cancer stem cell-like characteristics in human gastric cancer. EMT is
induced by Wnt/beta-catenin signaling, providing the rationale to have Wnt secretion and beta-catenin activation as
KE1 and KE2 on the AOP, respectively.

Summary of the AOP
Events
Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Event

Sequence Type ID Title Short name

2 MIE 1940 Incre_ases in cellular reactive oxygen Increases in cellular ROS
species

1 MIE 1753 Chronic reactive oxygen species Chronic ROS

Porcupine-induced Wnt secretion and Wnt  Porcupine-induced Wnt secretion and Wnt

3 KE 1754

signaling activation signaling activation
4 KE 1755 Dbeta-catenin activation beta-catenin activation
KE 1457 Epithelial Mesenchymal Transition EMT
6 AO 1651 Treatment-resistant gastric cancer Resistant gastric cancer

Key Event Relationships

Relationship Downstream Event Evidence Quantitative

Upstream Event Type Understanding

Increases in cellular reactive Porcupine-induced Wnt secretion

oxygen species ClelIeIn and Wnt signaling activation R

Chronic reactive oxygen species adjacent Porcupme-_mdu.ced W'?t sgcretlon Moderate Moderate
and Wnt signaling activation

Porcuolne—.lndu.ced ert sgcretlon adjacent beta-catenin activation Moderate Moderate

and Wnt signaling activation

beta-catenin activation adjacent Epithelial Mesenchymal Transition Moderate Moderate

Treatment-resistant gastric
cancer

Moderate Moderate

Epithelial Mesenchymal Transition adjacent

Stressors
Name Evidence
Wnt High
WNT2 High
Porcupine Moderate
Whntless Moderate
lonizing Radiation Moderate
ferric Not
nitrilotriacetate Specified
Wnt

WNT induces EMT (J. Zhang, Tian, & Xing, 2016).
WNT2

WNT2 induces EMT in cervical cancer (Zhou et al., 2016).
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Porcupine

Porcupine palmitoleates Wnt and facilitates the secretion of the Wnt ligand(Yu & Virshup, 2014) .

Whntless

Whntless binds to and transport Wnt to the plasma membrane leading to the secretion of Wnt
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ligand (Yu & Virshup, 2014).

ferric nitrilotriacetate

Carcinogenic iron(lll)-nitrilotriacetate induces reactive oxygen species production via trasfer of an electron to molecular

oxygen to form reactive oxygen species [Tsuchiya K, Akai K, Tokumura A, Abe S, Tamaki T, Takiguchi Y, Fukuzawa K. Biochim

Biophys Acta. 2005 Aug 30;1725(1):111-9. doi: 10.1016/j.bbagen.2005.05.001, Akai K, Tsuchiya K, Tokumura A, Kogure K,

Ueno S, Shibata A, Tamaki T, Fukuzawa K. Free Radic Res. 2004 Sep;38(9):951-62. doi: 10.1080/1071576042000261945.].

Overall Assessment of the AOP

1. Support for Biological Plausibility of KERs

MIE1 => KE1:
Increases in
cellular ROS leads
to porcupine-

Biological Plausibility of the MIE1 => KEL1 is
moderate.

Rationale: Increases in cellular ROS caused
by/causes DNA damage, which will alter

Chronic ROS leads
to porcupine-

induced Wnt several signaling pathways including Wnt
secretion and Wnt | signaling. ROS stimulate inflammatory factor
signaling production and Wnt/beta-catenin signaling
activation (Vallée & Lecarpentier, 2018).
Biological Plausibility of the MIE2 => KE1 is
moderate.
Rationale: Sustained ROS increase caused
by/causes DNA damage, which will alter
MIE2 => KE1: several signaling pathways including Wnt

signaling. Macrophages accumulate into
injured tissue to recover the tissue damage,

Porcupine-induced
Wnt secretion and
Whnt signaling
activation leads to
beta-catenin
activation

induced Wnt which may be followed by porcupine-induced
secretion and Wnt | Wnt secretion. ROS stimulate inflammatory
signaling factor production and Wnt/beta-catenin
activation signaling (Vallée & Lecarpentier, 2018).
Biological Plausibility of the KE1 => KE2 is
moderate.
Rationale: Secreted Wnt ligand stimulates
KE1l => KE2: Whnt/b-catenin signaling, in which b-catenin is

activated. Wnt ligand binds to Frizzled
receptor, which leads to GSK3b inactivation.
GSK3b inactivation leads to beta-catenin
dephosphorylation, which avoids the
ubiquitination of the b-catenin and stabilize
the beta-catenin (Clevers & Nusse, 2012).
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KE2 => KE3:
beta-catenin
activation leads to
Epithelial-
mesenchymal
transition (EMT)

Biological Plausibility of the KE2 => KE3 is
moderate.

Rationale: beta-catenin activation, of which
mechanism include the stabilization of the
dephosphorylated b -catenin and translocation
of b-catenin into the nucleus, induce the
formation of beta-catenin-TCF complex and
transcription of transcription factors such as
Snail, Zeb and Twist (Clevers & Nusse, 2012)
(Ahmad et al., 2012; Pearlman et al., 2017,
Sohn et al., 2019; Yang W et al., 2019).

EMT-related transcription factors including
Snail, ZEB and Twist are up-regulated in
cancer cells (Diaz et al., 2014). The
transcription factors such as Snail, ZEB and
Twist bind to E-cadherin (CDH1) promoter and
inhibit the CDH1 transcription via the
consensus E-boxes (5'-CACCTG-3' or 5'-
CAGGTG-3’), which leads to EMT (Diaz et al.,
2014).

KE3 => AO:
Epithelial-
mesenchymal
transition (EMT)
leads to
treatment-
resistant gastric
cancer

Biological Plausibility of the KE3 => AOQ is
moderate.

Rationale: Some population of the cells
exhibiting EMT demonstrates the feature of
cancer stem cells (CSCs), which are related to
cancer malignancy (Shibue & Weinberg, 2017;
Tanabe, 2015a, 2015b; Tanabe et al., 2015).

EMT phenomenon is related to cancer
metastasis and cancer therapy resistance
(Smith & Bhowmick, 2016; Tanabe, 2013).
Increase expression of enzymes that degrade
the extracellular matrix components and the
decrease in adhesion to the basement
membrane in EMT induce the cell escape from
the basement membrane and metastasis
(Smith & Bhowmick, 2016). Morphological
changes observed during EMT is associated
with therapy resistance (Smith & Bhowmick,
2016).

2. Support for essentiality of KEs

KE1: Porcupine-

Essentiality of the KE1 is moderate.

induced Wnt Rationale for Essentiality of KEs in the AOP:
secretion and Wnt | The Wnt signaling activation is essential for
signaling the subsequent beta-catenin activation and
activation cancer resistance.

KE2: Essentiality of the KE2 is moderate.

beta-catenin

Rationale for Essentiality of KEs in the AOP:
beta-catenin activation is essential for the

activation Whnt-induced cancer resistance.

Essentiality of the KE3 is moderate.

Rationale for Essentiality of KEs in the AOP:
KE3: Epithelial- EMT is essential for the Wnt-induced cancer
mesenchymal promotion and acquisition of resistance to anti-

transition (EMT)

cancer drug.

3. Empirical support for KERs

MIE1 => KE1:
Increases in
cellular ROS leads
to porcupine-
induced Wnt
secretion and Wnt
signaling
activation

Empirical Support of the MIE1 => KE1 is
moderate.

Rationale: Production of ROS by DNA double-
strand break causes the tissue damages (Gao
et al., 2019).

ROS-related signaling induces Wnt/beta-
catenin pathway activation (Pérez et al.,
2017).
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MIE2 => KE1:
Chronic ROS leads
to porcupine-
induced Wnt
secretion and Wnt
signaling
activation

Empirical Support of the MIE2 => KEL1 is
moderate.

Rationale: Production of ROS and DNA double-
strand break cause the tissue damages (Gao
et al., 2019).

ROS signaling induces Wnt/beta-catenin
signaling (Pérez et al., 2017).

KE1 => KE2:
Porcupine-induced
Wnt secretion and
Whnt signaling
activation leads to
beta-catenin
activation

Empirical Support of the KE1 => KE2 is
moderate.

Rationale: Dishevelled (DVL), a positive
regulator of Wnt signaling, form the complex
with FZD and lead to trigger the Wnt signaling
together with Wnt coreceptor low-density
lipoprotein (LDL) receptor-related protein 6
(LRP6) (Clevers & Nusse, 2012; Jiang et al.,
2015).

