

AOP 314: Activation of estrogen receptor in immune cells leading to exacerbation of systemic lupus erythematosus

Short Title: Exacerbation of SLE by activation of estrogen receptor

Graphical Representation

Authors

Yasuhiro Otsubo (1) Takao Ashikaga (1) Tomoki Fukuyama (1) Ken Goto (1) Shinko Hata (1) Shigeru Hisada (1) Shiho Ito (1) Hiroyuki Komatsu (1) Sumie Konishi (1) Tadashi Kosaka (1) Kiyoshi Kushima (1) Shogo Matsumura (1) Takumi Ohishi (1) Junichiro Sugimoto (1) Yasuhiro Yoshida (1)

(1) AOP Working Group, Testing Methodology Committee, The Japanese Society of Immunotoxicology

Corresponding author: Yasuhiro Otsubo (otsubo-yasuhiro@snbl.co.jp (mailto:otsubo-yasuhiro@snbl.co.jp))

Status

Author status	OECD status	OECD project	SAAOP status
Under development: Not open for comment. Do not cite	Under Development	1.73	Included in OECD Work Plan

Abstract

This AOP describes the linkage between the activation of estrogen receptor (ER) α and the exacerbation of the autoimmune disease systemic lupus erythematosus (SLE). SLE is an autoimmune disease characterized by overproduction of a variety of anti-cell nuclear and other pathogenic autoantibodies. It is characterized by B-cell hyperactivity, polyclonal hypergammaglobulinemia, and immune complex deposition.

Estrogen Receptors (ERs), ER α and ER β , are a group of proteins that are activated by the steroid hormone estrogen and are widely expressed in most tissue types, including most immune cells. ERs can be activated with exogenous and endogenous estrogens. Also, there are numerous xenoestrogens that exist in the environment and imitate estrogen. Bisphenol A is an example of a xenoestrogen that is considered an endocrine disrupting compound (EDC).

Estrogen Receptors (ERs), ER α and ER β , are a group of proteins that are activated by the steroid hormone estrogen and are widely expressed in most tissue types, including most immune cells. ERs can be activated with exogenous and endogenous estrogens. Also, there are numerous xenoestrogens that exist in the environment and imitate estrogen. Bisphenol A is an example of a xenoestrogen that is considered an endocrine disrupting compound (EDC).

Binding of ER in immune cells by a xenoestrogen or endogenous ER marks the molecular initiating event (MIE), which results in induction of GATA3 expression (KE1).

One theory of immune regulation involves homeostasis between T-helper 1 (Th1) and T-helper2 (Th2) activity. Hyperactivation of ER α skew the immune system from a T helper 1 (Th1) to a Th2 profile and exacerbates autoimmune diseases and allergic diseases.

Complexes formed by the binding of ER α to stressors such as estrogen or EDC transport into cell nuclei, where they activate the transcription of specific genes. Excessive ER α -activation promotes the differentiation of naive CD4+ T cells into mature Th2 cells. This pathway leads to the overproduction of the cytokine interleukin-4 (IL-4) from Th2 cells and anti-single/double-stranded DNA antibody from autoreactive B cell are increased, which results in the adverse outcome of exacerbated SLE.

We have identified a number of key events along this pathway and determined the key event relationships, based on which we have created an AOP for activation of ER α in immune cells leading to exacerbated SLE.

Background

It has long been appreciated that most autoimmune disorders are characterized by increased prevalence in females, suggesting a potential role for sex hormones (estrogen) in the etiology of autoimmunity. ERs are involved in a wide range of physiological function. Women generally exhibit a stronger response to a variety of antigens including ER ligands than men, which is perhaps one reason that they are more prone to develop autoimmune and allergic diseases such as SLE in greater severity than men. This AOP could be helpful to assess the type of Th2 dominant autoimmune disorders

