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Abstract

This AOP links 5a-reductase inhibition during fetal life with short anogenital distance (AGD) in male offspring. A short
AGD around birth is a marker for feminization of male fetuses and is associated with male reproductive disorders,
including reduced fertility in adulthood. Although a short AGD is not necessarily ‘adverse’ from a human health
perspective, it is considered an ‘adverse outcome’ in OECD test guidelines; AGD measurements are mandatory in
specific tests for developmental and reproductive toxicity in chemical risk assessment (TG 443, TG 421/422, TG 414).

5a-reductase is an enzyme responsible for the conversion of testosterone to DHT in target tissues. DHT is more
potent agonist of the Androgen receptor (AR) than testosterone, so that DHT is necessary for proper masculinization
of e.g. male external genitalia. Under normal physiological conditions, testosterone produced mainly by the testicles,
is converted in peripheral tissues by 5a-reductase into DHT, which in turn binds AR and activates downstream target
genes. AR signaling is necessary for masculinization of the developing fetus, including differentiation of the levator
ani/bulbocavernosus (LABC) muscle complex in males. The LABC complex does not develop in the absence, or low
levels of, androgen signaling, as in female fetuses.

The key events in this pathway is inhibition of 5a-reductase that converts testosterone into the more potent DHT in
androgen sensitive target tissues. This includes developing perineal region, which, when DHT levels are low or absent,
leads to inactivation of the AR and failure to properly masculinize the perineum/LABC complex.

Summary of the AOP
Events

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Event

Sequence Type D Title Short name
1 MIE 1617 Inhibition, 5a-reductase Inhibition, 5a-reductase
2 KE 1613 Decrease, dihydrotestosterone (DHT) level Decrease, DHT level
3 KE 1614 Decrease, androgen receptor activation Decrease, AR activation
Altered, Transcription of genes by the androgen  Altered, Transcription of genes by
KE 286
receptor the AR
5 AO 1688 anogenital distance (AGD), decreased AGD, decreased
Key Event Relationships
Upstream Event LT Downstream Event Evidence IETILEN S

Type Understanding

Decrease, dihydrotestosterone

Inhibition, 5a-reductase adjacent (DHT) level

High High

Decrease, androgen receptor
activation

Decrease, dihydrotestosterone
(DHT) level

adjacent

anogenital distance (AGD),
decreased

Decrease, androgen receptor

P non-adjacent
activation

Stressors

Name Evidence

Finasteride High

Finasteride
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Finasteride is a type Il 5alpha-reductase inhibitor that blocks conversion of testosterone to dihydrotestosterone (Clark
et al 1990; Imperato-McGinley et al 1992). Intrauterine exposure in rats can result in shorter male AGD in male
offspring (Bowman et al 2003; Christiansen et al 2009; Schwartz et al 2019)

References:

Bowman et al (2003), Toxicol Sci 74:393-406; doi: 10.1093/toxsci/kfg128

Christiansen et al (2009), Environ Health Perspect 117:1839-1846; doi: 10.1289/ehp.0900689
Clark et al (1990), Teratology 42:91-100; doi: 10.1002/tera.1420420111

Imperato-McGinley (1992), J Clin Endocrinol Metab 75:1022-1026; doi: 10.1210/jcem.75.4.1400866
Schwartz et al (2019), Toxicol Sci 169:303-311; doi: 10.1093/toxsci/kfz046

Overall Assessment of the AOP

Domain of Applicability

Life Stage Applicability

Life Stage Evidence

Pregnancy High
Taxonomic Applicability

Term Scientific Term Evidence Links

human Homo sapiens Moderate NCBI
rat Rattus norvegicus High NCBI
mouse Mus musculus Moderate NCBI

Sex Applicability
Sex Evidence

Male High

References

1. Schwartz CL, Christiansen S, Vinggaard AM, Axelstad M, Hass U andSvingen T (2019), Anogenital distance as a
toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Arch Toxicol/93:
253-272.

Appendix 1
List of MIEs in this AOP

Event: 1617: Inhibition, 5a-reductase

Short Name: Inhibition, 5a-reductase

AOPs Including This Key Event

AOP ID and Name Event Type
Aop:289 - Inhibition of 5a-reductase leading to impaired fecundity in female fish MolecularlnitiatingEvent
Aop:305 - 5a-reductase inhibition leading to short anogenital distance (AGD) in male MolecularlnitiatingEvent

(mammalian) offspring

Biological Context

Level of Biological Organization

Molecular

Cell term
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Cell term

eukaryotic cell

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability
Life Stage Evidence
During development and at
adulthood
Sex Applicability

High

Sex Evidence

Mixed High

This KE is applicable to both sexes, across developmental stages into adulthood, in many different tissues and across
mammalian taxa. It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending
to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the
applicability to also include other vertebrates.

Essentially the reaction performed by the isozymes is the same, but the enzyme is differentially expressed in the body. 5a-
reductase type 1 is mainly linked to the production of neurosteroids, 5a-reductase type 2 is mainly involved in production of
5a-DHT, whereas 5a-reductase type 3 is involved in N-glycosylation (Robitaille & Langlois, 2020).

The expression profile of the three 5a-reductase isoforms depends on the developmental stage, the tissue of interest, and the
disease state of the tissue. The enzymes have been identified in, for instance, non-genital and genital skin, scalp, prostate,
liver, seminal vesicle, epididymis, testis, ovary, kidney, exocrine pancreas, and brain (Azzouni, 2012, Uhlen 2015).

