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Abstract

This AOP links 5a-reductase inhibition during fetal life with short anogenital distance (AGD) in male offspring. A short AGD
around birth is a marker for feminization of male fetuses and is associated with male reproductive disorders, including reduced
fertility in adulthood (Schwartz et al 2019). Although a short AGD is not necessarily ‘adverse’ from a human health perspective,
it is considered an ‘adverse outcome’ in OECD test guidelines; AGD measurements are mandatory in specific tests for
developmental and reproductive toxicity in chemical risk assessment (TG 443, TG 421/422, TG 414), with measurement
guidance provided in OECD guidance documents 43 (OECD, 2008) and 151 (OECD, 2013)

5a-reductase is an enzyme responsible for the conversion of testosterone to DHT in target tissues (Azzouni et al 2012; Davey
and Grossmann, 2016). DHT is more potent agonist of the Androgen receptor (AR) than testosterone, so that DHT is necessary
for proper masculinization of e.g. male external genitalia. Under normal physiological conditions, testosterone produced mainly
by the testes, is converted in peripheral tissues by 5a-reductase into DHT, which in turn binds AR and activates downstream
target genes (Davey and Grossmann, 2016). AR signaling is necessary for masculinization of the developing fetus, including
differentiation of the levator ani/bulbocavernosus (LABC) muscle complex in males (Keller et al, 1996; Robitaille and Langlois,
2020). The LABC complex does not develop in the absence, or low levels of, androgen signaling, as in female fetuses.

A key step of this pathway is the inhibition of 5a-reductase, which converts testosterone into the more potent
dihydrotestosterone (DHT) in androgen-sensitive tissues. In the developing perineal region, low or absent DHT levels result in
inactivation of the androgen receptor (AR), leading to failure in proper masculinization of the perineum and the levator ani-
bulbocavernosus (LABC) complex.

Background

This AOP was developed as part of an AOP network for developmental androgen signalling-inhibition leading to short AGD in
male offspring. The other AOPs in this network are AOP 306 (AR antagonism leading to short AGD) and 307 (Decreased
testosterone synthesis leading to short AGD).

Androgen signaling is critical for male sex differentiation during fetal life and suboptimal action during critical life stages leads
to under-masculinized offspring. Testosterone is a main androgen, but during fetal differentiation, particularly in tissues distant
to the testes, the more potent androgen receptor ligand dihydro-testosterone (DHT) is critical. The formation of DHT from

testosterone requires the enzyme 5a-reductase, hence the role of both this enzyme and DHT must be considered when
assessing overall effects of disrupted androgen signaling on sex differentiation.

Summary of the AOP
Events

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Event

Sequence Type D Title Short name
1 MIE 1617 Inhibition, 5a-reductase Inhibition, 5a-reductase
2 KE 1613 Decrease, dihydrotestosterone (DHT) level Decrease, DHT level
3 KE 1614 Decrease, androgen receptor activation Decrease, AR activation
Altered, Transcription of genes by the androgen  Altered, Transcription of genes by
KE 286
receptor the AR
5 AO 1688 anogenital distance (AGD), decreased AGD, decreased
Key Event Relationships
Upstream Event Relatlonship Downstream Event Evidence Quantltatl\_le
Type Understanding
Inhibition, 5a-reductase adjacent Recicascndilydrerestosteions High High

(DHT) level
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Upstream Event Ll Downstream Event Evidence Quantltatl\_le
Type Understanding
Decrease, dihydrotestosterone . Decrease, androgen receptor )
De;rea_se, androgen receptor adjacent Altered, Transcription of genes by High
activation the androgen receptor
De;rea_se, androgen receptor non-adjacent anogenital distance (AGD), High
activation decreased
Altered, Transcription of genes by non-adjacent anogenital distance (AGD), YR

the androgen receptor decreased

Stressors

Name Evidence

Finasteride High

Finasteride

Finasteride is a type Il 5alpha-reductase inhibitor that blocks conversion of testosterone to dihydrotestosterone (Clark
et al 1990; Imperato-McGinley et al 1992). Intrauterine exposure in rats can result in shorter male AGD in male
offspring (Bowman et al 2003; Christiansen et al 2009; Schwartz et al 2019)

References:

Bowman et al (2003), Toxicol Sci 74:393-406; doi: 10.1093/toxsci/kfg128

Christiansen et al (2009), Environ Health Perspect 117:1839-1846; doi: 10.1289/ehp.0900689
Clark et al (1990), Teratology 42:91-100; doi: 10.1002/tera.1420420111

Imperato-McGinley (1992), J Clin Endocrinol Metab 75:1022-1026; doi: 10.1210/jcem.75.4.1400866

Schwartz et al (2019), Toxicol Sci 169:303-311; doi: 10.1093/toxsci/kfz046
Overall Assessment of the AOP

Domain of Applicability

Life Stage Applicability
Life Stage Evidence
Foetal High
Taxonomic Applicability
Term Scientific Term Evidence Links

human Homo sapiens Moderate NCBI
rat Rattus norvegicus High NCBI
mouse Mus musculus Moderate NCBI
mammals mammals Moderate NCBI

Sex Applicability
Sex Evidence

Male High

The upstream part of the AOP, culminating at KE-286 (altered transcription of genes by the AR), has a broad
applicability domain. It is built primarily on mammalian data and includes all life stages and both sexes. It could be
extended to cover non-mammalian vertebrates by adding additional relevant knowledge, as previously discussed
(Draskau et al, 2024). The overall applicability domain is limited by AO-1688 (decreased AGD). The AGD is strongly
influenced by androgen action during critical fetal stages in mammals, with evidence from humans (Murashima et al,
2015; Thankamony et al, 2016), and from numerous gestational exposure studies in rats and mice to anti-androgenic
chemicals (Gray et al, 2001; Schwartz et al, 2019a). The male masculinisation programming window occurs at a
developmental stage included in the applicability domain of these AOPs and corresponds to around gestational day
16-20 in rats and gestation weeks 8-14 in humans (Welsh et al, 2008). Only males are included in the applicability
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domain since the male AGD, but not the female AGD, is shortened by decreased androgen action (Schwartz et al,
2019a).

Essentiality of the Key Events

The essentiality of each key event (KE) was evaluated, meaning that if an upstream KE is blocked or does not occur,
subsequent downstream KEs or the adverse outcome (AO) are prevented or altered. Both direct and indirect evidence
of essentiality were assessed according to the OECD developer’'s handbook (see Supplementary Table
S1, 5md5rvviro_Supplementary Table_S1_Essentiality table AOPs_305_307.pdf), with a summary provided in Table 1.

Table 1: Essentiality assessment of KEs for AOP 305.

Event Direct Indirect Contradictory Overall
evidence evidence evidence essentiality
assessment
MIE-1617 RS B High
KE-1613 ook ok High
KE-1614 ook ook High
KE-286 RS Moderate

Weight of Evidence Summary

Evidence for anti-androgenicity, by perturbing DHT signaling through the AR, is strong. In this AOP, most KERs are considered
highly biologically plausible with strong empirical evidence in support of this assessment, both from human data and animal
studies. The overall evidence assessment scores for each KER is summarized in the below Table:

ID Assessment Rationale
score
KER-1880 High It is well established that 5a-reductase converts

testosterone to DHT and that decreased 5a-
reductase activity leads to decreased DHT levels.
It is well established that DHT activates the AR and
that decreased DHT levels leads to decreased AR
activation.

It is well established that the AR regulates gene
transcription, and that decreased AR activity leads
to altered gene transcription.

It is well established that decreased AR activity
leads to decreased AGD in male offspring.
KER-2127 Moderate It is highly plausible that altered gene transcription
in the perineum leads to decreased AGD in male
offspring.

KER-1935 High

KER-2124 High

KER-2820 High

Quantitative Consideration

The quantitative understanding of the AOP is limited. A major challenge is that it is difficult to measure upstream and
downstream events in the same study since MIE-26 and MIE-1617 are measured in vitro and KE-1614 focus on AR
activation in vivo with no methods currently available to measure it.
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Appendix 1
List of MIEs in this AOP

Event: 1617: Inhibition, 5a-reductase

Short Name: Inhibition, 5a-reductase

AOPs Including This Key Event

AOP ID and Name Event Type
Aop:289 - Inhibition of 5a-reductase leading to impaired fecundity in female fish MolecularinitiatingEvent
Aop:305 - Sa-reductase inhibition leading to short anogenital distance (AGD) in male
(mammalian) offspring MolecularinitiatingEvent
Aop:120 - Inhibition of 5a-reductase leading to Leydig cell tumors (in rat) MolecularlnitiatingEvent

MolecularlnitiatingEvent
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AOP ID and Name Event Type

Aop:576 - 5a-reductase inhibition leading to increased nipple retention (NR) in male
(rodent) offspring

MolecularinitiatingEvent

Biological Context

Level of Biological Organization

Molecular
Cell term

Cell term

eukaryotic cell

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability

Life Stage Evidence
During development and at
adulthood
Sex Applicability

High

Sex Evidence

Mixed High

This KE is applicable to both sexes, across developmental stages into adulthood, in many different tissues and across
mammalian taxa. It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending
to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the
applicability to also include other vertebrates.

Essentially the reaction performed by the isozymes is the same, but the enzyme is differentially expressed in the body. 5a-
reductase type 1 is mainly linked to the production of neurosteroids, 5a-reductase type 2 is mainly involved in production of
5a-DHT, whereas 5a-reductase type 3 is involved in N-glycosylation (Robitaille & Langlois, 2020).

The expression profile of the three 5a-reductase isoforms depends on the developmental stage, the tissue of interest, and the
disease state of the tissue. The enzymes have been identified in, for instance, non-genital and genital skin, scalp, prostate,
liver, seminal vesicle, epididymis, testis, ovary, kidney, exocrine pancreas, and brain (Azzouni, 2012, Uhlen 2015).

5a-reductase is well-conserved, all primary species in Eukaryota contain all three isoforms (from plant, amoeba, yeast to
vertebrates) (Azzouni, 2012) and the enzymes are expressed in both males and females (Langlois, 2010, Uhlen 2015).

