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This AOP links decreased testosterone synthesis by fetal Leydig cells with short anogenital distance (AGD) in male
offspring. A short AGD around birth is a marker for feminization of male fetuses and is associated with male
reproductive disorders, including reduced fertility in adulthood. Although a short AGD is not necessarily ‘adverse’ from
a human health perspective, it is considered an ‘adverse outcome’ in OECD test guidelines; AGD measurements are
mandatory in specific tests for developmental and reproductive toxicity in chemical risk assessment (TG 443, TG

421/422, TG 414).

Testosterone is primarily synthesized by fetal Leydig cells of the fetal testes by the process of steroidogenesis. The
precursor molecule cholesterol is converted to testosterone via several enzymatic steps and includes for instance key
CYP enzymes, CYP11 and CYP17. Following synthesis, testosterone is released into the circulation and transported to
target tissues and organs where it initiates masculinization processes. Under normal physiological conditions,
testosterone produced by the testicles, is converted in peripheral tissues by 5a-reductase into DHT, which in turn
binds AR and activates downstream target genes. AR signaling is necessary for masculinization of the developing
fetus, including differentiation of the levator ani/bulbocavernosus (LABC) muscle complex in males. The LABC complex
does not develop in the absence, or low levels of, androgen signaling, as in female fetuses.

The key events in this pathway is inhibition of testosterone synthesis in the fetal Leydig cells. In turn, this results in
reduced circulating testosterone levels and less DHT (converted by 5a-reductase). Low DHT fails to properly activate
AR in target tissues, including the developing perineal region, which leads to failure to properly masculinize the

perineum/LABC complex and ultimately a short AGD.

Summary of the AOP

Events

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Title

Reduction, Testosterone synthesis in Leydig

Decrease, testosterone levels

Decrease, dihydrotestosterone (DHT) level

Decrease, androgen receptor activation

Altered, Transcription of genes by the

androgen receptor

Sequence Type E\:eDnt
KE 413
cells

KE 1690
KE 1613
KE 1614
KE 286

AO 1688

Key Event Relationships

Upstream Event

Reduction, Testosterone synthesis

in Leydig cells

Decrease, testosterone levels

Decrease, dihydrotestosterone
(DHT) level

Decrease, androgen receptor
activation

Altered, Transcription of genes by
the androgen receptor

Decrease, testosterone levels

Decrease, androgen receptor
activation

Stressors

anogenital distance (AGD), decreased

Relationship
Type

adjacent

adjacent

adjacent

adjacent

adjacent

non-adjacent

non-adjacent

AR

Downstream Event

Decrease, testosterone levels

Decrease, dihydrotestosterone
(DHT) level

Decrease, androgen receptor
activation

Altered, Transcription of genes by
the androgen receptor

anogenital distance (AGD),
decreased

Decrease, androgen receptor
activation

anogenital distance (AGD),
decreased

Short name

Reduction, Testosterone synthesis in
Leydig cells

Decrease, testosterone levels
Decrease, DHT level
Decrease, AR activation

Altered, Transcription of genes by the

AGD, decreased

Quantitative

Evidence Understanding
High Moderate
Moderate Low

High Moderate

High Moderate
Moderate Moderate
Moderate Moderate
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Name Evidence
Dibutyl phthalate High

Bis(2-ethylhexyl)

phthalate alig

Overall Assessment of the AOP

Domain of Applicability
Life Stage Applicability

Life Stage Evidence

Foetal High

Pregnancy High
Taxonomic Applicability
Term Scientific Term Evidence Links

human Homo sapiens Moderate NCBI
rat Rattus norvegicus High NCBI
mouse Mus musculus Moderate NCBI

Sex Applicability
Sex Evidence

Male High
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Appendix 1
List of Key Events in the AOP

Event: 413: Reduction, Testosterone synthesis in Leydig cells

Short Name: Reduction, Testosterone synthesis in Leydig cells

Key Event Component

Process Object Action

testosterone biosynthetic process testosterone decreased

AOPs Including This Key Event

AOP ID and Name I.EI.‘;:'::
Aop:51 - PPARa activation leading to impaired fertility in adult male rodents KeyEvent
Aop:18 - PPARa activation in utero leading to impaired fertility in males KeyEvent
Aop:64 - Glucocorticoid Receptor (GR) Mediated Adult Leydig Cell Dysfunction Leading to Decreased KeyEvent

Male Fertility
Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male
KeyEvent

(mammalian) offspring

Biological Context

Level of Biological Organization
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Celrelbof Biological Organization
Cell term

Cell term

testosterone secreting cell

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

rat Rattus norvegicus High NCBI
human Homo sapiens High NCBI
mice Mus sp. Low NCBI

Key enzymes needed for testosterone production first appear in the common ancestor of amphioxus and vertebrates
(Baker 2011). Consequently, this key event is applicable to most vertebrates, including humans.

Key Event Description

Biological state
Testosterone is a steroid hormone from the androgen group and is found in humans and other vertebrates.
Biological compartments

In humans and other mammals, testosterone is secreted primarily by the testicles of males and, to a lesser extent,
the ovaries of females and other steroidogenic tissues (e.g., brain, adipose). It either acts locally /or is transported to
other tissues via blood circulation. Testosterone synthesis takes place within the mitochondria of Leydig cells, the
testosterone-producing cells of the testis. It is produced upon stimulation of these cells by Luteinizing hormone (LH)
that is secreted in pulses into the peripheral circulation by the pituitary gland in response to Gonadotropin-releasing
hormone (GnRH) from the hypothalamus. Testosterone and its aromatized product, estradiol, feed back to the
hypothalamus and pituitary gland to suppress transiently LH and thus testosterone production. In response to
reduced testosterone levels, GnRH and LH are produced. This negative feedback cycle results in pulsatile secretion of
LH followed by pulsatile production of testosterone (Ellis, Desjardins, and Fraser 1983), (Chandrashekar and Bartke
1998).

General role in biology

Testosterone is the principal male sex hormone and an anabolic steroid. Male sexual differentiation depends on
testosterone (T), dihydrotestosterone (DHT), and the expression of androgen receptors by target cells (Manson and
Carr 2003). During the development secretion of androgens by Leydig cells is essential for masculinization of the
foetus (Nef 2000). The foetal Leydig cells develop in utero. These cells become competent to produce testosterone in
rat by gestational day (GD) 15.5, with increasing production thereafter. Peak steroidogenic activity is reached just
prior to birth, on GD19 (Chen, Ge, and Zirkin 2009). Testosterone secreted by foetal Leydig cells is required for the
differentiation of the male urogenital system late in gestation (Huhtaniemi and Pelliniemi 1992). Foetal Leydig cells
also play a role in the scrotal descent of the testis through their synthesis of insulin-like growth factor 3 (Insl3), for
review see (Nef 2000).

In humans, the first morphological sign of testicular differentiation is the formation of testicular cords, which can be
seen between 6 and 7 weeks of gestation. Steroid-secreting Leydig cells can be seen in the testis at 8 weeks of
gestation. At this period, the concentration of androgens in the testicular tissue and blood starts to rise, peaking at 14-
16 weeks of gestation. This increase comes with an increase in the number of Leydig cells for review see (Rouiller-
Fabre et al. 2009).

Adult Leydig cells, which are distinct from the foetal Leydig cells, form during puberty and supply the testosterone
required for the onset of spermatogenesis, among other functions. Distinct stages of adult Leydig cell development
have been identified and characterized. The stem Leydig cells are undifferentiated cells that are capable of indefinite
self-renewal but also of differentiation to steroidogenic cells. These cells give rise to progenitor Leydig cells, which
proliferate, continue to differentiate, and give rise to the immature Leydig cells. Immature Leydig cells synthesize high
levels of testosterone metabolites and develop into terminally differentiated adult Leydig cells, which produce high
levels of testosterone. With aging, both serum and testicular testosterone concentrations progressively decline, for
review see (Nef 2000).