Wnt binds to FZD and activate the Wnt
signaling (Clevers & Nusse, 2012; Janda et al.,
2012; Nile et al., 2017). Wnt binding towards
FZD induce the formation of the protein
complex with LRP5/6 and DVL, leading to the
down-stream signaling activation including
beta-catenin (Clevers & Nusse, 2012).

KE2 => KE3:
beta-catenin
activation leads to
Epithelial-
mesenchymal
transition (EMT)

Empirical Support of the KE2 => KE3 is
moderate.

Rationale: The inhibition of c-MET, which is
overexpressed in diffuse-type gastric cancer,
induced increase in phosphorylated beta-
catenin, decrease in beta-catenin and Snail
(Sohn et al., 2019).

The garcinol, that has anti-cancer effect,
increases phosphorylated beta-catenin,
decreases beta-catenin and ZEB1/ZEB2, and
inhibit EMT (Ahmad et al., 2012).

The inhibition of sortilin by AF38469 (a sortilin
inhibitor) or small interference RNA (siRNA)
results in decrease in beta-catenin and Twist
expression in human glioblastoma cells (Yang
W. et al., 2019).

Histone deacetylase inhibitors effect on EMT-
related transcription factors including ZEB,
Twist and Snail (Wawruszak et al., 2019).

Snail and Zeb induces EMT and suppress E-
cadherin (CDH1) (Batlle et al., 2000; Diaz et
al., 2014; Peinado et al., 2007).
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Empirical Support of the KE3 => AO is
moderate.

Rationale: EMT activation induces the
expression of multiple members of the ATP-
binding cassette (ABC) transporter family,
which results in doxorubicin resistance
(Saxena et al., 2011; Shibue & Weinberg,
2017).

TGFbeta-1 induced EMT results in the
acquisition of cancer stem cell (CSC) like
properties (Pirozzi et al., 2011; Shibue &
Weinberg, 2017).

Snail-induced EMT induces the cancer
metastasis and resistance to dendritic cell-
mediated immunotherapy (Kudo-Saito et al.,
2009).

Zinc finger E-box-binding homeobox (ZEB1)-
induced EMT results in relief of miR-200-
mediated repression of programmed cell

EEizihTeﬁalA-O: death 1 ligand (PD-L1) expression, a major

P inhibitory ligand for the programmed cell
TESEET 2] death protein (PD-1) immune-checkpoint
transition (EMT) eath protel ) une-checkpol
leads to protein on CD8% cytotoxic T lymphocyte (CTL),
Treatment- subsequently the CD8* T cell
resistant gastric immunosuppression and metastasis (Chen et
cancer al., 2014).

Domain of Applicability

Life Stage Applicability
Life Stage Evidence

All life

stages High
Taxonomic Applicability
Term Scientific Term Evidence Links
:';g?eons Homo sapiens High NCBI
Sex Applicability
Sex Evidence

Unspecific High
Homo sapiens
Essentiality of the Key Events

Sustained ROS contributes into the initiation and development of human gastric cancer (Gu H. 2018).

Wnt signaling is involved in cancer malignancy (Tanabe, 2018).

Upon stimulation with Wnt ligand to Frizzled receptor, Wnt/beta-catenin signaling is activated.
Wnt/beta-catenin consists of GSK3 beta inactivation, beta-catenin activation and up-regulation of
transcription factors such as Zeb, Twist and Snail. The transcription factors Zeb, Twist and Snail relate
to the activation of EMT-related genes. EMT is regulated with various gene networks (Tanabe, 2015c).

Weight of Evidence Summary

The Wnt signaling promotes EMT and cancer malignancy in colorectal cancer (Lazarova &
Bordonaro, 2017). Although the potential pathways other than Wnt signaling exist in EMT
induction and the mechanism underlaid cancer malignancy, Wnt signaling is one of the main
pathways to induce EMT and cancer malignancy (Polakis, 2012).

Quantitative Consideration
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Wnt signaling activates the CSCs to promote cancer malignancy (Reya & Clevers, 2005). The
responses in KEs related to Wnt signaling, Frizzled activation, GSK3beta inactivation, beta-
catenin activation, Snail, Zeb, Twist activation are dose-dependently related. The quantification
of EMT and cancer malignancy would require the further investigation.

Considerations for Potential Applications of the AOP (optional)

AOP entitled “Increases in cellulr reactive oxygen species (ROS) and chronic ROS leading to
human treatment-resistant gastric cancer” might be utilized for the development and risk
assessment of anti-cancer drugs. EMT is involved in the acquisition of drug resistance, which is
one of the critical features of cancer malignancy. The assessment on activity of EMT network
would serve as prediction of the adverse effects of, or responsiveness to anti-cancer drugs
(Tanabe et al., 2023).
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Appendix 1
List of MIEs in this AOP

Event: 1940: Increases in cellular reactive oxygen species

Short Name: Increases in cellular ROS

Key Event Component

Process Object Action

reactive oxygen species biosynthetic reactive oxygen

- increased
process species

AOPs Including This Key Event

AOP ID and Name Event Type

Aop:298 - Increases in cellular reactive oxygen species and chronic reactive oxygen
species leading to human treatment-resistant gastric cancer

MolecularlnitiatingEvent

Stressors

Name
lonizing Radiation

ferric nitrilotriacetate
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Name
Arsenic

Heavy metals (cadmium, lead, copper, iron,
nickel)

Mitochondrial ETC inhibitors

Potassium bromate

Biological Context

Level of Biological Organization

Molecular
Cell term

Cell term

cell

Organ term

Organ term

organ

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links
human Homo sapiens Moderate NCBI
human and other cells in human and other cells in Moderate NCBI
culture culture B
mouse Mus musculus Moderate NCBI

Life Stage Applicability
Life Stage Evidence

Al e Moderate
stages
Sex Applicability
Sex Evidence

Unspecific High
This KE is broadly applicable across species.

Key Event Description

Reactive oxygen species (ROS) refers to chemical species superoxide, hydrogen peroxide, and their secondary reactive
products. In the biological context, ROS are signaling molecules with important roles in cell energy metabolism, cell
proliferation and fate. Therefore, balancing ROS levels at the cellular and tissue level is an important part of many biological
processes. Disbalance, mainly increase of ROS levels, can cause cell dysfunction and irreversible cell damage.

ROS are produced from both exogenous stressors and normal endogenous cellular processes, such as the mitochondrial
electron transport chain (ETC). Inhibition of the ETC can result in the accumulation of ROS. Exposure to chemicals, heavy metal
ions, or ionizing radiation can also result in increased production of ROS. Chemicals and heavy metal ions can deplete cellular
antioxidants reducing the cell’s ability to control cellular ROS and resulting in the accumulation of ROS. Cellular antioxidants
include glutathione (GSH), protein sulfhydryl groups, superoxide dismutase (SOD).

ROS are radicals, ions, or molecules that have a single unpaired electron in their outermost shell of electrons, which can be
categorized into two groups: free oxygen radicals and non-radical ROS [Liou et al., 2010].

<Free oxygen radicals>
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superoxide 0,
hydroxyl radical ‘OH

nitric oxide NO-
organic radicals R:

peroxyl radicals ROO-
alkoxyl radicals RO-

thiyl radicals RS-
sulfonyl radicals ROS-

thiyl peroxyl radicals RSOO-
disulfides RSSR
<Non-radical ROS>

hydrogen peroxide H50,
singlet oxygen 1o,
ozone/trioxygen O3
organic hydroperoxides ROOH
hypochlorite CIO”
peroxynitrite ONOO"
nitrosoperoxycarbonate anion 0=NOOCO
nitrocarbonate anion O,NOCOy”
dinitrogen dioxide N>O»
nitronium NO,*
highly reactive lipid- or carbohydrate-derived carbonyl compounds

Potential sources of ROS include NADPH oxidase, xanthine oxidase, mitochondria, nitric oxide synthase, cytochrome P450,
lipoxygenase/cyclooxygenase, and monoamine oxidase [Granger, et al., 2015]. ROS are generated through NADPH oxidases
consisting of p47P"°% and p67P"°X, ROS are generated through xanthine oxidase activation in sepsis [Ramos, et al., 2018].
Arsenic produces ROS [Zhang et al.,, 2011]. Mitochondria-targeted paraquat and metformin mediate ROS production
[Chowdhury, et al., 2020]. ROS are generated by bleomycin [Lu, et al., 2010]. Radiation induces dose-dependent ROS
production [Ji, et al., 2019].