Key Event Description

This KE describes the inhibition of 5a-reductases (3-oxo-5a-steroid 4-dehydrogenases). These enzymes are widely expressed in
tissues of both sexes and responsible for conversion of steroid hormones.

There are three isozymes: 5a-reductase type 1, 2, and 3. The substrates for 5a-reductases are 3-oxo (3-keto), A%> C19/C21
steroids such as testosterone, progesterone, androstenedione, epi-testosterone, cortisol, aldosterone, and
deoxycorticosterone. The enzymatic reaction leads to an irreversible breakage of the double bond between carbon 4 and 5 and
subsequent insertion of a hydride anion at carbon 5 and insertion of a proton at carbon 4. The reaction is aided by the cofactor
NADPH. The substrate affinity and reaction velocity differ depending on the combination of substrate and enzyme isoform, for
instance 5a-reductase type 2 has a higher substrate affinity for testosterone than the type 1 isoform of the enzyme, and the
enzymatic reaction occurs at a higher velocity under optimal conditions. Likewise, inhibitors of 5a-reductase may exhibit
differential effects depending on isoforms (Azzouni et al., 2012).

How it is Measured or Detected

There is currently (as of 2023) no OECD test guideline for the measurement of 5a-reductase inhibition.

Assessing the ability of chemicals to inhibit the activity of 5a-reductase is challenging, but has been assessed using

6/41


https://aopwiki.org/aops/576
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0

AOP305

transfected cell lines. This has been demonstrated in HEK-293 cells stably transfected with human 5a-reductase type 1, 2, and
3 (Yamana et al., 2010), in CHO cells stably transfected with human 5a-reductase type 1 and 2 (Thigpens et al., 1993), and
COS cells transfected with human and rat 5a-reductase with unspecified isoforms (Andersson & Russell, 1990). The transfected
cells are typically used as intact cells or cell homogenates. Further, 5a-reductase 1 and 2 has been successfully expressed and
isolated from Escherichia coliwith subsequent functionality allowing for examination of enzyme inhibition (Peng et al.,

2020). The availability of the stably transfected cell lines and the isolated enzymes to the scientific community is unknown.

The output of the above methods could be decreased dihydrotestosterone (DHT) with increasing test chemical concentrations.
Other substrates exist for the different isoforms that could be used to assess the enzymatic inhibition (Peng et al., 2020). The
use of radiolabeled steroids has historic and continued use for 5a-reductase inhibition examination (Andersson & Russell,
1990; Peng et al., 2020; Thigpens et al., 1993; Yamana et al., 2010); however, alternative methods are available, such as
conventional ELISA kits or advanced analytical methods such as liquid chromatography coupled to tandem mass spectrometry
(LC-MS/MS).
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in human diseases. In Advances in Urology. https://doi.org/10.1155/2012/530121
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Thigpens, A. E., Cala, K. M., & Russell, D. W. (1993). Characterization of Chinese Hamster Ovary Cell Lines Expressing Human
Steroid 5a-Reductase Isozymes. The Journal of Biological Chemistry, 268(23), 17404-17412.

Yamana, K., Fernand, L., Luu-The, V., & Luu-The, V. (2010). Human type 3 5Sx-reductase is expressed in peripheral tissues at
higher levels than types 1 and 2 and its activity is potently inhibited by finasteride and dutasteride. Hormone Molecular
Biology and Clinical Investigation, 2(3), 293-299. https://doi.org/10.1515/HMBCI.2010.035

List of Key Events in the AOP

Event: 1613: Decrease, dihydrotestosterone (DHT) level
Short Name: Decrease, DHT level

Key Event Component

Process Object Action

hormone biosynthetic process 17beta-Hydroxy-2-oxa-5alpha-androstan-3-one decreased

AOPs Including This Key Event

AOP ID and Name B
Type
Ao0p:288 - Inhibition of 17a-hydrolase/C 10,20-lyase (Cypl17A1) activity leads to birth reproductive defects
T - KeyEvent
(cryptorchidism) in male (mammals)
Aop:289 - Inhibition of 5a-reductase leading to impaired fecundity in female fish KeyEvent
Aop:305 - 5a-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) KeyETane
offspring y
Aop:527 - Decreased, Chicken Ovalbumin Upstream Promoter Transcription Factor Il (COUP-TFII) leads to
- . KeyEvent
Hypospadias, increased
Aop:571 - 5a-reductase inhibition leading to hypospadias in male (mammalian) offspring KeyEvent
Aop:576 - 5a-reductase inhibition leading to increased nipple retention (NR) in male (rodent) offspring KeyEvent

Biological Context
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Level of Biological Organization

Tissue

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability
Life Stage Evidence

All life

Moderate
stages

Sex Applicability
Sex Evidence

Mixed High

This KE is applicable to both sexes, across developmental stages and adulthood, in many different tissues and across
mammals.

In both humans and rodents, DHT is important for the /n utero differentiation and growth of the prostate and male external
genitalia (Azzouni et al., 2012; Gerald & Raj, 2022). Besides its critical role in development, DHT also induces growth of facial
and body hair during puberty in humans (Azzouni et al., 2012).

In mammals, the role of DHT in females is less established (Swerdloff et al., 2017), however studies suggest that androgens
are important in e.g. bone metabolism and growth, as well as female reproduction from follicle development to parturition
(Hammes & Levin, 2019).

It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending to non-mammalian
vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also
include other vertebrates.

Key Event Description

Dihydrotestosterone (DHT) is an endogenous steroid hormone and a potent androgen. The level of DHT in tissue or blood is
dependent on several factors, such as the synthesis, uptake/release, metabolism, and elimination from the system, which
again can be dependent on biological compartment and developmental stage.

DHT is primarily synthesized from testosterone (T) via the irreversible enzymatic reaction facilitated by 50-Reductases (5a-
REDs) (Swerdloff et al., 2017). Different isoforms of this enzyme are differentially expressed in specific tissues (e.g. prostate,
skin, liver, and hair follicles) at different developmental stages, and depending on disease status (Azzouni et al., 2012; Uhlén et
al., 2015), which ultimately affects the local production of DHT.

An alternative (“backdoor”) pathway , exists for DHT formation that is independent of T and androstenedione as precursors.
While first discovered in marsupials, the physiological importance of this pathway has now also been established in other
mammals including humans (Renfree and Shaw, 2023). This pathway relies on the conversion of progesterone (P) or 17-OH-P
to androsterone and then androstanediol through several enzymatic reactions and finally, the conversion of androstanediol into
DHT probably by HSD17B6 (Miller & Auchus, 2019; Naamneh Elzenaty et al., 2022). The “backdoor” synthesis pathway is a
result of an interplay between placenta, adrenal gland, and liver during fetal life (Miller & Auchus, 2019).

The conversion of T to DHT by 5a-RED in peripheral tissue is mainly responsible for the circulating levels of DHT, though some
tissues express enzymes needed for further metabolism of DHT consequently leading to little release and contribution to
circulating levels (Swerdloff et al.).

The initial conversion of DHT into inactive steroids is primarily through 3a-hydroxysteroid dehydrogenase (3a-HSD) and 38-
HSD in liver, intestine, skin, and androgen-sensitive tissues. The subsequent conjugation is mainly mediated by uridine 5°-
diphospho (UDP)-glucuronyltransferase 2 (UGT2) leading to biliary and urinary elimination from the system. Conjugation also
occurs locally to control levels of highly potent androgens (Swerdloff et al., 2017).

Disruption of any of the aforementioned processes may lead to decreased DHT levels, either systemically or at tissue level.

How it is Measured or Detected

Several methods exist for DHT identification and quantification, such as conventional immunoassay methods (ELISA or RIA)
and advanced analytical methods as liquid chromatography tandem mass spectrometry (LC-MS/MS). The methods can have
differences in detection and quantification limits, which should be considered depending on the DHT levels in the sample of
interest. Further, the origin of the sample (e.g. cell culture, tissue, or blood) will have implications for the sample preparation.
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Conventional immunoassays have limitations in that they can overestimate the levels of DHT compared to levels determined
by gas chromatography mass spectrometry and liquid chromatography tandem mass spectrometry (Hsing et al., 2007;
Shiraishi et al., 2008). This overestimation may be explained by lack of specificity of the DHT antibody used in the RIA and
cross-reactivity with T in samples (Swerdloff et al., 2017).

Test guideline no. 456 (OECD 2023) uses a cell line, NCI-H295, capable of producing DHT at low levels. The test guideline is not
validated for this hormone. Measurement of DHT levels in these cells require low detection and quantification limits. Any effect
on DHT can be a result of many upstream molecular events that are specific for the NCI-H295 cells, and which may differ in
other models for steroidogenesis.
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Event: 1614: Decrease, androgen receptor activation

Short Name: Decrease, AR activation

Key Event Component

Process Object Action
androgen receptor androgen decreased
activity receptor

AOPs Including This Key Event

AOP ID and Name Event Type

Aop:288 - Inhibition of 17a-hydrolase/C 10,20-lyase (Cypl7A1) activity leads to birth

reproductive defects (cryptorchidism) in male (mammals) KeyEvent

Aop:305 - 5a-reductase inhibition leading to short anogenital distance (AGD) in male
(mammalian) offspring

KeyEvent

9/41


https://aopwiki.org/events/1614
https://aopwiki.org/aops/288
https://aopwiki.org/aops/305

AOP305

AOP ID and Name Event Type

Aop:306 - Androgen receptor (AR) antagonism leading to short anogenital distance (AGD)

in male (mammalian) offspring KeyEvent
Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in

. . KeyEvent
male (mammalian) offspring
Aop:344 - Androgen receptor (AR) antagonism leading to nipple retention (NR) in male KeyEvent

(mammalian) offspring
Aop:372 - Androgen receptor antagonism leading to testicular cancer KeyEvent

Aop:477 - Androgen receptor (AR) antagonism leading to hypospadias in male

(mammalian) offspring KeyEvent
Aop:345 - Androgen receptor (AR) antagonism leading to decreased fertility in females KeyEvent
Aop:111 - Decrease in androgen receptor activity leading to Leydig cell tumors (in rat) MolecularlnitiatingEvent
Aop:570 - Decreased testosterone synthesis leading to hypospadias in male (mammalian KeyEvent

offspring

Aop:571 - 5a-reductase inhibition leading to hypospadias in male (mammalian) offspring KeyEvent

Aop:575 - Decreased testosterone synthesis leading to increased nipple retention (NR) in

male (rodent) offspring KeyEvent
Aop:576 - 5(x-rgductase inhibition leading to increased ni KeyEvent
(rodent) offspring

Biological Context

Level of Biological Organization

Tissue

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability

Life Stage Evidence
During development and at
adulthood
Sex Applicability

High

Sex Evidence

Mixed High

This KE is considered broadly applicable across mammalian taxa as all mammals express the AR in numerous cells and tissues
where it regulates gene transcription required for developmental processes and functions. It is, however, acknowledged that
this KE most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are
encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.