Androgens play a crucial role in the development and maintenance of male reproductive and sexual functions. Low

levels of circulating androgens can cause disturbances in male sexual development, resulting in congenital
abnormalities of the male reproductive tract. Later in life, this may cause reduced fertility, sexual dysfunction,
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decreased muscle formation and bone mineralisation, disturbances of fat metabolism, and cognitive dysfunction.
Testosterone levels decrease as a process of ageing: signs and symptoms caused by this decline can be considered a
normal part of ageing.

How it is Measured or Detected

OECD TG 456[1] is the validated test guideline for an in vitro screen for chemical effects on steroidogenesis,
specifically the production of 17R-estradiol (E2) and testosterone (T). The testosterone syntheis can be measured in
vitro cultured Leydig cells. The methods for culturing Leydig cells can be found in the Database Service on Alternative
Methods to animal experimentation (DB-ALM): Leydig Cell-enriched Cultures [2], Testicular Organ and Tissue Culture
Systems [3].

Testosterone synthesis in vitro cultured cells can be measured indirectly by testosterone radioimmunoassay or
analytical methods such as LC-MS.
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Event: 1690: Decrease, testosterone levels

Short Name: Decrease, testosterone levels

AOPs Including This Key Event

AOP ID and Name BT
Type
Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male
: . KeyEvent
(mammalian) offspring
Aop:526 - Decreased Chicken Ovalbumin Upstream Promoter Transcription Factor Il (COUP-TFII) stem KeyEvent

Leydig cells leads to Impaired, Spermatogenesis
Biological Context

Level of Biological Organization

Tissue

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability
Life Stage Evidence
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Life Stage Evidence

During development and at .
adulthood High

Sex Applicability
Sex Evidence

Mixed High

This KE is applicable to mammals since the role of testosterone and its synthesis are conserved (Vitousek et al., 2018). Both
sexes need and produce testosterone and its role is observed throughout different life stages, from development to adulthood
(Luetjens & Weinbauer, 2012; Naamneh Elzenaty et al., 2022). Therefore, this KE is also applicable to both males and females
as well as throughout these life stages. It is, however, acknowledged that this KE most likely has a much broader domain of
applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge
to expand on the applicability to also include other vertebrates.

Key Event Description

Testosterone is an endogenous steroid hormone and a potent androgen. Androgens act by binding androgen receptors in
androgen-responsive tissues (Murashima et al., 2015). Testosterone and other androgens such as dihydrotestosterone (DHT)
are important for reproductive development and masculinization of the fetus. Androgens are also important for bone, brain,
muscle and skin health (Alemany, 2022). Just like other steroid hormones, testosterone is produced through a process known
as steroidogenesis which is controlled by enzymes converting cholesterol into all of the downstream steroid hormones. In
steroidogenesis, androstenedione or androstenediol is converted to testosterone by the enzymes 17B-hydroxysteroid
dehydrogenase (HSD) or 3B-HSD, respectively. Testosterone can then be converted to the more potent androgen, DHT, by 5a-
reductase, or aromatized by aromatase (CYP19A1) into estrogens. Testosterone secreted in blood circulation can be found free
but more frequently is found bound to SHBG or albumin (Trost & Mulhall, 2016).

Testosterone is produced mainly by the ovaries (in females ), testes (in males), and to a lesser degree in the adrenal glands.
During fetal development testosterone plays a crucial role in the differentiation of male reproductive tissues and the overall
male phenotype. In adulthood, testosterone synthesis is controlled by the Hypothalamus-Pituitary-Gonadal (HPG) axis. GnRH is
released from the hypothalamus inducing LH pulses secreted by the anterior pituitary. This LH surge leads to increased
testosterone production. If testosterone reaches low levels, this axis is once again stimulated to provoke more testosterone
synthesis. This feedback loop is essential for maintenance of appropriate testosterone levels (Chandrashekar & Bartke, 1998;
Ellis et al., 1983; Rey, 2021).

Disruption of any of the aforementioned processes may result in reduced testosterone levels, such as inhibition of
steroidogenic enzyme activity thereby inhibiting production of testosterone.

How it is Measured or Detected

Quantification of testosterone levels can be performed by various means (e.g. serum levels in vivo, cell culture medium levels
in vitro, tissue ex vivo or in vitro). Traditional immunoassay methods (ELISA or RIA), and advanced instrumental techniques
(e.g. LC-MS/MS) or liquid scintillation spectrometry (after radiolabeling) can be used (Shiraishi et al., 2008).

The H295R Steroidogenesis assay (OECD TG 456) is used to measure mainly the production of estradiol and testosterone. This
is a validated OECD test guideline using adrenal H295R cells and hormone levels are then measured in the cell medium (OECD
2011). H295R adrenocortical carcinoma cells produce all the main enzymes and hormones of the steroidogenic pathway.
Therefore, exposure to different stressors allows for broad analysis of their impact on steroidogenesis by measuring hormones
in culture medium by LC-MS/MS. H295 assay was designed measure disruption to testosterone or estradiol levels but can now
also be used to measure additional steroid hormones such as progesterone or pregnenolone. The U.S. EPA’s ToxCast program
developed a high throughput method for the H295R assay which can measure a total of 11 hormones from the steroidogenesis
pathway (Haggard et al.,, 2018). The H295R can be considered an indirect measurement as it provides information on a
disruption of overall steroidogenesis that would result in a change of testosterone levels but not the underlying mechanism.
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Event: 1613: Decrease, dihydrotestosterone (DHT) level
Short Name: Decrease, DHT level

AOPs Including This Key Event

AOP ID and Name ENent
Type
Aop:288 - !nhlbltlpn of 17a-hydrolase/C 10,20-lyase (C KeyEvent
(cryptorchidism) in male (mammals)
Aop:289 - Inhibition of 5a-reductase leading to impaired fecundity in female fish KeyEvent
Aop:305 - 5a-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) KevEvent
offspring Yy
Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male
- : KeyEvent
(mammalian) offspring
Aop:527 - Decreased Chicken Ovalbumin Upstream Promoter Transcription Factor I| (COUP-TFII) stem KeyEvent

Leydig cells leads to Hypospadias, increased

Biological Context

Level of Biological Organization

Tissue

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability

Life Stage Evidence
All life
stages
Sex Applicability

Moderate

Sex Evidence

Mixed High

This KE is applicable to both sexes, across developmental stages and adulthood, in many different tissues and across
mammals.
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In both humans and rodents, DHT is important for the /n utero differentiation and growth of the prostate and male external
genitalia (Azzouni et al., 2012; Gerald & Raj, 2022). Besides its critical role in development, DHT also induces growth of facial
and body hair during puberty in humans (Azzouni et al., 2012).

In mammals, the role of DHT in females is less established (Swerdloff et al., 2017), however studies suggest that androgens
are important in e.g. bone metabolism and growth, as well as female reproduction from follicle development to parturition
(Hammes & Levin, 2019).

It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending to non-mammalian
vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also
include other vertebrates.

Key Event Description

Dihydrotestosterone (DHT) is an endogenous steroid hormone and a potent androgen. The level of DHT in tissue or blood is
dependent on several factors, such as the synthesis, uptake/release, metabolism, and elimination from the system, which
again can be dependent on biological compartment and developmental stage.