ROS are generated in the course of cellular respiration, metabolism, cell signaling, and inflammation [Dickinson and Chang
2011; Egea, et al. 2017]. Hydrogen peroxide is also made by the endoplasmic reticulum in the course of protein folding. Nitric
oxide (NO) is produced at the highest levels by nitric oxide synthase in endothelial cells and phagocytes. NO production is one
of the main mechanisms by which phagocytes kill bacteria [Wang et al., 2017]. The other species are produced by reactions
with superoxide or peroxide, or by other free radicals or enzymes.

ROS activity is principally local. Most ROS have short half-lives, ranging from nano- to milliseconds, so diffusion is limited, while
reactive nitrogen species (RNS) nitric oxide or peroxynitrite can survive long enough to diffuse across membranes [Calcerrada,
et al. 2011]. Consequently, local concentrations of ROS are much higher than average cellular concentrations, and signaling is
typically controlled by colocalization with redox buffers [Dickinson and Chang 2011; Egea, et al. 2017].

Although their existence is limited temporally and spatially, ROS interact with other ROS or with other nearby molecules to
produce more ROS and participate in a feedback loop to amplify the ROS signal, which can increase RNS. Both ROS and RNS
also move into neighboring cells and ROS can increase intracellular ROS signaling in neighboring cells [Egea, et al. 2017].

How it is Measured or Detected

<Direct detection>
Many fluorescent compounds can be used to detect ROS, some of which are specific and others are less specific.
[JROS can be detected by fluorescent probes such as p-methoxy-phenol derivative [Ashoka et al., 2020].

[OChemiluminescence analysis can detect the superoxide, where some probes have a wider range for detecting hydroxyl
radical, hydrogen peroxide, and peroxynitrite [Fuloria et al., 2021].

OROS in the blood can be detected using superparamagnetic iron oxide nanoparticles (SPION)-based biosensor [Lee et al.,
20201.

[OHydrogen peroxide (H,0,) can be detected with a colorimetric probe, which reacts with H,O, in a 1:1 stoichiometry to produce
a bright pink colored product, followed by the detection with a standard colorimetric microplate reader with a filter in the 540-
570 nm range.

[OThe levels of ROS can be quantified using multiple-step amperometry using a stainless steel counter electrode and non-leak
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Ag|AgCl reference node [Flaherty et al., 2017].

[OSinglet oxygen can be measured by monitoring the bleaching of p-nitrosodimethylaniline at 440 nm using a
spectrophotometer with imidazole as a selective acceptor of singlet oxygen [Onoue et al., 2014].

<Indirect Detection>

Alternative methods involve the detection of redox-dependent changes to cellular constituents such as proteins, DNA, lipids, or
glutathione [Dickinson and Chang 2011; Wang, et al. 2013; Griendling, et al. 2016]. However, these methods cannot generally
distinguish between the oxidative species behind the changes, and cannot provide good resolution for kinetics of oxidative
activity.
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Unspecific High
Reactive oxygen species (ROS) are increased in human gastric cancer (Homo sapiens) [Gu et al., 2018].
Key Event Description

Reactive oxygen species (ROS) are radicals, ions, or molecules that have a single unpaired electron in their outermost
shell of electrons, which can be categorized into two groups: free oxygen radicals and non-radical ROS [Liou et al.,

2010]. Free oxygen radicals include superoxide (02), hydroxyl radical (OH), nitric oxide (NO’), organic radicals (R),
peroxyl radicals (ROO"), alkoxyl radicals (RO’), thiyl radicals (RS’), sulfonyl radicals (ROS"), thiyl peroxyl radicals
(RSOO'), and disulfides (RSSR). Non-radical ROS include hydrogen peroxide (H03), singlet oxygen (05),
ozone/trioxygen (0O3), organic hydroperoxides (ROOH), hypochlorite (ClO"), peroxynitrite (ONOO),
nitrosoperoxycarbonate anion (O=NOOCOy"), nitrocarbonate anion (Op,NOCO;"), dinitrogen dioxide (N>O3), nitronium
(NO>™), and highly reactive lipid- or carbohydrate-derived carbonyl compounds [Liou et al., 2010].

ROS are generated through NADPH oxidases consists of p47phox and p67phox. Arsenic produces ROS [Zhang et al.,
2011]. The primary site of action for this event is DNA or proteins etc.

ROS play an important role in tumorigenesis [Zhang et al., 2011].

Chronic low-level increased ROS can alter the tumor microenvironment and promote cancer stem cell renewal,
leading to therapeutic resistance [Gu et al., 2018].

The reason why this chronic ROS KE has been created is because it is important to have chronic ROS, but not just
instant increased ROS, since ROS have a double-edged effect.

How it is Measured or Detected

Hydrogen peroxide (H,0,) can be detected with a colorimetric probe, which reacts with H,O, in a 1:1 stoichiometry to produce
a bright pink colored product, followed by the detection with a standard colorimetric microplate reader with a filter in the 540-
570 nm range.

ROS in the blood can be detected using superparamagnetic iron oxide nanoparticles (SPION)-based biosensor [Lee et al., 2020].

ROS can be detected by fluorescent probes such as p-methoxy-phenol derivative [Ashoka et al., 2020].
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Oligomerization of FZD and low-density lipoprotein receptor-related protein 5/6 (LRP5/6) activates Wnt/beta-catenin
signaling in Homo sapiens (Hua et al., 2018).

Key Event Description

Porcupine, which is a trans-membrane endoplasmic reticulum O-acyl transferase, is important for the secretion of Wnt
ligands(Saha et al., 2016a). WNTs are secreted proteins that contain 22-24 conserved cysteine residues(Foulquier et
al., 2018). The WNT molecules consist of molecular families including WNT1, WNT2, WNT2B/WNT13, WNT3, WNT4,
WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT10B, WNT11, and WNT16. (Clevers & Nusse, 2012; M.
Katoh, 2001; Kusserow et al., 2005)

Whnt proteins consist of 350-400 amino acids Gaito-Diaz et al., 2013).

WNT ligands are known to trigger at least three different downstream signaling cascades including canonical
WNT/beta-catenin signaling pathway, non-canonical WNT/Ca2+ pathway, and planer cell polarity (PCP) pathway(De,
2011; Lai, Chien, & Moon, 2009; Willert & Nusse, 2012). WNTSs bind to Frizzled proteins, which are seven-pass
transmembrane receptors with an extracellular N-terminal cysteine-rich domain (Bhanot et al., 1996; Clevers, 2006).
Whnt signaling begins with the binding of Wnt ligand towards the Frizzled receptors (Mohammed et al., 2016).

Whnt ligands bind to Frizzled (FZD) receptors which are seven transmembrane-domain protein receptors(Nile, Mukund
Stanger, Wang, & Hannoush, 2017). At least 10 FZD receptors are identified in human cells. FZD receptor is activated
by Wnt ligand binding (MacDonald, Tamai, & He, 2009).

How it is Measured or Detected

e Secretion of WNT requires a number of other dedicated factors including the sortin receptor Wntless (WLS),
which binds to Wnt and escorts it to the cell surface (Banziger et al., 2006; Ching & Nusse, 2006)

e Wnt signaling is activated by the gene mutations of the signaling components(Ziv et al., 2017).

e Wntl, Wnt3a, and Wnt5a protein expression are measured by immunoblotting using antibodies for Wntl, Wnt3a,
and Wnt5a, respectively (J. Du et al., 2016; B. Wang et al., 2017).

e WNT2, of which expression is detected by quantitative PCR, immunoblotting, and immunohistochemistry,
induces EMT (Zhou et al., 2016).

e Frizzled receptor protein level on the cell surface is measured by flow cytometry with pan-FZD antibody(Jiang et
al., 2015; Zeng et al., 2018). DVL protein level is measured by immunoblotting with anti-DVL2 antibodies(Zeng

et al., 2018).
e Fzd mRNA level is measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR)Zeng et
al., 2018).

e The up-regulation of WNT ligand expression occurs in Homo sapiens (B. Wang et al., 2017).
e The Wnt genes play an important role in the secretion from cells, glycosylation, and tight association with the
cell surface and extracellular matrix in Drosophila melanogaster (Willert & Nusse, 2012).
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Beta-catenin is stabilized and translocated into nucleus in Homo sapiens (Huang et al., 2019).

Beta-catenin is activated in Homo sapiens (Huang et al., 2019) (Naujok et al., 2014).

