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Abstract
This AOP links decreased intratesticular testosterone levels with short anogenital distance (AGD) in male offspring. It does not yet contain an MIE, as several upstream
mechanisms can lead to ‘reduced testosterone’ synthesis in fetal testis, such as inhibiting key steroidogenic enzymes. Testosterone is synthesized from cholesterol
through several enzymatic steps, including those catalyzed by CYP enzymes such as CYP11 and CYP17. Once synthesized, testosterone is released into circulation
and transported to target tissues where it initiates masculinization by binding to and activating the androgen receptor (AR) in target cells. Notably, testosterone can
be converted to DHT by 5α-reductase, with DHT being a more potent AR agonist than testosterone; this testosterone-to-DHT conversion is critical during development
for differentiation of male traits, including masculinization of the developing fetus, including differentiation of the levator ani/bulbocavernosus (LABC) muscle complex
(Davey and Grossmann, 2016; Keller et al, 1996; Robitaille and Langlois, 2020). The LABC complex fails to develop in the absence or insufficiency of androgen
signaling, as for instance observed in female fetuses.

A short AGD around birth is a marker for undervirilization of male fetuses and is associated with male reproductive disorders, including reduced fertility in adulthood
(Schwartz et al, 2019). Although a short AGD is not necessarily ‘adverse’ from a human health perspective, it is considered an ‘adverse outcome’ in OECD test
guidelines; AGD measurements are mandatory in specific tests for developmental and reproductive toxicity in chemical risk assessment (TG 443, TG 421/422, TG
414), with measurement guidance provided in OECD guidance documents 43 (OECD, 2008) and 151 (OECD, 2013).

A central event in this pathway is the inhibition of testosterone synthesis in the fetal testes, leading to reduced circulating testosterone levels and decreased DHT
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convertion by 5α-reductase. Insufficient DHT fails to effectively activate AR in target tissues, including the developing perineal region, which leads to failure to
properly masculinize the perineum/LABC complex and ultimately a short AGD.

Background

Androgen signaling is critical for male sex differentiation during fetal life, and suboptimal signaling during critical life stages leads to under-masculinized offspring.
Androgens, primarily testosterone and DHT, exert their effects by binding to and activating the AR is target cells. Blocking the AR basically blocks androgen signaling
and masculinization of tissues that otherwise should masculinize in male fetuses.  One morphometric marker for reduced fetal androgen action is shorter AGD
compared to control males.

Summary of the AOP

Events

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Sequence Type Event ID Title Short name

KE 1690 Decrease, circulating testosterone levels Decrease, circulating testosterone
levels

KE 1614 Decrease, androgen receptor activation Decrease, AR activation

KE 286 Altered, Transcription of genes by the androgen
receptor

Altered, Transcription of genes by the
AR

KE 2298 Decrease, intratesticular testosterone levels Decrease, intratesticular testosterone

AO 1688 anogenital distance (AGD), decreased AGD, decreased

Key Event Relationships

Upstream Event Relationship
Type Downstream Event Evidence Quantitative

Understanding

Decrease, intratesticular testosterone levels adjacent Decrease, circulating testosterone levels High Moderate
Decrease, circulating testosterone levels adjacent Decrease, androgen receptor activation High Moderate

Decrease, androgen receptor activation adjacent Altered, Transcription of genes by the
androgen receptor Moderate Low

Altered, Transcription of genes by the
androgen receptor non-adjacent anogenital distance (AGD), decreased Moderate Low

Decrease, androgen receptor activation non-adjacent anogenital distance (AGD), decreased High Moderate
Decrease, intratesticular testosterone levels non-adjacent anogenital distance (AGD), decreased Moderate Moderate
Decrease, circulating testosterone levels non-adjacent anogenital distance (AGD), decreased High Moderate

Stressors

Name Evidence

Dibutyl phthalate High
Bis(2-ethylhexyl)
phthalate High

Overall Assessment of the AOP

Domain of Applicability

Life Stage Applicability
Life Stage Evidence

Foetal High
Pregnancy High

Taxonomic Applicability
Term Scientific Term Evidence Links

human Homo sapiens Moderate NCBI
rat Rattus norvegicus High NCBI
mouse Mus musculus Moderate NCBI

Sex Applicability
Sex Evidence

Male High

The upstream part of the AOP, converging on KE-286 (altered transcription of genes by the AR), has a broad applicability domain. It is built primarily on mammalian
data and includes all life stages, but only males due to the specification of intratesticular testosterone in KE-2298. It could be extended to cover non-mammalian
vertebrates by adding additional relevant knowledge, as previously discussed (Draskau et al, 2024). The overall applicability domain is limited by AO-1688 (decreased
AGD). The AGD is strongly influenced by androgen action during critical fetal stages in mammals, with evidence from humans (Murashima et al, 2015; Thankamony et
al, 2016), and from numerous gestational exposure studies in rats and mice to anti-androgenic chemicals (Gray et al, 2001; Schwartz et al, 2019). The male
masculinization programming window occurs at a developmental stage included in the applicability domain of these AOPs and corresponds to around gestational day
16-20 in rats and gestation weeks 8-14 in humans (Welsh et al, 2008). Only males are included in the applicability domain since the male AGD, but not the female
AGD, is shortened by decreased androgen action (Schwartz et al, 2019).
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Essentiality of the Key Events

The essentiality of each key event (KE) was evaluated, meaning that if an upstream KE is blocked or does not occur, subsequent downstream KEs or the
adverse outcome (AO) are prevented or altered. Both direct and indirect evidence of essentiality were assessed according to the OECD developer’s
handbook, with a summary provided in Table 1.

Table 1: Essentiality assessment of KEs of AOP 307.

Event Direct evidence Indirect evidence Contradictory evidence Overall essentiality assessment

KE-2298  ***  High

KE-1690  ***  High

KE-1614 *** ***  High

KE-286  ***  High

*Low level of evidence (some support for essentiality), ** Intermediate level of evidence (evidence for impact on one or more downstream KEs), ***High level of
evidence (evidence for impact on AO).

Weight of Evidence Summary

EEvidence for anti-androgenicity, by antagonizing the AR, is strong. In this AOP, most KERs are considered highly biologically plausible with strong empirical evidence
in support of this assessment, both from human data and animal studies. The overall evidence assessment scores for each KER are summarized in the Table below:

ID Assessment
score

Rationale

KER-3448 High It is considered canonical knowledge that testis is
primary site of testosterone synthesis, and that
circulating T will be directly impacted by testis
production.

KER-2131 High It is well established that testosterone activates the
AR and that decreased testosterone levels leads to
decreased AR activation.

KER-2124 High It is well established that the AR regulates gene
transcription, and that decreased AR activity leads
to altered gene transcription.

KER-3449 High It is well established that testis is the main site of
testosterone synthesis and impacts circulating T
levels, which again impacts masculinization,
including AGD.

KER-3449 High It is well established that decreased serum
testosterone levels impact masculinization of the
male fetus, including a feminized AGD. 

KER-2820 High It is well established that decreased AR activity
leads to decreased AGD in male offspring.

KER-2127 Moderate It is highly plausible that altered gene transcription
in the perineum leads to decreased AGD in male
offspring.

 

Quantitative Consideration

The quantitative understanding between in vitro test data and in vivo is low. There is some quantitative understanding about the magnitude of reduction
in explanted fetal testis testosterone production and effect on AGD (and other masculinization parameters) in rats, related to phthalate exposures. The
dose-response relationship appears non-linear, with a low incidence rate of male under-virilization effects when testosterone production is reduced by less
than 60% but with a steep increase in rate of malformations, including a decreasing length of the perineum, when testosterone is reduced by more than
60% (Earl Gray et al, 2024). This relationship has not been systematically evaluated for other chemicals.
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Appendix 1

List of Key Events in the AOP

Event: 1690: Decrease, circulating testosterone levels

Short Name: Decrease, circulating testosterone levels

Key Event Component

Process Object Action

hormone biosynthetic process testosterone decreased
testosterone biosynthetic process testosterone decreased

AOPs Including This Key Event

AOP ID and Name Event
Type

Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male (mammalian) offspring KeyEvent
Aop:526 - Decreased, Chicken Ovalbumin Upstream Promoter Transcription Factor II (COUP-TFII) leads to Impaired, Spermatogenesis KeyEvent
Aop:124 - HMG-CoA reductase inhibition leading to decreased fertility KeyEvent
Aop:18 - PPARα activation in utero leading to impaired fertility in males KeyEvent
Aop:51 - PPARα activation leading to impaired fertility in adult male rodents KeyEvent
Aop:496 - Androgen receptor agonism leading to reproduction dysfunction �in zebrafish� KeyEvent
Aop:64 - Glucocorticoid Receptor (GR) Mediated Adult Leydig Cell Dysfunction Leading to Decreased Male Fertility KeyEvent
Aop:120 - Inhibition of 5α-reductase leading to Leydig cell tumors (in rat) KeyEvent
Aop:288 - Inhibition of 17α-hydrolase/C 10,20-lyase (Cyp17A1) activity leads to birth reproductive defects (cryptorchidism) in male
(mammals) KeyEvent

Biological Context

Level of Biological Organization

Tissue

Organ term

Organ term

blood

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability
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Life Stage Evidence

During development and at
adulthood High

Sex Applicability
Sex Evidence

Male High
Female High

This key event (KE) is applicable to all mammals, as the synthesis and role of testosterone are evolutionarily conserved (Vitousek et al., 2018). Both sexes produce
and require testosterone, which plays critical roles throughout life, from development to adulthood; albeit there are differences in lief stages when testosterone exert
specific effects and function (Luetjens & Weinbauer, 2012; Naamneh Elzenaty et al., 2022). Accordingly, this KE applies to both males and females across all life
stages, but life stage should be considered when embedding in AOPs.

Notably, the key enzymes involved in testosterone production first appeared in the common ancestor of amphioxus and vertebrates (Baker, 2011). This suggests that
the KE has a broader domain of applicability, encompassing non-mammalian vertebrates. AOP developers are encouraged to integrate additional knowledge to
expand its relevance beyond mammals to other vertebrates.

Key Event Description

Testosterone is an endogenous steroid hormone that acts by binding the androgen receptor (AR) in androgen-responsive tissues (Murashima et al., 2015). As with all
steroid hormones, testosterone is produced through steroidogenesis, an enzymatic pathway converting cholesterol into all the downstream steroid hormones. Briefly,
androstenedione or androstenediol is converted to testosterone by the enzymes 17β-hydroxysteroid dehydrogenase (HSD) or 3β-HSD, respectively. Testosterone can
then be converted to the more potent androgen, dihydrotestosterone (DHT) by 5α-reductase, or aromatized by CYP19A1 (Aromatase) into estrogens. Testosterone
secreted in blood circulation can be found free or bound to SHBG or albumin (Trost & Mulhall, 2016).

Testosterone is produced mainly by the testes (in males), ovaries (in females) and to a lesser degree in the adrenal glands. The output of testosterone from different
tissues varies with life stages. During fetal development testosterone is crucial for the differentiation of male reproductive tissues and the overall male phenotype. In
adulthood, testosterone synthesis is controlled by the Hypothalamus-Pituitary-Gonadal (HPG) axis. GnRH is released from the hypothalamus inducing LH pulses
secreted by the anterior pituitary. This LH surge leads to increased testosterone production, both in testes (males) and ovaries (females). If testosterone reaches low
levels, this axis is once again stimulated to increase testosterone synthesis. This feedback loop is essential for maintenance of appropriate testosterone levels
(Chandrashekar & Bartke, 1998; Ellis et al., 1983; Rey, 2021).

By disrupting e.g. steroidogenesis or the HPG-axis, testosterone synthesis or homeostasis may be disrupted and can lead to less testosterone being synthesized and
released into circulation.

General role in biology

Androgens are essential hormones responsible for the development of the male phenotype during fetal life and for sexual maturation at puberty. In adulthood,
androgens remain essential for the maintenance of male reproductive function and behavior but is also essential for female fertility. Apart from their effects on
reproduction, androgens affect a wide variety of non-reproductive tissues such as skin, bone, muscle, and brain (Heemers et al 2006). Androgens, principally
testosterone and DHT, exert most of their effects by interacting with the AR (Murashima et al 2015).