DHT is primarily synthesized from testosterone (T) via the irreversible enzymatic reaction facilitated by 50-Reductases (5a-
REDs) (Swerdloff et al., 2017). Different isoforms of this enzyme are differentially expressed in specific tissues (e.g. prostate,
skin, liver, and hair follicles) at different developmental stages, and depending on disease status (Azzouni et al., 2012; Uhlén et
al., 2015), which ultimately affects the local production of DHT.

An alternative (“backdoor”) pathway , exists for DHT formation that is independent of T and androstenedione as precursors.
While first discovered in marsupials, the physiological importance of this pathway has now also been established in other
mammals including humans (Renfree and Shaw, 2023). This pathway relies on the conversion of progesterone (P) or 17-OH-P
to androsterone and then androstanediol through several enzymatic reactions and finally, the conversion of androstanediol into
DHT probably by HSD17B6 (Miller & Auchus, 2019; Naamneh Elzenaty et al., 2022). The “backdoor” synthesis pathway is a
result of an interplay between placenta, adrenal gland, and liver during fetal life (Miller & Auchus, 2019).

The conversion of T to DHT by 5a-RED in peripheral tissue is mainly responsible for the circulating levels of DHT, though some
tissues express enzymes needed for further metabolism of DHT consequently leading to little release and contribution to
circulating levels (Swerdloff et al.).

The initial conversion of DHT into inactive steroids is primarily through 3a-hydroxysteroid dehydrogenase (3a-HSD) and 38-
HSD in liver, intestine, skin, and androgen-sensitive tissues. The subsequent conjugation is mainly mediated by uridine 5°-
diphospho (UDP)-glucuronyltransferase 2 (UGT2) leading to biliary and urinary elimination from the system. Conjugation also
occurs locally to control levels of highly potent androgens (Swerdloff et al., 2017).

Disruption of any of the aforementioned processes may lead to decreased DHT levels, either systemically or at tissue level.
How it is Measured or Detected

Several methods exist for DHT identification and quantification, such as conventional immunoassay methods (ELISA or RIA)
and advanced analytical methods as liquid chromatography tandem mass spectrometry (LC-MS/MS). The methods can have
differences in detection and quantification limits, which should be considered depending on the DHT levels in the sample of
interest. Further, the origin of the sample (e.g. cell culture, tissue, or blood) will have implications for the sample preparation.

Conventional immunoassays have limitations in that they can overestimate the levels of DHT compared to levels determined
by gas chromatography mass spectrometry and liquid chromatography tandem mass spectrometry (Hsing et al., 2007;
Shiraishi et al., 2008). This overestimation may be explained by lack of specificity of the DHT antibody used in the RIA and
cross-reactivity with T in samples (Swerdloff et al., 2017).

Test guideline no. 456 (OECD 2023) uses a cell line, NCI-H295, capable of producing DHT at low levels. The test guideline is not
validated for this hormone. Measurement of DHT levels in these cells require low detection and quantification limits. Any effect
on DHT can be a result of many upstream molecular events that are specific for the NCI-H295 cells, and which may differ in
other models for steroidogenesis.
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Event: 1614: Decrease, androgen receptor activation

Short Name: Decrease, AR activation

AOPs Including This Key Event

AOP ID and Name '.EI_‘;TD':
Aop:288 - Inhibition of 17a-hydrolase/C 10,20-lyase (Cypl17A1) activit KevEvent
(cryptorchidism) in male (mammals) y
Aop:305 - 5a-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) KevEvent
offspring y
Aop:306 - Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male KevEvent
(mammalian) offspring Y
Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male KevEvent
(mammalian) offspring y
Aop:344 - Androgen receptor (AR) antagonism leading to nipple retention (NR) in male (mammalian) e
offspring Y
Aop:372 - Androgen receptor antagonism leading to testicular cancer KeyEvent
Aop:477 - Androgen receptor (AR) antagonism leading to hypospadias in male offspring KeyEvent

Biological Context

Level of Biological Organization

Tissue

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability

Life Stage Evidence
During development and at High
adulthood

9/31


https://aopwiki.org/events/1614
https://aopwiki.org/aops/288
https://aopwiki.org/aops/305
https://aopwiki.org/aops/306
https://aopwiki.org/aops/307
https://aopwiki.org/aops/344
https://aopwiki.org/aops/372
https://aopwiki.org/aops/477
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0

AOP307

Sex Applicability
Sex Evidence

Mixed High

This KE is considered broadly applicable across mammalian taxa as all mammals express the AR in numerous cells and tissues
where it regulates gene transcription required for developmental processes and functions. It is, however, acknowledged that
this KE most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are
encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.

Key Event Description

This KE refers to decreased activation of the androgen receptor (AR) as occurring in complex biological systems such as tissues
and organs in vivo. It is thus considered distinct from KEs describing either blocking of AR or decreased androgen synthesis.

The AR is a nuclear transcription factor with canonical AR activation regulated by the binding of the androgens such as
testosterone or dihydrotestosterone (DHT). Thus, AR activity can be decreased by reduced levels of steroidal ligands
(testosterone, DHT) or the presence of compounds interfering with ligand binding to the receptor (Davey & Grossmann, 2016;
Gao et al., 2005).

In the inactive state, AR is sequestered in the cytoplasm of cells by molecular chaperones. In the classical (genomic) AR
signaling pathway, AR activation causes dissociation of the chaperones, AR dimerization and translocation to the nucleus to
modulate gene expression. AR binds to the androgen response element (ARE) (Davey & Grossmann, 2016; Gao et al., 2005).
Notably, for transcriptional regulation the AR is closely associated with other co-factors that may differ between cells, tissues
and life stages. In this way, the functional consequence of AR activation is cell- and tissue-specific. This dependency on co-
factors such as the SRC proteins also means that stressors affecting recruitment of co-activators to AR can result in decreased
AR activity (Heinlein & Chang, 2002).

Ligand-bound AR may also associate with cytoplasmic and membrane-bound proteins to initiate cytoplasmic signaling
pathways with other functions than the nuclear pathway. Non-genomic AR signaling includes association with Src kinase to
activate MAPK/ERK signaling and activation of the PI3K/Akt pathway. Decreased AR activity may therefore be a decrease in the
genomic and/or non-genomic AR signaling pathways (Leung & Sadar, 2017).

How it is Measured or Detected

This KE specifically focuses on decreased /n vivo activation, with most methods that can be used to measure AR activity
carried out /n vitro. They provide indirect information about the KE and are described in lower tier MIE/KEs (see for example
MIE/KE-26 for AR antagonism, KE-1690 for decreased T levels and KE-1613 for decreased dihydrotestosterone levels). In this
way, this KE is a placeholder for tissue-specific responses to AR activation or inactivation that will depend on the adverse
outcome (AO) for which it is included.