5a-reductase is well-conserved, all primary species in Eukaryota contain all three isoforms (from plant, amoeba, yeast to
vertebrates) (Azzouni, 2012) and the enzymes are expressed in both males and females (Langlois, 2010, Uhlen 2015).

Key Event Description

This KE describes the inhibition of 5a-reductases (3-oxo-5a-steroid 4-dehydrogenases). These enzymes are widely expressed in
tissues of both sexes and responsible for conversion of steroid hormones.

There are three isozymes: 5a-reductase type 1, 2, and 3. The substrates for 5a-reductases are 3-oxo (3-keto), A%5 C19/C21
steroids such as testosterone, progesterone, androstenedione, epi-testosterone, cortisol, aldosterone, and
deoxycorticosterone. The enzymatic reaction leads to an irreversible breakage of the double bond between carbon 4 and 5 and
subsequent insertion of a hydride anion at carbon 5 and insertion of a proton at carbon 4. The reaction is aided by the cofactor
NADPH. The substrate affinity and reaction velocity differ depending on the combination of substrate and enzyme isoform, for
instance 5a-reductase type 2 has a higher substrate affinity for testosterone than the type 1 isoform of the enzyme, and the
enzymatic reaction occurs at a higher velocity under optimal conditions. Likewise, inhibitors of 5a-reductase may exhibit
differential effects depending on isoforms (Azzouni et al., 2012).

How it is Measured or Detected

There is currently (as of 2023) no OECD test guideline for the measurement of 5a-reductase inhibition.

Assessing the ability of chemicals to inhibit the activity of 5a-reductase is challenging, but has been assessed using
transfected cell lines. This has been demonstrated in HEK-293 cells stably transfected with human 5a-reductase type 1, 2, and
3 (Yamana et al., 2010), in CHO cells stably transfected with human 5a-reductase type 1 and 2(Thigpens et al., 1993), and
COS cells transfected with human and rat 5a-reductase with unspecified isoforms (Andersson & Russell, 1990). The transfected
cells are typically used as intact cells or cell homogenates. Further, 5a-reductase 1 and 2 has been successfully expressed and
isolated from Escherichia coli with subsequent functionality allowing for examination of enzyme inhibition (Peng et al.,

2020). The availability of the stably transfected cell lines and the isolated enzymes to the scientific community is unknown.

The output of the above methods could be decreased dihydrotestosterone (DHT) with increasing test chemical concentrations.
Other substrates exist for the different isoforms that could be used to assess the enzymatic inhibition (Peng et al., 2020). The
use of radiolabeled steroids has historic and continued use for 5a-reductase inhibition examination (Andersson & Russell,
1990; Peng et al., 2020; Thigpens et al., 1993; Yamana et al., 2010); however, alternative methods are available, such as
conventional ELISA kits or advanced analytical methods such as liquid chromatography coupled to tandem mass spectrometry
(LC-MS/MS).

References
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List of Key Events in the AOP

Event: 1613: Decrease, dihydrotestosterone (DHT) level
Short Name: Decrease, DHT level

AOPs Including This Key Event

AOP ID and Name Event
Type

Aop:288 - Inhibition of 17a-hydrolase/C 10,20-lyase (C

(cryptorchidism) in male (mammals) NS
Aop:289 - Inhibition of 5a-reductase leading to impaired fecundity in female fish KeyEvent
Aop:305 - 5a-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) KevEvent
offspring Y
Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male
- : KeyEvent

(mammalian) offspring
Aop:527 - Decreased Chicken Ovalbumin Upstream Promoter Transcription Factor Il (COUP-TFII) stem

- - : KeyEvent
Leydig cells leads to Hypospadias, increased

Biological Context

Level of Biological Organization

Tissue

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability
Life Stage Evidence
All life
stages
Sex Applicability
Sex Evidence

Moderate

Mixed High

This KE is applicable to both sexes, across developmental stages and adulthood, in many different tissues and across
mammals.
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In both humans and rodents, DHT is important for the /n utero differentiation and growth of the prostate and male external
genitalia (Azzouni et al., 2012; Gerald & Raj, 2022). Besides its critical role in development, DHT also induces growth of facial
and body hair during puberty in humans (Azzouni et al., 2012).

In mammals, the role of DHT in females is less established (Swerdloff et al., 2017), however studies suggest that androgens
are important in e.g. bone metabolism and growth, as well as female reproduction from follicle development to parturition
(Hammes & Levin, 2019).

It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending to non-mammalian
vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also
include other vertebrates.

Key Event Description

Dihydrotestosterone (DHT) is an endogenous steroid hormone and a potent androgen. The level of DHT in tissue or blood is
dependent on several factors, such as the synthesis, uptake/release, metabolism, and elimination from the system, which
again can be dependent on biological compartment and developmental stage.

DHT is primarily synthesized from testosterone (T) via the irreversible enzymatic reaction facilitated by 50-Reductases (5a-
REDs) (Swerdloff et al., 2017). Different isoforms of this enzyme are differentially expressed in specific tissues (e.g. prostate,
skin, liver, and hair follicles) at different developmental stages, and depending on disease status (Azzouni et al., 2012; Uhlén et
al., 2015), which ultimately affects the local production of DHT.

An alternative (“backdoor”) pathway , exists for DHT formation that is independent of T and androstenedione as precursors.
While first discovered in marsupials, the physiological importance of this pathway has now also been established in other
mammals including humans (Renfree and Shaw, 2023). This pathway relies on the conversion of progesterone (P) or 17-OH-P
to androsterone and then androstanediol through several enzymatic reactions and finally, the conversion of androstanediol into
DHT probably by HSD17B6 (Miller & Auchus, 2019; Naamneh Elzenaty et al., 2022). The “backdoor” synthesis pathway is a
result of an interplay between placenta, adrenal gland, and liver during fetal life (Miller & Auchus, 2019).