How it is Measured or Detected

Testosterone levels can be quantified in serum (in vivo), cell culture medium (in vitro), or tissue (ex vivo, in vitro). Methods include traditional immunoassays such as
ELISA and RIA, advanced techniques like LC-MS/MS, and liquid scintillation spectrometry following radiolabeling (Shiraishi et al., 2008).

The H295R Steroidogenesis Assay (OECD TG 456) is (currently; anno 2025) primarily used to measure estradiol and testosterone production. This validated OECD test
guideline uses adrenal H295R cells, with hormone levels measured in the cell culture medium (OECD, 2011). H295R adrenocortical carcinoma cells express the key
enzymes and hormones of the steroidogenic pathway, enabling broad analysis of steroidogenesis disruption by quantifying hormones in the medium using LC-MS/MS.
Initially designed to assess testosterone and estradiol levels, the assay now extends to additional steroid hormones, such as progesterone and pregnenolone. The U.S.
EPA’s ToxCast program further advanced this method, enabling high-throughput measurement of 11 steroidogenesis-related hormones (Haggard et al., 2018). While
the H295R assay indirectly reflects disruptions in overall steroidogenesis (e.g., changes in testosterone levels), it does not provide mechanistic insights.

Testosterone can be measured by immunoassays and by isotope-dilution gas chromatography-mass spectrometry in serum (Taieb et al., 2003; Paduch et al., 2014).
Testosterone levels may also be measured by: Fish Lifecycle Toxicity Test (FLCTT) (US EPA OPPTS 850.1500), Male pubertal assay (PP Male Assay) (US EPA OPPTS
890.1500), OECD TG 441: Hershberger Bioassay in Rats (H Assay).
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Event: 1614: Decrease, androgen receptor activation

Short Name: Decrease, AR activation

AOPs Including This Key Event

AOP ID and Name Event Type

Aop:288 - Inhibition of 17α-hydrolase/C 10,20-lyase (Cyp17A1) activity leads to birth reproductive defects (cryptorchidism) in
male (mammals) KeyEvent

Aop:305 - 5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) offspring KeyEvent
Aop:306 - Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male (mammalian) offspring KeyEvent
Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male (mammalian) offspring KeyEvent
Aop:344 - Androgen receptor (AR) antagonism leading to nipple retention (NR) in male (mammalian) offspring KeyEvent
Aop:372 - Androgen receptor antagonism leading to testicular cancer KeyEvent
Aop:477 - Androgen receptor (AR) antagonism leading to hypospadias in male offspring KeyEvent
Aop:345 - Androgen receptor (AR) antagonism leading to decreased fertility in females KeyEvent
Aop:111 - Decrease in androgen receptor activity leading to Leydig cell tumors (in rat) MolecularInitiatingEvent

Biological Context

Level of Biological Organization

Tissue

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability

Life Stage Evidence

During development and at
adulthood High

Sex Applicability
Sex Evidence

Mixed High

This KE is considered broadly applicable across mammalian taxa as all mammals express the AR in numerous cells and tissues where it regulates gene transcription
required for developmental processes and functions. It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending to
non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.

Key Event Description

This KE refers to decreased activation of the androgen receptor (AR) as occurring in complex biological systems such as tissues and organs in vivo. It is thus
considered distinct from KEs describing either blocking of AR or decreased androgen synthesis.

The AR is a nuclear transcription factor with canonical AR activation regulated by the binding of the androgens such as testosterone or dihydrotestosterone (DHT).
Thus, AR activity can be decreased by reduced levels of steroidal ligands (testosterone, DHT) or the presence of compounds interfering with ligand binding to the
receptor (Davey & Grossmann, 2016; Gao et al., 2005).

In the inactive state, AR is sequestered in the cytoplasm of cells by molecular chaperones. In the classical (genomic) AR signaling pathway, AR activation causes
dissociation of the chaperones, AR dimerization and translocation to the nucleus to modulate gene expression. AR binds to the androgen response element
(ARE) (Davey & Grossmann, 2016; Gao et al., 2005). Notably, for transcriptional regulation the AR is closely associated with other co-factors that may differ between
cells, tissues and life stages. In this way, the functional consequence of AR activation is cell- and tissue-specific. This dependency on co-factors such as the SRC
proteins also means that stressors affecting recruitment of co-activators to AR can result in decreased AR activity (Heinlein & Chang, 2002).

Ligand-bound AR may also associate with cytoplasmic and membrane-bound proteins to initiate cytoplasmic signaling pathways with other functions than the nuclear
pathway. Non-genomic AR signaling includes association with Src kinase to activate MAPK/ERK signaling and activation of the PI3K/Akt pathway. Decreased AR
activity may therefore be a decrease in the genomic and/or non-genomic AR signaling pathways (Leung & Sadar, 2017).

How it is Measured or Detected

This KE specifically focuses on decreased in vivo activation, with most methods that can be used to measure AR activity carried out in vitro. They provide indirect
information about the KE and are described in lower tier MIE/KEs (see for example MIE/KE-26 for AR antagonism, KE-1690 for decreased T levels and KE-1613 for
decreased dihydrotestosterone levels). In this way, this KE is a placeholder for tissue-specific responses to AR activation or inactivation that will depend on the
adverse outcome (AO) for which it is included.

In fish, The Rapid Androgen Disruption Activity Reporter (RADAR) assay included in OECD test guideline no. 251 can be used to measure genomic AR activity (OECD,
2022). Employing a spg1-gfp construct under control of the AR-binding promoter spiggin1 in medaka fish embryos, any stressor activating or inhibiting the androgen
axis will be detected. This includes for instance stressors that agonize or antagonize AR, as well as stressors that modulate androgen synthesis or metabolism. Non-
genomic AR activity cannot be detected by the RADAR assay (OECD, 2022). Similar assays may in the future be developed to measure AR activity in mammalian
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organisms.  
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Event: 286: Altered, Transcription of genes by the androgen receptor

Short Name: Altered, Transcription of genes by the AR

Key Event Component

Process Object Action

regulation of gene
expression

androgen
receptor decreased

AOPs Including This Key Event

AOP ID and Name Event Type

Aop:19 - Androgen receptor antagonism leading to adverse effects in the male foetus (mammals) KeyEvent
Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male (mammalian) offspring KeyEvent
Aop:344 - Androgen receptor (AR) antagonism leading to nipple retention (NR) in male (mammalian) offspring KeyEvent
Aop:345 - Androgen receptor (AR) antagonism leading to decreased fertility in females KeyEvent
Aop:305 - 5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) offspring KeyEvent
Aop:495 - Androgen receptor activation leading to prostate cancer KeyEvent
Aop:306 - Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male (mammalian)
offspring KeyEvent

Aop:547 - Androgen receptor agonism leading to long anogenital distance in female offspring KeyEvent
Aop:496 - Androgen receptor agonism leading to reproduction dysfunction �in zebrafish� KeyEvent
Aop:372 - Androgen receptor antagonism leading to testicular cancer KeyEvent

Stressors

Name

Bicalutamide
Cyproterone acetate
Epoxiconazole
Flutamide
Flusilazole
Prochloraz
Propiconazole
Stressor:286 Tebuconazole
Triticonazole
Vinclozalin

Biological Context

Level of Biological Organization

Tissue

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability

Life Stage Evidence
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During development and at
adulthood High

Life Stage Evidence

Sex Applicability
Sex Evidence

Mixed High

Both the DNA-binding and ligand-binding domains of the AR are highly evolutionary conserved, whereas the transactivation domain show more
divergence, which may affect AR-mediated gene regulation across species (Davey and Grossmann 2016). Despite certain inter-species differences, AR
function mediated through gene expression is highly conserved, with mutation studies from both humans and rodents showing strong correlation for AR-
dependent development and function (Walters et al. 2010). 

This KE is considered broadly applicable across mammalian taxa, sex and developmental stages, as all mammals express the AR in numerous cells and
tissues where it regulates gene transcription required for developmental processes and function. It is, however, acknowledged that this KE most likely has a
much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on
the applicability to also include other vertebrates.

Key Event Description

This KE refers to transcription of genes by the androgen receptor (AR) as occurring in complex biological systems such as tissues and organs in
vivo. Rather than measuring individual genes, this KE aims to capture patterns of effects at transcriptome level in specific target cells/tissues. In other words, it can
be replaced by specific KEs for individual adverse outcomes as information becomes available, for example the transcriptional toxicity response in prostate tissue for
AO: prostate cancer, perineum tissue for AO: reduced AGD, etc.  AR regulates many genes that differ between tissues and life stages and, importantly, different gene
transcripts within individual cells can go in either direction since AR can act as both transcriptional activator and suppressor. Thus, the ‘directionality’ of the KE cannot
be either reduced or increased, but instead describe an altered transcriptome.

The Androgen Receptor and its function

The AR belongs to the steroid hormone nuclear receptor family. It is a ligand-activated transcription factor with three domains: the N-terminal domain, the
DNA-binding domain, and the ligand-binding domain with the latter being the most evolutionary conserved (Davey and Grossmann 2016). Androgens
(such as dihydrotestosterone and testosterone) are AR ligands and act by binding to the AR in androgen-responsive tissues (Davey and Grossmann 2016).
Human AR mutations and mouse knockout models have established a fundamental role for AR in masculinization and spermatogenesis (Maclean et al.;
Walters et al. 2010; Rana et al. 2014). The AR is also expressed in many other tissues such as bone, muscles, ovaries and within the immune system
(Rana et al. 2014).

 

Altered transcription of genes by the AR as a Key Event

Upon activation by ligand-binding, the AR translocates from the cytoplasm to the cell nucleus, dimerizes, binds to androgen response elements in the DNA
to modulate gene transcription (Davey and Grossmann 2016). The transcriptional targets vary between cells and tissues, as well as with developmental
stages and is also dependent on available co-regulators (Bevan and Parker 1999; Heemers and Tindall 2007). It should also be mentioned that the AR can
work in other ‘non-canonial’ ways such as non-genomic signaling, and ligand-independent activation (Davey & Grossmann, 2016; Estrada et al, 2003; Jin
et al, 2013).

A large number of known, and proposed, target genes of AR canonical signaling have been identified by analysis of gene expression following treatments
with AR agonists (Bolton et al. 2007; Ngan et al. 2009, Jin et al. 2013).

How it is Measured or Detected

Altered transcription of genes by the AR can be measured by measuring the transcription level of known downstream target genes by RT-qPCR or other
transcription analyses approaches, e.g. transcriptomics.

Since this KE aims to capture AR-mediated transcriptional patterns of effect, downstream bioinformatics analyses will typically be required to identify and compare
effect footprints. Clusters of genes can be statistically associated with, for example, biological process terms or gene ontology terms relevant for AR-mediated
signaling. Large transcriptomics data repositories can be used to compare transcriptional patterns between chemicals, tissues, and species (e.g. TOXsIgN (Darde et al,
2018a; Darde et al, 2018b), comparisons can be made to identified sets of AR ‘biomarker’ genes (e.g. as done in (Rooney et al, 2018)), and various methods can be
used e.g. connectivity mapping (Keenan et al, 2019).
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Event: 2298: Decrease, intratesticular testosterone levels

Short Name: Decrease, intratesticular testosterone

Key Event Component

Process Object Action

testosterone biosynthetic process testosterone decreased

AOPs Including This Key Event

AOP ID and Name Event Type

Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male (mammalian)
offspring KeyEvent

Biological Context

Level of Biological Organization

Organ

Organ term

Organ term

testis

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

Vertebrates Vertebrates Moderate NCBI
mammals mammals High NCBI

Life Stage Applicability
Life Stage Evidence

During development and at
adulthood High

Sex Applicability
Sex Evidence

Male High

This key event (KE) is applicable to all male vertebrates with testis that produce testosterone. 

Key Event Description

This KE refers to decreased testosterone biosynthesis in the testis (male); i.e. intratesticular testosterone levels. It is therefore considered distinct from KEs describing
circulating testosterone levels, or levels in any other tissue or organ of vertebrate animals. It is also distinct from indirect cell-based assays measuring effects on
testosterone synthesis, including in vitro Leydig cells.