Humans and mammals have two ligand-activated transcription factors that bind estrogen, encoded by separate genes, estrogen receptor alpha (ESR1/ER α) and estrogen receptor beta (ESR2/ER β) (Maria, B. 2015). The estrogen receptors are composed of several domains important for hormone binding, DNA binding, dimer formation, and activation of transcription (Green S. 1986, Kumar V. 1986, Warmmark A. 2003). The ERs' expression patterns and functions vary in a receptor subtype, cell- and tissue-specific manner. In the adult human, large-scale sequencing approaches show that ER α mRNA is detected in numerous human tissues, with the highest levels in the uterus, liver, ovary, muscle, mammary gland, pituitary gland, adrenal gland, spleen and heart, and at lower levels in the prostate, testis, adipose tissue, thyroid gland, lymph nodes and spleen (Fagerberg L. 2014, Sayers EW. 2012) (www.ncbi.nlm.nih.gov/UniGene). In the same data sets, human ER β mRNA is primarily detected in the lung and testis. There is increased ER α and decreased ER β mRNA expression in PBMCs of SLE patients (Inui A. 2007). Although ERs are widely expressed in most tissue types, including most immune cells, this AOP mainly addresses hyperactivation of ER α in immune cells.

The effects of ER α signaling on T cells appear to be estrogen-dose dependent, i.e., low doses of estrogen stimulate a Th1 response, but higher doses promote a Th2 response (Priyanka HP. 2013). This AOP describes events occurring when high levels of estrogen shift the Th1/Th2 balance toward increased Th2 activity

Summary of the AOP

Events

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Sequence	Type	Event ID	Title	Short name
	MIE	1710	Activation of estrogen receptor in immune cells (https://aopwiki.org/events/1710)	Activation of estrogen receptor
	KE	1711	Induction of GATA3 expression by STAT6:ER fusion protein (https://aopwiki.org/events/1711)	Induction of GATA3 expression
	KE	1712	Overproduction of IL-4 from Th2 cell (https://aopwiki.org/events/1712)	Overproduction of IL-4
	KE	1713	Increase of anti-single/double-stranded DNA antibody from autoreactive B cell (https://aopwiki.org/events/1713)	Increase of autoantibody production

Sequence	Type	Event ID	Title	Short name
	AO	1714	Exacerbation of systemic lupus erythematosus (https://aopwiki.org/events/1714)	Exacerbation of SLE

Key Event Relationships

Upstream Event	Relationship Type	Downstream Event	Evidence	Quantitative Understanding
Activation of estrogen receptor in immune cells (https://aopwiki.org/relationships/2020)	adjacent	Induction of GATA3 expression by STAT6:ER fusion protein	Moderate	Moderate
Induction of GATA3 expression by STAT6:ER fusion protein (https://aopwiki.org/relationships/2021)	adjacent	Overproduction of IL-4 from Th2 cell	Moderate	Moderate
Overproduction of IL-4 from Th2 cell (https://aopwiki.org/relationships/2022)	adjacent	Increase of anti-single/double-stranded DNA antibody from autoreactive B cell	Moderate	Moderate
Increase of anti-single/double-stranded DNA antibody from autoreactive B cell (https://aopwiki.org/relationships/2023)	adjacent	Exacerbation of systemic lupus erythematosus	Moderate	Moderate

Stressors

Name	Evidence
Estrogen	High
Bisphenol A	Moderate

Overall Assessment of the AOP

The immune system is the most complex and sophisticated in the body's defense mechanisms. Estrogen plays a role in controlling the immune balance. Hyperactivation of ER α can skew the immune system from a Th1 to a Th2 profile. This Th1/Th2 shift is one of the most important immunologic changes during gestation and occurs due to a progressive increase of estrogens, which reach peak level in the third trimester of pregnancy. At these high levels, estrogens suppress Th1-mediated responses and stimulate Th2-mediated responses (Doria A. 2006). Incidence of flare in patients with SLE is increased during pregnancy and within the 3-months postpartum (Amanda E. 2018). Thus, ER α activation can potentially induce immunoactivation-derived adverse outcomes, one effect of which could be exacerbation of SLE. The present AOP focused on ER α activation-induced exacerbation of SLE.

In general, ER α is activated when bound to a stressor, which subsequently binds to estrogen response elements (EREs) to transactivate or to suppress specific target genes. In naive CD4+ T cells, T cell expansion shifts toward a Th2 phenotype that produces Th2 cytokines such as IL-4, IL-5, IL-10, and IL-13, thereby increasing antibody production from autoantibody-producing B cells. We have identified a number of key events (KE) along this pathway and used these key event relationships (KER) to create an AOP that describes the activation of ER α leading to exacerbation of SLE.