Key Event Description

This KE refers to decreased activation of the androgen receptor (AR) as occurring in complex biological systems such as tissues
and organs in vivo. It is thus considered distinct from KEs describing either blocking of AR or decreased androgen synthesis.

The AR is a nuclear transcription factor with canonical AR activation regulated by the binding of the androgens such as
testosterone or dihydrotestosterone (DHT). Thus, AR activity can be decreased by reduced levels of steroidal ligands
(testosterone, DHT) or the presence of compounds interfering with ligand binding to the receptor (Davey & Grossmann, 2016;
Gao et al., 2005).

In the inactive state, AR is sequestered in the cytoplasm of cells by molecular chaperones. In the classical (genomic) AR
signaling pathway, AR activation causes dissociation of the chaperones, AR dimerization and translocation to the nucleus to
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modulate gene expression. AR binds to the androgen response element (ARE) (Davey & Grossmann, 2016; Gao et al., 2005).
Notably, for transcriptional regulation the AR is closely associated with other co-factors that may differ between cells, tissues
and life stages. In this way, the functional consequence of AR activation is cell- and tissue-specific. This dependency on co-
factors such as the SRC proteins also means that stressors affecting recruitment of co-activators to AR can result in decreased
AR activity (Heinlein & Chang, 2002).

Ligand-bound AR may also associate with cytoplasmic and membrane-bound proteins to initiate cytoplasmic signaling
pathways with other functions than the nuclear pathway. Non-genomic AR signaling includes association with Src kinase to
activate MAPK/ERK signaling and activation of the PI3K/Akt pathway. Decreased AR activity may therefore be a decrease in the
genomic and/or non-genomic AR signaling pathways (Leung & Sadar, 2017).

How it is Measured or Detected

This KE specifically focuses on decreased /n vivo activation, with most methods that can be used to measure AR activity
carried out /n vitro. They provide indirect information about the KE and are described in lower tier MIE/KEs (see for example
MIE/KE-26 for AR antagonism, KE-1690 for decreased T levels and KE-1613 for decreased dihydrotestosterone levels). Assays
may in the future be developed to measure AR activation in mammalian organisms.
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Event: 286: Altered, Transcription of genes by the androgen receptor

Short Name: Altered, Transcription of genes by the AR

Key Event Component

Process Object Action
regulation of gene androgen decreased
expression receptor

AOPs Including This Key Event

AOP ID and Name 2L
Type
Aop:19 - Androgen receptor antagonism leading to adverse effects in the male foetus (mammals) KeyEvent
Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male
- : KeyEvent
(mammalian) offspring
Aop:344 - Androgen receptor (AR) antagonism leading to nipple retention (NR) in male (mammalian) KeyEvent

offspring
Aop:345 - Androgen receptor (AR) antagonism leading to decreased fertility in females KeyEvent

Aop:305 - 5a-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian

. KeyEvent
offspring
Aop:495 - Androgen receptor activation leading to prostate cancer KeyEvent
Aop:306 - Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male KeyEvent

(mammalian) offspring
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AOP ID and Name

Aop:547 - Androgen receptor agonism leading to long anogenital distance in female offspring

Aop:496 - Androgen receptor agonism leading to reproduction dysfunction [lin zebrafish

Aop:372 - Androgen receptor antagonism leading to testicular cancer

Aop:570 - Decreased testosterone synthesis leading to hypospadias in male (mammalian) offspring

Aop:571 - 5a-reductase inhibition leading to hypospadias in male (mammalian) offspring

Aop:575 - Decreased testosterone synthesis leading to increased nipple retention (NR) in male (rodent)

offspring

Aop:576 - 5a-reductase inhibition leading to increased nipple retention (NR) in male (rodent) offspring

Stressors

Name
Bicalutamide
Cyproterone acetate
Epoxiconazole
Flutamide
Flusilazole
Prochloraz
Propiconazole
Stressor:286 Tebuconazole
Triticonazole

Vinclozalin
Biological Context

Level of Biological Organization

Tissue

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability

Life Stage Evidence
During development and at
adulthood
Sex Applicability

High

Sex Evidence

Mixed High

Event
Type

KeyEvent
KeyEvent

KeyEvent
KeyEvent
KeyEvent

KeyEvent

KeyEvent

Both the DNA-binding and ligand-binding domains of the AR are highly evolutionary conserved, whereas the
transactivation domain show more divergence, which may affect AR-mediated gene regulation across species (Davey
and Grossmann 2016). Despite certain inter-species differences, AR function mediated through gene expression is
highly conserved, with mutation studies from both humans and rodents showing strong correlation for AR-dependent

development and function (Walters et al. 2010).

This KE is considered broadly applicable across mammalian taxa, sex and developmental stages, as all

mammals express the AR in numerous cells and tissues where it regulates gene transcription required for

developmental processes and function. It is, however, acknowledged that this KE most likely has a much broader domain of
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applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge
to expand on the applicability to also include other vertebrates.

Key Event Description

This KE refers to transcription of genes by the androgen receptor (AR) as occurring in complex biological systems such
as tissues and organs /n vivo. Rather than measuring individual genes, this KE aims to capture patterns of effects at
transcriptome level in specific target cells/tissues. In other words, it can be replaced by specific KEs for individual adverse
outcomes as information becomes available, for example the transcriptional toxicity response in prostate tissue for AO:
prostate cancer, perineum tissue for AO: reduced AGD, etc. AR regulates many genes that differ between tissues and life
stages and, importantly, different gene transcripts within individual cells can go in either direction since AR can act as both
transcriptional activator and suppressor. Thus, the ‘directionality’ of the KE cannot be either reduced or increased, but instead
describe an altered transcriptome.

The Androgen Receptor and its function

The AR belongs to the steroid hormone nuclear receptor family. It is a ligand-activated transcription factor with three
domains: the N-terminal domain, the DNA-binding domain, and the ligand-binding domain with the latter being the
most evolutionary conserved (Davey and Grossmann 2016). Androgens (such as dihydrotestosterone and
testosterone) are AR ligands and act by binding to the AR in androgen-responsive tissues (Davey and Grossmann
2016). Human AR mutations and mouse knockout models have established a fundamental role for AR in
masculinization and spermatogenesis (Maclean et al.; Walters et al. 2010; Rana et al. 2014). The AR is also expressed
in many other tissues such as bone, muscles, ovaries and within the immune system (Rana et al. 2014).

Altered transcription of genes by the AR as a Key Event

Upon activation by ligand-binding, the AR translocates from the cytoplasm to the cell nucleus, dimerizes, binds to
androgen response elements in the DNA to modulate gene transcription (Davey and Grossmann 2016). The
transcriptional targets vary between cells and tissues, as well as with developmental stages and is also dependent on
available co-regulators (Bevan and Parker 1999; Heemers and Tindall 2007). It should also be mentioned that the AR
can work in other ‘non-canonial’ ways such as non-genomic signaling, and ligand-independent activation (Davey &
Grossmann, 2016; Estrada et al, 2003; Jin et al, 2013).

A large number of known, and proposed, target genes of AR canonical signaling have been identified by analysis of
gene expression following treatments with AR agonists (Bolton et al. 2007; Ngan et al. 2009, Jin et al. 2013).

How it is Measured or Detected

Altered transcription of genes by the AR can be measured by measuring the transcription level of known downstream
target genes by RT-qPCR or other transcription analyses approaches, e.g. transcriptomics.

Since this KE aims to capture AR-mediated transcriptional patterns of effect, downstream bioinformatics analyses will typically
be required to identify and compare effect footprints. Clusters of genes can be statistically associated with, for example,
biological process terms or gene ontology terms relevant for AR-mediated signaling. Large transcriptomics data repositories
can be used to compare transcriptional patterns between chemicals, tissues, and species (e.g. TOXsIgN (Darde et al, 2018a;
Darde et al, 2018b), comparisons can be made to identified sets of AR ‘biomarker’ genes (e.g. as done in (Rooney et al, 2018)),
and various methods can be used e.g. connectivity mapping (Keenan et al, 2019).
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List of Adverse Outcomes in this AOP
Event: 1688: anogenital distance (AGD), decreased
Short Name: AGD, decreased
Key Event Component
Process Object Action

androgen receptor signaling Musculature of male
pathway perineum

disrupted
AOPs Including This Key Event

AOP ID and Name Event Type
Aop:305 - 5a-reductase inhibition leading to short anogenital distance (AGD) in male

. ' AdverseOutcome
(mammalian) offspring
Aop:306 —_Androqen_ receptor (AR) antagonism leading to short anogenital distance (AGD) in male AdverseOutcome
(mammalian) offspring
Aop:307 .Decreaseq testosterone synthesis leading to short anogenital distance (AGD) in male AlverER G e
(mammalian) offspring
Aop:476 - Adverse Outcome Pathways diagram related to PBDEs associated male reproductive AelvErEEOas e

toxicity
Stressors

Name
Butylparaben
p,p'-DDE

Bis(2-ethylhexyl)
phthalate

Dexamethasone
Fenitrothion
Finasteride

Flutamide
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Name
Ketoconazole
Linuron
Prochloraz
Procymidone
Triticonazole
Vinclozolin
di-n-hexyl phthalate
Dicyclohexyl phthalate
butyl benzyl phthalate
monobenzyl phthalate

di-n-heptyl phthalate
Biological Context

Level of Biological Organization

Tissue

Organ term

Organ term

perineum

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

human Homo sapiens Moderate NCBI
rat Rattus norvegicus High NCBI
mouse Mus musculus High NCBI

Life Stage Applicability
Life Stage Evidence
Foetal High

Sex Applicability
Sex Evidence

Male High

A short AGD in male offspring is a marker of insufficient androgen action during critical fetal developmental stages
(Schwartz et al, 2019; Welsh et al, 2008). A short AGD is thus a sign of undervirilization, which is also associated with
a series of male reproductive disorders, including genital malformations and infertility in humans (Juul et al, 2014;
Skakkebaek et al, 2001).