In males, the testis is the primary site of testosterone biosynthesis via the steroidogenesis pathway – an enzymatic pathway converting cholesterol into all the
downstream steroid hormones (Miller and Auchus 2010). In mammals, the Leydig cells are considered the primary site of steroidogenesis in the testis. Although
generally correct, there is evidence to suggest the involvement of Sertoli cells during fetal stages in e.g. mouse and human testis, but with Leydig cells being
sufficient in adult life (O’Donnell et al 2022).  

Testicular testosterone synthesis is primarily regulated by the hypothalamic-pituitary-gonadal (HPG) axis, with Gonadotropin-releasing hormone (GnRH) from the
hypothalamus controlling the secretion of Luteinizing hormone (LH) from the pituitary that ultimately binds to the LH receptors on Leydig cells to stimulate
steroidogenesis. Notably, the timing of HPG axis activation during development varies between species. In humans, human chorionic gonadotropin (hCG) act similarly
to LH and appear to be critical in stimulating testosterone synthesis in the fetal testis (Huhtaniemi 2025), whereas in the mouse testosterone synthesis in the fetal
testis appears to be independent of pituitary gonadotropins even though LH is detectable during late gestation O’Shaughnessy et al 1998).  Irrespective of
testosterone being stimulated by gonadotropins or occurring de novo, however, it is essential for masculinization of the developing fetus, initiation of puberty, and
maintain reproductive, and other, functions in adulthood.

Notably, intratesticular testosterone concentration is significantly higher than serum testosterone levels, typically ranging from 30- to 200-fold greater in mammals,
including humans (Turner et al 1984; McLachlan et al 2002; Coviello et al 2004).

How it is Measured or Detected

Testosterone levels can be quantified in testis tissue (ex vivo, in vivo). Methods include traditional immunoassays such as ELISA and RIA, advanced techniques like
LC-MS/MS, and liquid scintillation spectrometry following radiolabeling (Shiraishi et al., 2008).
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List of Adverse Outcomes in this AOP

Event: 1688: anogenital distance (AGD), decreased

Short Name: AGD, decreased

Key Event Component

Process Object Action

androgen receptor signaling
pathway

Musculature of male
perineum disrupted

AOPs Including This Key Event

AOP ID and Name Event Type

Aop:305 - 5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) offspring AdverseOutcome
Aop:306 - Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male (mammalian)
offspring AdverseOutcome

Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male (mammalian) offspring AdverseOutcome
Aop:476 - Adverse Outcome Pathways diagram related to PBDEs associated male reproductive toxicity AdverseOutcome

Stressors

Name

Butylparaben
p,p'-DDE
Bis(2-ethylhexyl)
phthalate
Dexamethasone
Fenitrothion
Finasteride
Flutamide
Ketoconazole
Linuron
Prochloraz
Procymidone
Triticonazole
Vinclozolin
di-n-hexyl phthalate
Dicyclohexyl phthalate
butyl benzyl phthalate
monobenzyl phthalate
di-n-heptyl phthalate

Biological Context

Level of Biological Organization
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Tissue
Level of Biological Organization

Organ term

Organ term

perineum

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

human Homo sapiens Moderate NCBI
rat Rattus norvegicus High NCBI
mouse Mus musculus High NCBI

Life Stage Applicability
Life Stage Evidence

Foetal High
Sex Applicability
Sex Evidence

Male High

A short AGD in male offspring is a marker of insufficient androgen action during critical fetal developmental stages (Schwartz et al, 2019; Welsh et al,
2008). A short AGD is thus a sign of undervirilization, which is also associated with a series of male reproductive disorders, including genital
malformations and infertility in humans (Juul et al, 2014; Skakkebaek et al, 2001).

There are numerous human epidemiological studies showing associations with intrauterine exposure to anti-androgenic chemicals and short AGD in
newborn boys alongside other reproductive disorders (Schwartz et al, 2019). This underscores the human relevance of this AO. However, in reproductive
toxicity studies and chemical risk assessment, rodents (rats and mice) are what is tested on. The list of chemicals inducing short male AGD in male rat
offspring is extensive, as evidenced by the ‘stressor’ list and reviewed by (Schwartz et al, 2019).

Key Event Description

The anogenital distance (AGD) refers to the distance between anus and the external genitalia. In rodents and humans, the male AGD is approximately
twice the length as the female AGD (Salazar-Martinez et al, 2004; Schwartz et al, 2019). This sexual dimorphisms is a consequence of sex hormone-
dependent development of secondary sexual characteristics (Schwartz et al, 2019). In males, it is believed that androgens (primarily DHT) activate AR-
positive cells in non-myotic cells in the fetal perineum region to initiate differentiation of the perineal levator ani and bulbocavernosus (LABC) muscle
complex (Ipulan et al, 2014). This AR-dependent process occurs within a critical window of development, around gestational days 15-18 in rats (MacLeod
et al, 2010). In females, the absence of DHT prevents this masculinization effect from occurring.

The involvement of androgens in masculinization of the male fetus, including the perineum, has been known for a very long time (Jost, 1953), and AGD
has historically been used to, for instance, sex newborn kittens. It is now well established that the AGD in newborns is a proxy readout for the intrauterine
sex hormone milieu the fetus was developing. Too low androgen levels in XY fetuses makes the male AGD shorter, whereas excess (ectopic) androgen
levels in XX fetuses makes the female AGD longer, in humans and rodents (Schwartz et al, 2019).

How it is Measured or Detected

The AGD is a morphometric measurement carried out by trained technicians (rodents) or medical staff (humans).

In rodent studies AGD is assessed as the distance between the genital papilla and the anus, and measured using a stereomicroscope with a micrometer
eyepiece. The AGD index (AGDi) is often calculated by dividing AGD by the cube root of the body weight.  It is important in statistical analysis to use litter
as the statistical unit. This is done when more than one pup from each litter is examined. Statistical analyses is adjusted using litter as an independent,
random and nested factor. AGD are analysed using body weight as covariate as recommended in Guidance Document 151 (OECD, 2013).

 

Regulatory Significance of the AO

In regulatory toxicology, the AGD is mandatory inclusions in OECD test guidelines used to test for developmental and reproductive toxicity of chemicals.
Guidelines include ‘TG 443 extended one-generation study’, ‘TG 421/422 reproductive toxicity screening studies’ and ‘TG 414 developmental toxicity
study’.
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Appendix 2

List of Key Event Relationships in the AOP

List of Adjacent Key Event Relationships

Relationship: 3448: Decrease, intratesticular testosterone leads to Decrease, circulating testosterone levels

AOPs Referencing Relationship

AOP Name Adjacency Weight of
Evidence

Quantitative
Understanding

Decreased testosterone synthesis leading to short anogenital distance (AGD) in male
(mammalian) offspring adjacent High Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals NCBI
rat Rattus norvegicus High NCBI
mouse Mus musculus High NCBI

Life Stage Applicability
Life Stage Evidence

All life
stages High

Sex Applicability
Sex Evidence

Male High

Taxonomic applicability

The KER is assessed applicable to mammals, as testicular testosterone synthesis is common for all mammals. It is, however, acknowledged that this KER most likely
has a much broader domain of applicability extending to non-mammalian vertebrates.

Sex applicability

This KER is only applicable to males, as testes are only found in males.

Life stage applicability

This KER is applicable to all life stages.  Once formed, the testes produce and secrete testosterone during fetal development and throughout postnatal life, although
testosterone levels do vary between life stages (Vesper et al., 2015).

Key Event Relationship Description

AOP307

13/33

https://aopwiki.org/relationships/3448
https://aopwiki.org/aops/307
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090


This KE describes a decrease in intratesticular testosterone production leading to a decrease in circulating levels of testosterone. Intratesticular testosterone can be
measured in whole testicular tissue samples by testing ex vivo testicular testosterone production, and circulating testosterone is measured in plasma or serum. In
males, the testes produce and secrete the majority of the circulating testosterone, with only a small contribution from the adrenal gland (Naamneh Elzenaty et al.,
2022). In mammals, intratesticular testosterone levels are 30- to 200-fold higher than serum testosterone levels (Coviello et al., 2004). Reducing testicular
testosterone will consequently lead to a reduction in circulating levels as well.

Evidence Supporting this KER

Biological Plausibility

The biological plausibility for this KER is considered high. The testes are the primary testosterone-producing organs in male mammals and the main contributors to
the circulating testosterone levels in males (Naamneh Elzenaty et al., 2022). A decrease in intratesticular testosterone will therefore lead to a decrease in secretion of
testosterone and consequently lower circulating levels of testosterone.  

Empirical Evidence

The empirical evidence for this KER is overall judged as high.

In vivo toxicity studies in rats and mice have shown that exposure to substances that lowers intratesticular testosterone also lowers circulating testosterone levels.
This includes in utero exposure and measurements in fetal males (Borch J et al., 2004; Vinggaard AM et al., 2005) as well as exposure and measurements postnatally
in male rodents (Hou X et al., 2020; Ji et al., 2010; Jiang XP et al., 2017)

Supporting this evidence are castration studies in male rats and monkeys, showing a marked reduction in circulating testosterone levels when removing the testes
(Gomes & Jain, 1976; Perachio et al., 1977).

Lastly, in humans, males with hypogonadism or gonadal dysgenesis present with lower circulating testosterone levels (Hirose Y et al., 2007; Jones LW et al., 1970).

 

Dose concordance

In vivo toxicity studies support dose concordance for this KER, as exemplified below.

In pre-pubertal/pubertal male rats, chlorocholine chloride exposure (postnatal day (PND) 23-60) in three doses reduced both intratesticular and serum testosterone
levels at PND60 at all doses tested (Hou X et al., 2020).

Perinatal exposure (gestational day (GD) 10-birth) of male mice to diethylhexyl phthalate (DEHP) in three doses (100, 500, and 1000 mg/kg bw/day) reduced
intratesticular testosterone at 500 and 1000 mg/kg bw/day at PND1, while only 1000 mg/kg bw/day reduced serum levels of testosterone, although this was measured
later, at PND56 (Xie Q et al., 2024)

In utero exposure (GD7-21) of male rats to DEHP in doses of 300 or 750 mg/kg bw/day reduced intratesticular testosterone levels at GD21, while only the high dose
also reduced plasma testosterone levels (Borch J et al., 2004).

Temporal concordance

In vivo toxicity studies moderately support temporal concordance for this KER, as exemplified below.

Several studies show that a decrease in intratesticular and circulating testosterone can be measured at the same time point (Borch J et al., 2004; Hou X et al., 2020;
Jiang XP et al., 2017; Vinggaard AM et al., 2005).

In utero exposure of male mice to DEHP from GD10 to birth reduced intratesticular testosterone levels at PND1 with LOAEL 500 mg/kg bw/day, and when measured at
PND56, circulating testosterone levels were decreased, but with LOAEL 1000 mg/kg bw/day (Xie Q et al., 2024).

In Fisher JS et al., 2003, exposure of male rats from GD13-21 to 500 mg/kg bw/day dibutyl phthalate reduced intratesticular testosterone by ~90% (measured at
GD19). When analyzing circulating testosterone levels at PND4, 10, 15, 25, and 90, only the testosterone levels on PND25 were decreased.

One study report conflicting results on the temporal concordance of this KER (Caceres et al., 2023). Here, male rats were exposed for 20 weeks from PND60 to a
mixture of the phytoestrogens genistein and daidzein (combined dose of either 29 or 290 mg/kg bw/day). Intratesticular testosterone was measured every 4 weeks,
while serum levels of testosterone were measured every second week. While the mixture caused a reduction of serum testosterone after 2 weeks of exposure, a
reduction in intratesticular testosterone was not measured until after 8 weeks. The discrepancy might be explained by the multiple mechanisms of action of the
phytoestrogens, as they, besides affecting testicular testosterone synthesis, may also influence peripheral aromatization of testosterone to estrogens (van Duursen et
al., 2011).

Incidence concordance

Incidence concordance can not be evaluated for this KER.

Uncertainties and Inconsistencies

There are examples of in vivo studies, in which stressors exposure have caused a reduction in intratesticular testosterone levels without a reduction in circulating
testosterone levels.