Ordinary estrogen levels in women are 20-30 pg/mL during diestrus, 100-200 pg/mL during estrus, and 5000-10000 pg/mL during pregnancy (Offner H. 2000). While BPA binds in some assays with less than 2000-fold affinity compared to the binding of estradiol to estrogen receptors, it still has dramatic effects (Krishnan AV. 1993). Since each KE is quantifiable and shows similar dose responses with the stressors in vitro, the activation of ER leading to exacerbation of SLE comprise a suitable AOP. Additionally, each KER is based on sufficient scientific evidence and exhibits no contradiction with dose response of adjacent KE.

Since ER α expresses in the cells of a vast variety of (vertebrate) species (Maria B. 2015) and there is common functionality in the immune systems of at least humans and mice, this AOP might be applicable to many mammal species, including humans and rodents.

Essentiality of KEs – what would be good is to have a table listing references that have demonstrated occurrence of individual KEs and their relationship with the AO.

Evidence assessment – here listing knockout or overexpression studies that intervene with a KE to show its essentiality to the AO

Quantitative assessment – if you have this information

[Otsubo2] We will reconsider it and revise later.

[SH3] It seems like KE1 is not needed as it is not described much.

[Otsubo4] We want to discuss about it in WebEX meeting.

Domain of Applicability

Life Stage Applicability

Life Stage	Evidence
All life stages	Moderate

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
Homo sapiens	Homo sapiens	Moderate	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)

Sex Applicability

Sex	Evidence
Mixed	High

The proposed AOP describes the activation of ER α leading to exacerbation of SLE is dependent on estrogen level, which means it varies with life stage, sex, and age. SLE frequently develops or progresses when sympathetic and gonadal hormone levels are altered during pregnancy, the postpartum period, or menopause as well as during exposure to estrogen and includes the risk of preeclampsia or premature birth (Wilder RL. 1999, Whitelaw DA. 2008). Women using oral contraceptives that contain estrogen or undergoing hormone replacement therapy are susceptible to major flare ups and exacerbation of the disease (Whitelaw DA. 2007).

Since stressor-induced outcomes in humans are mimicked by similar responses in rodents, Th2 dominant conditions induced by activation of ER α is considered likely to occur in a variety of mammalian species.

Essentiality of the Key Events

Stressor, MIE and later events: ER knock out (KO) mice

It has been determined in a murine model of SLE that ER α is required for disease progression and that ER α deficiency impedes the course of the disease (Bynote KK. 2008).

The NZB/W F1 mouse is the oldest classical model of lupus generated by the F1 hybrid between the NZB and NZW strains. Both NZB and NZW display limited autoimmunity, while NZB/W F1 hybrids develop severe lupus-like phenotypes comparable to that of lupus patients. SLE in the NZB/W F1 strain is strongly biased toward females, and this is at least in part due to estrogen levels. Indeed, ovariectomy of NZB/W F1 mice not only delayed onset of the disease but also decreased autoantibody titer. Meanwhile, restoration of estradiol in ovariectomized NZB/W F1 mice reestablished high numbers of autoantibody-producing (DNA-specific) B cells, and thereby suggests a pathogenic role of estrogen in lupus (Daniel P. 2011).

In females of the lupus-prone NZB/NZW F1 strain, disruption of estrogen receptor- α (ER α or Esr1) both attenuated glomerulonephritis and increased survival. ER α deficiency also retarded development of anti-histone/DNA antibodies, suggesting that ER α promotes loss of immunologic tolerance. The presence of many autoantibodies is a hallmark of SLE. In particular, autoantibodies directed to double-stranded DNA (dsDNA) are characteristic (Isenberg DA. 2007). ER α deficiency in NZB/NZW F1 males increased survival and reduced anti-dsDNA antibodies, suggesting that ER α also modulates lupus in males (Bynote KK. 2008).

KE1 and later events: Stat6 KO mice

CD4 T cells from Stat6-knockout mice are not able to drive Th2 differentiation and cell expansion under null Th cell (ThN) conditions with added with IL-4 (Zhu J. 2001)

KE1 and later events: GATA3 KO mice

Th2 differentiation is completely abolished both in vitro and in vivo when GATA3 is conditionally deleted in peripheral CD4 T cells. Th2 cells from both knockout animals showed reduction in IL-4, IL-5, IL-13, and IL-10 production. Conversely, IFN- γ production was increased even under Th2 conditions (Zhu J. 2004, Pai SY. 2004).