Key Event Description

Upon the Wnt signaling activation, beta-catenin is stabilized and activated via inhibition of the
phosphorylation by GSK3beta (Huang et al., 2019). Once the beta-catenin is stabilized, it translocates
into the nucleus and enhances the expression of target genes of Wnt/beta-catenin signaling pathway
(Huang et al., 2019). Beta-catenin activation is related to cancer (Tanabe, 2014).

Dishevelled (DVL), a positive regulator of Wnt signaling, forms the complex with FZD and leads to
trigger the Wnt signaling together with Wnt coreceptor low-density lipoprotein (LDL) receptor-related
protein 6 (LRP6) (Clevers & Nusse, 2012; Jiang, et al., 2015). DVL, however, has a controversial role to promote
Wnt receptor degradation (jiang et al., 2015). Meanwhile, DVL-dependent regulation of FZD level is
involved in mTORC1 signaling suppression via Wnt/beta-catenin signaling (Zeng et al., 2018). The
recruitment of Axin to the DVL-FZD complex induces the beta-catenin stabilization and activation. The
stabilized beta-catenin translocates into the nucleus, which forms the complex with TCF to induce the
up-regulated expression of proliferation-related genes.

How it is Measured or Detected

The beta-catenin level in nucleus is measured by immunoblotting with anti-beta-catenin antibody(Huang et al.,
2019).
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The beta-catenin nuclear translocation is measured by immunofluorescence assay(Huang et al., 2019).

Activity of beta-catenin is measured by Wnt/beta-catenin activity assay, in which the vector containing the firefly
luciferase gene controlled by TCF/LEF binding sites is transfected in the cells (Naujok et al., 2014).
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Event: 1457: Epithelial Mesenchymal Transition
Short Name: EMT
Key Event Component

Process Object Action

epithelial to mesenchymal transition Epithelial cell occurrence

AOPs Including This Key Event

AOP ID and Name 2
Type
Aop:241 - Latent Transforming Growth Factor betal activation leads to pulmonary fibrosis KeyEvent
Aop:206 - Peroxisome proliferator-activated receptors y inactivation leading to lung fibrosis KeyEvent
Ao0p:280 - a-diketone-induced bronchiolitis obliterans KeyEvent
Aop:347 - Toll-like receptor 4 activation and peroxisome proliferator-activated receptor gamma
; A - - - KeyEvent
inactivation leading to pulmonary fibrosis
Aop:414 - Aryl hydrocarbon receptor activation leading to lung fibrosis through TGF-B dependent fibrosis
- KeyEvent
toxicity pathway
Aop:415 - Aryl hydrocarbon receptor activation leading to lung fibrosis through IL-6 toxicity pathway KeyEvent
Aop:443 - DNA damage and mutations leading to Metastatic Breast Cancer KeyEvent
Aop:298 - Increases in cellular reactive oxygen species and chronic reactive oxygen species leading to
- : KeyEvent
human treatment-resistant gastric cancer
Aop:452 - Adverse outcome pathway of PM-induced respiratory toxicity KeyEvent
Aop:474 - Succinate dehydrogenase inactivation leads to cancer by promoting EMT KeyEvent

Biological Context

Level of Biological Organization

Cellular
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Cell term

Cell term

epithelial cell
Organ term

Organ term
organ
Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

humans Homo sapiens High NCBI
Life Stage Applicability
Life Stage Evidence
Not Otherwise Not
Specified Specified
Sex Applicability
Sex Evidence
.. . Not
Unspecific Specified

The key event is applicaple in Homo sapiens:

e Wnt5a expression leads to epithelial-mesenchymal transition (EMT) and metastasis in non-small-cell lung cancer
in Homo sapiens (Wang et al., 2017).

o WNT2 expression lead to EMT induction in Homo sapiens (Zhou et al., 2016).

e EMT is induced in cancer and involved in cancer metastasis inHomo sapiens (Suarez-Carmona, Lesage, Cataldo,
& Gilles, 2017) (Du & Shim, 2016).

Regulation of miRNA expression by DNA replication,damage and repair responses,transcription and translation has been
proved in animals like mice,canine and cell line experiments.

Key Event Description

Epithelial-mesenchymal transition (EMT) is a phenomenon in which the cells transit from epithelial-like into
mesenchymal-like phenotypes (Huan et al., 2022; Tanabe, 2017; Tanabe et al., 2015). In cancer, cells exhibiting EMT
features contribute to metastasis and drug resistance.

It is known that D-2-hydroxyglurate induces EMT (Guerra et al., 2017; Jia et al., 2018; Mishra et al., 2018; Sciacovelli
& Frezza, 2017). D-2-hydroxyglurate, an inhibitor of Jumonji-family histone demethylase, increased the trimethylation
of histone H3 lysine 4 (H3K4) in the promoter region of the zinc finger E-box-binding homeobox 1 (ZEB1), followed by
the induction of EMT (Colvin et al., 2016).

Wnt5a induces EMT and metastasis in non-small-cell lung cancer (Wang et al., 2017).

EMT is related to Wnt/beta-catenin signaling and is important for treatment-resistant cancer (Tanabe et al., 2016).
TGFbeta induces EMT (Wendt et al., 2010).

ZEB is one of the critical transcription factors for EMT regulation (Zhang et al., 2015).

SNAIL (Snail) is an important transcription factor for cell differentiation and survival. The phosphorylation and nuclear
localization of Snaill induced by Wnt signaling pathways are critical for the regulation of EMT (Kaufhold & Bonavida,
2014).

Transcription factors SNAI1 and TWIST1 induce EMT (Hodge et al., 2018) (Mani et al., 2008).

It is suggested that Sp1l, a transcription factor involved in cell growth and metastasis, is induced by cytochrome P450
1B1 (CYP1B1), and promotes EMT, which leads to cell proliferation and metastasis (Kwon et al., 2016).

Biological state
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An epithelial-mesenchymal transition (EMT) is a biologic process in which
epithelial cells are polarized, interact through their basal surface with basement
membrane, and undergo biochemical changes to assume a mesenchymal cell
phenotype.

This phenotypic transformation has various characters such as enhanced
migratory capacity, high invasiveness, elevated resistance to apoptosis, and
greatly increased production of ECM components (Kalluri, R., and Neilson, E.G.
2003). The completion of an EMT is signalled by the degradation of the underlying
basement membrane and the formation of a mesenchymal cell that can migrate
away from the epithelial layer in which it originated.

EMT has a number of distinct molecular processes like activation of transcription
factors, expression of specific cell surface proteins, reorganization and expression
of cytoskeletal proteins, production of ECM-degrading enzymes, and changes in
the expression of specific microRNAs. These factors are used as biomarkers to
demonstrate the passage of a cell through an EMT.

Biological compartment
Cellular
Role in General Biology:

Excessive proliferation of epithelial cells and angiogenesis mark the initiation and
early growth of primary epithelial cancers. (Hanahan, D., and Weinberg, R.A.
2000). The subsequent acquisition of invasiveness, initially manifest by invasion
through the basement membrane, is thought to herald the onset of the last
stages of the multi-step process that leads eventually to metastatic
dissemination, with life-threatening consequences. There has been an intense
research going on in the genetic controls and biochemical mechanisms
underlying the acquisition of the invasive phenotype and the subsequent
systemic spread of the cancer cell. Activation of an EMT program has been
proposed as the critical mechanism for the acquisition of malignant phenotypes
by epithelial cancer cells (Thiery, J.P. 2002).

Pre-clinical experiments such as mice models and cell culture experiments has
demonstrated that carcinoma cells can acquire a mesenchymal phenotype and
express mesenchymal markers such as a-SMA, FSP1, vimentin, and desmin
(Yang, J., and Weinberg, R.A. 2008). These cells are seen at the invasive front
of primary tumors and are considered to be the cells that eventually enter into
subsequent steps of the invasion-metastasis cascade, i.e., intravasation,
transport through the circulation, extravasation, formation of micro metastases,
and ultimately colonization (the growth of small colonies into macroscopic
metastases) (Thiery, J.P. 2002, Fidler, I.J., and Poste, G. 2008, Brabletz, T., et al.
2001).