Quantitative Understanding of the Linkage

Time-scale

The time-scale for this KER is likely minutes or hours, as testosterone is secreted into the blood from the testes after synthesis. In vivo, a decrease in intratesticular
and circulating testosterone can be measured at the same time, both in fetal and postnatal studies (Borch J et al., 2004; Hou X et al., 2020; Jiang XP et al., 2017;
Vinggaard AM et al., 2005). Ex vivo, chemically-induced reduction in testicular production of testosterone can be measured in culture media after 3 hours incubation
(earlier time points were not measured) (Wilson et al., 2009).

Known Feedforward/Feedback loops influencing this KER

Testosterone is a part of the hypothalamic-pituitary-gonadal (HPG) axis, which controls testosterone synthesis in puberty and adulthood. In this axis, gonatropin-
releasing hormone (GnRH) is released from the hypothalamus and stimulates release of luteinizing hormone (LH) from the pituitary. LH acts on the testes to produce
and secrete testosterone. Elevated circulating testosterone levels exerts negative feedback on the HPG axis (decreasing GnRH secretion) to keep testosterone levels
in balance (Tilbrook & Clarke, 2001).

Importantly, there are species-specific differences in when the HPG axis is functional during development. In the mouse, fetal testosterone synthesis is independent of
pituitary LH (O’Shaughnessy et al., 1998), whereas in humans, human chorionic gonadotropin (hCG) act similarly to LH and appear to be critical in stimulating
testosterone synthesis in the fetal testis (Huhtaniemi, 2025).
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Relationship: 2131: Decrease, circulating testosterone levels leads to Decrease, AR activation

AOPs Referencing Relationship

AOP Name Adjacency Weight of
Evidence

Quantitative
Understanding

Inhibition of 17α-hydrolase/C 10,20-lyase (Cyp17A1) activity leads to birth reproductive defects
(cryptorchidism) in male (mammals) adjacent High High

Decreased testosterone synthesis leading to short anogenital distance (AGD) in male (mammalian)
offspring adjacent High Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability

Life Stage Evidence

During development and at
adulthood High

Sex Applicability
Sex Evidence

Mixed High

Taxonomic applicability

KER2131 is assessed applicable to mammals, as T and AR activation are known to be related in mammals. It is, however, acknowledged that this KER most likely has
a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on
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the applicability to also include other vertebrates.

Sex applicability

KER2131 is assessed applicable to both sexes, as T activates AR in both males and females.

Life-stage applicability

KER2131 is considered applicable to developmental and adult life stages, as T-mediated AR activation is relevant from the AR is expressed.

Key Event Relationship Description

This key event relationship links decreased testosterone (T) levels to decreased androgen receptor (AR) activation. T is an endogenous steroid hormone important for,
amongst other things, reproductive organ development and growth as well as muscle mass and spermatogenesis (Marks, 2004).T is, together with
dihydrotestosterone (DHT), a primary ligand for the AR in mammals (Schuppe et al., 2020). Besides its genomic actions, the AR can also mediate rapid, non-genomic
second messenger signaling (Davey & Grossmann, 2016). When T levels are reduced, less substrate is available for the AR, and hence, AR activation is decreased
(Gao et al., 2005).

Evidence Supporting this KER

Biological Plausibility

The biological plausibility for this KER is considered high

                            

AR activation is dependent on ligand binding (though a few cases of ligand-independent AR activation has been shown, see uncertainties and inconsistencies). T is a
primary ligand for the AR, and when T levels are decreased there is less substrate for the AR, and hence, AR activation is decreased. In the male, T is primarily
synthesized by the testes, and in some target tissues T is irreversibly metabolized to the more potent metabolite DHT. T and DHT both bind to the AR, but DHT has a
higher binding affinity (Gao et al., 2005). The lower binding affinity of T compared to DHT is due to the faster dissociation rate of T from the full-length AR, as T has
less effective FXXLF motif binding to AF2 (Askew et al., 2007). Binding of T or DHT has different effects in different tissues. E.g. in the developing male, T is required
for development of the internal sex organs (epididymis, vas deferens and the seminal vesicles), whereas DHT is crucial for development of the external sex organs
(Keller et al., 1996). In the adult male, androgen action in the reproductive tissues is DHT dependent, whereas action in muscle and bone is DHT independent (Gao et
al., 2005). In patients with male androgen deficiency syndrome (AIS), clinically low levels of T leads to reduced AR activation (either due to low T or DHT in target
tissue), which manifests as both androgenic related symptoms (such as incomplete or delayed sexual development, loss of body hair, small or shrinking testes, low or
zero sperm count) as well as anabolic related symptoms (such as height loss, low trauma fracture, low bone mineral density, reduced muscle bulk and strength,
increased body fat). All symptoms can be counteracted by treatment with T, which acts directly on the AR receptor in anabolic tissue (Bhasin et al., 2010). Similarly,
removal of the testicles in weanling rats results in a feminized body composition and muscle metabolism, which is reversed by administration of T (Krotkiewski et al.,
1980). As this demonstrates, the consequences of low T regarding AR activation will depend on tissue, life stage, species etc.

Empirical Evidence

The empirical evidence for this KER is considered high

Dose concordance

There is a positive dose-response relationship between increasing concentrations of T and AR activation (U.S. EPA., 2023).

Other evidence

In male patients with androgen deficiency, treatment with T counteracts anabolic (DHT independent) related symptoms such as height loss, low
trauma fracture, low bone mineral density, reduced muscle bulk and strength, increased body fat (Bhasin et al., 2010; Katznelson et al., 1996).
Removal of the testicles in weanling rats result in a feminized body composition and muscle metabolism, which is reversed by administration of T (Krotkiewski et
al., 1980).

Uncertainties and Inconsistencies

Ligand-independent actions of the AR have been identified. To what extent and of which biological significance is not well defined (Bennesch & Picard, 2015).

Quantitative Understanding of the Linkage

Response-response relationship

There is a positive dose-response relationship between increasing concentrations of T and AR activation (U.S. EPA., 2023). However, there is not enough data, or
overview of the data, to define a quantitative linkage in vivo, and such a relationship will differ between biological systems (species, tissue, cell type).

Time-scale

AR and promoter interactions occur within 15 minutes of ligand binding, and RNA polymerase II and coactivator recruitment are then proposed to occur transiently
with cycles of approximately 90 minutes (Kang et al., 2002).

Known modulating factors
Modulating Factor

(MF) MF Specification Effect(s) on the KER Reference(s)

Age AR expression changes with aging Tissue-specific alterations in AR
activity with aging

(Supakar et al., 1993; Wu
et al., 2009)

Genotype Number of CAG repeats in the first exon of AR Decreased AR activation with
increased number of CAGs

(Chamberlain et al., 1994;
Tut et al., 1997)

Male androgen
deficiency syndrome

Low circulating testosterone levels due to primary (testicular) or
secondary (pituitary-hypothalamic) hypogonadism

Reduced levels of circulating
testosterone (Bhasin et al., 2010)

Castration Removal of testicles Reduced levels of circulating
testosterone (Krotkiewski et al., 1980)

Known Feedforward/Feedback loops influencing this KER

Androgens can upregulate and downregulate AR expression (Lee & Chang, 2003).
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Relationship: 2124: Decrease, AR activation leads to Altered, Transcription of genes by the AR

AOPs Referencing Relationship

AOP Name Adjacency Weight of
Evidence

Quantitative
Understanding

Androgen receptor (AR) antagonism leading to nipple retention (NR) in male (mammalian)
offspring adjacent Moderate Moderate

Androgen receptor (AR) antagonism leading to decreased fertility in females adjacent
5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian)
offspring adjacent High

Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male
(mammalian) offspring adjacent Moderate

Decreased testosterone synthesis leading to short anogenital distance (AGD) in male
(mammalian) offspring adjacent Moderate Low

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals High NCBI
Life Stage Applicability

Life Stage Evidence

During development and at
adulthood High

Sex Applicability
Sex Evidence

Mixed High

This KER is applicable for both sexes, across developmental stages into adulthood, in numerous cells and tissues and across mammalian taxa. It is, however,
acknowledged that this KER most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add
additional relevant knowledge to expand on the applicability to also include other vertebrates.

Key Event Relationship Description

The androgen receptor (AR) is a ligand-dependent nuclear transcription factor that upon activation translocates to the nucleus, dimerizes, and binds
androgen response elements (AREs) to modulate transcription of target genes (Lamont and Tindall, 2010, Roy et al. 2001). Decreased activation of the AR
affects its transcription factor activity, therefore leading to altered AR-target gene expression. This KER refers to decreased AR activation and altered gene
expression occurring in complex systems, such as in vivo and the specific effect on transcription of AR target genes will depend on species, life stage,
tissue, cell type etc.

Evidence Supporting this KER

Biological Plausibility

The biological plausibility for this KER is considered high

The AR is a ligand-activated transcription factor part of the steroid hormone nuclear receptor family. Non-activated AR is found in the cytoplasm as a
multiprotein complex with heat-shock proteins, immunophilins and, other chaperones (Roy et al. 2001). Upon activation through ligand binding, the AR
dissociates from the protein complex, translocates to the nucleus and homodimerizes. Facilitated by co-regulators, AR can bind to DNA regions containing
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AREs and initiate transcription of target genes, that thus will be different in e.g. different tissues, life-stages, species etc.

Through mapping of AREs and ChIP sequencing studies, several AR target genes have been identified, mainly studied in prostate cells (Jin, Kim, and Yu
2013). Different co-regulators and ligands lead to altered expression of different sets of genes (Jin et al. 2013; Kanno et al. 2022). Alternative splicing of
the AR can lead to different AR variants that also affects which genes are transcribed (Jin et al. 2013).

Apart from this canonical signaling pathway, the AR can suppress gene expression, indirectly regulate miRNA transcription, and have non-genomic effects
by rapid activation of second messenger pathways in either presence or absence of a ligand (Jin et al. 2013).

Empirical Evidence

The empirical evidence for this KER is considered high

In humans, altered gene expression profiling in individuals with androgen insensitivity syndrome (AIS) can provide supporting empirical evidence
(Holterhus et al. 2003; Peng et al. 2021). In rodent AR knockout (KO) models, gene expression profiling studies and gene-targeted approaches have
provided information on differentially expressed genes in several organ systems including male and female reproductive, endocrine, muscular,
cardiovascular and nervous systems (Denolet et al. 2006; Fan et al. 2005; Holterhus et al. 2003; Ikeda et al. 2005; Karlsson et al. 2016; MacLean et al.
2008; Rana et al. 2011; Russell et al. 2012; Shiina et al. 2006; Wang et al. 2006; Welsh et al. 2012; Willems et al. 2010; Yu et al. 2008, 2012; Zhang et al.
2006; Zhou et al. 2011).

Exposure to known antiandrogens has been shown to alter transcriptional profiles, for example of neonatal pig ovaries (Knapczyk-Stwora et al. 2019).

Dose concordance has also been observed for instance in zebrafish embryos; a dose of 50 µg/L of the AR antagonist flutamide resulted in 674
differentially expressed genes at 96 h post fertilization whereas 500  µg/L flutamide resulted in 2871 differentially expressed genes (Ayobahan et al.,
2023).

Uncertainties and Inconsistencies

AR action has been reported to occur also without ligand binding. However, not much is known about the extent and biological implications of such non-
canonical, ligand-independent AR activation (Bennesch and Picard 2015).

Quantitative Understanding of the Linkage

Response-response relationship

There is not enough data to define a quantitative relationship between AR activation and alteration of AR target gene transcription, and such a
relationship will differ between biological systems (species, tissue, cell type, life stage etc).

Time-scale

AR and promoter interactions occur within 15 minutes of ligand binding, RNA polymerase II and coactivator recruitment are proposed to occur transiently
with cycles of approximately 90 minutes in LNCaP cells (Kang et al. 2002). RNA polymerase II elongation rates in mammalian cells have been shown to
range between 1.3 and 4.3 kb/min (Maiuri et al. 2011). Therefore, depending on the cell type and the half-life of the AR target gene transcripts, changes
are to be expected within hours.