References

1. Maria, B., Ruixin, H., Chin-Yo, L., Cecilia, W., Jan-Ake, G. (2015). Estrogen receptor signaling during vertebrate development. *Biochim Biophys Acta* 1849: 142-151.
2. Green S, Walter P, Chambon P, et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. *Nature*. 1986; 320:134-139.
3. Kumar V, Green S, Chambon P, et al. Localisation of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor. *The EMBO journal*. 1986; 5: 2231-2236.
4. Warmark A, Treuter E, Gustafsson JA, et al. Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. *Molecular endocrinology (Baltimore, Md)*. 2003; 17:1901-1909.
5. Fagerberg L, Hallstrom BM, Edlund K, et al. Analysis of the human tissue- specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. *Molecular & cellular proteomics*. 2014; 13:397-406.
6. Inui A, Ogasawara H, Ogawa H, et al. Estrogen receptor expression by peripheral blood mononuclear cells of patients with systemic lupus erythematosus. *Clin Rheumatol*. 2007;26(10):1675-8.
7. Sayers EW, Barrett T, Federhen S, et al. Database resources of the National Center for Biotechnology Information. *Nucleic acids research*. 2012; 40: D13-25.
8. Priyanka HP, Krishnan HC, Singh RV, Hima L, Thyagarajan S. Estrogen modulates in vitro T cell responses in a concentration- and receptor-dependent manner: effects on intracellular molecular targets and antioxidant enzymes. *Mol Immunol*. 2013;56(4):328-39.
9. Doria, A., Iaccarino, L., Sarzi-Puttini, P., Ghirardello, A., Zampieri, S., Arienti, S., Cutolo, M. and Todesco, S. (2006). Estrogens in pregnancy and systemic lupus erythematosus. *Annals of the New York Academy of Sciences* 1069: 247-56.
10. Amanda E, Anna Maria SR, Michelle P, et al. Effect of pregnancy on disease flares in patients with systemic lupus erythematosus. *Ann Rheum Dis*. 2018; 77(6): 855-860.
11. Offner H, Adlard K, Zamora A, Vandenberg AA. Estrogen potentiates treatment with T-cell receptor protein of female mice with experimental encephalomyelitis. *J Clin Invest*. 2000;105(10):1465-72.
12. Krishnan, A. V., Stathis, P., Permuth, S. F., Tokes, L. and Feldman, D. (1993). Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. *Endocrinology* 132; 2279-2286.
13. Wilder RL, Elenkov IJ, Hormonal regulation of tumor necrosis factor-alpha, interleukin-12 and interleukin-10 production by activated macrophages. A disease-modifying mechanism in rheumatoid arthritis and systemic lupus erythematosus? *Ann N Y Acad Sci*. 1999. 22; 876:14-31.
14. Whitelaw DA, Hall D, Kotze T. Pregnancy in systemic lupus erythematosus: a retrospective study from a developing community. *Clin Rheumatol*. 2008;27(5):577-80.
15. Whitelaw DA, Jessop SJ. Major flares in women with SLE on combined oral contraception. *Clin Rheumatol*. 2007;26(12):2163-2165.
16. Bynote, KK, Hackenberg, JM., Korach, K.S., Lubahn, D. B., Lane, P. H. and Gould, K. A. (2008). Estrogen receptor-alpha deficiency attenuates autoimmune disease in (NZB xNZW) F1 mice. *Genes and Immunity*. 9: 137-152.
17. Daniel, P., Allison, S., Yiming, Y., Ying-Yi, Z. and Laurence, M. (2010). Murine Models of Systemic Lupus erythematosus. *Journal of Biomedicine and Biotechnology* 2011: ArticleID 271694
18. Isenberg, DA., Manson, JJ., Ehrenstein, MR. and Rahman, A. (2007). Fifty years of anti-ds DNA antibodies: are we approaching journey's end? *Rheumatology* 46:1052-6.
19. Zhu, J., Guo, L., Watson, C. J., Hu-Li, J. and Paul, W. E. (2001). STAT6 is necessary and sufficient for IL-4's role in Th2 differentiation and cellexpansion. *The Journal of Immunology* 166 (12): 7276-7281.
20. Zhu J, Min B, Paul WE, et al. Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. *Nat Immunol*. 2004;5(11):1157-65.
21. Pai SY, Truitt ML, Ho IC. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. *Proc Natl Acad Sci U S A*. 2004 Feb 17;101(7):1993-8.