There are numerous human epidemiological studies showing associations with intrauterine exposure to anti-
androgenic chemicals and short AGD in newborn boys alongside other reproductive disorders (Schwartz et al, 2019).
This underscores the human relevance of this AO. However, in reproductive toxicity studies and chemical risk
assessment, rodents (rats and mice) are what is tested on. The list of chemicals inducing short male AGD in male rat
offspring is extensive, as evidenced by the ‘stressor’ list and reviewed by (Schwartz et al, 2019).

Key Event Description

The anogenital distance (AGD) refers to the distance between anus and the external genitalia. In rodents and humans,
the male AGD is approximately twice the length as the female AGD (Salazar-Martinez et al, 2004; Schwartz et al,
2019). This sexual dimorphisms is a consequence of sex hormone-dependent development of secondary sexual
characteristics (Schwartz et al, 2019). In males, it is believed that androgens (primarily DHT) activate AR-positive cells
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in non-myotic cells in the fetal perineum region to initiate differentiation of the perineal /evator aniand
bulbocavernosus (LABC) muscle complex (Ipulan et al, 2014). This AR-dependent process occurs within a critical
window of development, around gestational days 15-18 in rats (MacLeod et al, 2010). In females, the absence of DHT
prevents this masculinization effect from occurring.

The involvement of androgens in masculinization of the male fetus, including the perineum, has been known for a
very long time (Jost, 1953), and AGD has historically been used to, for instance, sex newborn kittens. It is now well
established that the AGD in newborns is a proxy readout for the intrauterine sex hormone milieu the fetus was
developing. Too low androgen levels in XY fetuses makes the male AGD shorter, whereas excess (ectopic) androgen
levels in XX fetuses makes the female AGD longer, in humans and rodents (Schwartz et al, 2019).

How it is Measured or Detected

The AGD is a morphometric measurement carried out by trained technicians (rodents) or medical staff (humans).

In rodent studies AGD is assessed as the distance between the genital papilla and the anus, and measured using a
stereomicroscope with a micrometer eyepiece. The AGD index (AGDi) is often calculated by dividing AGD by the cube
root of the body weight. It is important in statistical analysis to use litter as the statistical unit. This is done when
more than one pup from each litter is examined. Statistical analyses is adjusted using litter as an independent,
random and nested factor. AGD are analysed using body weight as covariate as recommended in Guidance Document
151 (OECD, 2013).

Regulatory Significance of the AO

In regulatory toxicology, the AGD is mandatory inclusions in OECD test guidelines used to test for developmental and
reproductive toxicity of chemicals. Guidelines include ‘TG 443 extended one-generation study’, ‘TG 421/422
reproductive toxicity screening studies’ and ‘TG 414 developmental toxicity study’.
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Relationship: 1880: Inhibition, 5a-reductase leads to Decrease, DHT level

AOPs Referencing Relationship

Weight of Quantitative

AOP Name Adjacency Evidence Understanding
]ICinsr;]lbltlon of 5a-reductase leading to impaired fecundity in female adjacent High High
5a-reductase inhibition leading to short anogenital distance (AGD) adjacent High High

in male (mammalian) offspring

5a-reductase inhibition leading to hypospadias in male

(mammalian) offspring adjacent

5a-reductase inhibition leading to increased nipple retention (NR)
in male (rodent) offspring

adjacent

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability
Life Stage Evidence
During development and at
adulthood
Sex Applicability

High

Sex Evidence

Mixed High

This KE is applicable for both sexes, across developmental stages into adulthood, in numerous cells and tissues and across
mammalian taxa. It is, however, acknowledged that this KER most likely has a much broader domain of applicability extending
to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the
applicability to also include other vertebrates.

Key Event Relationship Description

This key event relationship (KER) links inhibition of 5a-reductase activity to decreased dihydrotestosterone (DHT)
levels.

There are three isozymes of 5a-reductase: type 1, 2, and 35a-reductase type 2 is mainly involved in the synthesis of
5a-DHT from testosterone (T) (Robitaille & Langlois, 2020), although 5a-reductase type 1 can also facilitate this
reaction, but with lower affinity for T (Nikolaou et al., 2021). The type 1 isoform is also involved in the alternative
(‘backdoor’) pathway for DHT formation, facilitating the conversion of progesterone or 170H-progesterone to
dihydroprogesterone or 5a-pregnan-17a-ol-3,20-dione, respectively, whereafter several subsequent reactions will
ultimately lead to the formation of DHT (Miller & Auchus, 2019). The quantitative importance of the alternative pathway
remains unclear (Alemany, 2022). The type 1 and type 2 isoforms of 5a-reductase are the primary focus of this KER.

The direct conversion of T to 5a-DHT mainly takes place in the target tissue(Robitaille & Langlois, 2020). In mammals,
the type 1 isoform is found in the scalp and other peripheral tissues (Miller & Auchus, 2011), such as liver, skin, prostate
(Azzouni et al., 2012), bone, ovaries, and adipose tissue(Nikolaou et al., 2021). The type 2 isoform is expressed

mainly in male reproductive tissues (Miller & Auchus, 2011), but also in liver, scalp and skin(Nikolaou et al., 2021). The
expression level of both isoforms depend on the developmental stage and the tissue.

Evidence Supporting this KER

Biological Plausibility

The biological plausibility of this KER is considered high.

5a-reductase can catalyze the conversion of T to DHT. The substrates for 5a-reductases are 3-oxo (3-keto), &>
C19/C21 steroids such as testosterone and progesterone. The enzymatic reaction leads to an irreversible breakage of
the double bond between carbon 4 and 5 and subsequent insertion of a hydride anion at carbon 5 and insertion of a

proton at carbon 4. The reaction is aided by the cofactor NADPH (Azzouni et al., 2012). By inhibiting this enzyme, the
described catalyzed reaction will be inhibited leading to a decrease in DHT levels.
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In both humans and rodents, DHT is important for thein utero differentiation and growth of the prostate and male
external genitalia. Besides its critical role during fetal development, DHT also induces growth of facial and body hair
during puberty in humans (Azzouni et al., 2012).

Empirical Evidence

The empirical evidence for this KER is considered high

Dose concordance

Several inhibitors of 5a-reductases have been developed for pharmacological uses. Inhibition of the enzymatic
conversion of radiolabeled substrate has been illustrated (Table 1) and data display dose-concordance, with

increasing concentrations of inhibitor leading to lower 5a-reductase product formation. These studies at large rely on
conversion of radiolabeled substrate and hence serve as an indirect measurement.

Table 1: Dose concordance from selected in vitro test systems

Test Model Stressor |Effect Reference
system description
HEK-293 [Cells stably Finasteride [Type 1: IC5g = 106.9 |(Yamana et
cells transfected UM al., 2010)
human 5a-
reductase type 1 Type 2: IC59 = 14.3
and 2 used to uM
measure
conversion of
[14Cllabeled
steroids
Dutasteride[Type 1: IC5q = 8.7
UM
Type 2: IC5g9 = 57 pM
COS cells [Cell homogenates |Finasteride [Human: (Andersson &
from transfected Russell, 1990)
cells with human IC50 = 1 uM
and rat 5a-
reductase Ki = 340-620 nM
(unknown
isoform) used to Rat:
measure
conversion of IC50 = 0.1 uM
radiolabeled Ki = 3-5 nM
testosterone
4-MA Human:
IC50 = 0.1 uM
Kj = 7-8 nM
Rat:
IC50 = 0.1 uM
Ki = 5-7 nM
CHO cells [Stably transfected|Finasteride [Type 1: K; = 325 nM ((Thigpens et
with human 5a- al., 1993)
reductase type 1 Type 2: K= 12 nM
and 2
4-MA Type 1: Kj = 8 nM
Type 2: Ki =4 nM
Isolated Human 5a- Finasteride [Type 1: K= > 200 [(Peng et al.,
enzyme reductase type 1 nM 2020)
and 2 used to
measure Type 2: Kj = 0.45 nM
conversion of
radiolabeled
substrate of both
isoforms
Dutasteride|Type 1: K; = 39 nM
Type 2: Kj= 1.1 nM
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These in vitro studies clearly show effects on the enzymatic reaction induced by 5a-reductases in a concentration
dependent manner (Andersson & Russell, 1990; Thigpens et al., 1993; Yamana et al., 2010).

In the intact organism, when 5a-reductase type 2 activity is lacking through e.g. inhibitor treatment or knockout, this
will results in decreased 5a-DHT locally in the tissues, but also in blood (Robitaille & Langlois, 2020). This has been
demonstrated in humans, rats, monkeys, and mice (Robitaille et al. 2020).

Finasteride is a specific inhibitor of 5a-reductase type 2(Russell & Wilson, 1994). Men with androgenic alopecia were
treated with increasing concentrations of finasteride and presented with decreased DHT levels in biopsies from scalp,
as well as a decrease in serum DHT levels with dose dependency being most apparent in serum, up to about 70%
decrease (Drake et al., 1999). Likewise, men treated with dutasteride exhibited a clear dose dependent decrease in
serum DHT after 24 weeks treatment with a maximum efficacy of about 98% (Clark et al., 2004).