The conversion of T to DHT by 5a-RED in peripheral tissue is mainly responsible for the circulating levels of DHT, though some
tissues express enzymes needed for further metabolism of DHT consequently leading to little release and contribution to
circulating levels (Swerdloff et al.).

The initial conversion of DHT into inactive steroids is primarily through 3a-hydroxysteroid dehydrogenase (3a-HSD) and 38-
HSD in liver, intestine, skin, and androgen-sensitive tissues. The subsequent conjugation is mainly mediated by uridine 5°-
diphospho (UDP)-glucuronyltransferase 2 (UGT2) leading to biliary and urinary elimination from the system. Conjugation also
occurs locally to control levels of highly potent androgens (Swerdloff et al., 2017).

Disruption of any of the aforementioned processes may lead to decreased DHT levels, either systemically or at tissue level.
How it is Measured or Detected

Several methods exist for DHT identification and quantification, such as conventional immunoassay methods (ELISA or RIA)
and advanced analytical methods as liquid chromatography tandem mass spectrometry (LC-MS/MS). The methods can have
differences in detection and quantification limits, which should be considered depending on the DHT levels in the sample of
interest. Further, the origin of the sample (e.g. cell culture, tissue, or blood) will have implications for the sample preparation.

Conventional immunoassays have limitations in that they can overestimate the levels of DHT compared to levels determined
by gas chromatography mass spectrometry and liquid chromatography tandem mass spectrometry (Hsing et al., 2007;
Shiraishi et al., 2008). This overestimation may be explained by lack of specificity of the DHT antibody used in the RIA and
cross-reactivity with T in samples (Swerdloff et al., 2017).

Test guideline no. 456 (OECD 2023) uses a cell line, NCI-H295, capable of producing DHT at low levels. The test guideline is not
validated for this hormone. Measurement of DHT levels in these cells require low detection and quantification limits. Any effect
on DHT can be a result of many upstream molecular events that are specific for the NCI-H295 cells, and which may differ in
other models for steroidogenesis.
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Event: 1614: Decrease, androgen receptor activation

Short Name: Decrease, AR activation

AOPs Including This Key Event

AOP ID and Name '.EI_‘;TD':
Aop:288 - Inhibition of 17a-hydrolase/C 10,20-lyase (Cypl17A1) activit KevEvent
(cryptorchidism) in male (mammals) y
Aop:305 - 5a-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) KevEvent
offspring y
Aop:306 - Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male KevEvent
(mammalian) offspring Y
Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male KevEvent
(mammalian) offspring y
Aop:344 - Androgen receptor (AR) antagonism leading to nipple retention (NR) in male (mammalian) e
offspring Y
Aop:372 - Androgen receptor antagonism leading to testicular cancer KeyEvent
Aop:477 - Androgen receptor (AR) antagonism leading to hypospadias in male offspring KeyEvent

Biological Context

Level of Biological Organization

Tissue

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability

Life Stage Evidence
During development and at High
adulthood
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Sex Applicability
Sex Evidence

Mixed High

This KE is considered broadly applicable across mammalian taxa as all mammals express the AR in numerous cells and tissues
where it regulates gene transcription required for developmental processes and functions. It is, however, acknowledged that
this KE most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are
encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.

Key Event Description

This KE refers to decreased activation of the androgen receptor (AR) as occurring in complex biological systems such as tissues
and organs in vivo. It is thus considered distinct from KEs describing either blocking of AR or decreased androgen synthesis.

The AR is a nuclear transcription factor with canonical AR activation regulated by the binding of the androgens such as
testosterone or dihydrotestosterone (DHT). Thus, AR activity can be decreased by reduced levels of steroidal ligands
(testosterone, DHT) or the presence of compounds interfering with ligand binding to the receptor (Davey & Grossmann, 2016;
Gao et al., 2005).

In the inactive state, AR is sequestered in the cytoplasm of cells by molecular chaperones. In the classical (genomic) AR
signaling pathway, AR activation causes dissociation of the chaperones, AR dimerization and translocation to the nucleus to
modulate gene expression. AR binds to the androgen response element (ARE) (Davey & Grossmann, 2016; Gao et al., 2005).
Notably, for transcriptional regulation the AR is closely associated with other co-factors that may differ between cells, tissues
and life stages. In this way, the functional consequence of AR activation is cell- and tissue-specific. This dependency on co-
factors such as the SRC proteins also means that stressors affecting recruitment of co-activators to AR can result in decreased
AR activity (Heinlein & Chang, 2002).

Ligand-bound AR may also associate with cytoplasmic and membrane-bound proteins to initiate cytoplasmic signaling
pathways with other functions than the nuclear pathway. Non-genomic AR signaling includes association with Src kinase to
activate MAPK/ERK signaling and activation of the PI3K/Akt pathway. Decreased AR activity may therefore be a decrease in the
genomic and/or non-genomic AR signaling pathways (Leung & Sadar, 2017).

How it is Measured or Detected

This KE specifically focuses on decreased /n vivo activation, with most methods that can be used to measure AR activity
carried out /n vitro. They provide indirect information about the KE and are described in lower tier MIE/KEs (see for example
MIE/KE-26 for AR antagonism, KE-1690 for decreased T levels and KE-1613 for decreased dihydrotestosterone levels). In this
way, this KE is a placeholder for tissue-specific responses to AR activation or inactivation that will depend on the adverse
outcome (AO) for which it is included.