An apparent paradox comes from the observation that the EMT-derived
migratory cancer cells typically establish secondary colonies at distant sites that
resemble, at the histopathological level, the primary tumor from which they
arose; accordingly, they no longer exhibit the mesenchymal phenotypes ascribed
to metastasizing carcinoma cells. Reconciling this behaviour with the proposed
role of EMT as a facilitator of metastatic dissemination requires the additional
notion that metastasizing cancer cells must shed their mesenchymal phenotype
via a MET during the course of secondary tumor formation (Zeisberg, M et al
2005). The tendency of disseminated cancer cells to undergo EMT likely reflects
the local microenvironments that they encounter after extravasation into the
parenchyma of a distant organ, quite possibly the absence of the heterotypic
signals they experienced in the primary tumor that were responsible for inducing
the EMT in the first place (Thiery, J.P. 2002, Jechlinger, M et al 2002, Bissell, M.J et
al 2002). These evidences indicate that induction of an EMT is likely to be a
centrally important mechanism for the progression of carcinomas to a metastatic
stage and implicates MET during the subsequent colonization process. However,
many steps of this mechanistic model still require direct experimental validation.
It remains unclear at present whether these phenomena and molecular
mechanisms relate to and explain the metastatic dissemination of non-epithelial
cancer cells.
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The entire spectrum of signaling agents that contribute to EMTs of carcinoma
cells remains unclear. One theory suggests that the genetic and epigenetic
alterations undergone by cancer cells during the course of primary tumor
formation render them especially responsive to EMT-inducing heterotypic signals
originating in the tumor-associated stroma. Oncogenes induce senescence, and
recent studies suggest that cancer cell EMTs may also play a role in preventing
senescence induced by oncogenes, thereby facilitating subsequent aggressive
dissemination (Smit, M.A., and Peeper, D.S. 2008, Ansieau, S., et al. 2008,
Weinberg, R.A. 2008). In the case of many carcinomas, EMT-inducing signals
emanating from the tumor-associated stroma, notably HGF, EGF, PDGF, and
TGF-B, appear to be responsible for the induction or functional activation in
cancer cells of a series of EMT-inducing transcription factors, notably Snail,
Slug, zinc finger E-box binding homeobox 1 (ZEB1), Twist, Goosecoid, and FOXC2
(Thiery, J.P. 2002, Jechlinger, M et al 2002, Shi, Y., and Massague, J. 2003,
Niessen, K., et al. 2008, Medici, D et al 2008, Kokudo, T., et al. 2008). Once
expressed and activated, each of these transcription factors can act
pleiotropically to choreograph the complex EMT program, more often than not
with the help of other members of this cohort of transcription factors. The actual
implementation by these cells of their EMT program depends on a series of
intracellular signaling networks involving, among other signal- transducing
proteins, ERK, MAPK, PI3K, Akt, Smads, RhoB, B-catenin, lymphoid enhancer
binding factor (LEF), Ras, and c-Fos as well as cell surface proteins such as 34
integrins, a5B1 integrin, and aVB6 integrin (Tse, J.C., and Kalluri, R. 2007).
Activation of EMT programs is also facilitated by the disruption of cell-cell
adherens junctions and the cell-ECM adhesions mediated by integrins (Yang, J.,
and Weinberg, R.A. 2008, Weinberg, R.A. 2008, Gupta, P.B et al 2005, Yang, |
et al 2006, Mani, S.A., et al. 2007, Mani, S.A., et al. 2008, Hartwell, K.A., et al.
2006, Taki, M et al 2006)..

How it is Measured or Detected

Loss of E-cadherin and cell polarity is considered to be a fundamental event in epithelial-mesenchymal transition. The
simultaneous expression of epithelial (e.g. E-cadherin) and mesenchymal markers (e.g. N-cadherin and vimentin)
within the airway epithelium are indicative for ongoing transition (Borthwick et al. 2009, 2010).

Method/ Reliability [Strength |Assay fit|Repeatability/ [Direct
measurement of for reproducibilitylmeasure
referenc evidence |purpose

Human |gRT-PCR,cell + Strong [Yes Yes Yes
cell line|viability assay,

Western
blotting,EdU
incorporation
assay
Human |IHC,micro + Moderate|Yes Yes Yes
array,qPCR, SNP
array

e EMT can be detected by immunostaining with pro-surfactant protein-C (pro-SPC) and N-cadherin in idiopathic
pulmonary fibrosis (IPF) lung /n vivo (Kim et al., 2006).

e EMT can be detected by immunostaining with vimentin in lung alveolain vivo (Kim et al., 2006).

e EMT can be detected as the increased level of the transcription factors, zinc finger E-box-binding homeobox
(ZEB), Twist and Snail (Huang et al., 2022).
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List of Adverse Outcomes in this AOP

Event: 1651: Treatment-resistant gastric cancer

Short Name: Resistant gastric cancer

Key Event Component

Process Object Action
regulation of cellular response to occurrence
drug
AOPs Including This Key Event
AOP ID and Name Event Type

Aop:298 - Increases in cellular reactive oxygen species and chronic reactive oxygen species
leading to human treatment-resistant gastric cancer

AdverseOutcome

Biological Context

Level of Biological Organization

Tissue

Organ term

Organ term

organ

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links
H°”.‘° Homo sapiens High NCBI
sapiens

Life Stage Applicability
Life Stage Evidence
All life
stages
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Sex Evidence
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Sex Evidence

Unspecific High
Drug resistance occurs in Homo sapiens (Du & Shim, 2016).

Key Event Description

It is known that diffuse-type gastric cancer, which has a poor prognosis, is treatment-resistant and more malignant
compared to intestinal-type gastric cancer (Tanabe et al., 2014). Drug resistance is involved in EMT, which is an
important phenomenon exhibiting features similar to cancer stem cells (CSCs) (Du & Shim, 2016).

EMT is involved in metastasis and cancer therapy resistance (Smith & Bhowmick, 2016).
How it is Measured or Detected

Treatment-resistant gastric cancer and EMT can be detected with biomarkers (Zeisberg & Neilson, 2009).

Treatment-resistant gastric cancer which exhibits EMT phenotype can be detected as the increased level of the
transcription factors, zinc finger E-box-binding homeobox 1/2 (ZEB1/2), SNAI1/2, and TWIST2 which are
associated with the activation of EMT-related genes (Tanabe et al., 2022a and 2022b).

Regulatory Significance of the AO

Drug resistance is very important in cancer treatment since cancer metastasis and recurrence are some of the main
obstacles to treating cancer. Cancer stem cells that share the phenotype of EMT may be targeted in anti-cancer drug
development.
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Appendix 2
List of Key Event Relationships in the AOP
List of Adjacent Key Event Relationships

Relationship: 2526: Increases in cellular ROS leads to Porcupine-induced Wnt secretion and
Wnt signaling activation

AOPs Referencing Relationship

Weight .
Ao Name papconcy " cumniative
Evidence 9

Increases in cellular reactive oxygen species and chronic reactive oxygen
species leading to human treatment-resistant gastric cancer

adjacent Moderate Moderate
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Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links
Homo
sapiens
Life Stage Applicability

Homo sapiens Moderate NCBI

Life Stage Evidence

All life

Moderate
stages

Sex Applicability
Sex Evidence

Unspecific Moderate

Prolonged ROS induces inflammation and tissue damage in Homo sapiens (Vallée & Lecarpentier, 2018).

Key Event Relationship Description

ROS production causes tissue damage (Gao, Zhou, Lin, Paus, & Yue, 2019). ROS production is involved in Wnt-driven
tumorigenesis (Myant et al., 2013).

Evidence Supporting this KER

Biological Plausibility

Sustained ROS increase caused by/causes DNA damage, which will alter several signaling pathways including Wnt
signaling.

Macrophages accumulate into injured tissue to recover the tissue damage, which may be followed by porcupine-
induced Wnt secretion. ROS stimulate inflammatory factor production and Wnt/beta-catenin signaling (Vallée &
Lecarpentier, 2018).

Empirical Evidence

Production of ROS by DNA double-strand break causes tissue damages (Gao et al., 2019).

ROS signaling induces Wnt/beta-catenin signaling (Pérez, Taléns-Visconti, Rius-Pérez, Finamor, & Sastre, 2017).
Uncertainties and Inconsistencies

The balance of ROS signaling is important, and dual effects of ROS should be taken in consideration. The ROS may
enhance Wnt/beta-catenin proliferating pathways to promote tumorigenesis, while ROS may disrupt tumor
progression by different pro-apoptotic mechanisms (Pérez et al., 2017). It is also known that Wnt signaling induces
ROS signaling (Cheung et al., 2016). Wnt/beta-catenin signaling control by ROS needs to be further investigated
(Caliceti, Nigro, Rizzo, & Ferrari, 2014).