In fish, The Rapid Androgen Disruption Activity Reporter (RADAR) assay included in OECD test guideline no. 251 can be used to
measure genomic AR activity (OECD, 2022). Employing a spgl-gfp construct under control of the AR-binding promoter spigginl
in medaka fish embryos, any stressor activating or inhibiting the androgen axis will be detected. This includes for instance
stressors that agonize or antagonize AR, as well as stressors that modulate androgen synthesis or metabolism. Non-genomic
AR activity cannot be detected by the RADAR assay (OECD, 2022). Similar assays may in the future be developed to measure
AR activity in mammalian organisms.
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Event: 286: Altered, Transcription of genes by the androgen receptor

Short Name: Altered, Transcription of genes by the AR
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Key Event Component

Process Object
regulation of gene androgen
expression receptor

AOPs Including This Key Event

AOP307

Action

decreased

AOP ID and Name

Aop:19 - Androgen receptor antagonism leading to adverse effects in the male foetus (mammals)

Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male

(mammalian) offspring

Aop:344 - Androgen receptor (AR) antagonism leading to nipple retention (NR) in male (mammalian)

offspring

Aop:345 - Androgen receptor (AR) antagonism leading to decreased fertility in females

Aop:305 - 5a-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian)

offspring

Aop:495 - Androgen receptor activation leading to prostate cancer

Stressors

Name
Bicalutamide
Cyproterone acetate
Epoxiconazole
Flutamide
Flusilazole
Prochloraz
Propiconazole
Stressor:286 Tebuconazole
Triticonazole

Vinclozalin
Biological Context

Level of Biological Organization

Tissue

Domain of Applicability

Taxonomic Applicability

Term  Scientific Term Evidence Links
mammals mammals High NCBI
Life Stage Applicability
Life Stage Evidence
During development and at High

adulthood
Sex Applicability
Sex Evidence

Mixed High

Event
Type

KeyEvent

KeyEvent

KeyEvent
KeyEvent
KeyEvent

KeyEvent
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Both the DNA-binding and ligand-binding domains of the AR are highly evolutionary conserved, whereas the
transactivation domain show more divergence, which may affect AR-mediated gene regulation across species (Davey
and Grossmann 2016). Despite certain inter-species differences, AR function mediated through gene expression is
highly conserved, with mutation studies from both humans and rodents showing strong correlation for AR-dependent
development and function (Walters et al. 2010).

This KE is considered broadly applicable across mammalian taxa, sex and developmental stages, as all

mammals express the AR in numerous cells and tissues where it regulates gene transcription required for
developmental processes and function. It is, however, acknowledged that this KE most likely has a much broader domain of
applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge
to expand on the applicability to also include other vertebrates.

Key Event Description

This KE refers to transcription of genes by the androgen receptor (AR) as occurring in complex biological systems such
as tissues and organs /n vivo. Rather than measuring individual genes, this KE aims to capture patterns of effects at
transcriptome level in specific target cells/tissues. In other words, it can be replaced by specific KEs for individual adverse
outcomes as information becomes available, for example the transcriptional toxicity response in prostate tissue for AO:
prostate cancer, perineum tissue for AO: reduced AGD, etc. AR regulates many genes that differ between tissues and life
stages and, importantly, different gene transcripts within individual cells can go in either direction since AR can act as both
transcriptional activator and suppressor. Thus, the ‘directionality’ of the KE cannot be either reduced or increased, but instead
describe an altered transcriptome.

The Androgen Receptor and its function

The AR belongs to the steroid hormone nuclear receptor family. It is a ligand-activated transcription factor with three
domains: the N-terminal domain, the DNA-binding domain, and the ligand-binding domain with the latter being the
most evolutionary conserved (Davey and Grossmann 2016). Androgens (such as dihydrotestosterone and
testosterone) are AR ligands and act by binding to the AR in androgen-responsive tissues (Davey and Grossmann
2016). Human AR mutations and mouse knockout models have established a fundamental role for AR in
masculinization and spermatogenesis (Maclean et al.; Walters et al. 2010; Rana et al. 2014). The AR is also expressed
in many other tissues such as bone, muscles, ovaries and within the immune system (Rana et al. 2014).

Altered transcription of genes by the AR as a Key Event

Upon activation by ligand-binding, the AR translocates from the cytoplasm to the cell nucleus, dimerizes, binds to
androgen response elements in the DNA to modulate gene transcription (Davey and Grossmann 2016). The
transcriptional targets vary between cells and tissues, as well as with developmental stages and is also dependent on
available co-regulators (Bevan and Parker 1999; Heemers and Tindall 2007). It should also be mentioned that the AR
can work in other ‘non-canonial’ ways such as non-genomic signaling, and ligand-independent activation (Davey &
Grossmann, 2016; Estrada et al, 2003; Jin et al, 2013).

A large number of known, and proposed, target genes of AR canonical signaling have been identified by analysis of
gene expression following treatments with AR agonists (Bolton et al. 2007; Ngan et al. 2009, Jin et al. 2013).

How it is Measured or Detected

Altered transcription of genes by the AR can be measured by measuring the transcription level of known downstream
target genes by RT-qPCR or other transcription analyses approaches, e.g. transcriptomics.

Since this KE aims to capture AR-mediated transcriptional patterns of effect, downstream bioinformatics analyses will typically
be required to identify and compare effect footprints. Clusters of genes can be statistically associated with, for example,
biological process terms or gene ontology terms relevant for AR-mediated signaling. Large transcriptomics data repositories
can be used to compare transcriptional patterns between chemicals, tissues, and species (e.g. TOXsIgN (Darde et al, 2018a;
Darde et al, 2018b), comparisons can be made to identified sets of AR ‘biomarker’ genes (e.g. as done in (Rooney et al, 2018)),
and various methods can be used e.g. connectivity mapping (Keenan et al, 2019).
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List of Adverse Outcomes in this AOP
Event: 1688: anogenital distance (AGD), decreased
Short Name: AGD, decreased
Key Event Component
Process Object Action

androgen receptor signaling Musculature of male

pathway perineum eliEEE

AOPs Including This Key Event

AOP ID and Name Event Type
Aop:305 - 5a-reductase inhibition leading to short anogenital distance (AGD) in male
- : AdverseOutcome
(mammalian) offspring
Aop:306 —_Androqen_ receptor (AR) antagonism leading to short anogenital distance (AGD) in male AdverseOutcome
(mammalian) offspring
Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male .

(mammalian) offspring

Aoglzéll76 - Adverse Outcome Pathways diagram related to PBDEs associated male reproductive AdverseOutcome
toxicity

Stressors

Name
Butylparaben
p,p'-DDE
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Name
Bis(2-ethylhexyl)
phthalate
Dexamethasone
Fenitrothion
Finasteride
Flutamide
Ketoconazole
Linuron
Prochloraz
Procymidone
Triticonazole
Vinclozolin
di-n-hexyl phthalate
Dicyclohexyl phthalate
butyl benzyl phthalate
monobenzyl phthalate

di-n-heptyl phthalate
Biological Context

Level of Biological Organization

Tissue

Organ term

Organ term

perineum

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

human Homo sapiens Moderate NCBI
rat Rattus norvegicus High NCBI
mouse Mus musculus High NCBI

Life Stage Applicability
Life Stage Evidence
Foetal High

Sex Applicability
Sex Evidence

Male High

A short AGD in male offspring is a marker of insufficient androgen action during critical fetal developmental stages
(Schwartz et al, 2019; Welsh et al, 2008). A short AGD is thus a sign of undervirilization, which is also associated with
a series of male reproductive disorders, including genital malformations and infertility in humans (Juul et al, 2014;
Skakkebaek et al, 2001).

There are numerous human epidemiological studies showing associations with intrauterine exposure to anti-
androgenic chemicals and short AGD in newborn boys alongside other reproductive disorders (Schwartz et al, 2019).
This underscores the human relevance of this AO. However, in reproductive toxicity studies and chemical risk
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assessment, rodents (rats and mice) are what is tested on. The list of chemicals inducing short male AGD in male rat
offspring is extensive, as evidenced by the ‘stressor’ list and reviewed by (Schwartz et al, 2019).

Key Event Description

The anogenital distance (AGD) refers to the distance between anus and the external genitalia. In rodents and humans,
the male AGD is approximately twice the length as the female AGD (Salazar-Martinez et al, 2004; Schwartz et al
2019). This sexual dimorphisms is a consequence of sex hormone-dependent development of secondary sexual
characteristics (Schwartz et al, 2019). In males, it is believed that androgens (primarily DHT) activate AR-positive cells
in non-myotic cells in the fetal perineum region to initiate differentiation of the perineal /evator aniand
bulbocavernosus (LABC) muscle complex (lpulan et al, 2014). This AR-dependent process occurs within a critical
window of development, around gestational days 15-18 in rats (MacLeod et al, 2010). In females, the absence of DHT
prevents this masculinization effect from occurring.