In fish, The Rapid Androgen Disruption Activity Reporter (RADAR) assay included in OECD test guideline no. 251 can be used to
measure genomic AR activity (OECD, 2022). Employing a spgl-gfp construct under control of the AR-binding promoter spigginl
in medaka fish embryos, any stressor activating or inhibiting the androgen axis will be detected. This includes for instance
stressors that agonize or antagonize AR, as well as stressors that modulate androgen synthesis or metabolism. Non-genomic
AR activity cannot be detected by the RADAR assay (OECD, 2022). Similar assays may in the future be developed to measure
AR activity in mammalian organisms.
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Event: 286: Altered, Transcription of genes by the androgen receptor

Short Name: Altered, Transcription of genes by the AR
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Key Event Component

Process Object
regulation of gene androgen
expression receptor

AOPs Including This Key Event

AOP305

Action

decreased

AOP ID and Name

Aop:19 - Androgen receptor antagonism leading to adverse effects in the male foetus (mammals)

Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male

(mammalian) offspring

Aop:344 - Androgen receptor (AR) antagonism leading to nipple retention (NR) in male (mammalian)

offspring

Aop:345 - Androgen receptor (AR) antagonism leading to decreased fertility in females

Aop:305 - 5a-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian)

offspring

Aop:495 - Androgen receptor activation leading to prostate cancer

Stressors

Name
Bicalutamide
Cyproterone acetate
Epoxiconazole
Flutamide
Flusilazole
Prochloraz
Propiconazole
Stressor:286 Tebuconazole
Triticonazole

Vinclozalin
Biological Context

Level of Biological Organization

Tissue

Domain of Applicability

Taxonomic Applicability

Term  Scientific Term Evidence Links
mammals mammals High NCBI
Life Stage Applicability
Life Stage Evidence
During development and at High

adulthood
Sex Applicability
Sex Evidence

Mixed High

Event
Type

KeyEvent

KeyEvent

KeyEvent
KeyEvent
KeyEvent

KeyEvent
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Both the DNA-binding and ligand-binding domains of the AR are highly evolutionary conserved, whereas the
transactivation domain show more divergence, which may affect AR-mediated gene regulation across species (Davey
and Grossmann 2016). Despite certain inter-species differences, AR function mediated through gene expression is
highly conserved, with mutation studies from both humans and rodents showing strong correlation for AR-dependent
development and function (Walters et al. 2010).

This KE is considered broadly applicable across mammalian taxa, sex and developmental stages, as all

mammals express the AR in numerous cells and tissues where it regulates gene transcription required for
developmental processes and function. It is, however, acknowledged that this KE most likely has a much broader domain of
applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge
to expand on the applicability to also include other vertebrates.

Key Event Description

This KE refers to transcription of genes by the androgen receptor (AR) as occurring in complex biological systems such
as tissues and organs /n vivo. Rather than measuring individual genes, this KE aims to capture patterns of effects at
transcriptome level in specific target cells/tissues. In other words, it can be replaced by specific KEs for individual adverse
outcomes as information becomes available, for example the transcriptional toxicity response in prostate tissue for AO:
prostate cancer, perineum tissue for AO: reduced AGD, etc. AR regulates many genes that differ between tissues and life
stages and, importantly, different gene transcripts within individual cells can go in either direction since AR can act as both
transcriptional activator and suppressor. Thus, the ‘directionality’ of the KE cannot be either reduced or increased, but instead
describe an altered transcriptome.

The Androgen Receptor and its function

The AR belongs to the steroid hormone nuclear receptor family. It is a ligand-activated transcription factor with three
domains: the N-terminal domain, the DNA-binding domain, and the ligand-binding domain with the latter being the
most evolutionary conserved (Davey and Grossmann 2016). Androgens (such as dihydrotestosterone and
testosterone) are AR ligands and act by binding to the AR in androgen-responsive tissues (Davey and Grossmann
2016). Human AR mutations and mouse knockout models have established a fundamental role for AR in
masculinization and spermatogenesis (Maclean et al.; Walters et al. 2010; Rana et al. 2014). The AR is also expressed
in many other tissues such as bone, muscles, ovaries and within the immune system (Rana et al. 2014).

Altered transcription of genes by the AR as a Key Event

Upon activation by ligand-binding, the AR translocates from the cytoplasm to the cell nucleus, dimerizes, binds to
androgen response elements in the DNA to modulate gene transcription (Davey and Grossmann 2016). The
transcriptional targets vary between cells and tissues, as well as with developmental stages and is also dependent on
available co-regulators (Bevan and Parker 1999; Heemers and Tindall 2007). It should also be mentioned that the AR
can work in other ‘non-canonial’ ways such as non-genomic signaling, and ligand-independent activation (Davey &
Grossmann, 2016; Estrada et al, 2003; Jin et al, 2013).

A large number of known, and proposed, target genes of AR canonical signaling have been identified by analysis of
gene expression following treatments with AR agonists (Bolton et al. 2007; Ngan et al. 2009, Jin et al. 2013).

How it is Measured or Detected

Altered transcription of genes by the AR can be measured by measuring the transcription level of known downstream
target genes by RT-qPCR or other transcription analyses approaches, e.g. transcriptomics.