Quantitative Understanding of the Linkage

Response-response relationship

ROS induces inflammatory responses (Bhattacharyya, Chattopadhyay, Mitra, & Crowe, 2014). Oxidant induces ROS
generation and p38 MAPK activation in macrophages (Conway & Kinter, 2006). ROS induce tissue damage in cardiac
myocytes (Miller & Cheung, 2016; Yang et al., 2006).

Time-scale

For the colony formation assay, cells were treated with 400 microM/L H202 for 1 week, where the medium was
changed every three days (Wang et al., 2019).

Known modulating factors

GPX2, an activator of Wnt/beta-catenin signaling, is identified as a key regulator of intracellular H202 levels and an
inhibitor of apoptosis (Wang et al., 2019).

Known Feedforward/Feedback loops influencing this KER

The reduction in ROS levels in the human serum albumin-treated cerebral ischemia/reperfusion-induced injury may be
mediated by Wnt/betacatenin signaling (Tang, Shen, Zhang, Yang, & Liu, 2019).
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Relationship: 2069: Chronic ROS leads to Porcupine-induced Wnt secretion and Wnt
signaling activation

AOPs Referencing Relationship

Weight A
AOP Name Adiacency of o
Evidence 9

Increases in cellular reactive oxygen species and chronic reactive oxygen
species leading to human treatment-resistant gastric cancer

adjacent Moderate Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links
Homo
sapiens
Life Stage Applicability

Homo sapiens Moderate NCBI
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Life Stage Evidence

All life
stages

Sex Applicability
Sex Evidence

Moderate

Unspecific High
Prolonged ROS induces inflammation and tissue damage in Homo sapiens (Vallée & Lecarpentier, 2018).
Key Event Relationship Description

ROS production causes tissue damage (Gao, Zhou, Lin, Paus, & Yue, 2019). ROS production is involved in Wnt-driven
tumorigenesis (Myant et al., 2013). The prolonged ROS induces inflammation leading to carcinogenesis (Vallée & Lecarpentier,
2018).

Injury causes the Porcupine-induced Wnt secretion (Saha et al., 2016).

Evidence Supporting this KER

Biological Plausibility

Sustained ROS increase caused by/causes DNA damage, which will alter several signaling pathways including
Wnt signaling. Macrophages accumulate into injured tissue to recover the tissue damage, which may be followed
by porcupine-induced Wnt secretion. ROS stimulate inflammatory factor production and Wnt/beta-catenin
signaling (Vallée & Lecarpentier, 2018).

Empirical Evidence

Incidence concordance

Production of ROS by DNA double-strand break causes tissue damages (Gao et al., 2019).

ROS signaling induces Wnt/beta-catenin signaling (Pérez, Taléns-Visconti, Rius-Pérez, Finamor, & Sastre, 2017).
Uncertainties and Inconsistencies

The balance of ROS signaling is important, and dual effects of ROS should be taken in consideration. The ROS may enhance
Whnt/beta-catenin proliferating pathways to promote tumorigenesis, while ROS may disrupt tumor progression by different pro-
apoptotic mechanisms (Pérez et al., 2017). It is also known that Wnt signaling induces ROS signaling (Cheung et al., 2016).
Whnt/beta-catenin signaling control by ROS needs to be further investigated (Caliceti, Nigro, Rizzo, & Ferrari, 2014).

Quantitative Understanding of the Linkage

Response-response relationship

ROS induces inflammatory responses (Bhattacharyya, Chattopadhyay, Mitra, & Crowe, 2014). Oxidant induces ROS generation
and p38 MAPK activation in macrophages (Conway & Kinter, 2006). ROS induce tissue damage in cardiac myocytes (Miller &
Cheung, 2016; Yang et al., 2006).

Time-scale

For the colony formation assay, cells were treated with 400 microM/L H,0, for 1 week, where the medium was changed every
three days (Wang et al., 2019).

Known modulating factors

GPX2, an activator of Wnt/beta-catenin signaling, is identified as a key regulator of intracellular H,O, levels and an inhibitor of
apoptosis (Wang et al., 2019).

Known Feedforward/Feedback loops influencing this KER

The reduction in ROS levels in the human serum albumin-treated cerebral ischemia/reperfusion-induced injury may be
mediated by Wnt/beta-catenin signaling (Tang, Shen, Zhang, Yang, & Liu, 2019).
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Relationship: 2070: Porcupine-induced Wnt secretion and Wnt signaling activation leads to

beta-catenin activation

AOPs Referencing Relationship

Weight -
Ao Name papconcy P umniative
Evidence 9

Increases in cellular reactive oxygen species and chronic reactive oxygen
species leading to human treatment-resistant gastric cancer

adjacent Moderate Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links
H°rT‘° Homo sapiens High NCBI
sapiens

Life Stage Applicability
Life Stage Evidence

All life

stages gy

Sex Applicability
Sex Evidence

Unspecific High

Whnt/beta-catenin signaling, which regulates key cellular functions including proliferation, is a highly conserved
pathway through evolution (Pai et al., 2017).

Key Event Relationship Description
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Secreted Wnt ligand stimulates Wnt/beta-catenin signaling, in which beta-catenin is activated. Wnt ligand binds to
Frizzled receptor, which leads to GSK3beta inactivation. GSK3beta inactivation leads to beta-catenin
dephosphorylation, which avoids the ubiquitination of the beta-catenin and stabilizes the beta-catenin (Clevers &
Nusse, 2012). The translocation of stabilized beta-catenin induces the transcription of genes involved in proliferation
(Pai et al., 2017).

Evidence Supporting this KER

Biological Plausibility

Canonical Wnt pathway consists of Wnt, GSK3beta, and beta-catenin cascade(Clevers & Nusse, 2012; Hatsell,
Rowlands, Hiremath, & Cowin, 2003).

GSK3beta recruitment to LRP6 leads to form un-phosphorylated beta-catenin inducing the stabilization and
translocation of the beta-catenin (MacDonald, Tamai, & He, 2009).

Stabilized beta-catenin accumulates in cytosol and translocates into the nucleus leading to beta-catenin activation
(MacDonald et al., 2009).

Empirical Evidence
[Incidence concordance]

Dishevelled (DVL), a positive regulator of Wnt signaling, form the complex with FZD and lead to trigger the Wnt
signaling together with Wnt coreceptor low-density lipoprotein (LDL) receptor-related protein 6 (LRP6) (Clevers &
Nusse, 2012; Jiang, Charlat, Zamponi, Yang, & Cong, 2015). Wnt binds to FZD and activates the Wnt signaling(Clevers
& Nusse, 2012; Janda, Waghray, Levin, Thomas, & Garcia, 2012; Nile, Mukund, Stanger, Wang, & Hannoush, 2017).
Whnt binding towards FZD induces the formation of the protein complex with LRP5/6 and DVL, leading to the
downstream signaling activation including beta-catenin (Clevers & Nusse, 2012).

Uncertainties and Inconsistencies

Some Wnt ligands bind to FZD, leading to Wnt/beta-catenin signaling inactivation. DVL, a positive regulator of Wnt
signaling, has a controversial role to promote Wnt receptor degradation (Jiang et al., 2015). DVL-dependent regulation
of FZD level is involved in mTORC1 signaling suppression via Wnt/beta-catenin signaling (Zeng et al., 2018)

GSK3beta phosphorylates LRP6 as well as remaining GSK3 beta phosphorylates beta-catenin which would be
ubiquitinated and degradated (MacDonald et al., 2009).

Quantitative Understanding of the Linkage

Response-response relationship
Wnt3 promotes proliferation and survival in HUVECs (Shen et al., 2018).

GSK3beta inhibition by 1 uM of SB216763 or 5 uM of BRD3731 results in the decreased phosphorylation and
stabilization of beta-catenin (Stump et al., 2019). The level of beta-catenin is increased by the inhibition of GSK3beta
kinase activity (Stump et al., 2019). GSK3beta inhibition by small interference RNA (siRNA) of GSK3beta results in the
decreased phosphorylation and increased expression of beta-catenin (Stump et al., 2019).

Time-scale

FZD7 enhances the activity of canonical Wnt/beta-catenin signaling with the treatment of WNT3A for 1 to 6 hr4Cao et
al., 2017). The treatment with SB216763 or BRD3731, GSK3beta inhibitors, decreases phosphorylated beta-catenin
and increased beta-catenin expression in 48 hours (Stump et al., 2019). The cells are treated with GSK3beta small
interference RNA (siRNA) for 48 hours to silence the expression of GSK3beta, which results in the activation of beta-
catenin pathway (Stump et al., 2019).