Known modulating factors
Modulating Factor

(MF) MF Specification Effect(s) on the KER Reference(s)

Age AR expression in aging male rats Tissue-specific alterations in AR activity with
aging

(Supakar et al. 1993; Wu, Lin, and
Gore 2009)

Genotype Number of CAG repeats in the first
exon of AR

Decreased AR activation with increased number
of CAGs

(Tut et al. 1997; Chamberlain et al.
1994)

Known Feedforward/Feedback loops influencing this KER

AR has been hypothesized to auto-regulate its mRNA and protein levels (Mora and Mahesh 1999).
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List of Non Adjacent Key Event Relationships

Relationship: 2127: Altered, Transcription of genes by the AR leads to AGD, decreased

AOPs Referencing Relationship

AOP Name Adjacency Weight of
Evidence

Quantitative
Understanding

5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian)
offspring

non-
adjacent Moderate

Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male
(mammalian) offspring

non-
adjacent Moderate

Decreased testosterone synthesis leading to short anogenital distance (AGD) in male
(mammalian) offspring

non-
adjacent Moderate Low

Relationship: 2820: Decrease, AR activation leads to AGD, decreased

AOPs Referencing Relationship
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AOP Name Adjacency
Weight of
Evidence

Quantitative
Understanding

5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian)
offspring

non-
adjacent High

Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male
(mammalian) offspring

non-
adjacent High

Decreased testosterone synthesis leading to short anogenital distance (AGD) in male
(mammalian) offspring

non-
adjacent High Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links

human, mouse,
rat

human, mouse,
rat High NCBI

Life Stage Applicability
Life Stage Evidence

Fetal to Parturition High
Sex Applicability
Sex Evidence

Male High

Taxonomic

Fetal masculinization including the AGD is regulated by androgens interacting with the AR in all mammals, including humans (Murashima et al., 2015; Thankamony et
al., 2016), although, the size of the AGD and difference between the sexes vary between species. A large number of studies exist showing that fetal exposure to anti-
androgens causes shortened AGD in male rats and mice (Schwartz et al., 2019, see also Table 2).  Some epidemiological studies find associations between exposure
to anti-androgenic compounds and shorter AGD in boys (Thankamony et al., 2016). However, the associations are not very clear and confidence in the data is limited
by conflicting results, possibly due to differences in study design and methods for exposure measurements and analyses. Nevertheless, the KER is considered
applicable to humans, based on current understanding of the role of AR activation in fetal masculinization.

Life stage

Programming of the AGD occurs during the masculinization programming window in fetal life. This takes place in rats around embryonic days 15.5-19.5 (GD16-20)
and likely gestation weeks 8-14 in humans (Welsh et al., 2008). It should be mentioned that though AGD is believed to be relatively stable throughout life, it can be
responsive to postnatal changes in androgen levels (Schwartz et al., 2019).

Sex

Data presented in this KER support that disruption of androgen action during fetal life can lead to a short AGD in male offspring. While exposure to chemicals during
fetal life can also shorten female AGD, the biological significance and the mechanism driving the effect is unknown (Schwartz et al., 2019).

Key Event Relationship Description

This KER refers to a decrease in androgen receptor (AR) activation during fetal development leading to decreased anogenital distance (AGD) in male offspring.
It should be noted that the upstream Key Event (KE) ‘decrease, androgen receptor activation’ (KE-1614 in AOP Wiki) specifically focuses on decreased activation of
the androgen receptor in vivo, while most methods that can be used to measure AR activity are carried out in vitro. Indirect information about this KE may for
example be provided from assays showing in vitro AR antagonism, decreased in vitro or in vivo testosterone production/levels or decreased in vitro or in vivo
dihydrotestosterone (DHT) production/levels.

Evidence Supporting this KER

Biological Plausibility

The biological plausibility for this KER is judged to be high based on the following:

- Sexual differentiation happens in fetal life. The testes are developed and start to produce testosterone that is converted in other tissues by the enzyme 5-alpha-
reductase to the more potent androgen dihydrotestosterone (DHT). Both hormones bind and activate the nuclear receptor and transcription factor AR that in turn
drives masculinization of the male fetus (Welsh et al., 2014; Schwartz et. al, 2019).

- Fetal masculinization depends on activation of androgen signaling during a critical time window, the masculinization programming window (MPW), from gestational
day (GD) 15.5-18.5 in rats, 14.5-16.5 in mice and presumably gestation weeks (GWs) 8-14 in humans (Welsh et al., 2008; Amato et al., 2022). The onset of AR
expression in the tissues of the reproductive tract follows the timing of the MPW (Welsh et al., 2008).

- The fetal masculinization process involves a range of tissues and organs, including the perineum. Perineum length can be measured as the AGD, which is the
distance between the anus and the genitalia. The AGD is approximately twice as long in male as in female newborn rodents and humans (Schwartz et al., 2019).

- Male AR knockout mice present shorter AGD than wildtype males, so short that it is indistinguishable from wildtype female littermates (Yeh et al., 2002, Sato et al.,
2004).

- In human males, mutations decreasing AR activity also lead to feminization. One example is the androgen insensitivity syndrome (AIS), where mutations in the AR
lead to an impaired or abolished response to androgens, and thereby some degree of feminization of XY individuals and even XY sex reversal in individuals with
complete AIS (CAIS) (Thankamony et al., 2016; Hughes et al., 2012; Crouch et al., 2011). XY individuals with CAIS present as women with internally placed testes. A
study showed that the clitoral to urethral distance in these individuals was similar to a control group of women, but it is not clear whether this measurement can work
as a proxy for measuring the AGD (Thankamony et al 2016, Crouch 2011). Unfortunately, it seems the AGD has not at present been measured in CAIS individuals.
Another example is human males lacking 5-alpha-reductase, also presenting female-like genitalia (Batista & Mendonca, 2022).
 

- The detailed mechanism by which androgens regulate the AGD is not known but it is hypothesized that the AGD is influenced by the size of the levator-ani and
bulbocavernosus (LABC) muscle complex in the perineum. The growth of this complex is stimulated by AR activation, it is sexually dimorphic and larger in males than
in females and (Schwartz et al., 2019). AR is required for the development of the LABC complex as demonstrated by AR general and muscle specific knockout mice.
AR is expressed in non-myocytic cells in the LABC complex, starting at E15.5 in mice, and knockout of AR in these cells results in defects in the muscle formation
 (Ipulan et al., 2016;). Differential gene expression profiles in the perineum of male and female rats as well as in antiandrogen-exposed male rats have been identified
providing further mechanistic understanding (Schwartz et al, 2019; Draskau et al, 2022).

Empirical Evidence
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Animal in vivo data

The empirical support from studies in animals for this KER is overall judged as high.

It should be noted that the KE decreased androgen receptor activation (KE-1614 in AOP Wiki) specifically focuses on decreased activation of the androgen receptor in
vivo, with no methods currently available to measure this. Examples of assays that provide indirect information about KE-1614 are described in upstream MIE/KEs.

The empirical evidence for this KER from animal studies in vivo is based on studies using five different substances that result in decreased AR activation by different
mechanisms. Flutamide, procymidone and vinclozolin bind to the AR and inhibit the receptor activity and thereby act as AR antagonists, see MIE26. Finasteride
inhibits the 5-alpha-reductase enzyme that converts testosterone to DHT, see MIE1617. DEHP exposure during prenatal development in rats results in reduced fetal
testosterone levels, see KE1690. (MIE26, MIE1617 and KE1690 can be found in AOP Wiki).

The evidence for the upstream KE is mainly based on data from in vitro assays (AR antagonism or 5-alpha-reductase inhibition in vitro) whereas the evidence for the
downstream KE is based on in vivo studies, and there is generally not evidence for both KEs from the same study. However, decreased testosterone levels can be
measured in vivo, and Borch et al., 2004 measured the effect of developmental DEHP exposure on both testosterone levels and AGD (see section about “Dose
concordance”).

The empirical animal evidence for the five substances is summarized in table 3.

Table 3. Summary of empirical evidence for decreased androgen receptor activation, leading to decreased male AGD. References for the studies supporting the
empirical evidence are found in section “Evidence for decreased AR activation (KE1614) by flutamide, procymidone, and vinclozolin, finasteride and DEHP” and in
table 2.

Stressor(s) Upstream effect
(decreased AR activation)

Downstream effect
(decreased male AGD)
 

Flutamide AR antagonism in in vitro
assay receptor binding and
transactivation assays

 

Decreased male AGD after
prenatal exposure in studies in
rat

 
Procymidone AR antagonism in in vitro

assay receptor binding and
transactivation assays

 

Decreased male AGD after
prenatal exposure in studies in
rat

 
Vinclozolin AR antagonism in in vitro

assay receptor binding and
transactivation assays

 

Decreased male AGD after
prenatal exposure in studies in
rat and mouse

 
Finasteride Inhibition of 5-alpha-reductase

enzyme in in vitro assays

 

Decreased male AGD after
prenatal exposure in studies in
rat

 
DEHP Reduced production of

testosterone in fetal testis
measured in ex vivo testis
assays, reduced testosterone
levels in testis and reduced
fetal plasma or serum
testosterone levels

 

Decreased male AGD after
prenatal exposure in studies in
rat

 

From table 3, it can be deducted that fetal exposure to substances known to decrease androgen receptor activation through antagonism of the AR (vinclozolin,
procymidone, flutamide), inhibition of testosterone synthesis (DEHP) or inhibition of conversion of testosterone to DHT (finasteride), results in decreased AGD in rat
and mouse male offspring.

Evidence for decreased AR activation (KE 1614) by flutamide, procymidone, vinclozolin, finasteride and DEHP

Flutamide, a pharmaceutical, binds the AR and inhibits the receptor activity, thereby acting as an AR antagonist. It has been used as an antiandrogen for treatment of
prostate cancer and is used as a reference chemical for antiandrogenic activity in the AR transactivation assays in the OECD test guideline No 458 (Goldspiel &
Kohler, 1990; Labrie, 1993; OECD, 2023; Simard et al., 1986).

Procymidone and vinclozolin are fungicides that have been shown to be AR antagonists. Procymidone binds to the AR and inhibits the agonist binding as shown in AR
binding assays using rat prostate cytosol (Hosokawa et al., 1993) or AR transfected COS cells (Ostby et al., 1999). Procymidone also inhibits agonist activated
transcription in AR reporter assays (Hass et al., 2012; Kojima et al., 2004; Orton et al., 2011; Ostby et al., 1999; Scholze et al., 2020). Vinclozolin binds to the AR and
inhibits the agonist binding as shown in AR binding assays using rat epididymis cytosol (Kelce et al., 1997) or AR transfected COS-1 cells (Wong et al., 1995).
Vinclozolin also inhibits agonist activated transcription in AR reporter assays (Euling et al, 2002; Kojima et al., 2004; Molina-Molina et al., 2006; Orton et al., 2011;
Scholze et al., 2020; Shimamura et al., 2002; Wong et al., 1995). Finasteride is a pharmaceutical that inhibits the 5-alpha-reductase enzyme that converts
testosterone to DHT. Finasteride is used to treat benign prostatic hypertrophy (Andersson & Russel, 1990; Rittmaster & Wood, 1994; Stoner, 1990).

Prenatal exposure to DEHP in rats results in reduced production of testosterone in fetal testis measured in ex vivo testis assays, reduced testosterone levels in testis
and reduced fetal plasma or serum testosterone levels (Borch et al., 2004; Borch et al., 2006; Culty et al., 2008; Hannas et al., 2011; Hannas et al., 2012; Klinefelter
et al., 2012; Parks et al., 2000; Wilson et al., 2004; Wilson et al., 2007; Vo et al., 2009). Two studies don’t show an effect on testosterone levels in testis or fetal
plasma testosterone levels, respectively (Andrade et al., 2006; Borch et al., 2006). The precise underlying mechanism is presently unknown.

 

Evidence for decreased AGD in males (KE1688) by prenatal exposure to flutamide, procymidone, vinclozolin, finasteride and DEHP

All datasets that were used for the weight of evidence assessment were judged as reliable without or with restriction. The majority of datasets assessed showed a
decreased male AGD. The conclusion was that the level of confidence was strong for all five substances. The studies are summarized in table 4.

Empirical evidence for the included substances

Table 4. Empirical evidence for decreased AGD in males (KE1688) by prenatal exposure to flutamide, procymidone, vinclozolin, finasteride and DEHP. *One dose only.