Since this KE aims to capture AR-mediated transcriptional patterns of effect, downstream bioinformatics analyses will typically
be required to identify and compare effect footprints. Clusters of genes can be statistically associated with, for example,
biological process terms or gene ontology terms relevant for AR-mediated signaling. Large transcriptomics data repositories
can be used to compare transcriptional patterns between chemicals, tissues, and species (e.g. TOXsIgN (Darde et al, 2018a;
Darde et al, 2018b), comparisons can be made to identified sets of AR ‘biomarker’ genes (e.g. as done in (Rooney et al, 2018)),
and various methods can be used e.g. connectivity mapping (Keenan et al, 2019).
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List of Adverse Outcomes in this AOP
Event: 1688: anogenital distance (AGD), decreased
Short Name: AGD, decreased
Key Event Component
Process Object Action

androgen receptor signaling Musculature of male

pathway perineum eliEEE

AOPs Including This Key Event

AOP ID and Name Event Type
Aop:305 - 5a-reductase inhibition leading to short anogenital distance (AGD) in male
- ; AdverseOutcome
(mammalian) offspring
Aop:306 —_Androqen_ receptor (AR) antagonism leading to short anogenital distance (AGD) in male AdverseOutcome
(mammalian) offspring
Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male .

(mammalian) offspring

Aoglzéll76 - Adverse Outcome Pathways diagram related to PBDEs associated male reproductive AdverseOutcome
toxicity

Stressors

Name
Butylparaben
p,p'-DDE
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Name
Bis(2-ethylhexyl)
phthalate
Dexamethasone
Fenitrothion
Finasteride
Flutamide
Ketoconazole
Linuron
Prochloraz
Procymidone
Triticonazole
Vinclozolin
di-n-hexyl phthalate
Dicyclohexyl phthalate
butyl benzyl phthalate
monobenzyl phthalate

di-n-heptyl phthalate
Biological Context

Level of Biological Organization

Tissue

Organ term

Organ term

perineum

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

human Homo sapiens Moderate NCBI
rat Rattus norvegicus High NCBI
mouse Mus musculus High NCBI

Life Stage Applicability
Life Stage Evidence
Foetal High

Sex Applicability
Sex Evidence

Male High

A short AGD in male offspring is a marker of insufficient androgen action during critical fetal developmental stages
(Schwartz et al, 2019; Welsh et al, 2008). A short AGD is thus a sign of undervirilization, which is also associated with
a series of male reproductive disorders, including genital malformations and infertility in humans (Juul et al, 2014;
Skakkebaek et al, 2001).

There are numerous human epidemiological studies showing associations with intrauterine exposure to anti-
androgenic chemicals and short AGD in newborn boys alongside other reproductive disorders (Schwartz et al, 2019).
This underscores the human relevance of this AO. However, in reproductive toxicity studies and chemical risk
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assessment, rodents (rats and mice) are what is tested on. The list of chemicals inducing short male AGD in male rat
offspring is extensive, as evidenced by the ‘stressor’ list and reviewed by (Schwartz et al, 2019).

Key Event Description

The anogenital distance (AGD) refers to the distance between anus and the external genitalia. In rodents and humans,
the male AGD is approximately twice the length as the female AGD (Salazar-Martinez et al, 2004; Schwartz et al
2019). This sexual dimorphisms is a consequence of sex hormone-dependent development of secondary sexual
characteristics (Schwartz et al, 2019). In males, it is believed that androgens (primarily DHT) activate AR-positive cells
in non-myotic cells in the fetal perineum region to initiate differentiation of the perineal /evator aniand
bulbocavernosus (LABC) muscle complex (lpulan et al, 2014). This AR-dependent process occurs within a critical
window of development, around gestational days 15-18 in rats (MacLeod et al, 2010). In females, the absence of DHT
prevents this masculinization effect from occurring.

The involvement of androgens in masculinization of the male fetus, including the perineum, has been known for a
very long time (Jost, 1953), and AGD has historically been used to, for instance, sex newborn kittens. It is now well
established that the AGD in newborns is a proxy readout for the intrauterine sex hormone milieu the fetus was
developing. Too low androgen levels in XY fetuses makes the male AGD shorter, whereas excess (ectopic) androgen
levels in XX fetuses makes the female AGD longer, in humans and rodents (Schwartz et al, 2019).

How it is Measured or Detected

The AGD is a morphometric measurement carried out by trained technicians (rodents) or medical staff (humans).

In rodent studies AGD is assessed as the distance between the genital papilla and the anus, and measured using a
stereomicroscope with a micrometer eyepiece. The AGD index (AGDi) is often calculated by dividing AGD by the cube
root of the body weight. It is important in statistical analysis to use litter as the statistical unit. This is done when
more than one pup from each litter is examined. Statistical analyses is adjusted using litter as an independent,
random and nested factor. AGD are analysed using body weight as covariate as recommended in Guidance Document
151 (OECD, 2013).

Regulatory Significance of the AO

In regulatory toxicology, the AGD is mandatory inclusions in OECD test guidelines used to test for developmental and
reproductive toxicity of chemicals. Guidelines include ‘TG 443 extended one-generation study’, ‘TG 421/422
reproductive toxicity screening studies’ and ‘TG 414 developmental toxicity study’.
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Appendix 2
List of Key Event Relationships in the AOP
List of Adjacent Key Event Relationships

Relationship: 1880: Inhibition, 5a-reductase leads to Decrease, DHT level

AOPs Referencing Relationship

. Weight of Quantitative
AOP Name BT Evidence Understanding
]L?Sf;:bltlon of 5a-reductase leading to impaired fecundity in female adjacent High High
5a-reductase inhibition leading to short anogenital distance (AGD) adjacent High High

in male (mammalian) offspring

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability

Life Stage Evidence
During development and at High

adulthood
Sex Applicability
Sex Evidence

Mixed High

This KE is applicable for both sexes, across developmental stages into adulthood, in numerous cells and tissues and across
mammalian taxa. It is, however, acknowledged that this KER most likely has a much broader domain of applicability extending
to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the
applicability to also include other vertebrates.