Other evidence

The phenotype of males with deficiency in 5a-reductases are typically born with ambiguous external genitalia. They
also present with small prostate, minimal facial hair and acne, or temporal hair loss. Comparison of affected
individuals to non-affected individuals in regard to T/DHT ratio, conversion of infused radioactive T, and ratios of
urinary metabolites of 5a-reductase and 5B-reductase concluded that these phenotypic characteristics were due to
5a-reductase defects that resulted in less conversion of T to DHT (Okeigwe et al. 2014). Mutations in the 5a-reductase
gene can result in boys being born with moderate to severe undervirilization phenotypes (Elzenaty 2022).

Quantitative Understanding of the Linkage

Inhibitors of 5a-reductase are important for the prevention and treatment of many diseases. There are several
compounds that have been developed for pharmaceutical purposes and they can target the different isoforms with
different affinity. Examples of inhibitors are finasteride and dutasteride. Finasteride mainly has specificity for the type
2 isoform, whereas dutasteride inhibits both type 1 and 2 isoforms (Miller & Auchus, 2011).

These differences in isoform specificity reflects in the effects on DHT serum levels, hence the broader specificity of
dutasteride leads to > 90% decrease in patients with benign prostatic hyperplasia, in comparison to 70% with
finasteride administration (Nikolaou et al., 2021).

Response-response relationship

Enzyme inhibition can occur in different ways e.g. both competitive and noncompetitive. The inhibition model depends
on the specific inhibitor and hence a generic quantitative response-response relationship is difficult to derive.

Time-scale

An inhibition of 5a-reductases would lead to an immediate change in DHT levels at the molecular level. However, the
time-scale for systemic effects on hormone levels are challenging to estimate.

Known Feedforward/Feedback loops influencing this KER

Androgens can regulate gene expression of 5a-reductases(Andersson et al., 1989; Berman & Russell, 1993).
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Relationship: 1935: Decrease, DHT level leads to Decrease, AR activation

AOPs Referencing Relationship

Weight R
Ao Name Adjacency of  2udniiee
Evidence 9
Inhibition of 17a-hydrolase/C 10,20-lyase (Cypl17A1) activity leads to adjacent High High

birth reproductive defects (cryptorchidism) in male (mammals

5a-reductase inhibition leading to short anogenital distance (AGD) in adjacent High

male (mammalian) offspring

5a-reductase inhibition leading to hypospadias in male (mammalian)

: adjacent
offspring
5a-reductase inhibition leading to increased nipple retention (NR) in male adjacent

(rodent) offspring

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability

Life Stage Evidence
During development and at
adulthood
Sex Applicability

High

Sex Evidence

Mixed High

Taxonomic applicability

KER1935 is assessed applicable to mammals, as DHT and AR activation are known to be related in mammals. It is, however,
acknowledged that this KER most likely has a much broader domain of applicability extending to non-mammalian vertebrates.
AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other
vertebrates.

Sex applicability
KER1935 is assessed applicable to both sexes, as DHT activates AR in both males and females.

Life-stage applicability
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KER1935 is considered applicable to developmental and adult life stages, as DHT-mediated AR activation is relevant from the
AR is expressed.

Key Event Relationship Description

Dihydrotestosterone (DHT) is a primary ligand for the Androgen receptor (AR), a nuclear receptor and transcription factor. DHT
is an endogenous sex hormone that is synthesized from e.g. testosterone by the enzyme 5a-reductase in different tissues and
organs (Davey & Grossmann, 2016; Marks, 2004). In the absence of ligand (e.g. DHT) the AR is localized in the cytoplasm in
complex with molecular chaperones. Upon ligand binding, AR is activated, translocated into the nucleus, and dimerizes

to carry out its ‘genomic function’ (Davey & Grossmann, 2016). Hence, AR transcriptional function is directly dependent on the
presence of ligands, with DHT being a more potent AR activator than testosterone (Grino et al, 1990). Reduced levels of DHT
may thus lead to reduced AR activation. Besides its genomic actions, the AR can also mediate rapid, non-genomic second
messenger signaling (Davey and Grossmann, 2016). Decreased DHT levels that lead to reduced AR activation can thus entail
downstream effects on both genomic and non-genomic signaling.

Evidence Supporting this KER

Biological Plausibility
The biological plausibility of KER1935 is considered high.

The activation of AR is dependent on binding of ligands (though a few cases of ligand-independent AR activation has been
shown, see uncertainties and inconsistencies), primarily testosterone and DHT in mammals (Davey and Grossmann, 2016;
Schuppe et al., 2020). Without ligand activation, the AR will remain in the cytoplasm associated with heat-shock and other
chaperones and not be able to carry out its canonical (‘genomic’) function. Upon androgen binding, the AR undergoes a
conformational change, chaperones dissociate, and a nuclear localization signal is exposed. The androgen/AR complex can
now translocate to the nucleus, dimerize and bind AR response elements to regulate target gene expression (Davey and
Grossmann, 2016; Eder et al., 2001). AR transcriptional activity and specificity is regulated by co-activators and co-repressors
in a cell-specific manner (Heinlein and Chang, 2002).

The requirement for androgens binding to the AR for transcriptional activity has been extensively studied and proven and is
generally considered textbook knowledge. The OECD test guideline no. 458 uses DHT as the reference chemical for testing
androgen receptor activation /n vitro (OECD, 2020). In the absence of DHT during development caused by 5a-reductase
deficiency (i.e. still in the presence of testosterone) male fetuses fail to masculinize properly. This is evidenced by, for
instance, individuals with congenital 5a-reductase deficiency conditions (Costa et al., 2012); conditions not limited to humans
(Robitaille and Langlois, 2020), testifying to the importance of specifically DHT for AR activation and subsequent
masculinization of certain reproductive tissues.

Binding of testosterone or DHT has differential effects in different tissues. E.g. in the developing mammalian male;
testosterone is required for development of the internal sex organs (epididymis, vas deferens and the seminal vesicles),
whereas DHT is crucial for development of the external sex organs (Keller et al., 1996; Robitaille and Langlois, 2020).

Empirical Evidence
The empirical support for KER1935 is considered high.
Dose concordance:

e Increasing concentrations of DHT lead to increasing AR activation /n vitro in AR reporter gene assays (OECD, 2020;
Williams et al., 2017).

Indirect (supporting) evidence:

e In cell lines where proliferation can be induced by androgens (such as prostate cancer cells) proliferation can be used as a
readout for AR-activation. Finasteride, a 5a-reductase inhibitor, dose-dependently decreases AR-mediated prostate
cancer cell line proliferation (Bologna et al., 1995). 0.001 pM finasteride decreased the growth rate with 44%, 0.1 uM
decreased the growth rate with 80%.

e Specific events of masculinization during development are dependent on AR activation by DHT, including the
development and length of the perineum which can be measured as the anogenital distance (AGD, (Schwartz et al.,
2019)). E.g. a dose-dependent effect of rat /n utero exposure to the 5a-reductase inhibitor finasteride was observed on
the length of the AGD, where 0.01 mg/kg bw/day finasteride reduced the AGD measured at pup day 1 by 8%, whereas 1
mg/kg bw/day reduced the AGD by 23% (Bowman et al., 2003).

Other evidence:

e Male individuals with congenital 5a-reductase deficiency (absence of DHT) fail to masculinize properly (Costa et al.,
2012).

e A major driver of prostate cancer growth is AR activation (Davey and Grossmann, 2016; Huggins and Hodges, 1941).
Androgen deprivation is used as treatment including 5a-reductase inhibitors to reduce DHT levels (Aggarwal et al., 2010).

Uncertainties and Inconsistencies

Ligand-independent actions of the AR have been identified. To what extent and of which biological consequences is not well
defined (Bennesch and Picard, 2015).
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It should be noted, that in tissues, that are not DHT-dependent but rather respond to T, a decrease in DHT level may not
influence AR activation significantly in that specific tissue.

Quantitative Understanding of the Linkage

Response-response relationship

There is a positive dose-response relationship between increasing concentrations of DHT and AR activation (Dalton et al.,
1998; OECD, 2020). However, there is not enough data, or overview of the data, to define a quantitative linkage /n vivo, and
such a relationship will differ between biological systems (species, tissue, cell type).

Time-scale

Upon DHT binding to the AR, a conformational change that brings the amino (N) and carboxy (C) termini into close proximity
occurs with a ty,, of approximately 3.5 minutes, around 6 minutes later the AR dimerizes as shown in transfected Hela cells
(Schaufele et al., 2005). Addition of 5 nM DHT to the culture medium of ‘AR-resistant’ transfected prostatic cancer cells
resulted in a rapid (from 15 minutes, maximal at 30 minutes) nuclear translocation of the AR with minimal residual cytosolic
expression (Nightingale et al., 2003). AR and promoter interactions occur within 15 minutes of ligand binding, and RNA
polymerase Il and coactivator recruitment are then proposed to occur transiently with cycles of approximately 90 minutes
(Kang et al., 2002).

Known modulating factors

Modulating
Factor (MF)

MF Specification

Effect(s) on the KER

Tissue-specific alterations in

Reference(s)

(Supakar et al.,

Age AR expression changes with aging AR activity with aging 1993; Wu et al.,
2009)
Decreased AR activation (Chamberlain et al.,
Genotype Number of CAG repeats in the first exon of AR with increased number of 1994; Tut et al.,
CAGs 1997)
Androgen Low circulating testosterone levels due to primary Reduced levels of circulating
deficiency (testicular) or secondary (pituitary-hypothalamic) testosterone, precurser of (Bhasin et al., 2010)
syndrome hypogonadism DHT
Reduced levels of circulating . .
Castration Removal of testicles testosterone, precurser of LIS G

Known Feedforward/Feedback loops influencing this KER

DHT

1980)

Androgens have been shown to upregulate and downregulate AR expression as well as 5a-reductase expression, but for 5a-
reductase, each isoform in each tissue is differently regulated by androgens and can display sexual dimorphism (Lee and
Chang, 2003; Robitaille and Langlois, 2020). The quantitative impact of such adaptive expression changes is unknown.
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Weight of Quantitative

AOP Name Adjacency . .icnce Understanding

Androgen receptor (AR) antagonism leading to nipple retention (NR) in
male (mammalian) offspring

adjacent Moderate Moderate

ﬁénrg;?egfn receptor (AR) antagonism leading to decreased fertility in adjacent High T

5a-reductase inhibition leading to short anogenital distance (AGD) in
male (mammalian) offspring

Androgen receptor (AR) antagonism leading to short anogenital adjacent s e

distance (AGD) in male (mammalian) offspring

adjacent High

i i i i .
Decrea_sed testosterone _synthe5|s _Ieadmg to short anogenital distance adjacent Moderate G
(AGD) in male (mammalian) offspring

Decreased testosterone synthesis leading to hypospadias in male

(mammalian) offspring S
5a-reductase inhibition leading to hypospadias in male (mammalian) .