The involvement of androgens in masculinization of the male fetus, including the perineum, has been known for a
very long time (Jost, 1953), and AGD has historically been used to, for instance, sex newborn kittens. It is now well
established that the AGD in newborns is a proxy readout for the intrauterine sex hormone milieu the fetus was
developing. Too low androgen levels in XY fetuses makes the male AGD shorter, whereas excess (ectopic) androgen
levels in XX fetuses makes the female AGD longer, in humans and rodents (Schwartz et al, 2019).

How it is Measured or Detected

The AGD is a morphometric measurement carried out by trained technicians (rodents) or medical staff (humans).

In rodent studies AGD is assessed as the distance between the genital papilla and the anus, and measured using a
stereomicroscope with a micrometer eyepiece. The AGD index (AGDi) is often calculated by dividing AGD by the cube
root of the body weight. It is important in statistical analysis to use litter as the statistical unit. This is done when
more than one pup from each litter is examined. Statistical analyses is adjusted using litter as an independent,
random and nested factor. AGD are analysed using body weight as covariate as recommended in Guidance Document
151 (OECD, 2013).

Regulatory Significance of the AO

In regulatory toxicology, the AGD is mandatory inclusions in OECD test guidelines used to test for developmental and
reproductive toxicity of chemicals. Guidelines include ‘TG 443 extended one-generation study’, ‘TG 421/422
reproductive toxicity screening studies’ and ‘TG 414 developmental toxicity study’.
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Appendix 2
List of Key Event Relationships in the AOP

List of Adjacent Key Event Relationships

Relationship: 2125: Reduction, Testosterone synthesis in Leydig cells leads to Decrease,
testosterone levels

AOPs Referencing Relationship

Weight of Quantitative

pel? e ] EEETE Evidence Understanding
i i i i . .
Decreased testosterone synthesis leading to short anogenital distance adjacent High Ve e

(AGD) in male (mammalian) offspring

Relationship: 2126: Decrease, testosterone levels leads to Decrease, DHT level

AOPs Referencing Relationship

Weight of Quantitative

AOP Name Adjacency Evidence Understanding

Decreased testosterone synthesis leading to short anogenital distance
(AGD) in male (mammalian) offspring

adjacent Moderate Low

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links
Vertebrates Vertebrates High NCBI
Life Stage Applicability
Life Stage Evidence

During development and at
adulthood

Sex Applicability

High

Sex Evidence

Mixed High

T and DHT are androgens present in all vertebrates. They play a role in development and fertility in both males and
females (Ogino et al., 2011; Prizant et al., 2014; Rey, 2021; Swerdloff et al., 2017) All tissues expressing 5a-
reductase are applicable to this KER (Azzouni et al., 2012).

Key Event Relationship Description

Testosterone (T) and dihydrotestosterone (DHT) are androgens that are involved in numerous developmental and
functional processes across animal taxa. In vertebrates, testosterone can be aromatized into estrogens catalyzed by
the enzyme aromatase (CYP19) or be metabolized to DHT by the enzyme 5a-reductase (Azzouni et al., 2012;
Naamneh Elzenaty et al., 2022; Swerdloff et al., 2017). Both T and DHT binds to the androgen receptor (AR), but with
different affinities. DHT has a higher affinity for the AR than T. DHT also has a longer half-life and slower dissociation
rate than T and cannot be aromatized into estrogens (Gerald & Raj, 2022; Naamneh Elzenaty et al., 2022; Swerdloff et al.,
2017).

During mammalian development, T is primarily produced by the fetal testes and is needed for differentiation of the
Wolffian ducts, the epididymis, and the ejaculatory duct. In pubertal and adult mammals, T is produced by the testes,
the ovaries (although at a much lower level), and the adrenal glands (Ogino et al., 2011; Rey, 2021). In peripheral
tissues (i.e. relative to the testes), DHT is converted from T by 5a-reductase to induce the differentiation of the
urogenital sinus and genital tubercle to form the prostate, penis, scrotum and urethra (Swerdloff et al., 2017). Both
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androgens are essential for masculinization, sexual development, and fertility.
Evidence Supporting this KER

Biological Plausibility
The biological plausibility for this KER is considered high

It is well established that DHT is synthesized from circulating T. 5a-reductase is the enzyme responsible for the
conversion of T into DHT. Multiple isoforms of this enzyme are expressed in different tissues. Expression of 5a-
reductase in peripheral tissues dictates where DHT will be formed from circulating T (Azzouni et al., 2012; Swerdloff
et al., 2017).

Since T can be converted to DHT, it stands to reason that a lack of T can lead to a lack of DHT. Therefore, if there is a
marked reduction in the availability of T, it can be surmised that DHT levels are consequently affected. However, to
what extent T needs to be diminished in tissues before there is a functionally relevant decrease in DHT is largely
unknown. In addition, the quantitative relationship between substrate (T) availability and levels of synthesized DHT is
not well characterized in tissues /n vivo. Notably, DHT can be produced via other steroid intermediates through the
‘backdoor pathway’ in mammals such as marsupials and humans (Renfree & Shaw 2023).

Empirical Evidence
The empirical evidence for this KER is considered moderate

As per Table 1, empirical data exists for effects on both T and DHT following chemical exposures, but it is not always
possible to deduce if the reduction in DHT is a direct consequence of reduced T or because of other mechanisms such
as e.qg. interference with 5a-reductase. However, some studies do include 5a-reductase mRNA expression or measure
the ratio of T/DHT which if unchanged, indicates that the decrease would most likely be due to decrease in T
availability.

Table 1
KE:
. _|Effect KE: DHT, .
Compound |Species| level testosterone, decrease Details References
decrease
DEHP rat LOEL = 117 |[Significant Significant (In utero (Culty et al., Dose concordance:
mg/kg/day decrease day 1, 2, [decrease [exposure, fetal |2008)
3: day 1 testes ex vivo All the ex r t
from GD20 rats. €€ posq ¢ .da a
trom 4 to 2 rom 2.5 to shown above |nd|cat¢s
ng/testis 1 ng/testis dose-concordance, since
Ibuprofen human One 48h: significant 48h: Human fetal (Ben Maamar the same concentration
concentration|decrease significant |testes explants, |et al., 2017) tested affects both the
tested: 10°M decrease [measurements upstream and
-36.8% were done using downstream key event.
-70.2% the exposure
media. Other evidence
No effect on One study focused on the
ISeF\{IZ;SSAé(;“sg')A condition Leydig cell
T " 5 —— —— = el = hypoplasia (LCH) in one
Rosiglitazonelhuman ne ~ [signi icant significant [Serum levels (Vierhapper et patient. This patient had
concentration|decrease of decrease of [after 7 days of |al., 2003) tati in the LHCGR
tested: production rates [production [treatment in mutations In the - !
8mg/day rates healthy men: and when measuring the
318+162 pg/h to “Calculated levels of testosterone
27247172 pg/h - [212%6 from the and DHT before and after
pg/h to 17 #product of the hCG stimulation a
£5 pg/h |known infusion decrease in both levels
rate under the normal range
were observed, even
Rt) and th . - -
ﬁati)o of tra?er with hCG stimulation (Xu
infusate et aI., 2018).
enrichment (Et)
to tracer dilution
in
the plasma”
Ratio T/DHT
remained
unchanged.
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PTU rats One significant significant [Oral exposure of|(Marty et al.,
concentration|decrease decrease 1l4day old rats [2001)(
tested: 240 treated until day Uncertainties and
mg/kg/day “2ng/ml to “0.5ng/ml [51. Serum Inconsistencies
0.15ng/ml to testosterone
0.17ng/ml land DHT The levels of T do not
measured always reflect the levels
Dibutyltin Carp fish [One significant significant |Gonad (Thibaut & of DHT. T is also
conczntration decrease decrease migr?scl)mes. Porte, 2004) | converted to estradiol
tested: Dibultyltin
100pM -16% -24% inhibited 5a- Izamnch Fzemeny @t
reductase al., 2022)._Therefore, the
whichdecreases decrease in T may lead
possibility that to a decrease in estradiol
this is solely due while DHT levels remain
to decrease of unchanged.
testosterone
TCDD rats Effects significant significant [Oral exposure of|((Moore et al., | Several studies have
observed at [decrease decrease |66-68 day old |1985) shown the existence of
15ug/kg rats. Serum or an alternative
0, 0,
U 75% meZZ?uarements (‘backdoor’) pathway for
Dose ' DHT synthesis that is
dependent independent of T in
decrease of both marsupials and humans,
was observed. but not in rodents
Ratio T/DHT (Marilyn B. Renfree et
indicates effect al., 1995). Instead of
'rsegl:’fet; proceeding through the
testosterone. canonical pathway,