>>>>>TABLE 4<<<<<
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Species Exposure
window

Measurement
timepoint

NOAEL
(mg/kg
bw/day)

LOAEL
(mg/kg
bw/day)

Reference

Flutamide

rat GD12-21 PND1 and PND100 No 6.25 McIntyre et al.,
2001

rat GD16, 17, 18 or
19

PND1 and PND100 --* 50 Foster & Harris,
2005

rat GD7-21 PND1 No 0.5 Hass et al., 2007

rat GD6-17 +
GD16-21

GD21 No 3 Goto et al., 2004

rat GD6-PND4 PND4 0.4 2 Yamasaki et al.,
2005

rat GD6-PND1 PND1 0.25 2.5 Fussell et al.,
2015

rat GD13-20 PND4 and PND23 --* 20 Kita et al., 2016

rat GD11-21 PND 14, 21 and
120

--* 5 mg per
rat

Casto et al., 2003

Procymidone

rat GD7-PND16 at birth, GD22-24 No 12.5 Hass et al., 2012

rat GD7-PND16 at birth, GD22-24 10 25 Hass et al., 2007

rabbit GD6-28 GD29 125 No effect Inawaka et al.,
2010

rat GD14-PND3 PND2 No 25 Ostby et al., 1999

Vinclozolin

Rat GD16-17 +
GD18-19

PND1 --* 400 Wolf et al., 2000

Rat GD14-19 PND1 No 200 Wolf et al., 2000

Rat GD7-21 PND1 5 10 Hass et al., 2007

Mouse GD10-18 PND1 and 7 --* 100 Shimamura et al.,
2002

Rat GD4-PND3 PND2 No 3.125 Gray et al., 1994

Finasteride

rat GD12-21 PND1 and PND90 No 0.01 Bowman et al.,
2003

rat GD7-21 PND0 0.01 0.1 Christiansen et al.,
2009

rat GD15-21 PND1 0.0003 0.03 Clark et al., 1993

rat GD15-21 PND22 and
PND114-117

0.03 3 Clark et al., 1993

rat GD12-21 PND1 and PND90 --* 10 Martinez et al.,
2011

Epidemiological data on DEHP

The biggest relevant epidemiological dataset was identified on associations between DEHP and AGD.  

Six prospective cohort studies and one cross-sectional study on the association between maternal DEHP metabolites and length of AGD (anopenile distance (APD) and
anoscrotal distance (ASD)) in boys were assessed as reliable without or with restriction. Decreased AGD (anopenile distance (APD) and/or anoscrotal distance (ASD))
was observed in three prospective cohort studies (Martino-Adrade et al., 2016; Swan et al., 2005 reviewed and updated in Swan 2008; Wenzel et al., 2018). In
contrast, no significant association was observed in three other prospective cohort studies (Arbuckle et al., 2018; Henriksen et al., 2023; Jensen et al., 2016) and the
cross-sectional study (Sunman et al., 2019). This inconsistency introduces a level of uncertainty regarding the overall association. Therefore, the level of confidence
was judged as weak. 

 

Dose concordance

Dose concordance is challenging to assess for this KER since in vivo AR activity is currently not possible to measure, but only can be informed indirectly by measures
of upstream events.

However, some studies provide useful information that support dose concordance between the KEs.

In a publication by Borch et al., rats were exposed in utero to DEHP at GD7-21. Fetal testosterone levels in testes and serum and testosterone production in fetal
testes ex vivo were investigated at GD21, whereas AGD was investigated at PND3. The LOAELs for reduced testosterone production in ex vivo fetal testes and
reduced testosterone levels in fetal testes were 300 mg/kg/d, whereas the LOAEL for decreased AGD in male offspring was 750 mg/kg/d (Borch et al., 2004). 

In a publication by Scholze et al, AR antagonism and decreased testosterone synthesis was quantitatively assessed (IC50) in vitro for a list of substances. In addition,
internal concentrations in male fetuses and effects on AGD were measured after fetal exposure to the same substances. In utero exposure to all the substances lead
to reduced AGDIndex (AGDI) in the exposed male offspring. Further, for all substances except Cyprodinil, the internal exposure levels in the fetuses leading to reduced
AGD exceeded the IC50 levels observed in one or both of the in vitro assays.
Three different doses of linuron exposure were included. The medium exposure dose led to a higher level of internal exposure and a higher degree of AGDI reduction
than the low dose. AGDI could not be determined in the highest dose due to maternal toxicity (Scholze et al., 2020).

Temporal concordance

Temporal concordance can only be considered from a theoretical perspective since the downstream event, decreased AGD, is usually measured at GD21, PND0 or
PND1 in rats, and due to the size of the fetuses is not feasible to measure at earlier timepoints.

Considering the biology, the upstream event – decreased AR activation in vivo – is foreseen to happen minutes to hours after exposure. If a substance decreases AR
activation through inhibition of the AR, the upstream event is expected to happen immediately after exposure. If a substance decreases androgen receptor activation
through inhibition of testosterone synthesis, the upstream event is expected to happen minutes to hours after the exposure, though it is uncertain exactly when the
change will be big enough to be measurable. On the other hand, the downstream event – decreased AGD - is a measurement of relative growth of the perineal tissue,
which is expected to take days in the developing fetus.

Uncertainties and Inconsistencies
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For the model substances, there were some inconsistencies in the empirical evidence, but they could be explained by differences in study designs and uncertainties in
measurements, see appendix 1.

Species differences in effects of phthalates (including DEHP and DBP) on fetal testes testosterone production have been observed between humans, mice and rats. In
human fetal testes exposed to DEHP or DBP in vitro or ex vivo, no suppression of testosterone production is observed, which contrasts observations in rat fetal testes
under similar conditions. Also in mice, testosterone production in the fetal testes is unaffected by treatment with DEHP or DBP in vitro or in utero (Sharpe, 2020).

The species differences described above are specific for some phthalates and their interference with fetal testicular testosterone production. This uncertainty should
not be reflected on other antiandrogenic substances, especially not those acting through other mechanisms of action.
The association between exposure to DEHP and reduced AGD in humans is judged to be weak, which may further support a species difference between rodents and
humans, but it may also reflect the large uncertainties inherent in the epidemiological studies.

Observational epidemiological studies face challenges in proving cause-effect relationships as they cannot control conditions like experimental animal and in vitro
studies. Human studies can identify associations between variables but cannot offer conclusive proof of causation (Lanzoni et al., 2019). Various study designs and
statistical methods are employed to strengthen evidence within the inherent limitations of observational research (Song & Chung, 2010; Olier et al., 2023).
Inconsistencies in epidemiological data arise from various factors, such as different methodologies used in exposure and outcome measurement and also in statistical
analyses.

These differences collectively contribute to the complexity of interpreting and weighing the evidence in epidemiological research.

Quantitative Understanding of the Linkage

The quantitative understanding of the linkage is low. This is a consequence of it not being possible to measure the upstream and the downstream event in the same
study.

Response-response relationship

In one study, a quantitative model was developed to predict the decrease in AGD from in vitro AR antagonism or in vitro decreased testosterone synthesis. The
authors conclude that predicting the effect on AGD in vivo based on the in vitro results is only possible on a qualitative level, but the model cannot predict AGD
reductions quantitatively (Scholze et al., 2020).

Time-scale

AR activation operates on a time-scale of minutes. The AR is a ligand-activated nuclear receptor and transcription factor. Upon ligand binding a conformational
change and subsequent dimerization of the AR takes place within 3-6 minutes (Schaufele et al., 2005). Nuclear translocation (Nightingale et al., 2003) and promoter
interactions occur within 15 minutes of ligand binding, and RNA polymerase II and coactivator recruitment are then proposed to occur transiently with cycles of
approximately 90 minutes (Kang et al., 2002).

For the downstream event, the time-scale for observing a measurable effect on growth of a tissue (in this case the perineum) is closer to days and weeks depending
on species. For instance, in humans, the masculinization programming window is presumed to start around GW 8, while a sexual dimorphism of the AGD can first be
observed from around GWs 11-13 (Thankamony et al., 2016) and reaches its maximum 2-fold difference around GWs 17-20 (Sharpe, 2020). 

It has been demonstrated that exposure to flutamide for one day (Foster & Harris, 2005) or vinclozolin for two days (Wolf et al., 2000) during the sensitive window of
exposure can elicit a detectable decrease in the AGD in male rat offspring.

Known modulating factors

A well established modulating factor is genetic variations in the AR which decrease the function of the receptor. For example, longer CAG repeat lengths have been
associated with decreased AR activation (Tut et al 1997, Chamberlain et al 1994) and a shorter AGD in adult men (Eisenberg et al., 2013). Other modulating factors
being discussed in the literature is maternal age and parity (Barrett et al., 2014), but these associations are only suggestive with more studies needed to confirm the
associations (Barrett et al., 2014).

Known Feedforward/Feedback loops influencing this KER

Not relevant for this KER.
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Weight of
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Decreased testosterone synthesis leading to short anogenital distance (AGD) in male
(mammalian) offspring

non-
adjacent Moderate Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links

mammals mammals NCBI
rat Rattus norvegicus High NCBI

Life Stage Applicability
Life Stage Evidence

Foetal High
Sex Applicability
Sex Evidence

Male High

Taxonomic applicability

Testosterone, synthesized in the testis, is essential for growth (masculinization) of the male perineum in all mammals. It is therefore biologically plausible that this
KER is applicable to all mammals (Murashima et al., 2015a). The empirical evidence in this KER strongly supports the applicability to rats in particular. Given the
knowledge of normal reproductive development, the KER is also considered applicable to humans.

 

Sex applicability

Testes are the primary male sex organs; hence, this KER is only applicable to males. The empirical evidence in this KER supports the applicability in males.

 

Life stage applicability

The perineum is programmed by androgens during the masculinization programming window, a fetal period during which the testes produce high levels of
testosterone. The masculinization programming window is ~gestational day (GD) 16-20 in rats and suggested to be gestational weeks (GW) 8-14 in humans (Sharpe
RM, 2020; Welsh M et al., 2014). Once programmed in fetal life, the AGD is believed to be relatively stable, but the perineum can in some cases be responsive to
postnatal changes in androgen levels (Schwartz CL et al., 2019; Sharpe RM, 2020; Thankamony A et al., 2016). The empirical evidence in this KER supports the fetal
life stage applicability.

Key Event Relationship Description

This non-adjacent KER describes a fetal decrease in testicular testosterone leading to short AGD in male offspring. In this KER, intratesticular testosterone levels can
both be measured in whole testes extracts or by measuring ex vivo testosterone production from exposed testes.

In male mammals, the testes first differentiate in early fetal life and start synthesizing testosterone through the steroidogenesis pathway. Although the adrenal glands
may also produce testosterone, the testes are the main site of testosterone production (Naamneh Elzenaty et al., 2022).  Testosterone is secreted to initiate male
reproductive differentiation in the peripheral tissues, either directly acting on the androgen receptor (AR) or through conversion to the more potent androgen
dihydrotestosterone (DHT). The androgen hormones initiate masculinization, including elongation of the perineum, which is suggested to involve the perineal muscle
complex levator ani bulbocavernous (LABC). LABC expresses AR and increases in size by androgen programming (Schwartz CL et al., 2019). The perineum is
programmed in the masculinization programming window (GD 16-20 in rats, GW 8-14 in humans), when testicular testosterone production is high (Sharpe RM, 2020;
Welsh M et al., 2014). Thus, a decrease in testicular testosterone levels in this window may limit the AR signaling in the LABC, leading to less elongation of the
perineum and a short AGD.

Evidence Supporting this KER

Biological Plausibility

The biological plausibility for this KER is judged to be high given the canonical biological knowledge on normal reproductive development.

Sexual differentiation in males, including elongation (masculinization) of the perineum, is initiated and programmed in fetal life. Around GW 8 in humans and GD16 in
rats, the testes have formed and start synthesizing testosterone through the steroidogenesis pathway.  Testicular testosterone is secreted to either act directly on the
AR or be converted to the more potent androgen hormone (DHT). AR activation in the perineum of males programs it to elongate, resulting in a longer AGD in males
than in females (~twice the length in rats and humans) (Murashima et al., 2015b; Trost & Mulhall, 2016; Welsh M et al., 2014)

The programming of the reproductive tissues, including masculinization of the perineum happens in the masculinization programming window (GD 16-20 in rats, GW
8-14 in humans) (Welsh M et al., 2014).