Known modulating factors

FZD5 can activate WNT3A/beta-catenin signaling in a dose-dependent manner(Hua et al., 2018). The increase in
FZD5 protein enhances cell response to WNT3A. (Hua et al., 2018). LRP5 can augment WNT3A/beta-catenin signaling
in a dose-dependent manner (Hua et al., 2018). The binding of Wnt and FZD induce the formation of the protein
complex with the Dvl, Axin, CK1 GSK3, beta-catenin and APC to induce the beta-catenin translocation into the nucleus
(Clevers & Nusse, 2012).

Known Feedforward/Feedback loops influencing this KER

Beta-catenin is required and sufficient for the sequestration of GSK3 in acidic cytoplasmic endosomedqTaelman et al.,
2010). Beta-catenin, of which level increases in Wnt signaling, facilitates GSK3 sequestration leading to feed-forward
loop formation (Taelman et al., 2010). The Wnt ligand is antagonized with secreted Frizzled-related proteins (sFRPs)
and Wnt inhibitory protein (WIF), both of which can bind Wnts and inhibit interactions between WNT and FZD
(Bovolenta, Esteve, Ruiz, Cisneros, & Lopez-Rios, 2008; Clevers & Nusse, 2012) The Dickkopf 1 (DKK1) can disrupts
Whnt-induced FZD-LRP6 complex formation (Clevers & Nusse, 2012; Ellwanger et al., 2008; Semenov, Zhang, & He,
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Relationship: 3199: beta-catenin activation leads to EMT

AOPs Referencing Relationship

Weight
AOP Name Adjacency of
Evidence

Quantitative
Understanding

Increases in cellular reactive oxygen species and chronic reactive oxygen
species leading to human treatment-resistant gastric cancer

adjacent Moderate Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links
H°”.“° Homo sapiens High NCBI
sapiens

Life Stage Applicability
Life Stage Evidence
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Life Stage Evidence

All life ,
stages High

Sex Applicability
Sex Evidence

Unspecific High

e The inhibition of c-MET decreases the expression of beta-catenin and Snail in human diffuse-type gastric cancer
(Homo sapiens) (Sohn et al., 2019).

e The treatment with garcinol decreases the expression of beta-catenin and ZEB1/ZEB2 in human breast cancer
cells (Homo sapiens) (Ahmad et al., 2012).

e Zebl activation leads to EMT via Prex1 activation in NCH421k, NCH441, and NCH644 human glioblastoma model
cells (Homo sapiens) (Rosmaninho et al., 2018).

e Zebl siRNA induced the suppression of EMT in SGC-7901 human gastric cancer cell line Homo sapiens) (Xue et
al., 2019). Snail induces EMT in SAS and HSC-4 human head and neck squamous cancer cells (Homo sapiens)
(Ota et al., 2016).

e Snail induces EMT in B16-F10 murine melanoma cells Mus musculus) (Kudo-Saito, Shirako, Takeuchi, &
Kawakami, 2009; Wang, Shi, Chai, Ying, & Zhou, 2013).

e Twistl is related to EMT in MCF-7 and MDA-MB-231 human breast cancer cell lines Homo sapiens) (Menendez-
Menendez et al., 2019).

e Twist induces EMT in Huh7 human hepatocellular carcinoma cell lines Homo sapiens) (Hu et al., 2019).

Key Event Relationship Description

Beta-catenin activation, of which mechanism include the stabilization of the dephosphorylated beta-catenin and
translocation of beta-catenin into the nucleus, induce the formation of beta-catenin-TCF complex and transcription of
transcription factors such as Snail, Zeb and Twist (Clevers & Nusse, 2012) (Ahmad et al., 2012; Pearlman, Montes de
Oca, Pal, & Afaqg, 2017; Sohn et al., 2019; Yang et al., 2019).

EMT-related transcription factors including Snail, ZEB and Twist are up-regulated in cancer cells(Diaz, Vinas-Castells,
& Garcia de Herreros, 2014). The transcription factors such as Snail, ZEB and Twist bind to E-cadherin (CDH1)
promoter and inhibit the CDH1 transcription via the consensus E-boxes (5’-CACCTG-3’ or 5’-CAGGTG-3’), which leads
to EMT (Diaz et al., 2014).

Evidence Supporting this KER

Biological Plausibility

The treatment of human gastric cancer cells with INC280, which inhibits c-MET overexpressed in diffuse-type gastric
cancer with poor prognosis, shows downregulation in beta-catenin and Snail expression,(Sohn et al., 2019).

The treatment with garcinol, a polyisoprenylated benzophenone derivative that is obtained fromGarcinia indica
extract, induced ZEB1 and ZEB2 down-regulation, increase in phosphorylated beta-catenin, and decrease in nuclear
beta-catenin in human breast cancer cells (Ahmad et al., 2012).

Sortilin, a member of the Vps10p sorting receptor family which is highly expressed in high-grade malignant glioma,
positively regulates GSK-3beta/beta-catenin/Twist signaling pathway in glioblastoma (Yang et al., 2019).

TM4SF1 promotes EMT via Wnt/beta-catenin/SOX2 pathway in colorectal cancer (Yang et al., 2020).

The transcription factors such as Snail, Zeb, and Twist inhibit the CDH1 expression through their binding towards the
promoter of CDH1, which leads to inhibition of cell adhesion and EMT (Diaz et al., 2014)

Empirical Evidence
[Dose concordance]

The inhibition of sortilin by AF38469 (a sortilin inhibitor) or small interference RNA (siRNA) results in a decrease in
beta-catenin and Twist expression in human glioblastoma cells (Yang et al., 2019).

[Time concordance]

The complex of beta-catenin and TCF4 induces epithelial-mesenchymal transition (EMT)-activator ZEB (Sanchez-Tillo E
et al., 2011).

[Incidence concordance]

The inhibition of c-MET, which is overexpressed in diffuse-type gastric cancer, induced an increase in phosphorylated
beta-catenin, decrease in beta-catenin and Snail (Sohn et al., 2019).
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The garcinol, which has an anti-cancer effect, increases phosphorylated beta-catenin, decreases beta-catenin and
ZEB1/ZEB2, and inhibits EMT (Ahmad et al., 2012).

Histone deacetylase inhibitors affect EMT-related transcription factors including ZEB, Twist, and Snail(Wawruszak et
al., 2019).

Snail and Zeb induces EMT and suppress E-cadherin (CDH1)(Batlle et al., 2000; Diaz et al., 2014; Peinado, Olmeda, &
Cano, 2007).

Uncertainties and Inconsistencies

It is possible that the inhibition of ZEB1 and ZEB2 by garcinol treatment is caused by down-regulation of NFkappaB
and Wnt/beta-catenin signaling (Ahmad et al., 2012).

The EMT is induced different transcription factors other than Zeb, Twist, and Snail, which includes E47 and KLF8Diaz
et al., 2014).

Zeb, Twist, and Snail may activate or inactivate different genes or molecules to induce phenomena related to EMT
and other phenomena other than EMT (Li & Balazsi, 2018).

Quantitative Understanding of the Linkage

Response-response relationship

The treatment with AF38469, a sortilin inhibitor, in 0, 100, 200, 400, 800, and 1600 nM concentration inhibited beta-
catenin and Twist (EMT regulator) expression dose-dependently in human glioblastoma cells (Yang et al., 2019).

Snail (SNAI1, a key transcription factor of EMT induced by beta-catenin) mRNA is methylated, and\®-
methyladenosine (mPA) in its coding region (CDS) and 3’ untranslated region (3'UTR) are significantly enriched during

EMT progression (Lin et al., 2019). The mPA enrichment fold of SNA/I mRNA in EMT cells is about 2.3-fold greater than
in control cells (Lin et al., 2019).

Time-scale
Nuclear accumulation of beta-catenin induces endogenous ZEB1 in 15 and 30 min (Sanchez-Tillo E et al., 2011).

The treatment with 25 uM of garcinol for 48 hours induced an increase in phosphorylated beta-catenin and decreased
nuclear beta-catenin protein and ZEB1/ZEB2 mRNA in human breast cancer cells (Ahmad et al., 2012).

The treatment with AF38469, a sortilin inhibitor, for 0, 2, 4, 8, 16, or 24 hours shows that the expression of beta-
catenin and Twist decrease in 8 hours followed by the subsequent decrease in 16 and 24 hours in human glioblastoma
cells (Yang et al., 2019).