progesterone or 17-OH
progesterone, can be converted into allopregnanolone and 170H-allopregnanolone. 17-OH allopregnanolone is then
converted into androsterone leading to androstanediol that can finally be oxidized to produce DHT. Therefore,
through this pathway, DHT can be synthesized without the presence of T (Auchus, 2004; Miller & Auchus, 2019).

Quantitative Understanding of the Linkage

Response-response relationship
The response-response relationship is not clearly established.
Time-scale

Different time scales have been observed in the studies above, the shortest one found being 48h. With Ibuprofen
treatment, a decrease in both testosterone and DHT was observed after 48h in human fetal explant’s exposure media
(Ben Maamar et al., 2017). However, it is not evident that this effect is direct and only due to a decrease in T.

Known Feedforward/Feedback loops influencing this KER

Activity of 5a-reductase type 1 and 2: The activity of this enzyme determines how much T is converted into DHT.
There are two isomers, with type 2 being the primary isomer expressed in DHT target organs. In deficiencies of this
enzyme, there are studies that observe maintained DHT levels. This indicates that the type 1 enzyme can take over if
needed (Azzouni et al., 2012).

Conversion of T to estradiol (E2): Aromatase can convert T into estrogens. The activity of this enzyme may push
towards a decrease of T levels and an increase in estrogen levels without necessarily affecting DHT levels (Naamneh
Elzenaty et al., 2022).

Hypothalamus-pituitary-gonadal (HPG) axis: Like most sex steroids, T production is controlled by the HPG axis during
puberty and adulthood, but also during certain periods of development. For humans, the HPG axis is active following
birth between 1-3 months in both males and females. Increase of LH and FSH are observed in infants up to 4-6émonths
old. This stage is also known as the minipuberty (Lanciotti et al., 2018; Renault et al.,, 2020). Once GnRH is released
from the hypothalamus, the pituitary gland secretes LH in pulses, which then stimulates the cells in the testes to
produce T. A negative feedback loop can then occur, where testosterone then inhibits the release of GnRH and LH, in
turn slowing down T production (Gerald & Raj, 2022; Naamneh Elzenaty et al., 2022; Nef & Parada, 2000).
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Relationship: 1935: Decrease, DHT level leads to Decrease, AR activation
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Weight .
. Quantitative
AOP Name Adjacency ) of Understanding
Evidence
Inhibition of 17a-hydrolase/C 10,20-lyase (Cyp17A1) activity leads to . . .
birth reproductive defects (cryptorchidism) in male (mammals) adjacent High High
Decreased testosterone synthesis leading to short anogenital distance adjacent High VierErEE

(AGD) in male (mammalian) offspring

5a-reductase inhibition leading to short anogenital distance (AGD) in
male (mammalian) offspring

adjacent

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability
Life Stage Evidence
During development and at
adulthood
Sex Applicability
Sex Evidence

High

Mixed High

Taxonomic applicability

KER1935 is assessed applicable to mammals, as DHT and AR activation are known to be related in mammals. It is, however,
acknowledged that this KER most likely has a much broader domain of applicability extending to non-mammalian vertebrates.
AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other
vertebrates.

Sex applicability
KER1935 is assessed applicable to both sexes, as DHT activates AR in both males and females.
Life-stage applicability

KER1935 is considered applicable to developmental and adult life stages, as DHT-mediated AR activation is relevant from the
AR is expressed.

Key Event Relationship Description

Dihydrotestosterone (DHT) is a primary ligand for the Androgen receptor (AR), a nuclear receptor and transcription factor. DHT
is an endogenous sex hormone that is synthesized from e.g. testosterone by the enzyme 5a-reductase in different tissues and
organs (Davey & Grossmann, 2016; Marks, 2004). In the absence of ligand (e.g. DHT) the AR is localized in the cytoplasm in
complex with molecular chaperones. Upon ligand binding, AR is activated, translocated into the nucleus, and dimerizes

to carry out its ‘genomic function’ (Davey & Grossmann, 2016). Hence, AR transcriptional function is directly dependent on the
presence of ligands, with DHT being a more potent AR activator than testosterone (Grino et al, 1990). Reduced levels of DHT
may thus lead to reduced AR activation. Besides its genomic actions, the AR can also mediate rapid, non-genomic second
messenger signaling (Davey and Grossmann, 2016). Decreased DHT levels that lead to reduced AR activation can thus entail
downstream effects on both genomic and non-genomic signaling.

Evidence Supporting this KER

Biological Plausibility
The biological plausibility of KER1935 is considered high.

The activation of AR is dependent on binding of ligands (though a few cases of ligand-independent AR activation has been
shown, see uncertainties and inconsistencies), primarily testosterone and DHT in mammals (Davey and Grossmann, 2016;
Schuppe et al., 2020). Without ligand activation, the AR will remain in the cytoplasm associated with heat-shock and other
chaperones and not be able to carry out its canonical (‘genomic’) function. Upon androgen binding, the AR undergoes a
conformational change, chaperones dissociate, and a nuclear localization signal is exposed. The androgen/AR complex can
now translocate to the nucleus, dimerize and bind AR response elements to regulate target gene expression (Davey and
Grossmann, 2016; Eder et al., 2001). AR transcriptional activity and specificity is regulated by co-activators and co-repressors
in a cell-specific manner (Heinlein and Chang, 2002).
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The requirement for androgens binding to the AR for transcriptional activity has been extensively studied and proven and is
generally considered textbook knowledge. The OECD test guideline no. 458 uses DHT as the reference chemical for testing
androgen receptor activation /n vitro (OECD, 2020). In the absence of DHT during development caused by 5a-reductase
deficiency (i.e. still in the presence of testosterone) male fetuses fail to masculinize properly. This is evidenced by, for
instance, individuals with congenital 5a-reductase deficiency conditions (Costa et al., 2012); conditions not limited to humans
(Robitaille and Langlois, 2020), testifying to the importance of specifically DHT for AR activation and subsequent
masculinization of certain reproductive tissues.

Binding of testosterone or DHT has differential effects in different tissues. E.g. in the developing mammalian male;
testosterone is required for development of the internal sex organs (epididymis, vas deferens and the seminal vesicles),
whereas DHT is crucial for development of the external sex organs (Keller et al., 1996; Robitaille and Langlois, 2020).

Empirical Evidence
The empirical support for KER1935 is considered high.
Dose concordance:

e Increasing concentrations of DHT lead to increasing AR activation /n vitro in AR reporter gene assays (OECD, 2020;
Williams et al., 2017).