: adjacent
offspring
5a-reductase inhibition leading to increased nipple retention (NR) in adjacent

male (rodent) offspring

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability

Life Stage Evidence
During development and at .
adulthood High

Sex Applicability
Sex Evidence

Mixed High

This KER is applicable for both sexes, across developmental stages into adulthood, in numerous cells and tissues and across
mammalian taxa. It is, however, acknowledged that this KER most likely has a much broader domain of applicability extending
to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the
applicability to also include other vertebrates.

Key Event Relationship Description

The androgen receptor (AR) is a ligand-dependent nuclear transcription factor that upon activation translocates to the
nucleus, dimerizes, and binds androgen response elements (AREs) to modulate transcription of target genes (Lamont
and Tindall, 2010, Roy et al. 2001). Decreased activation of the AR affects its transcription factor activity, therefore
leading to altered AR-target gene expression. This KER refers to decreased AR activation and altered gene expression
occurring in complex systems, such as /n vivo and the specific effect on transcription of AR target genes will depend
on species, life stage, tissue, cell type etc.

Evidence Supporting this KER

Biological Plausibility
The biological plausibility for this KER is considered high

The AR is a ligand-activated transcription factor part of the steroid hormone nuclear receptor family. Non-activated AR
is found in the cytoplasm as a multiprotein complex with heat-shock proteins, immunophilins and, other chaperones
(Roy et al. 2001). Upon activation through ligand binding, the AR dissociates from the protein complex, translocates to
the nucleus and homodimerizes. Facilitated by co-regulators, AR can bind to DNA regions containing AREs and initiate
transcription of target genes, that thus will be different in e.g. different tissues, life-stages, species etc.

Through mapping of AREs and ChIP sequencing studies, several AR target genes have been identified, mainly studied
in prostate cells (Jin, Kim, and Yu 2013). Different co-regulators and ligands lead to altered expression of different sets
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of genes (Jin et al. 2013; Kanno et al. 2022) Alternative splicing of the AR can lead to different AR variants that also
affects which genes are transcribed (Jin et al. 2013).

Apart from this canonical signaling pathway, the AR can suppress gene expression, indirectly regulate miRNA
transcription, and have non-genomic effects by rapid activation of second messenger pathways in either presence or
absence of a ligand (Jin et al. 2013).

Empirical Evidence
The empirical evidence for this KER is considered high

In humans, altered gene expression profiling in individuals with androgen insensitivity syndrome (AIS) can provide
supporting empirical evidence (Holterhus et al. 2003; Peng et al. 2021) In rodent AR knockout (KO) models, gene
expression profiling studies and gene-targeted approaches have provided information on differentially expressed
genes in several organ systems including male and female reproductive, endocrine, muscular, cardiovascular and
nervous systems (Denolet et al. 2006; Fan et al. 2005; Holterhus et al. 2003; Ikeda et al. 2005; Karlsson et al. 2016;
MacLean et al. 2008; Rana et al. 2011; Russell et al. 2012; Shiina et al. 2006; Wang et al. 2006; Welsh et al. 2012;
Willems et al. 2010; Yu et al. 2008, 2012; Zhang et al. 2006; Zhou et al. 2011).

Exposure to known antiandrogens has been shown to alter transcriptional profiles, for example of neonatal pig ovaries
(Knapczyk-Stwora et al. 2019).

Dose concordance has also been observed for instance in zebrafish embryos; a dose of 50 pg/L of the AR antagonist
flutamide resulted in 674 differentially expressed genes at 96 h post fertilization whereas 500 ug/L flutamide resulted
in 2871 differentially expressed genes (Ayobahan et al., 2023).

Uncertainties and Inconsistencies

AR action has been reported to occur also without ligand binding. However, not much is known about the extent and
biological implications of such non-canonical, ligand-independent AR activation (Bennesch and Picard 2015).

Quantitative Understanding of the Linkage

Response-response relationship

There is not enough data to define a quantitative relationship between AR activation and alteration of AR target gene
transcription, and such a relationship will differ between biological systems (species, tissue, cell type, life stage etc).

Time-scale

AR and promoter interactions occur within 15 minutes of ligand binding, RNA polymerase Il and coactivator
recruitment are proposed to occur transiently with cycles of approximately 90 minutes in LNCaP cells (Kang et al.
2002). RNA polymerase Il elongation rates in mammalian cells have been shown to range between 1.3 and 4.3 kb/min
(Maiuri et al. 2011). Therefore, depending on the cell type and the half-life of the AR target gene transcripts, changes
are to be expected within hours.

Known modulating factors
Modulating

Factor (MF) MF Specification Effect(s) on the KER Reference(s)
Age AR expression in aging male Tissue-specific alterations in AR (Supakar et al. 1993; Wu,
9 rats activity with aging Lin, and Gore 2009)
AT Number of CAG repeats in Decreased AR activation with (Tut et al. 1997; Chamberlain
yp the first exon of AR increased number of CAGs et al. 1994)

Known Feedforward/Feedback loops influencing this KER

AR has been hypothesized to auto-regulate its mRNA and protein levels(Mora and Mahesh 1999).
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Relationship: 2820: Decrease, AR activation leads to AGD, decreased
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(AGD) in male (mammalian) offspring adjacent

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links
human, mouse, human, mouse, High NCBI
rat rat D

Life Stage Applicability
Life Stage Evidence

Fetal to Parturition High
Sex Applicability
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Sex Evidence

Male High

Taxonomic

Fetal masculinization including the AGD is regulated by androgens interacting with the AR in all mammals, including humans
(Murashima et al., 2015; Thankamony et al., 2016), although, the size of the AGD and difference between the sexes vary
between species. A large number of studies exist showing that fetal exposure to anti-androgens causes shortened AGD in male
rats and mice (Schwartz et al., 2019, see also Table 2). Some epidemiological studies find associations between exposure to
anti-androgenic compounds and shorter AGD in boys (Thankamony et al., 2016). However, the associations are not very clear
and confidence in the data is limited by conflicting results, possibly due to differences in study design and methods for
exposure measurements and analyses. Nevertheless, the KER is considered applicable to humans, based on current
understanding of the role of AR activation in fetal masculinization.

Life stage

Programming of the AGD occurs during the masculinization programming window in fetal life. This takes place in rats around
embryonic days 15.5-19.5 (GD16-20) and likely gestation weeks 8-14 in humans (Welsh et al., 2008). It should be mentioned
that though AGD is believed to be relatively stable throughout life, it can be responsive to postnatal changes in androgen
levels (Schwartz et al., 2019).

Sex

Data presented in this KER support that disruption of androgen action during fetal life can lead to a short AGD in male
offspring. While exposure to chemicals during fetal life can also shorten female AGD, the biological significance and the
mechanism driving the effect is unknown (Schwartz et al., 2019).

Key Event Relationship Description

This KER refers to a decrease in androgen receptor (AR) activation during fetal development leading to decreased anogenital
distance (AGD) in male offspring.

It should be noted that the upstream Key Event (KE) ‘decrease, androgen receptor activation’ (KE-1614 in AOP Wiki)
specifically focuses on decreased activation of the androgen receptor in vivo, while most methods that can be used to measure
AR activity are carried out in vitro. Indirect information about this KE may for example be provided from assays showing in
vitro AR antagonism, decreased in vitro or in vivo testosterone production/levels or decreased in vitro or in vivo
dihydrotestosterone (DHT) production/levels.

Evidence Supporting this KER

Biological Plausibility
The biological plausibility for this KER is judged to be high based on the following:

- Sexual differentiation happens in fetal life. The testes are developed and start to produce testosterone that is converted in
other tissues by the enzyme 5-alpha-reductase to the more potent androgen dihydrotestosterone (DHT). Both hormones bind
and activate the nuclear receptor and transcription factor AR that in turn drives masculinization of the male fetus (Welsh et al.,
2014; Schwartz et. al, 2019).

- Fetal masculinization depends on activation of androgen signaling during a critical time window, the masculinization
programming window (MPW), from gestational day (GD) 15.5-18.5 in rats, 14.5-16.5 in mice and presumably gestation weeks
(GWs) 8-14 in humans (Welsh et al., 2008; Amato et al., 2022). The onset of AR expression in the tissues of the reproductive
tract follows the timing of the MPW (Welsh et al., 2008).

- The fetal masculinization process involves a range of tissues and organs, including the perineum. Perineum length can be
measured as the AGD, which is the distance between the anus and the genitalia. The AGD is approximately twice as long in
male as in female newborn rodents and humans (Schwartz et al., 2019).

- Male AR knockout mice present shorter AGD than wildtype males, so short that it is indistinguishable from wildtype female
littermates (Yeh et al., 2002, Sato et al., 2004).

- In human males, mutations decreasing AR activity also lead to feminization. One example is the androgen insensitivity
syndrome (AlS), where mutations in the AR lead to an impaired or abolished response to androgens, and thereby some degree
of feminization of XY individuals and even XY sex reversal in individuals with complete AIS (CAIS) (Thankamony et al., 2016;
Hughes et al., 2012; Crouch et al., 2011). XY individuals with CAIS present as women with internally placed testes. A study
showed that the clitoral to urethral distance in these individuals was similar to a control group of women, but it is not clear
whether this measurement can work as a proxy for measuring the AGD (Thankamony et al 2016, Crouch 2011). Unfortunately,
it seems the AGD has not at present been measured in CAIS individuals. Another example is human males lacking 5-alpha-
reductase, also presenting female-like genitalia (Batista & Mendonca, 2022).