Key Event Relationship Description

This key event relationship (KER) links inhibition of 5a-reductase activity to decreased dihydrotestosterone (DHT)
levels.

There are three isozymes of 5a-reductase: type 1, 2, and 35a-reductase type 2 is mainly involved in the synthesis of
5a-DHT from testosterone (T) (Robitaille & Langlois, 2020), although 5a-reductase type 1 can also facilitate this
reaction, but with lower affinity for T (Nikolaou et al., 2021). The type 1 isoform is also involved in the alternative
(‘backdoor’) pathway for DHT formation, facilitating the conversion of progesterone or 170H-progesterone to
dihydroprogesterone or 5a-pregnan-17a-ol-3,20-dione, respectively, whereafter several subsequent reactions will
ultimately lead to the formation of DHT (Miller & Auchus, 2019). The quantitative importance of the alternative pathway
remains unclear (Alemany, 2022). The type 1 and type 2 isoforms of 5a-reductase are the primary focus of this KER.

The direct conversion of T to 5a-DHT mainly takes place in the target tissug(Robitaille & Langlois, 2020). In mammals,
the type 1 isoform is found in the scalp and other peripheral tissues (Miller & Auchus, 2011), such as liver, skin, prostate
(Azzouni et al., 2012), bone, ovaries, and adipose tissue(Nikolaou et al., 2021). The type 2 isoform is expressed

mainly in male reproductive tissues (Miller & Auchus, 2011), but also in liver, scalp and skin(Nikolaou et al., 2021). The
expression level of both isoforms depend on the developmental stage and the tissue.

Evidence Supporting this KER

Biological Plausibility

The biological plausibility of this KER is considered high.

16/23


https://aopwiki.org/relationships/1880
https://aopwiki.org/aops/289
https://aopwiki.org/aops/305
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0

AOP305

5a-reductase can catalyze the conversion of T to DHT. The substrates for 5a-reductases are 3-oxo (3-keto), &>
C19/C21 steroids such as testosterone and progesterone. The enzymatic reaction leads to an irreversible breakage of
the double bond between carbon 4 and 5 and subsequent insertion of a hydride anion at carbon 5 and insertion of a
proton at carbon 4. The reaction is aided by the cofactor NADPH (Azzouni et al., 2012). By inhibiting this enzyme, the
described catalyzed reaction will be inhibited leading to a decrease in DHT levels.

In both humans and rodents, DHT is important for thein utero differentiation and growth of the prostate and male
external genitalia. Besides its critical role during fetal development, DHT also induces growth of facial and body hair
during puberty in humans (Azzouni et al., 2012).

Empirical Evidence
The empirical evidence for this KER is considered high
Dose concordance

Several inhibitors of 5a-reductases have been developed for pharmacological uses. Inhibition of the enzymatic
conversion of radiolabeled substrate has been illustrated (Table 1) and data display dose-concordance, with
increasing concentrations of inhibitor leading to lower 5a-reductase product formation. These studies at large rely on
conversion of radiolabeled substrate and hence serve as an indirect measurement.

Table 1: Dose concordance from selected in vitro test systems

Test Model Stressor [Effect Reference
system description
HEK-293 |Cells stably Finasteride [Type 1: IC5g = 106.9 |(Yamana et
cells transfected UM al., 2010)
human 5a-
reductase type 1 Type 2: IC59 = 14.3
and 2 used to UM
measure
conversion of
[14Cllabeled
steroids
Dutasteride[Type 1: IC5q = 8.7
UM
Type 2: IC5g = 57 pM
COS cells [Cell homogenates |Finasteride [Human: (Andersson &
from transfected Russell, 1990)
cells with human IC50 = 1 uM
and rat 5a-
reductase Ki = 340-620 nM
(unknown
isoform) used to Rat:
measure
conversion of IC50 =~ 0.1 uM
radiolabeled Ki = 3-5 nM
testosterone
4-MA Human:
IC509 = 0.1 uM
K= 7-8 nM
Rat:
IC509 = 0.1 uM
Ki = 5-7 nM
CHO cells |Stably transfected|Finasteride [Type 1: Kj = 325 nM |(Thigpens et
with human 5a- al., 1993)
reductase type 1 Type 2: K= 12 nM
and 2
4-MA Type 1: Kj = 8 nM
Type 2: Ki =4 nM
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Isolated Human 5a- Finasteride [Type 1: K= > 200 [(Peng et al.,
enzyme reductase type 1 nM 2020)

and 2 used to

measure Type 2: Kj = 0.45 nM

conversion of
radiolabeled
substrate of both
isoforms

Dutasteride[Type 1: Kj = 39 nM

Type 2: Kj=1.1 nM

These in vitro studies clearly show effects on the enzymatic reaction induced by 5a-reductases in a concentration
dependent manner (Andersson & Russell, 1990; Thigpens et al., 1993; Yamana et al., 2010).

In the intact organism, when 5a-reductase type 2 activity is lacking through e.g. inhibitor treatment or knockout, this
will results in decreased 5a-DHT locally in the tissues, but also in blood (Robitaille & Langlois, 2020). This has been
demonstrated in humans, rats, monkeys, and mice (Robitaille et al. 2020).