Indirect (supporting) evidence:

e In cell lines where proliferation can be induced by androgens (such as prostate cancer cells) proliferation can be used as a
readout for AR-activation. Finasteride, a 5a-reductase inhibitor, dose-dependently decreases AR-mediated prostate
cancer cell line proliferation (Bologna et al., 1995). 0.001 uM finasteride decreased the growth rate with 44%, 0.1 uM
decreased the growth rate with 80%.

e Specific events of masculinization during development are dependent on AR activation by DHT, including the
development and length of the perineum which can be measured as the anogenital distance (AGD, (Schwartz et al.,
2019)). E.g. a dose-dependent effect of rat /n utero exposure to the 5a-reductase inhibitor finasteride was observed on
the length of the AGD, where 0.01 mg/kg bw/day finasteride reduced the AGD measured at pup day 1 by 8%, whereas 1
mg/kg bw/day reduced the AGD by 23% (Bowman et al., 2003).

Other evidence:

e Male individuals with congenital 5a-reductase deficiency (absence of DHT) fail to masculinize properly (Costa et al.,
2012).

e A major driver of prostate cancer growth is AR activation (Davey and Grossmann, 2016; Huggins and Hodges, 1941).
Androgen deprivation is used as treatment including 5a-reductase inhibitors to reduce DHT levels (Aggarwal et al., 2010).

Uncertainties and Inconsistencies

Ligand-independent actions of the AR have been identified. To what extent and of which biological consequences is not well
defined (Bennesch and Picard, 2015).

It should be noted, that in tissues, that are not DHT-dependent but rather respond to T, a decrease in DHT level may not
influence AR activation significantly in that specific tissue.

Quantitative Understanding of the Linkage

Response-response relationship

There is a positive dose-response relationship between increasing concentrations of DHT and AR activation (Dalton et al.,
1998; OECD, 2020). However, there is not enough data, or overview of the data, to define a quantitative linkage /n vivo, and
such a relationship will differ between biological systems (species, tissue, cell type).

Time-scale

Upon DHT binding to the AR, a conformational change that brings the amino (N) and carboxy (C) termini into close proximity
occurs with a ty; of approximately 3.5 minutes, around 6 minutes later the AR dimerizes as shown in transfected Hela cells
(Schaufele et al., 2005). Addition of 5 nM DHT to the culture medium of ‘AR-resistant’ transfected prostatic cancer cells
resulted in a rapid (from 15 minutes, maximal at 30 minutes) nuclear translocation of the AR with minimal residual cytosolic
expression (Nightingale et al., 2003). AR and promoter interactions occur within 15 minutes of ligand binding, and RNA
polymerase Il and coactivator recruitment are then proposed to occur transiently with cycles of approximately 90 minutes
(Kang et al., 2002).

Known modulating factors

Modulating

Factor (MF) MF Specification Effect(s) on the KER Reference(s)

(Supakar et al.,
Tissue-specific alterations in  1993: Wu et al.,

Age AR expression changes with aging A By W B 2009)
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Modulating

Factor (MF) MF Specification Effect(s) on the KER Reference(s)
Decreased AR activation (Chamberlain et al.,

Genotype Number of CAG repeats in the first exon of AR with increased number of 1994; Tut et al.,
CAGs 1997)

Androgen Low circulating testosterone levels due to primary Reduced levels of circulating

deficiency (testicular) or secondary (pituitary-hypothalamic) testosterone, precurser of (Bhasin et al., 2010)

syndrome hypogonadism DHT

Reduced levels of circulating
Castration Removal of testicles testosterone, precurser of
DHT

(Krotkiewski et al.,
1980)

Known Feedforward/Feedback loops influencing this KER

Androgens have been shown to upregulate and downregulate AR expression as well as 5a-reductase expression, but for 5a-
reductase, each isoform in each tissue is differently regulated by androgens and can display sexual dimorphism (Lee and
Chang, 2003; Robitaille and Langlois, 2020). The quantitative impact of such adaptive expression changes is unknown.
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AR
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Decreased testosterone synthesis leading to short anogenital distance adjacent High VeEEe

(AGD) in male (mammalian) offspring

Androgen receptor (AR) antagonism leading to nipple retention (NR) in
male (mammalian) offspring

adjacent Moderate Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability
Life Stage Evidence

During development and at
adulthood

Sex Applicability
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This KER is applicable for both sexes, across developmental stages into adulthood, in numerous cells and tissues and across
mammalian taxa. It is, however, acknowledged that this KER most likely has a much broader domain of applicability extending
to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the
applicability to also include other vertebrates.

Key Event Relationship Description

The androgen receptor (AR) is a ligand-dependent nuclear transcription factor that upon activation translocates to the
nucleus, dimerizes, and binds androgen response elements (AREs) to modulate transcription of target genes (Lamont
and Tindall, 2010, Roy et al. 2001). Decreased activation of the AR affects its transcription factor activity, therefore
leading to altered AR-target gene expression. This KER refers to decreased AR activation and altered gene expression
occurring in complex systems, such as /n vivo and the specific effect on transcription of AR target genes will depend
on species, life stage, tissue, cell type etc.

Evidence Supporting this KER

Biological Plausibility
The biological plausibility for this KER is considered high

The AR is a ligand-activated transcription factor part of the steroid hormone nuclear receptor family. Non-activated AR
is found in the cytoplasm as a multiprotein complex with heat-shock proteins, immunophilins and, other chaperones
(Roy et al. 2001). Upon activation through ligand binding, the AR dissociates from the protein complex, translocates to
the nucleus and homodimerizes. Facilitated by co-regulators, AR can bind to DNA regions containing AREs and initiate
transcription of target genes, that thus will be different in e.g. different tissues, life-stages, species etc.

Through mapping of AREs and ChIP sequencing studies, several AR target genes have been identified, mainly studied
in prostate cells (Jin, Kim, and Yu 2013). Different co-regulators and ligands lead to altered expression of different sets
of genes (Jin et al. 2013; Kanno et al. 2022) Alternative splicing of the AR can lead to different AR variants that also
affects which genes are transcribed (Jin et al. 2013).

Apart from this canonical signaling pathway, the AR can suppress gene expression, indirectly regulate miRNA
transcription, and have non-genomic effects by rapid activation of second messenger pathways in either presence or
absence of a ligand (Jin et al. 2013).

Empirical Evidence
The empirical evidence for this KER is considered high

In humans, altered gene expression profiling in individuals with androgen insensitivity syndrome (AIS) can provide
supporting empirical evidence (Holterhus et al. 2003; Peng et al. 2021) In rodent AR knockout (KO) models, gene
expression profiling studies and gene-targeted approaches have provided information on differentially expressed
genes in several organ systems including male and female reproductive, endocrine, muscular, cardiovascular and
nervous systems (Denolet et al. 2006; Fan et al. 2005; Holterhus et al. 2003; lkeda et al. 2005; Karlsson et al. 2016;
MacLean et al. 2008; Rana et al. 2011; Russell et al. 2012; Shiina et al. 2006; Wang et al. 2006; Welsh et al. 2012;
Willems et al. 2010; Yu et al. 2008, 2012; Zhang et al. 2006; Zhou et al. 2011).

Exposure to known antiandrogens has been shown to alter transcriptional profiles, for example of neonatal pig ovaries
(Knapczyk-Stwora et al. 2019).

Dose concordance has also been observed for instance in zebrafish embryos; a dose of 50 ug/L of the AR antagonist
flutamide resulted in 674 differentially expressed genes at 96 h post fertilization whereas 500 ug/L flutamide resulted
in 2871 differentially expressed genes (Ayobahan et al., 2023).