- The detailed mechanism by which androgens regulate the AGD is not known but it is hypothesized that the AGD is influenced
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by the size of the levator-ani and bulbocavernosus (LABC) muscle complex in the perineum. The growth of this complex is
stimulated by AR activation, it is sexually dimorphic and larger in males than in females and (Schwartz et al., 2019). AR is
required for the development of the LABC complex as demonstrated by AR general and muscle specific knockout mice. AR is
expressed in non-myocytic cells in the LABC complex, starting at E15.5 in mice, and knockout of AR in these cells results in
defects in the muscle formation (Ipulan et al., 2016;). Differential gene expression profiles in the perineum of male and female
rats as well as in antiandrogen-exposed male rats have been identified providing further mechanistic understanding (Schwartz
et al, 2019; Draskau et al, 2022).

Empirical Evidence
Animal in vivo data
The empirical support from studies in animals for this KER is overall judged as high.

It should be noted that the KE decreased androgen receptor activation (KE-1614 in AOP Wiki) specifically focuses on decreased
activation of the androgen receptor in vivo, with no methods currently available to measure this. Examples of assays that
provide indirect information about KE-1614 are described in upstream MIE/KEs.

The empirical evidence for this KER from animal studies in vivo is based on studies using five different substances that result in
decreased AR activation by different mechanisms. Flutamide, procymidone and vinclozolin bind to the AR and inhibit the
receptor activity and thereby act as AR antagonists, see MIE26. Finasteride inhibits the 5-alpha-reductase enzyme that
converts testosterone to DHT, see MIE1617. DEHP exposure during prenatal development in rats results in reduced fetal
testosterone levels, see KE1690. (MIE26, MIE1617 and KE1690 can be found in AOP Wiki).

The evidence for the upstream KE is mainly based on data from in vitro assays (AR antagonism or 5-alpha-reductase inhibition
in vitro) whereas the evidence for the downstream KE is based on in vivo studies, and there is generally not evidence for both
KEs from the same study. However, decreased testosterone levels can be measured in vivo, and Borch et al., 2004 measured

the effect of developmental DEHP exposure on both testosterone levels and AGD (see section about “Dose concordance”).

The empirical animal evidence for the five substances is summarized in table 3.

Table 3. Summary of empirical evidence for decreased androgen receptor activation, leading to decreased male AGD.
References for the studies supporting the empirical evidence are found in section “Evidence for decreased AR activation

(KE1614) by flutamide, procymidone, and vinclozolin, finasteride and DEHP” and in table 2.

Stressor(s) | Upstream effect Downstream effect
(decreased AR activation) (decreased male AGD)

Flutamide AR antagonism in in vitro Decreased male AGD after
assay receptor binding and prenatal exposure in studies in
transactivation assays rat

Procymidone | AR antagonism in in vitro Decreased male AGD after
assay receptor binding and prenatal exposure in studies in
transactivation assays rat

Vinclozolin AR antagonism in in vitro Decreased male AGD after
assay receptor binding and prenatal exposure in studies in
transactivation assays rat and mouse

Finasteride |[Inhibition of 5-alpha-reductase | Decreased male AGD after

enzyme in in vitro assays prenatal exposure in studies in
rat
DEHP Reduced production of Decreased male AGD after
testosterone in fetal testis prenatal exposure in studies in
measured in ex vivo testis rat

assays, reduced testosterone
levels in testis and reduced
fetal plasma or serum
testosterone levels

From table 3, it can be deducted that fetal exposure to substances known to decrease androgen receptor activation through
antagonism of the AR (vinclozolin, procymidone, flutamide), inhibition of testosterone synthesis (DEHP) or inhibition of
conversion of testosterone to DHT (finasteride), results in decreased AGD in rat and mouse male offspring.
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Evidence for decreased AR activation (KE 1614) by flutamide, procymidone, vinclozolin, finasteride and DEHP

Flutamide, a pharmaceutical, binds the AR and inhibits the receptor activity, thereby acting as an AR antagonist. It has been
used as an antiandrogen for treatment of prostate cancer and is used as a reference chemical for antiandrogenic activity in the
AR transactivation assays in the OECD test guideline No 458 (Goldspiel & Kohler, 1990; Labrie, 1993; OECD, 2023; Simard et
al., 1986).

Procymidone and vinclozolin are fungicides that have been shown to be AR antagonists. Procymidone binds to the AR and
inhibits the agonist binding as shown in AR binding assays using rat prostate cytosol (Hosokawa et al., 1993) or AR transfected
COS cells (Ostby et al., 1999). Procymidone also inhibits agonist activated transcription in AR reporter assays (Hass et al.,
2012; Kojima et al., 2004; Orton et al., 2011; Ostby et al., 1999; Scholze et al., 2020). Vinclozolin binds to the AR and inhibits
the agonist binding as shown in AR binding assays using rat epididymis cytosol (Kelce et al., 1997) or AR transfected COS-1
cells (Wong et al., 1995).

Vinclozolin also inhibits agonist activated transcription in AR reporter assays (Euling et al, 2002; Kojima et al., 2004; Molina-
Molina et al., 2006; Orton et al., 2011; Scholze et al., 2020; Shimamura et al., 2002; Wong et al., 1995). Finasteride is a
pharmaceutical that inhibits the 5-alpha-reductase enzyme that converts testosterone to DHT. Finasteride is used to treat
benign prostatic hypertrophy (Andersson & Russel, 1990; Rittmaster & Wood, 1994; Stoner, 1990).

Prenatal exposure to DEHP in rats results in reduced production of testosterone in fetal testis measured in ex vivo testis assays,
reduced testosterone levels in testis and reduced fetal plasma or serum testosterone levels (Borch et al., 2004; Borch et al.,
2006; Culty et al., 2008; Hannas et al., 2011; Hannas et al., 2012; Klinefelter et al., 2012; Parks et al., 2000; Wilson et al.,

2004; Wilson et al., 2007; Vo et al., 2009). Two studies don’t show an effect on testosterone levels in testis or fetal plasma
testosterone levels, respectively (Andrade et al., 2006; Borch et al., 2006). The precise underlying mechanism is presently
unknown.

Evidence for decreased AGD in males (KE1688) by prenatal exposure to flutamide, procymidone, vinclozolin, finasteride and
DEHP

All datasets that were used for the weight of evidence assessment were judged as reliable without or with restriction. The
majority of datasets assessed showed a decreased male AGD. The conclusion was that the level of confidence was strong for
all five substances. The studies are summarized in table 4.

Empirical evidence for the included substances

Table 4. Empirical evidence for decreased AGD in males (KE1688) by prenatal exposure to flutamide, procymidone, vinclozolin,
finasteride and DEHP. *One dose only.

>>>>>TABLE 4<<<<<

Species | Exposure Measurement NOAEL LOAEL Reference
window timepoint (mg/kg (mg/kg
bw/day) bw/day)
Flutamide
rat GD12-21 PND1 and PND100O | No 6.25 Mclntyre et al.,
2001
rat GD16, 17, 18 or | PND1 and PND10O | --* 50 Foster & Harris,
19 2005
rat GD7-21 PND1 No 0.5 Hass et al., 2007
rat GD6-17 + GD21 No 3 Goto et al., 2004
GD16-21
rat GD6-PND4 PND4 0.4 2 Yamasaki et al.,
2005
rat GD6-PND1 PND1 0.25 2.5 Fussell et al.,
2015
rat GD13-20 PND4 and PND23 | --* 20 Kita et al., 2016
rat GD11-21 PND 14, 21 and --* 5 mg per Casto et al., 2003
120 rat
Procymidone
rat GD7-PND16 at birth, GD22-24 | No 125 Hass et al., 2012
rat GD7-PND16 at birth, GD22-24 |10 25 Hass et al., 2007
rabbit GD6-28 GD29 125 No effect Inawaka et al.,
2010
rat GD14-PND3 PND2 No 25 Ostby et al., 1999
Vinclozolin
Rat GD16-17 + PND1 -k 400 Wolf et al., 2000
GD18-19
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Rat GD14-19 PND1 No 200 Wolf et al., 2000

Rat GD7-21 PND1 5 10 Hass et al., 2007

Mouse GD10-18 PND1 and 7 --* 100 Shimamura et al.,
2002

Rat GD4-PND3 PND2 No 3.125 Gray et al., 1994

Finasteride

rat GD12-21 PND1 and PND90 | No 0.01 Bowman et al.,
2003

rat GD7-21 PNDO 0.01 0.1 Christiansen et al.,
2009

rat GD15-21 PND1 0.0003 0.03 Clark et al., 1993

rat GD15-21 PND22 and 0.03 3 Clark et al., 1993

PND114-117

rat GD12-21 PND1 and PND9O | --* 10 Martinez et al.,

2011

Epidemiological data on DEHP
The biggest relevant epidemiological dataset was identified on associations between DEHP and AGD.

Six prospective cohort studies and one cross-sectional study on the association between maternal DEHP metabolites and
length of AGD (anopenile distance (APD) and anoscrotal distance (ASD)) in boys were assessed as reliable without or with
restriction. Decreased AGD (anopenile distance (APD) and/or anoscrotal distance (ASD)) was observed in three prospective
cohort studies (Martino-Adrade et al., 2016; Swan et al., 2005 reviewed and updated in Swan 2008; Wenzel et al., 2019. In
contrast, no significant association was observed in three other prospective cohort studies (Arbuckle et al., 2018; Henriksen et
al., 2023; Jensen et al., 2016) and the cross-sectional study (Sunman et al., 2019). This inconsistency introduces a level of
uncertainty regarding the overall association. Therefore, the level of confidence was judged as weak.

Dose concordance

Dose concordance is challenging to assess for this KER since in vivo AR activity is currently not possible to measure, but only
can be informed indirectly by measures of upstream events.

However, some studies provide useful information that support dose concordance between the KEs.

In a publication by Borch et al., rats were exposed in utero to DEHP at GD7-21. Fetal testosterone levels in testes and serum
and testosterone production in fetal testes ex vivo were investigated at GD21, whereas AGD was investigated at PND3. The
LOAELSs for reduced testosterone production in ex vivo fetal testes and reduced testosterone levels in fetal testes were 300

mg/kg/d, whereas the LOAEL for decreased AGD in male offspring was 750 mg/kg/d (Borch et al., 2004).