Appendix 1

List of MIEs in this AOP

Event: 1710: Activation of estrogen receptor in immune cells (<https://aopwiki.org/events/1710>)

Short Name: Activation of estrogen receptor

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:314 - Activation of estrogen receptor in immune cells leading to exacerbation of systemic lupus erythematosus (https://aopwiki.org/aops/314)	MolecularInitiatingEvent

Stressors

Name
Estrogen
Bisphenol A

Biological Context

Level of Biological Organization
Molecular

Organ term

Organ term
immune system

Domain of Applicability

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
Homo sapiens	Homo sapiens	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606)
Mus musculus	Mus musculus	High	NCBI (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090)

Life Stage Applicability

Life Stage	Evidence
All life stages	High

ER α is mainly expressed in uterus, prostate (stroma), ovary (theca cells), testes (Leydig cells), epididymis, bone, breast, various regions of the brain, liver, and white adipose tissue (Dahlman-Wright K. 2006). ERs are widely expressed in most tissue types including most immune cells (Couse JF. 1997). ER α and ER β show a high degree of similarity when compared at the amino acid level (Dahlman-Wright K. 2006). Interspecies sequence identities for the entire ER α receptor are 88.5% (human-mouse), 87.5% (human-rat), and 97.5% (mouse-rat). For the ligand binding domain (ER α -LBD) alone, the interspecies sequence identities are 95.5% (human-mouse), 95.1% (human-rat), and 99.2% (mouse-rat) (White R. 1987). ER α is found in female reproductive organs, yet is robustly expressed in kidney, liver, heart, and lungs in males and females, as well as on most immune cells (Chelsea C. 2017).

Key Event Description

Estrogen receptor alpha (ER α) was discovered in the late 1960s and was cloned and characterized in 1985 (Melissa C. 2011). ER α and ER β show a high degree of similarity when compared at the amino acid level (Dahlman-Wright K. 2006). 17 β -estradiol (E2) activates ER α and ER β with the same affinity although they share only 56% similarity in their ligand binding domains (Monroe DG. 2005, Papoutsis Z. 2009). The hormone binding domain of the estrogen receptor is required not only for binding estradiol but also to form stable homodimers of the protein and mediate transcriptional activation by the receptor. A direct genomic interaction occurs between the estrogen receptor (ER) ligand complex and specific sequences of DNA known as estrogen response elements (ERE). (Parker MG. 1993, Goldstein RA. 1993, Sasson S. 1991, Brandt ME. 1997). Transcriptional activation by ER α is mediated by two distinct activation functions: the constitutively active AF-1 domain, located in the N-terminal domain of the receptor protein, and the ligand-dependent AF-2 domain, located in the C-terminal domain of the receptor protein (Delaunay F. 2000). In addition to above classical mechanism, ER α is also able to play roles both in ER binding and transcriptional activation; phosphorylation of ER and other proteins involved in transcriptional activation with cellular amounts of coactivators and adaptor proteins (Carolyn MK. 2001).

ERs are expressed in a variety of immunocompetent cells, including CD4+ (Th1, Th2, Th17, and Tregs) and CD8+ cells and macrophages (Salem ML. 2004, Robinson DP. 2014). One recent study examined ER α expression in resting and activated PBMC subsets and found that ER α was expressed at higher levels in CD4+ T cells than B cells (Melissa C. 2011).

How it is Measured or Detected

Recombinant human estrogen receptor hormone-binding domain (HBD) fragment is isolated from *Escherichia coli*. Purified HBD peptide is assayed for their ability to bind estradiol, [³H] estradiol binding using low concentrations (0.15 nM), by Radioreceptor Assay. Moreover HBD dimer dissociation is measured using size exclusion chromatography (Brandt ME. 1997).