Finasteride is a specific inhibitor of 5a-reductase type 2(Russell & Wilson, 1994). Men with androgenic alopecia were
treated with increasing concentrations of finasteride and presented with decreased DHT levels in biopsies from scalp,
as well as a decrease in serum DHT levels with dose dependency being most apparent in serum, up to about 70%
decrease (Drake et al., 1999). Likewise, men treated with dutasteride exhibited a clear dose dependent decrease in
serum DHT after 24 weeks treatment with a maximum efficacy of about 98% (Clark et al., 2004).

Other evidence

The phenotype of males with deficiency in 5a-reductases are typically born with ambiguous external genitalia. They
also present with small prostate, minimal facial hair and acne, or temporal hair loss. Comparison of affected
individuals to non-affected individuals in regard to T/DHT ratio, conversion of infused radioactive T, and ratios of
urinary metabolites of 5a-reductase and 5B-reductase concluded that these phenotypic characteristics were due to
5a-reductase defects that resulted in less conversion of T to DHT (Okeigwe et al. 2014). Mutations in the 5a-reductase
gene can result in boys being born with moderate to severe undervirilization phenotypes (Elzenaty 2022).

Quantitative Understanding of the Linkage

Inhibitors of 5a-reductase are important for the prevention and treatment of many diseases. There are several
compounds that have been developed for pharmaceutical purposes and they can target the different isoforms with
different affinity. Examples of inhibitors are finasteride and dutasteride. Finasteride mainly has specificity for the type
2 isoform, whereas dutasteride inhibits both type 1 and 2 isoforms (Miller & Auchus, 2011).

These differences in isoform specificity reflects in the effects on DHT serum levels, hence the broader specificity of
dutasteride leads to > 90% decrease in patients with benign prostatic hyperplasia, in comparison to 70% with
finasteride administration (Nikolaou et al., 2021).

Response-response relationship

Enzyme inhibition can occur in different ways e.g. both competitive and noncompetitive. The inhibition model depends
on the specific inhibitor and hence a generic quantitative response-response relationship is difficult to derive.

Time-scale

An inhibition of 5a-reductases would lead to an immediate change in DHT levels at the molecular level. However, the
time-scale for systemic effects on hormone levels are challenging to estimate.

Known Feedforward/Feedback loops influencing this KER

Androgens can regulate gene expression of 5a-reductases(Andersson et al., 1989; Berman & Russell, 1993).
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Relationship: 1935: Decrease, DHT level leads to Decrease, AR activation

AOPs Referencing Relationship

Weight A
. Quantitative
AOP Name Adjacency ) of Understanding
Evidence
Inhibition of 17a-hydrolase/C 10,20-lyase (Cypl7A1) activity leads to . . .
birth reproductive defects (cryptorchidism) in male (mammals) SelREE aliok aligk
Decreased testosterone synthesis leading to short anogenital distance adjacent High Moderate

(AGD) in male (mammalian) offspring

5a-reductase inhibition leading to short anogenital distance (AGD) in

male (mammalian) offspring

adjacent

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability

Life Stage Evidence
During development and at
adulthood
Sex Applicability

High

Sex Evidence

Mixed High

Taxonomic applicability
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KER1935 is assessed applicable to mammals, as DHT and AR activation are known to be related in mammals. It is, however,
acknowledged that this KER most likely has a much broader domain of applicability extending to non-mammalian vertebrates.
AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other
vertebrates.

Sex applicability
KER1935 is assessed applicable to both sexes, as DHT activates AR in both males and females.
Life-stage applicability

KER1935 is considered applicable to developmental and adult life stages, as DHT-mediated AR activation is relevant from the
AR is expressed.

Key Event Relationship Description

Dihydrotestosterone (DHT) is a primary ligand for the Androgen receptor (AR), a nuclear receptor and transcription factor. DHT
is an endogenous sex hormone that is synthesized from e.g. testosterone by the enzyme 5a-reductase in different tissues and
organs (Davey & Grossmann, 2016; Marks, 2004). In the absence of ligand (e.g. DHT) the AR is localized in the cytoplasm in
complex with molecular chaperones. Upon ligand binding, AR is activated, translocated into the nucleus, and dimerizes

to carry out its ‘genomic function’ (Davey & Grossmann, 2016). Hence, AR transcriptional function is directly dependent on the
presence of ligands, with DHT being a more potent AR activator than testosterone (Grino et al, 1990). Reduced levels of DHT
may thus lead to reduced AR activation. Besides its genomic actions, the AR can also mediate rapid, non-genomic second
messenger signaling (Davey and Grossmann, 2016). Decreased DHT levels that lead to reduced AR activation can thus entail
downstream effects on both genomic and non-genomic signaling.

Evidence Supporting this KER

Biological Plausibility
The biological plausibility of KER1935 is considered high.

The activation of AR is dependent on binding of ligands (though a few cases of ligand-independent AR activation has been
shown, see uncertainties and inconsistencies), primarily testosterone and DHT in mammals (Davey and Grossmann, 2016;
Schuppe et al., 2020). Without ligand activation, the AR will remain in the cytoplasm associated with heat-shock and other
chaperones and not be able to carry out its canonical (‘genomic’) function. Upon androgen binding, the AR undergoes a
conformational change, chaperones dissociate, and a nuclear localization signal is exposed. The androgen/AR complex can
now translocate to the nucleus, dimerize and bind AR response elements to regulate target gene expression (Davey and
Grossmann, 2016; Eder et al., 2001). AR transcriptional activity and specificity is regulated by co-activators and co-repressors
in a cell-specific manner (Heinlein and Chang, 2002).