Given the dependency of testosterone for elongation of the perineum, either through direct AR activation or conversion to DHT, it is highly plausible that a decrease in
testicular levels of testosterone will lead to a shorter AGD in males.

Empirical Evidence

The overall empirical evidence for this KER is judged as strong.  

A total of 19 data sets were collected as evidence for this KER (table 3 and appendix 2). Of these, 14 studies, all in rats, show that exposure to a stressor that
decreased fetal intratesticular testosterone also caused a short AGD.

Table 3 Empirical evidence for KER 3449 LOAEL: Lowest observed adverse effect level; NOAEL: No observed adverse effect level; ITT: Intratesticular testosterone
measured in whole testes; Ex vivo: Testosterone production measured by incubation of testes and collection of media. See appendix 2 for specifications.

Species Stressors(s) Effect on
upstream event

(intratesticular
or ex vivo
testosterone)

Effect on
downstream
event (AGD)1

Reference
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Rat α-cypermethrin LOAEL 5 mg/kg No effect

NOAEL 10 mg/kg

(Saillenfait
AM et al.,
2017)

Rat Butyl benzyl
phthalate

LOAEL 500 mg/kg LOAEL 500
mg/kg at PND2,
but not adult

(Hotchkiss
AK et al.,
2004)

Rat Butyl benzyl
phthalate + Linuron

LOAEL 500 + 75
mg/kg

LOAEL 500 + 75
mg/kg

(Hotchkiss
AK et al.,
2004)

Rat Dibutyl phthalate LOAEL 500 mg/kg LOAEL 500
mg/kg

(Lourenço AC
et al., 2014)

Rat Dibutyl phthalate LOAEL 500 mg/kg LOAEL 100
mg/kg for AGDi,

LOAEL 500
mg/kg for AGD

(Martino-
Andrade AJ
et al., 2009)

Rat Dibutyl phthalate LOAEL 500 mg/kg LOAEL 500
mg/kg

(Pike et al.,
2014)

Rat Dibutyl phthalate LOAEL 100 mg/kg LOAEL 500
mg/kg

(Struve MF
et al., 2009)

Rat Dibutyl pthalate LOAEL 750 mg/kg LOAEL 750
mg/kg

(van den
Driesche et
al., 2020)

Rat Dibutyl phthalate +
Diethylhexyl pthalate

LOAEL 100 + 150
mg/kg

No effect

NOAEL 100 +
150 mg/kg

(Martino-
Andrade AJ
et al., 2009)

Rat Diethylhexyl
phthalate

LOAEL 750 mg/kg LOAEL 750
mg/kg

(Borch J et
al., 2004)

Rat Diethylhexyl
phthalate +
Diethylhydroxylamine

LOAEL 750 + 400
mg/kg

LOAEL 750 +
400 mg/kg

(Borch J et
al., 2004)

Rat Diisonyl phthalate Decreased ITT at
600 mg/kg but not
at 750 and 900
mg/kg

No effect ex vivo

LOAEL 900
mg/kg

(Boberg J et
al., 2011)

Rat Diisobutyl phthalate LOAEL 250 mg/kg LOAEL 250
mg/kg for AGD
index, no effect
on AGD

(Saillenfait
AM et al.,
2017)

Rat Diisonyl phthalate LOAEL 250 mg/kg
at GD19

No effect at GD20
NOAEL 750 mg/kg

No effect

NOAEL 750
mg/kg

(Clewell et
al., 2013)

Rat Ketoconazole LOAEL 50 mg/kg

No effect ex vivo

LOAEL 50 mg/kg (Taxvig et al
2008)

Rat Linuron LOAEL 75 mg/kg LOAEL 75 mg/kg (Hotchkiss
AK et al.,
2004)

Rat Prochloraz LOAEL 50 mg/kg LOAEL 50 mg/kg (Laier P et
al., 2006)

Rat Prochloraz ITT LOAEL 30
mg/kg

No effect ex vivo

No effect

NOAEL 30 mg/kg

(Vinggaard
AM et al.,
2005)

Rat Mixture (prochloraz,
deltamethrin,
methiocarb,
simazine, tribenuron)

LOAEL 20 mg/kg No effect NOAEL
20 mg/kg

(Vinggaard
AM et al.,
2005)

Rat Mixture

(BBP, DBP, DCHP,
DEHP, DHEP, DHP,
DIBP, DIHEP, DPEP,
LIN, DDE, PCZ, PCD,
PFQ, VIN)

LOAEL 6.25% of
full dose

LOAEL 12.5% of
full dose for AGD
index, LOAEL
25% of full dose
for AGD

(Conley JM et
al., 2021)

1NOAEL and LOAEL were, when available, based on AGDi data. For some datasets, only AGD or AGD/bw were available, see appendix 1 for details on each dataset.

 

 

 

Dose concordance

Overall, the empirical evidence supports dose concordance, although with some inconsistencies.

Five different studies show that in utero dibutyl phthalate exposure reduces intratesticular testosterone and AGD. Three of these studies report the same LOAEL for
reduced intratesticular testosterone and short AGD, respectively (Lourenço AC et al., 2014; Pike et al., 2014; van den Driesche S et al., 2020). In one study, the LOAEL
for reduced intratesticular testosterone was 500 mg/kg/day, while the LOAEL for short AGD was 100 mg/kg/day, thus not showing dose concordance (Martino-Andrade
AJ et al., 2009). In contrast, another study reports 100 mg/kg/day as LOAEL for reduced intratesticular testosterone and 500 mg/kg/day as LOAEL for short AGD 
(Struve MF et al., 2009).

Two studies used prochloraz as the stressor. One study showed a reduction in testosterone in the testes at a dose of 30 mg/kg bw/day, but no effect on ex vivo
testosterone production or on AGD (Vinggaard AM et al., 2005). The other study tested 50 and 150 mg/kg bw/day prochloraz and found an effect on both

AOP307

28/33



intratesticular testosterone (both in testes and ex vivo) and on AGD in the male offspring (Laier P et al., 2006).

Of the remaining empirical evidence, most studies report the same LOAEL for reduced intratesticular testosterone and short AGD, but for many of these cases only
one chemical dose was tested.

 

Temporal concordance

Overall, the empirical evidence supports temporal concordance.

In several of the studies, AGD was measured at a later timepoint, often postnatally, than intratesticular testosterone. For example, exposure of rats from GD14-18 to a
mixture of butyl benzyl phthalate (500 mg/kg bw/day) and linuron (75 mg/kg bw/day) reduced intratesticular testosterone levels at GD18 and caused short AGD in the
males, which could be measured at both PND2 and in adult rats (Hotchkiss AK et al., 2004). Exposure to only 500 mg/kg bw/day butyl benzyl phthalate (500 mg/kg
bw/day) from GD14-18 also reduced intratesticular testosterone levels at GD18 and caused short AGD at PND2, but in adult males, the effect on AGD was no longer
significant. Exposure to linuron alone (75 mg/kg bw/day) in the same study caused both reduced intratesticular testosterone and short AGD at PND2 and in adult
males (Hotchkiss AK et al., 2004). This may indicate that the fetal effect on AGD is best detected in early postnatal life.

In ten studies, AGD was measured prenatally, either at the same time or a day after the intratesticular testosterone measurements. Three of these studies did not find
an effect on short AGD when intratesticular testosterone was measured. For example, exposure to α-cypermethrin from GD13-19 in four different doses reduced ex
vivo testosterone production in testes at GD19 with LOAEL of 5 mg/kg bw/day, but AGD at GD19 was not affected at this dose or at 10 mg/kg bw/day (Saillenfait AM et
al., 2017). In the same study, however, exposure to diisobutyl phthalate (250 mg/kg bw/day) caused both a reduction in ex vivo testosterone and AGD on GD19,
although the effect on AGD was small (Saillenfait AM et al., 2017).

 

Incidence concordance

Because the data mainly includes chemicals at different doses and exposure windows, and all data are continuous, they do not firmly establish incidence concordance
of this KER. However, a few studies have used the same stressors at the same doses and provide some information on incidence concordance.

Five studies used the stressor dibutyl phthalate, three of them testing the same two doses, 100 and 500 mg/kg bw/day, although with slightly different exposure
windows and timepoints of AGD measurement. Of these three studies, two found the LOAEL for reduced intratesticular testosterone to be 500 mg/kg bw/day (Martino-
Andrade AJ et al., 2009; Pike et al., 2014), while one detected a reduction in testosterone at 100 mg/kg bw/day (Struve MF et al., 2009). Regarding AGD, one study
reported 100 mg/kg bw/day as the LOAEL, i.e. lower than the LOAEL for intratesticular testosterone (Martino-Andrade AJ et al., 2009), while the others reported 500
mg/kg bw/day as the LOAEL (Pike et al., 2014; Struve MF et al., 2009). Thus, these studies are conflicting regarding incidence concordance.

There are also three studies using diisobutyl phthalate as stressor. These vary more in terms of doses, but overall they see subtle and more uncertain effects on both
intratesticular testosterone and AGD with LOAELs ranging from 50 to 250 mg/kg bw/day for both measurements (Clewell et al., 2013; Saillenfait AM et al., 2017;
Taxvig C et al., 2008).
 

Uncertainties and Inconsistencies

One uncertainty in empirical data for this KER is the studies where intratesticular testosterone was measured in an ex vivo testes incubation experiment. With this
method, there is an uncertainty of the direct relationship between the ex vivo secretion, as testosterone was measured in media, and the exact intratesticular
testosterone levels. However, in most of the studies using this ex vivo method, intratesticular testosterone was also measured in testes homogenates (see appendix
2) with similar outcomes using both methods, suggesting that ex vivo testosterone production after incubation can be used as a proxy for intratesticular testosterone ,
exemplified by very identical measurements in (Borch J et al., 2004). In the three studies, only measure testosterone production ex vivo (Conley JM et al., 2021;
Saillenfait AM et al., 2017), the uncertainty in this measurements should be kept in mind.

 

Five data sets did not measure any effect of the stressors on AGD. In two cases, this could be due to the AGD measurements either being measured too early to
measure detectable differences between groups (Saillenfait AM et al., 2017) or having too high variance to gain statistical significance (Martino-Andrade AJ et al.,
2009). In the three other cases, the lack of effect on AGD was likely due to only testing one dose of the stressor (Vinggaard AM et al., 2005) (dose concordance) or the
doses tested were too low (Clewell et al., 2013).

 

Another uncertainty is the inconsistencies between studies for the stressor dibutyl phthalate. One study report the LOAEL for reduced intratesticular testosterone as
100 mg/kg/day (Struve MF et al., 2009), while others report 500 mg/kg/day (one of these only use on dose) (Lourenço AC et al., 2014; Martino-Andrade AJ et al., 2009;
Pike et al., 2014). Similarly, the LOAEL for short AGD is inconsistent, with 500 mg/kg/day being reported in three studies (Lourenço AC et al., 2014; Pike et al., 2014;
Struve MF et al., 2009), and 100 mg/kg/day being reported in one (Martino-Andrade AJ et al., 2009).

 

Finally, one study containing uncertainties is a study on diisonyl phthalate (Boberg et al., 2011). In this study, exposure from GD7-21 to 600 mg/kg/day, but not 750 or
900 mg/kg bw/day reduced intratesticular testosterone, while 900 mg/kg/day caused short AGD. However, both 750 and 900 mg/kg bw/dag diisonyl phthalate tended
to decrease intratesticular testosterone levels, and the lack of statistical significance may therefore be explained by a low sample size for these measurements (n=3-4
litters, 1-2 testes per litter).

Quantitative Understanding of the Linkage

Response-response relationship

There are no direct models for reductions in intratesticular testosterone levels and AGD. A model for phthalates has been developed, aiming to predict reductions in
AGD based on the reduction in ex vivo testosterone production. In this model, a 5-parameter logistic regression model, around 60% testosterone reduction can cause
a decreased AGD, with a steep declining curve as testosterone production decreases. It must be emphasized that this model, however, was only developed for the
phthalates and does therefore not directly evidence the same relationship for other stressors reducing testosterone levels (Earl Gray L Jr et al., 2024).