On the other hand, a conditionally active form of STAT (the signal transducers and activator of transcription) 6 by fusing the HBD of a modified form of the mouse estrogen receptor (ER) gene is prepared as STAT6-ER fusion protein (STAT6:ER). 4-Hydroxytamoxifen (4-HT), estrogen analogue, (Research Biochemicals Institute, Natick, MA) was used to activate STAT6 fusion protein. M12.4.1 cells, transfected with the luciferase reporter gene by inserting three copies of human STAT6 binding site oligonucleotide, are used nuclear extracts and electrophoretic mobility shift assay (EMSA) with 1 μ M 4HT. STAT6:ER DNA-binding activity is strongly and rapidly (within 1 hr) induced after addition of 4HT to these cells. BA/F3 cells prepared as the same manner are stimulated with 1 μ M 4HT for 24 h at 37°C. The cells were harvested and assayed for luciferase activities using a Luciferase Assay Kit (Promega, Madison, WI). (Kamogawa et al. 1998).

References

1. Melissa, C. and Gary, G (2011). Estrogen Receptors in Immunity and Autoimmunity. *Clinical Reviews in Allergy & Immunology* 40:66-73.
2. Dahlman-Wright, K., Cavailles, V., Fuqua, S. A., Jordan, V. C., Katzenellenbogen, J. A., Korach, K. S., Maggi, A., Muramatsu, M., Parker M. G. and Jan-Åke, G. (2006). International Union of Pharmacology. LXIV. Estrogen Receptors. *Pharmacological Review* 58: 773-781.
3. Monroe DG, Secreto FJ, Subramaniam M, Getz BJ, Khosla S, Spelsberg TC. Estrogen receptor alpha and beta heterodimers exert unique effects on estrogen- and tamoxifen-dependent gene expression in human U2OS osteosarcoma cells. *Molecular endocrinology* (Baltimore, Md). 2005; 19:1555-1568.
4. Papoutsi Z, Zhao C, Putnik M, Gustafsson JA, Dahlman-Wright K. Binding of estrogen receptor alpha/beta heterodimers to chromatin in MCF-7 cells. *J Mol Endocrinol*. 2009; 43:65-72.
5. Parker MG, Arbuckle N, Dauvois S, Danielian P, White R. Structure and function of the estrogen receptor. *Ann N Y Acad Sci*. 1993. 684:119-26.
6. Goldstein RA, Katzenellenbogen JA, Wolynes PG, et al. Three-dimensional model for the hormone binding domains of steroid receptors. *Proc Natl Acad Sci*. 1993;90(21):9949-53.
7. Sasson S. Equilibrium binding analysis of estrogen agonists and antagonists: relation to the activation of the estrogen receptor. *Pathol Biol (Paris)*. 1991;39(1):59-69.
8. Brandt ME, Vickery LE. Cooperativity and dimerization of recombinant human estrogen receptor hormone-binding domain. *J Biol Chem*. 1997;272(8):4843-9.
9. Delaunay, F., Pettersson, K., Tujague, M., and Gustafsson, J. A. (2000). Functional Differences between the Amino-Terminal Domains of Estrogen Receptors α and β . *Molecular Pharmacology* 58: 584-590.
10. Carolyn MK. Estrogen receptor interaction with estrogen response elements. *Nucleic Acids Res*. 2001 Jul 15; 29(14): 2905-2919.
11. Salem M. L. (2004). Estrogen, a double-edged sword: modulation of TH1- and TH2-mediated inflammations by differential regulation of TH1/TH2 cytokine production. *Current Drug Targets - Inflammation & Allergy* 3(1): 97-104.
12. Robinson, D. P., Hall, O. J., Nilles, T. L., Bream, J. H. and Klein, S. L. (2014). 17 β -estradiol protects females against influenza by recruiting neutrophils and increasing virus-specific CD8 T cell responses in the lungs. *Journal of Virology* 88 (9): 4711-4720.
13. Kamogawa, Y., Lee, H.J., Johnston, J.A., McMahon, M., O'Garra, A., and Arai, N. (1998). Cutting Edge: A conditionally active form of STAT6 can mimic certain effects of IL-4. *J. Immunol.* 161, 1074-1077.
14. Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS. (1997) Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha knockout mouse. *Endocrinology* 138(11):4613-4621.
15. White, R., Lees, J.A., Needham, M., Ham, J. and Parker, M. (1987). Structural Organization and Expression of the Mouse Estrogen Receptor. *Molecular Endocrinology* 1 (10): 735-744.
16. Chelsea, C., Neelakshi, R., J., Matteo C., Michael, M., x. and Roberto C. (2017). Estrogen Receptor a Signaling Exacerbates Immune-Mediated Nephropathies through Alteration of Metabolic Activity. *The Journal of Immunology* 200:512-522