Uncertainties and Inconsistencies

AR action has been reported to occur also without ligand binding. However, not much is known about the extent and
biological implications of such non-canonical, ligand-independent AR activation (Bennesch and Picard 2015).

Quantitative Understanding of the Linkage

Response-response relationship

There is not enough data to define a quantitative relationship between AR activation and alteration of AR target gene
transcription, and such a relationship will differ between biological systems (species, tissue, cell type, life stage etc).

Time-scale

AR and promoter interactions occur within 15 minutes of ligand binding, RNA polymerase Il and coactivator
recruitment are proposed to occur transiently with cycles of approximately 90 minutes in LNCaP cells (Kang et al.
2002). RNA polymerase Il elongation rates in mammalian cells have been shown to range between 1.3 and 4.3 kb/min
(Maiuri et al. 2011). Therefore, depending on the cell type and the half-life of the AR target gene transcripts, changes
are to be expected within hours.
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Known modulating factors

Modulating e ..
Factor (MF) MF Specification Effect(s) on the KER Reference(s)
Age AR expression in aging male Tissue-specific alterations in AR (Supakar et al. 1993; Wu,
9 rats activity with aging Lin, and Gore 2009)
Genotype Number of CAG repeats in Decreased AR activation with (Tut et al. 1997; Chamberlain
yp the first exon of AR increased number of CAGs et al. 1994)

Known Feedforward/Feedback loops influencing this KER

AR has been hypothesized to auto-regulate its mRNA and protein levels(Mora and Mahesh 1999).
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List of Non Adjacent Key Event Relationships

Relationship: 2131: Decrease, testosterone levels leads to Decrease, AR activation

AOPs Referencing Relationship

Weight of Quantitative

(P LTI CEIEEEIE] Evidence Understanding
Dlecreased testqsterone svnthe5|§ leading tg short anogenital non- el EE Viaelaes
distance (AGD) in male (mammalian) offspring adjacent

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability

Life Stage Evidence
During development and at
adulthood
Sex Applicability

High

Sex Evidence

Mixed High

Taxonomic applicability

KER2131 is assessed applicable to mammals, as T and AR activation are known to be related in mammals.lIt is, however,
acknowledged that this KER most likely has a much broader domain of applicability extending to non-mammalian vertebrates.
AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other
vertebrates.

Sex applicability
KER2131 is assessed applicable to both sexes, as T activates AR in both males and females.
Life-stage applicability

KER2131 is considered applicable to developmental and adult life stages, as T-mediated AR activation is relevant from the AR
is expressed.

Key Event Relationship Description

This key event relationship links decreased testosterone (T) levels to decreased androgen receptor (AR) activation. T is an
endogenous steroid hormone important for, amongst other things, reproductive organ development and growth as well as
muscle mass and spermatogenesis (Marks, 2004).T is, together with dihydrotestosterone (DHT), a primary ligand for the AR in
mammals (Schuppe et al., 2020). Besides its genomic actions, the AR can also mediate rapid, non-genomic second messenger
signaling (Davey & Grossmann, 2016). When T levels are reduced, less substrate is available for the AR, and hence, AR
activation is decreased (Gao et al., 2005).

Evidence Supporting this KER

Biological Plausibility

The biological plausibility for this KER is considered high

AR activation is dependent on ligand binding (though a few cases of ligand-independent AR activation has been shown, see
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uncertainties and inconsistencies). T is a primary ligand for the AR, and when T levels are decreased there is less substrate for
the AR, and hence, AR activation is decreased. In the male, T is primarily synthesized by the testes, and in some target tissues
T is irreversibly metabolized to the more potent metabolite DHT. T and DHT both bind to the AR, but DHT has a higher binding
affinity (Gao et al., 2005). The lower binding affinity of T compared to DHT is due to the faster dissociation rate of T from the
full-length AR, as T has less effective FXXLF motif binding to AF2 (Askew et al., 2007). Binding of T or DHT has different effects
in different tissues. E.g. in the developing male, T is required for development of the internal sex organs (epididymis, vas
deferens and the seminal vesicles), whereas DHT is crucial for development of the external sex organs (Keller et al., 1996). In
the adult male, androgen action in the reproductive tissues is DHT dependent, whereas action in muscle and bone is DHT
independent (Gao et al., 2005). In patients with male androgen deficiency syndrome (AIS), clinically low levels of T leads to
reduced AR activation (either due to low T or DHT in target tissue), which manifests as both androgenic related symptoms
(such as incomplete or delayed sexual development, loss of body hair, small or shrinking testes, low or zero sperm count) as
well as anabolic related symptoms (such as height loss, low trauma fracture, low bone mineral density, reduced muscle bulk
and strength, increased body fat). All symptoms can be counteracted by treatment with T, which acts directly on the AR
receptor in anabolic tissue (Bhasin et al., 2010). Similarly, removal of the testicles in weanling rats results in a feminized body
composition and muscle metabolism, which is reversed by administration of T (Krotkiewski et al., 1980). As this demonstrates,
the consequences of low T regarding AR activation will depend on tissue, life stage, species etc.

Empirical Evidence

The empirical evidence for this KER is considered high

Dose concordance

There is a positive dose-response relationship between increasing concentrations of T and AR activation (U.S. EPA., 2023).
Other evidence

e In male patients with androgen deficiency, treatment with T counteracts anabolic (DHT independent) related
symptoms such as height loss, low trauma fracture, low bone mineral density, reduced muscle bulk and strength,
increased body fat (Bhasin et al., 2010; Katznelson et al., 1996)

e Removal of the testicles in weanling rats result in a feminized body composition and muscle metabolism, which is
reversed by administration of T (Krotkiewski et al., 1980).

Uncertainties and Inconsistencies

Ligand-independent actions of the AR have been identified. To what extent and of which biological significance is not well
defined (Bennesch & Picard, 2015).

Quantitative Understanding of the Linkage

Response-response relationship

There is a positive dose-response relationship between increasing concentrations of T and AR activation (U.S. EPA., 2023).
However, there is not enough data, or overview of the data, to define a quantitative linkage /n vivo, and such a relationship will
differ between biological systems (species, tissue, cell type).

Time-scale

AR and promoter interactions occur within 15 minutes of ligand binding, and RNA polymerase Il and coactivator recruitment
are then proposed to occur transiently with cycles of approximately 90 minutes (Kang et al., 2002).

Known modulating factors

Modulating

Factor (MF) MF Specification Effect(s) on the KER Reference(s)

Tissue-specific alterations IEpRlEt S 2l

Age AR expression changes with aging in AR activity with aging 1993; Wu et al.,
2009)
Decreased AR activation (Chamberlain et al.,
Genotype Number of CAG repeats in the first exon of AR with increased number of  1994; Tut et al.,

CAGs 1997)

Male androgen Low circulating testosterone levels due to primary Reduced levels of

deficiency (testicular) or secondary (pituitary-hypothalamic) circulating testosterone (Bhasin et al., 2010)
syndrome hypogonadism
Castration Removal of testicles E?gtjjl;iidnlge::slio(ierone (1|;ré)(t)l)<|ewsk| etal,

Known Feedforward/Feedback loops influencing this KER

Androgens can upregulate and downregulate AR expression (Lee & Chang, 2003).
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Relationship: 2820: Decrease, AR activation leads to AGD, decreased

AOPs Referencing Relationship

Weight of Quantitative

BTG | EEEIE Evidence Understanding
S5a-reductase inhibition leading to short anogenital distance (AGD) in non-
male (mammalian) offspring adjacent
Androgen receptor (AR) antagonism leading to short anogenital non-
distance (AGD) in male (mammalian) offspring adjacent
Decreased testosterone synthesis leading to short anogenital distance non-
(AGD) in male (mammalian) offspring adjacent
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