In a publication by Scholze et al, AR antagonism and decreased testosterone synthesis was quantitatively assessed (IC50) in
vitro for a list of substances. In addition, internal concentrations in male fetuses and effects on AGD were measured after fetal
exposure to the same substances. In utero exposure to all the substances lead to reduced AGDIndex (AGDI) in the exposed
male offspring. Further, for all substances except Cyprodinil, the internal exposure levels in the fetuses leading to reduced AGD
exceeded the IC50 levels observed in one or both of the in vitro assays.

Three different doses of linuron exposure were included. The medium exposure dose led to a higher level of internal exposure
and a higher degree of AGDI reduction than the low dose. AGDI could not be determined in the highest dose due to maternal
toxicity (Scholze et al., 2020).

Temporal concordance

Temporal concordance can only be considered from a theoretical perspective since the downstream event, decreased AGD, is
usually measured at GD21, PNDO or PND1 in rats, and due to the size of the fetuses is not feasible to measure at earlier
timepoints.

Considering the biology, the upstream event - decreased AR activation /n vivo - is foreseen to happen minutes to hours after
exposure. If a substance decreases AR activation through inhibition of the AR, the upstream event is expected to happen
immediately after exposure. If a substance decreases androgen receptor activation through inhibition of testosterone
synthesis, the upstream event is expected to happen minutes to hours after the exposure, though it is uncertain exactly when
the change will be big enough to be measurable. On the other hand, the downstream event - decreased AGD - is a
measurement of relative growth of the perineal tissue, which is expected to take days in the developing fetus.

Uncertainties and Inconsistencies

For the model substances, there were some inconsistencies in the empirical evidence, but they could be explained by
differences in study designs and uncertainties in measurements, see appendix 1:
8dh20j155i FINAL Appendix_KER2820_For_Wiki.pdf.

Species differences in effects of phthalates (including DEHP and DBP) on fetal testes testosterone production have been
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observed between humans, mice and rats. In human fetal testes exposed to DEHP or DBP in vitro or ex vivo, no suppression of
testosterone production is observed, which contrasts observations in rat fetal testes under similar conditions. Also in mice,
testosterone production in the fetal testes is unaffected by treatment with DEHP or DBP in vitro or in utero (Sharpe, 2020).

The species differences described above are specific for some phthalates and their interference with fetal testicular
testosterone production. This uncertainty should not be reflected on other antiandrogenic substances, especially not those
acting through other mechanisms of action.

The association between exposure to DEHP and reduced AGD in humans is judged to be weak, which may further support a
species difference between rodents and humans, but it may also reflect the large uncertainties inherent in the epidemiological
studies.

Observational epidemiological studies face challenges in proving cause-effect relationships as they cannot control conditions
like experimental animal and in vitro studies. Human studies can identify associations between variables but cannot offer
conclusive proof of causation (Lanzoni et al., 2019). Various study designs and statistical methods are employed to strengthen
evidence within the inherent limitations of observational research (Song & Chung, 2010; Olier et al., 2023). Inconsistencies in
epidemiological data arise from various factors, such as different methodologies used in exposure and outcome measurement
and also in statistical analyses.

These differences collectively contribute to the complexity of interpreting and weighing the evidence in epidemiological
research.

Quantitative Understanding of the Linkage

The quantitative understanding of the linkage is low. This is a consequence of it not being possible to measure the upstream
and the downstream event in the same study.

Response-response relationship

In one study, a quantitative model was developed to predict the decrease in AGD from in vitro AR antagonism or in vitro
decreased testosterone synthesis. The authors conclude that predicting the effect on AGD in vivo based on the in vitro results
is only possible on a qualitative level, but the model cannot predict AGD reductions quantitatively (Scholze et al., 2020).

Time-scale

AR activation operates on a time-scale of minutes. The AR is a ligand-activated nuclear receptor and transcription factor. Upon
ligand binding a conformational change and subsequent dimerization of the AR takes place within 3-6 minutes (Schaufele et
al., 2005). Nuclear translocation (Nightingale et al., 2003) and promoter interactions occur within 15 minutes of ligand binding,
and RNA polymerase Il and coactivator recruitment are then proposed to occur transiently with cycles of approximately 90
minutes (Kang et al., 2002).

For the downstream event, the time-scale for observing a measurable effect on growth of a tissue (in this case the perineum) is
closer to days and weeks depending on species. For instance, in humans, the masculinization programming window is
presumed to start around GW 8, while a sexual dimorphism of the AGD can first be observed from around GWs 11-13
(Thankamony et al., 2016) and reaches its maximum 2-fold difference around GWs 17-20 (Sharpe, 2020).

It has been demonstrated that exposure to flutamide for one day (Foster & Harris, 2005) or vinclozolin for two days (Wolf et al.,
2000) during the sensitive window of exposure can elicit a detectable decrease in the AGD in male rat offspring.

Known modulating factors

A well established modulating factor is genetic variations in the AR which decrease the function of the receptor. For example,
longer CAG repeat lengths have been associated with decreased AR activation (Tut et al 1997, Chamberlain et al 1994) and a
shorter AGD in adult men (Eisenberg et al., 2013). Other modulating factors being discussed in the literature is maternal age
and parity (Barrett et al., 2014), but these associations are only suggestive with more studies needed to confirm the
associations (Barrett et al., 2014).

Known Feedforward/Feedback loops influencing this KER

Not relevant for this KER.
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Relationship: 2127: Altered, Transcription of genes by the AR leads to AGD, decreased

AOPs Referencing Relationship

Weight of Quantitative

L ETIC A Evidence Understanding
5a-reductase inhibition leading to short anogenital distance (AGD) in non-
; . . Moderate

male (mammalian) offspring adjacent
Androgen receptor (AR) antagonism leading to short anogenital non-

. - - * . Moderate
distance (AGD) in male (mammalian) offspring adjacent
Decrea;ed testosterone .svnthe5|s _Ieadlnq to short anogenital distance non- Moderate Low
(AGD) in male (mammalian) offspring adjacent

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links
human, mouse, human, mouse, High NCBI
rat rat —

Life Stage Applicability
Life Stage Evidence

Fetal to Parturition High
Sex Applicability
Sex Evidence

Male High

Species
This KER applies to humans, mice, and rats based on biological plausibility. Current empirical evidence is from rat studies only.

Fetal masculinization including the AGD is regulated by androgens interacting with the AR in all mammals, including humans
(Murashima et al., 2015; Thankamony et al., 2016), although, the size of the AGD and difference between the sexes vary
between species. A large number of studies exist showing that fetal exposure to anti-androgens causes shortened AGD in male
rats and mice (Schwartz et al., 2019a). Some epidemiological studies find associations between exposure to anti-androgenic
compounds and shorter AGD in boys (Thankamony et al., 2016). However, the associations are not very clear and confidence
in the data is limited by conflicting results, possibly due to differences in study design and methods for exposure
measurements and analyses. Nevertheless, the KER is considered applicable to humans, based on current understanding of
the role of AR activation in fetal masculinization.

Life stage

The length of the AGD is programmed during fetal life during the masculinization programming window. This takes place in rats
around embryonic days 15.5-19.5 (GD16-20) and likely gestation weeks 8-14 in humans (Welsh et al., 2008). It should be
mentioned that though AGD is believed to be relatively stable throughout life, it can be responsive to postnatal changes in
androgen levels (Schwartz et al., 2019a).

Sex

A decrease in the male AGD is a consequence of disrupted androgen action (Welsh et al 2008). While exposure to chemicals
during fetal life can also shorten female AGD, the biological significance and the mechanism driving the effect is unknown
(Schwartz et al 2019a).

Key Event Relationship Description

During male reproductive development, the androgen receptor (AR) regulates gene transcription in target tissues to induce
masculinization. Target tissues include the perineum, the tissue located between the anus and the genitals. This tissue is
sexually dimorphic, with males developing the levator ani-bulbocavernosus (LABC) muscle complex in response to androgen
signaling. The anogenital distance (AGD) is about twice as long in newborn males than in females in many mammals such
mice, rats and humans.

A consequence of reduced androgen action during the masculinization programming window in utero, the male AGD will end
up being shorter, approaching female AGD when AR signaling is almost blocked. Measuring of the AGD thus serves as a
morphometric biomarker for compromised androgen action during fetal life and is used in OECD test guidelines for assessing
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endocrine disruption.

This KER refers to a tissue-specific, in this case the perineum, alteration in AR-mediated gene transcription during fetal
development leading to a decreased AGD in male offspring.

Evidence Supporting this KER

Biological Plausibility

Sexual differentiation initiates during fetal life when a surge in testosterone induces masculinization of a range of tissues and
organs (Welsh et al). Testosterone and the more potent metabolite DHT mediate masculinization via activation of the AR; a
nuclear transcription factor. Androgens thus induce masculinization via altered AR gene transcription in target tissues. This
includes the perineum (Niel et al 2008; Ipulan et al 2014) which can be measured as the AGD and is approximately twice as
long in newborn male rodents and humans compared to female (Schwartz et al 2019a). This is also evident in male AR
knockout mice which present with an AGD that is indistinguishable from wildtype female littermates (MacLean et al 2008;
Notini et al 2005).

Empirical Evidence

Current evidence for direct transcriptional changes mediated by AR disruption in the perineum leading to shorter male AGD is
limited. Two studies were identified investigating the transcriptional footprint in the perineum after anti-androgen exposure:

Gestational exposure of rats to the 5a-reductase inhibitor finasteride (leading to decreased DHT levels) decreased fetal male
AGD with 37% at gestational day (GD) 21. Microarray was used to compare transcriptional profiles between control males,
finasteride-exposed males, and control females, revealing a sexually dimorphic transcriptional profile of the perineum, with the
profile of finasteride-exposed males being intermediary to the male and female control groups (Schwartz et al 2019b).

Gestational exposure of rats to the AR antagonist triticonazole induced decreased fetal male AGD at GD21 and a differentially
expressed set of genes investigated by whole transcriptome sequencing in the perineum at both GD17 and GD21 (Draskau et
al 2022).
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