List of Key Events in the AOP

Event: 1711: Induction of GATA3 expression by STAT6:ER fusion protein (<https://aopwiki.org/events/1711>)

Short Name: Induction of GATA3 expression

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:314 - Activation of estrogen receptor in immune cells leading to exacerbation of systemic lupus erythematosus (https://aopwiki.org/aops/314)	KeyEvent

Biological Context

Level of Biological Organization

Cellular

Organ term

Organ term

immune system

Domain of Applicability

Involvement of GATA3 and STAT6 in Th2 cell development through ER is common in humans, rodents, and other mammalian species (Ho IC. 2009). A constitutively activated form of Stat6 introduced into CD4 T cells resulted in both Th2 differentiation and enhanced cell expansion. Stat6 is not only necessary but also sufficient to drive IL-4-mediated Th2 differentiation and cell expansion in naive CD4 T cells (Zhu J. 2001). CD4 T cells from Stat6-knockout mice are not able to drive Th2 differentiation and cell expansion under ThN conditions with added with IL-4 (Zhu J. 2001).

Key Event Description

Transcription factors are critical for Th cell differentiation and cytokine production. Cell fate determination in each lineage requires at least two types of transcription factors: the master regulators as well as the signal transducers and activator of transcription (STAT) proteins (Zhu J. 2010). The ability of STAT6: ER to induce a Th2 phenotype correlates with the induction of GATA-3 mRNA expression. GATA3 is the Th2 master regulator (Zhu J 2010, Sung-Yun. 2004, Zhu J. 2004, Zheng W. 1997, Zhang DH. 1997), but it also plays important roles in multiple steps of CD4 T cell development (Ho IC. 2009).

How it is Measured or Detected

Purified naive T cells were cultured and expanded under Th1 culture conditions in the presence or absence of 0.3 μ M 4-HT (Research Biochemicals Institute) for 2 weeks starting from days 1, 7, 14, or 21. GATA-3 mRNAs can be measured using RNase protection assay in developing Th1 cells. RNase protection assay was performed with RiboQuant multiprobe kit (PharMingen) following the manufacturer's method using GATA-3. Stat6:ER Th1 cells expressed significant amounts of both GATA-3 mRNAs in a 4-HT-dependent manner. (Kurata H. 1999, Zhu J. 2001).

Constitutively activated Stat6 (Stat6VT) is primed under null Th cell (ThN) conditions in the absence of human (h)IL-4. The expression level of Gata3 in this primed cells are checked by RT-PCR (Zhu J. 2001).

References

1. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. *Annu Rev Immunol.* 2010; 28:445-89.
2. Zhu J, Paul WE. Peripheral CD4 T cell differentiation regulated by networks of cytokines and transcription factors. *Immunol Rev.* 2010; 238(1):247-62.
3. Sung-Yun, Morgan L. T. I-Cheng H. (2004). GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. *Proceedings of the National Academy of Sciences.* 101 (7): 1993-1998.
4. Zhu J, Min B, Paul WE, et al. Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. *Nat Immunol.* 2004;5(11):1157-65.
5. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. *Cell.* 1997. 16:89(4):587-96.
6. Zhang DH, Cohn L, Ray P, Bottomly K, Ray A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. *J Biol Chem.* 1997. 22;272(34):21597-603.
7. Zhu, J., Guo, L., Watson, C. J., Hu-Li, J. and Paul, W. E. (2001). STAT6 is necessary and sufficient for IL-4's role in Th2 differentiation and cell expansion. *The Journal of Immunology* 166 (12): 7276-7281.
8. Ho IC, Tai TS, Pai SY. GATA3 and the T-cell lineage: essential functions before and after Thelper-2-cell differentiation. *Nat Rev Immunol.* 2009;9(2):125-35.
9. Kurata, H., Lee, H. J., O'Garra, A. and Arai, N. (1999). Ectopic expression of activated STAT6 induces the expression of Th2-specific cytokines and transcription factors in developing Th1 cells. *Immunity* 11: 677-688.