Snail (SNAI1) transfection for 48 hours induces the repression of E-cadherin (CDH1) protein expression(Lin et al.,
2019).

SNAI1 mRNA in polysome is up-regulated in EMT-undergoing Hela cells treated with 10 ng/ml of TGF-beta for 3 days
compared with control cells (Lin et al., 2019).

Known modulating factors
The proto-oncogene MET regulates beta-catenin and Snail expression(Sohn et al., 2019).

The inhibition of GSK3beta by SB216763 induced expression of beta-catenin and Twist, as well as mesenchymal
markers such as N-cadherin, vimentin, and MMP9 (Yang et al., 2019).

The decrease in E-cadherin (CDH1), a cell adhesion molecule, is related to EMT(Diaz et al., 2014).
Methyltransferase-like 3 (METTL3) modulates methylation of Snail (SNAI1) mRNA and EMT(Lin et al., 2019).

The binding of beta-catenin to members of the TCF/LEF family transcription factors increase gene expression related
to EMT such as Twist and decrease E-cadherin protein expression (Qualtrough, Rees, Speight, Williams, & Paraskeva,
2015).

Known Feedforward/Feedback loops influencing this KER

The inhibited expression of phosphorylated GSK3beta, beta-catenin, and Twist by sortilin inhibition is reversed by
GSK3beta inhibition. Furthermore, twist overexpression by lentivirus increased the inhibited expression of N-cadherin,
MMP9, and vimentin and reverses the inhibitory effect of AF38469 on sortilin, which suggests that sortilin induces
glioblastoma invasion mainly via GSK3beta/beta-catenin/Twist induced mesenchymal transition (Yang et al., 2019).

The inhibition of Hedgehog signaling pathway with cyclopamine reduces beta-catenin-TCF transcriptional activity,
decreases the Twist expression, induces E-cadherin expression, and inhibits EMT (Qualtrough et al., 2015).
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Relationship: 3200: EMT leads to Resistant gastric cancer

AOPs Referencing Relationship

Weight e e
AOP Name Adjscency of  Suie
Evidence 9

Increases in cellular reactive oxygen species and chronic reactive oxygen

species leading to human treatment-resistant gastric cancer

adjacent Moderate Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links
H°'T‘° Homo sapiens High NCBI
sapiens

Life Stage Applicability
Life Stage Evidence

All life ,
stages Al
Sex Applicability
Sex Evidence

Unspecific High

EMT induces cancer invasion, metastasis (Homo sapiens)(P. Zhang et al., 2015).

EMT is related to cancer drug resistance in MCF-7 human breast cancer cells Homo sapiens)(B. Du & Shim, 2016).

Key Event Relationship Description

Some population of the cells exhibiting EMT demonstrates the feature of cancer stem cells (CSCs), which are related
to cancer malignancy (Shibue & Weinberg, 2017; Shihori Tanabe, 20153, 2015b; Tanabe, Aoyagi, Yokozaki, & Sasaki
2015).

EMT phenomenon is related to cancer metastasis and cancer therapy resistance $mith & Bhowmick, 2016; Tanabe
2013). The increased expression of enzymes that degrade the extracellular matrix components and the decrease in
adhesion to the basement membrane in EMT induces the cell to escape from the basement membrane and metastasis
(Smith & Bhowmick, 2016). Morphological changes observed during EMT are associated with therapy resistance
(Smith & Bhowmick, 2016).

Evidence Supporting this KER

Biological Plausibility

The morphological and physiological changes associated with EMT are involved in invasiveness and drug resistance
(Shibue & Weinberg, 2017). The EMT-activated particular carcinoma cells in primary tumors invade the surrounding
stroma (Shibue & Weinberg, 2017). The EMT -activated carcinoma cells interact with the surrounding extracellular
matrix protein to induce focal adhesion kinase and extracellular signal-related kinase activation, followed by the
transforming growth factor-beta (TGFbeta) and canonical and/or noncanonical Wnt pathways to induce cancer stem
cell (CSC) properties which contribute to the drug resistance (Shibue & Weinberg, 2017).

EMT-associated down-regulation of multiple apoptotic signaling pathways induces drug efflux and slows cell
proliferation to induce the general resistance of carcinoma cells to anti-cancer drugs (Shibue & Weinberg, 2017).

Snail, an EMT-related transcription factor, induces the expression of the AXL receptor tyrosine kinase, which enables
the cancer cells to survive by the activation of AXL signaling triggered by the binding of its ligand growth arrest-

specific protein 6 (GAS6)(Shibue & Weinberg, 2017).

The EMT-activated cells evade the lethal effect of cytotoxic T cells, which include the elevated expression of
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programmed cell death 1 ligand (PD-L1) which binds to the programmed cell death protein 1 (PD-1) inhibitory
immune-checkpoint receptor on the cell surface of cytotoxic T cells (Shibue & Weinberg, 2017).

Empirical Evidence
Incidence concordance

Slug/Snai2, a ces-1-related zinc finger transcription factor gene, confers resistance to p53-mediated apoptosis of
hematopoietic progenitors by repressing PUMA (also known as BBC3, encoding Bcl-2-binding component 3) (nukai et
al., 1999; Shibue & Weinberg, 2017; W.-S. Wu et al., 2005).

EMT activation induces the expression of multiple members of the ATP-binding cassette (ABC) transporter family,
which results in the resistance to doxorubicin (Saxena, Stephens, Pathak, & Rangarajan, 2011; Shibue & Weinberg,
2017)

TGFbeta-1 induced EMT results in the acquisition of cancer stem cell (CSC) like properties Rirozzi et al., 2011; Shibue
& Weinberg, 2017).

Snail-induced EMT induces cancer metastasis and resistance to dendritic cell-mediated immunotherapy Kudo-Saito
Shirako, Takeuchi, & Kawakami, 2009).

Zinc finger E-box-binding homeobox (ZEB1)-induced EMT results in the relief of miR-200-mediated repression of
programmed cell death 1 ligand (PD-L1) expression, a major inhibitory ligand for the programmed cell death protein

(PD-1) immune-checkpoint protein on CD8+ cytotoxic T lymphocyte (CTL), subsequently the CD8* T cell
immunosuppression and metastasis (Chen et al., 2014).

Uncertainties and Inconsistencies

The reversing process of EMT, which names as a mesenchymal-epithelial transition (MET), maybe one of the
candidates for the anti-cancer therapy, where the plasticity of the cell phenotype is of importance and under
investigation (Shibue & Weinberg, 2017).

Quantitative Understanding of the Linkage

Response-response relationship

Induction of EMT by TGFbeta and Twist increases the gene expression of EMT markers such as Snail, Vimentin, N-
cadherin, and ABC transporters including ABCA3, ABCC1, ABCC3, and ABCC10 (Saxena et al., 2011).

Human mammary epithelial cells (HMLE) stably expressing Twist, FOXC2 or Snail demonstrates the increased cell
viability compared to control HMLE in the treatment with about 0.3, 3, 30 mM of doxorubicin, dose-dependently
(Saxena et al., 2011).

Time-scale

The treatment with doxorubicin for 48 hours demonstrates the increase in the cell viability in Twist/FOXC2/Snail
overexpressed HMLE compared to control HMLE (Saxena et al., 2011).

The inhibition of Twist or Zeb1 with small interference RNA (siRNA) induced the inhibition of cell viability compared to
control MDAMB231 cells treated with doxorubicin for 48 hours (Saxena et al., 2011).

Known modulating factors

ABC transporters that are related to drug resistance are overexpressed in the EMT-activated cells $axena et al.
2011). The expression of PD-L1, which binds to the PD-1 on the cytotoxic T cells, is up-regulated in EMT-activated
cells, which results in the inhibition of cancer immunity and the resistance to cancer therapy (Shibue & Weinberg,
2017).

Known Feedforward/Feedback loops influencing this KER

The investigation of EMT-CSC relations is important to understand the relationship between EMT and cancer
malignancy. Non-CSCs in cancer can spontaneously undergo EMT and dedifferentiate into new CSC, subsequently
induce the regeneration of tumorigenic potential (Marjanovic, Weinberg, & Chaffer, 2013; Shibue & Weinberg, 2017).

The plastic CSC theory demonstrates the bidirectional conversions between non-CSCs and CSCs, which may
contribute to the acquisition of cancer malignancy in EMT-activated cells (Marjanovic et al., 2013).
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