Time-scale

The exact timescale of this KER depends on the species, but it may take days or weeks for growth changes in the perineum to be measurable. In humans,
testosterone production in the testes begin around GW8, and sexual dimorphism of the perineum between males and females can be measured by GW11-13, reaching
the full 2:1 male:female ratio in length at GW17-20 (Thankamony A et al., 2016)

Known modulating factors

There are no known modulating factors for this KER.

Known Feedforward/Feedback loops influencing this KER

There are no known feedback/feedforward loops for this KER
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Life Stage Evidence

Foetal High
Sex Applicability
Sex Evidence

Male High

Taxonomic applicability

Male-specific development of the fetal perineum in male mammals is strongly influenced by androgen signaling. It is therefore biologically plausible that this KER is
applicable to all mammals (Murashima et al., 2015). The empirical evidence in this KER provides strong support that reduced circulating testosterone levels in fetal life
can cause short AGD in rats.  The empirical evidence for this KER in humans is sparse and conflicting; however, given the known role of androgens in human male
reproductive development, the KER is considered applicable to humans.

 

Sex applicability

The empirical evidence in this KER supports that reduced circulating testosterone in fetal life can cause reduced AGD in males. Females do have circulating
testosterone, but in much lower concentrations than males (Vesper et al., 2015), and it is unlikely that further reduction can cause a short AGD in females (Schwartz
CL et al., 2019). Of note is that ‘reduced AGD’ in males is not a reduction per se, but a failure to elongate in response to androgen action.

 

Life stage applicability

This KER is applicable to fetal life, as this is when the perineum is programmed by androgen hormones in males. The masculinization programming window is around
gestational days (GD) 16-20 in rats, and suggested to be gestational weeks (GW) 8-14 in humans (Sharpe RM, 2020; Welsh M et al., 2014). Once programmed in fetal
life, the AGD is believed to be relatively stable, but the perineum can in some cases be responsive to postnatal changes in androgen levels (Schwartz CL et al., 2019;
Sharpe RM, 2020; Thankamony A et al., 2016). The empirical evidence in this KER supports the fetal life stage applicability.

Key Event Relationship Description

This non-adjacent KER describes a fetal decrease in circulating testosterone (often measured in serum or plasma) leading to short anogenital distance (AGD) in male
offspring.

In male mammals, testosterone is one of the primary hormonal drivers of male reproductive differentiation. Produced by the fetal testes, testosterone is transported
through blood to the peripheral reproductive tissues to bind the androgen receptor (AR) or be converted to the higher potency androgen hormone dihydrotestosterone
(Murashima et al., 2015). The androgen hormones signal through AR to program the reproductive tissue to differentiate along the male pathway. This includes
elongation of the perineum, which is suggested to involve the perineal muscle complex levator ani bulbocavernous (LABC). LABC expresses AR and increases in size
by androgen programming (Schwartz CL et al., 2019). The male programming of the tissue happens during fetal life in the masculinization programming window (GD
16-20 in rats, GW 8-14 in humans), when circulating testosterone levels are high (Sharpe RM, 2020; Welsh M et al., 2014). Thus, a decrease in circulating testosterone
levels in this window may limit the AR signaling in the LABC, leading to less elongation of the perineum and a short AGD.

Evidence Supporting this KER

Biological Plausibility

The biological plausibility for this KER is judged to be high given the canonical biological knowledge on normal reproductive development.

Sexual differentiation in males, including elongation (masculinization) of the perineum, is initiated and programmed in fetal life. Once the testes have formed, they
start producing testosterone through the steroidogenesis pathway and secrete testosterone into circulation. Testosterone is transported in the blood either as free
testosterone or bound to albumin or sex-hormone binding globulin. In peripheral tissues, testosterone can be converted to the more potent androgen hormone
dihydrotestosterone (DHT) by the enzyme 5α-reductase. Both DHT and testosterone bind and activate the androgen receptor (AR) to program fetal tissues to
differentiate along the male pathway, including elongation of the perineum, resulting in a longer AGD in males than in females (~twice the length in rats and humans)
(Murashima et al., 2015; Trost & Mulhall, 2016; Welsh M et al., 2014)

Testosterone is produced from around GD15 in fetal rats and GW8 in humans, which is also the onset of when testosterone levels can be measured in circulation. The
programming of the reproductive tissues, including masculinization of the perineum happens in the masculinization programming window (GD16-20 in rats, GW8-14
in humans) (Welsh M et al., 2014).

Given the dependency of testosterone for elongation of the perineum, either through direct AR activation or conversion to DHT, it is highly plausible that a decrease in
circulating levels of testosterone will lead to a shorter AGD in males

Empirical Evidence

The empirical evidence from studies in animals for this KER is overall judged as strong.

From the data collection, ten data sets were extracted. The data sets included different stressors causing reduced fetal levels of testosterone, all in rats (table 3 and
appendix 2). Of these ten data sets, eight showed concurrent short AGD.

Table 3 Empirical evidence for KER 3349  LOAEL: Lowest observed adverse effect level; NOAEL: No observed adverse effect level. See appendix 2 for
specifications.

Species Stressors(s) Effect on
upstream
event

(circulating
testosterone)

Effect on
downstream
event (AGD)1

Reference

Rat 2,3,7,8-
Tetrachlorodibenzo-p-
dioxin

LOAEL 1 µg/kg LOAEL 1 µg/kg (Mably TA
et al., 1992)

Rat Dicyclohexyl
phthalate

LOAEL 100
mg/kg

LOAEL 20
mg/kg

(Aydoğan
Ahbab M &
Barlas N,
2015)

Rat Diethylhexyl
phthalate

LOAEL 750
mg/kg

LOAEL 750
mg/kg

(Borch J et
al., 2004)

Rat Diethylhexyl
phthalate +
Diethylhydroxylamine

LOAEL 750 +
400 mg/kg

LOAEL 750 +
400 mg/kg

(Borch J et
al., 2004)
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Rat Di-n-hexyl phthalate LOAEL 20 mg/kg Short AGD at
20 and 500
mg/kg, but not
100 mg/kg

(Aydoğan
Ahbab M &
Barlas N,
2015)

Rat Perfluorotridecanoic
acid

LOAEL 1 mg/kg LOAEL 10
mg/kg

(Li C et al.,
2021)

Rat Prochloraz LOAEL 30 mg/kg No effect

NOAEL 30
mg/kg

(Vinggaard
AM et al.,
2005)

Rat Prochloraz LOAEL 50
mg/kg1

LOAEL 50
mg/kg

(Laier P et
al., 2006)

Rat Zearalenone LOAEL 10 mg/kg LOAEL 5 mg/kg (Pan P et
al., 2020)

Rat Mixture (prochloraz,
deltamethrin,
methiocarb,
simazine, tribenuron)

LOAEL 20 mg/kg No effect

NOAEL 20
mg/kg

(Vinggaard
AM et al.,
2005)

1NOAEL and LOAEL were, when available, based on AGDi data. For some datasets, only AGD or AGD/bw were available, see appendix 2 for details on each dataset.

2No statistics available as samples were pooled for measurement of testosterone.

 

Supporting epidemiological evidence

 

No studies have shown a direct association between fetal circulating testosterone levels and AGD. A few epidemiologic studies can inform indirectly on the human
evidence for this KER, and the current studies on this are conflicting.

 

As some phthalates are known to reduce testosterone production, an association between phthalate exposure and short AGD could support the KER in humans. A
meta-analysis found an association between maternal urinary concentrations of some phthalate metabolites and short AGD (Zarean M et al., 2019). Moreover, in a
Taiwan Maternal and Infant Cohort study, maternal urinary concentrations of some phthalate metabolites were also associated with a shorter AGD in male infants,
although there was no association between cord blood testosterone levels and AGD, and the metabolites were not associated with lower cord blood testosterone
levels, either  (Lu et al., 2024). Another longitudinal mother-child cohort study did not find an association between AGD in adult men with maternal serum
concentrations of phthalate metabolites during pregnancy (Henriksen LS et al., 2023).

 

One study related cord blood testosterone levels to AGD in infants boys and did not find associations between the two (Liu C et al., 2016).

 

In adult men, anogenital distance was significantly associated with serum testosterone levels (Eisenberg ML et al., 2012).

 

 

Dose concordance

The in vivo rat toxicity studies for this KER moderately supports dose concordance.

One study with the stressor perfluorotridecanoic acid showed dose concordance with the LOAEL for reduced serum testosterone being 1 mg/kg bw/day, while the
LOAEL for short AGD was 10 mg/kg (Li C et al., 2021).

In another study with two doses of prochloraz, the LOAEL was the same (50 mg/kg) for decreased testosterone and short AGD (Laier P et al., 2006).

Finally, in two studies with dicyclohexyl phthalate and zearalenone, respectively, AGD was shortened at lower doses than testosterone was reduced (Aydoğan Ahbab
M & Barlas N, 2015; Pan P et al., 2020), and these do therefore not support dose concordance. However, in both cases the testosterone levels tended to be lower in
the non-significant doses as well, and the lack of effect could therefore be due to high variation in the testosterone measurements.

 

Temporal concordance

Overall, the empirical evidence supports temporal concordance between the events.

Mably TA et al., 1992 followed plasma testosterone levels in male rats after in utero exposure to 1 µg/kg 2, 3, 7, 8-Tetrachlrodibenzo-p-dioxin on GD15. From GD17-
21, testosterone levels steadily decreased in both control and exposed males, but the overall levels in the exposed males were lower than in control males. After
birth, the testosterone levels in exposed male increased to match values in control males. At PND1, 3, and 5, plasma levels were normal in exposed male rats, while
their AGD were reduced at all days.

Five of the data sets also measure circulating testosterone prenatally (GD20 or GD21) and AGD postnatally (between PND0 and PND3), and three of these observe
short AGD when testosterone is reduced during fetal life (Borch J et al., 2004; Laier P et al., 2006). In one of these studies, where diethylhexyl phthalate alone or
diethylhexyl phthalate in combination with diethylhydroxylamine was administered from GD7-PND17, serum testosterone levels were decreased at GD21, but not at
PND22 or PD90 (Borch J et al., 2004). Similarly, PND16 serum testosterone was not altered by perinatal (GD7-PND16) prochloraz exposure which reduced serum
testosterone at GD21 and AGD at PND1 (Laier P et al., 2006).

 

Incidence concordance

The data does not inform incidence concordance.
 

 

Uncertainties and Inconsistencies

Two data sets, both from the same study (Vinggaard AM et al., 2005), showed no effect of decreased circulating testosterone levels on AGD, which may be due to too
low doses of the stressors (prochloraz and a mixture). For two studies (Aydoğan Ahbab M & Barlas N, 2015; Pan P et al., 2020), the LOEAL was lower for the
downstream event, short AGD, than the upstream event, reduced circulating testosterone. In both cases, lower doses of stressors tended to lower testosterone levels

AOP307

32/33



as well, and the inconsistency could therefore be due to high variance in testosterone measurements.

Another uncertainty is the AGD results in the study investigating di-n-hexyl phthalate exposure from GD6-19 in rats (Aydoğan Ahbab M & Barlas N, 2015). Three
doses of the phthalate (20, 100, and 500 mg/kg bw/day) all reduced plasma testosterone levels, but only 20 and 500 mg/kg bw/day caused short AGD, when
calculating the anogenital distance index (AGDi, AGD/bw1/3 ). When analyzing the direct AGD, all doses of di-n-hexyl phthalate decreased AGD. In contrast, when
analyzing the relative AGD (AGD/bw), only the highest dose (500 mg/kg bw/day) decreased the AGD. This study thus identified different LOAELs for AGD, depending
on if and how body weight was considered, posing an uncertainty on the results.

Quantitative Understanding of the Linkage

Time-scale

Testosterone is secreted from around GW8 in humans (GD16 in rats), marking the beginning of the masculinization programming window and programming of the
perineal tissue. Depending on the species, the time scale for observing effects on tissue growth is days or weeks. In humans, sexual dimorphism of the AGD can be
measured by GW11-13, reaching the full 2:1 male:female ratio in length at GW17-20 (Thankamony A et al., 2016).

Known modulating factors

There are no known modulating factors for this KER.

Known Feedforward/Feedback loops influencing this KER

There are no known feedback/feedforward loops for this KER.
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