The requirement for androgens binding to the AR for transcriptional activity has been extensively studied and proven and is
generally considered textbook knowledge. The OECD test guideline no. 458 uses DHT as the reference chemical for testing
androgen receptor activation /n vitro (OECD, 2020). In the absence of DHT during development caused by 5a-reductase
deficiency (i.e. still in the presence of testosterone) male fetuses fail to masculinize properly. This is evidenced by, for
instance, individuals with congenital 5a-reductase deficiency conditions (Costa et al., 2012); conditions not limited to humans
(Robitaille and Langlois, 2020), testifying to the importance of specifically DHT for AR activation and subsequent
masculinization of certain reproductive tissues.

Binding of testosterone or DHT has differential effects in different tissues. E.g. in the developing mammalian male;
testosterone is required for development of the internal sex organs (epididymis, vas deferens and the seminal vesicles),
whereas DHT is crucial for development of the external sex organs (Keller et al., 1996; Robitaille and Langlois, 2020).

Empirical Evidence
The empirical support for KER1935 is considered high.
Dose concordance:

e Increasing concentrations of DHT lead to increasing AR activation /n vitro in AR reporter gene assays (OECD, 2020;
Williams et al., 2017).

Indirect (supporting) evidence:

e In cell lines where proliferation can be induced by androgens (such as prostate cancer cells) proliferation can be used as a
readout for AR-activation. Finasteride, a 5a-reductase inhibitor, dose-dependently decreases AR-mediated prostate
cancer cell line proliferation (Bologna et al., 1995). 0.001 uM finasteride decreased the growth rate with 44%, 0.1 uM
decreased the growth rate with 80%.

e Specific events of masculinization during development are dependent on AR activation by DHT, including the
development and length of the perineum which can be measured as the anogenital distance (AGD, (Schwartz et al.,
2019)). E.g. a dose-dependent effect of rat /n utero exposure to the 5a-reductase inhibitor finasteride was observed on
the length of the AGD, where 0.01 mg/kg bw/day finasteride reduced the AGD measured at pup day 1 by 8%, whereas 1
mg/kg bw/day reduced the AGD by 23% (Bowman et al., 2003).
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Other evidence:

e Male individuals with congenital 5a-reductase deficiency (absence of DHT) fail to masculinize properly (Costa et al.,
2012).

e A major driver of prostate cancer growth is AR activation (Davey and Grossmann, 2016; Huggins and Hodges, 1941).
Androgen deprivation is used as treatment including 5a-reductase inhibitors to reduce DHT levels (Aggarwal et al., 2010).

Uncertainties and Inconsistencies

Ligand-independent actions of the AR have been identified. To what extent and of which biological consequences is not well
defined (Bennesch and Picard, 2015).

It should be noted, that in tissues, that are not DHT-dependent but rather respond to T, a decrease in DHT level may not
influence AR activation significantly in that specific tissue.

Quantitative Understanding of the Linkage

Response-response relationship

There is a positive dose-response relationship between increasing concentrations of DHT and AR activation (Dalton et al.,
1998; OECD, 2020). However, there is not enough data, or overview of the data, to define a quantitative linkage /n vivo, and
such a relationship will differ between biological systems (species, tissue, cell type).

Time-scale

Upon DHT binding to the AR, a conformational change that brings the amino (N) and carboxy (C) termini into close proximity
occurs with a ty,; of approximately 3.5 minutes, around 6 minutes later the AR dimerizes as shown in transfected Hela cells
(Schaufele et al., 2005). Addition of 5 nM DHT to the culture medium of ‘AR-resistant’ transfected prostatic cancer cells
resulted in a rapid (from 15 minutes, maximal at 30 minutes) nuclear translocation of the AR with minimal residual cytosolic
expression (Nightingale et al., 2003). AR and promoter interactions occur within 15 minutes of ligand binding, and RNA
polymerase Il and coactivator recruitment are then proposed to occur transiently with cycles of approximately 90 minutes
(Kang et al., 2002).

Known modulating factors

Modulating

Factor (MF) MF Specification Effect(s) on the KER Reference(s)

Tissue-specific alterations in (Elpaler Ei gl

Age AR expression changes with aging AR activity with aging 1993; Wu et al.,
2009)
Decreased AR activation (Chamberlain et al.,
Genotype Number of CAG repeats in the first exon of AR with increased number of 1994; Tut et al.,
CAGs 1997)
Androgen Low circulating testosterone levels due to primary Reduced levels of circulating
deficiency (testicular) or secondary (pituitary-hypothalamic) testosterone, precurser of (Bhasin et al., 2010)
syndrome hypogonadism DHT
Reduced levels of circulating . .
Castration Removal of testicles testosterone, precurser of INTUAETE CEEly

DHT 1980)

Known Feedforward/Feedback loops influencing this KER
Androgens have been shown to upregulate and downregulate AR expression as well as 5a-reductase expression, but for 5a-

reductase, each isoform in each tissue is differently regulated by androgens and can display sexual dimorphism (Lee and
Chang, 2003; Robitaille and Langlois, 2020). The quantitative impact of such adaptive expression changes is unknown.
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List of Non Adjacent Key Event Relationships

Relationship: 2820: Decrease, AR activation leads to AGD, decreased

AOPs Referencing Relationship

Weight of Quantitative

AOP Name Adjacency Evidence Understanding

5a-reductase inhibition leading to short anogenital distance (AGD) in non-

male (mammalian) offspring adjacent
Androgen receptor (AR) antagonism leading to short anogenital non-
distance (AGD) in male (mammalian) offspring adjacent

Decreased testosterone synthesis leading to short anogenital distance non-
(AGD) in male (mammalian) offspring adjacent
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