Event: 1712: Overproduction of IL-4 from Th2 cell (<https://aopwiki.org/events/1712>)

Short Name: Overproduction of IL-4

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:314 - Activation of estrogen receptor in immune cells leading to exacerbation of systemic lupus erythematosus (https://aopwiki.org/aops/314)	KeyEvent

Biological Context

Level of Biological Organization
Cellular

Cell term

Cell term
T-helper 2 cell

Organ term

Organ term
immune system

Key Event Description

Th2 cells produce IL-4, which stimulates B-cells to proliferate, to switch immunoglobulin classes, and to differentiate into plasma and memory cells. The receptor for IL-4 is IL-4R α , which expresses in B cells. IL4 also plays an important role in the development of certain immune disorders, particularly allergies and some autoimmune diseases and especially when there is Th2 polarization.

How it is Measured or Detected

Purified naive T cells were activated and infected with RV-Stat6:ER. The cells were cultured and expanded under Th1 culture conditions in the presence or absence of 0.3 μ M 4-HT (Research Biochemicals Institute) for 2 weeks starting from days 1, 7, 14, or 21 and the cells were analyzed for cytokine (IL-4) expression by flow cytometer analysis of intracellular cytokine production or cytokine ELISA (Kurata H. 1999, Zhu J. 2001).

Single-cell suspensions of lymph nodes removed from BALB/c mice 7 days after priming with KLH absorbed to aluminium hydroxide adjuvant in the footpads, were prepared and cultured in vitro with KLH in the absence or presence of either BPA (0.1, 1, 10, 50 and/or 100 μ M) or NP. After 4 days, the levels of IL-4 and IFN- γ in the cell supernatants were determined by a sandwich enzyme-linked immunosorbent assay (ELISA) and mRNA levels of IL-4, IL-6 and IL-10 in the cells were assayed by reverse transcription-polymerase chain reaction (RT-PCR) (Lee MH. 2003). To evaluate the effects of exposure to BPA in adulthood, male Leishmania major- susceptible BALB/c and -resistant C57BL/6 mice were subcutaneously injected with BPA (0.625, 1.25, 2.5 and 5 μ mol) dissolved in corn oil 1 week before being infected with L. major. A single cell suspension containing splenocytes from each mouse was incubated in 24-well tissue-culture plates in RPMI 1640 medium supplemented with 10% FCS, penicillin (100 IU/mL), and streptomycin (100 μ g/mL) at 37°C in a humidified atmosphere of 5% CO₂ and 95% air. Cells were stimulated with L. major antigen (3 μ g/mL) during the cultivation. Culture supernatants were collected 48 hr later. Concentrations of IL-4, IL-10, IL-13, and IFN- γ in culture supernatants were determined using CBA kits (Huimin Y. 2008).

Th2 cell-related cytokine (IL-4 and -10) in BPA (50 μ M)-stimulated primary cultured mouse lymphocytes were evaluated using immunoblot analysis and reverse-transcription polymerase chain reaction (RT-PCR) (Lee et al. 2010).

References

1. Kurata, H., Lee, H. J. Lee, O'Garra, A. and Arai, N. (1999). Ectopic expression of activated STAT6 induces the expression of Th2-specific cytokines and transcription factors in developing Th1 cells. *Immunity* 11: 677-688.
2. Lee, M. H., Chung, S. W., Kang, B. Y., Park, J., Lee, C. H., Hwang, S. Y. and Kim, T. S. (2003). Enhanced interleukin-4 production in CD4+ T cells and elevated immunoglobulin E levels in antigen-primed mice by bisphenol A and nonylphenol, endocrine disruptors: involvement of nuclear factor-AT and Ca²⁺. *Immunology* 109(1): 76-86.
3. Huimin, Y., Masaya, T. and Kazuo, S. (2008). Exposure to Bisphenol A Prenatally or in Adulthood Promotes TH2 Cytokine Production Associated with Reduction of CD4+CD25+ Regulatory T Cells. *Environmental Health Perspective* 116(4): 514-519.
4. Lee, J. and Lim K. T. (2010). Plant-originated glycoprotein (36kDa) suppresses interleukin-4 and -10 in bisphenol A-stimulated primary cultured mouse lymphocytes. *Drug and Chemical Toxicology*. 33(4): 421-429.

Event: 1713: Increase of anti-single/double-stranded DNA antibody from autoreactive B cell
(<https://aopwiki.org/events/1713>)

Short Name: Increase of autoantibody production

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:314 - Activation of estrogen receptor in immune cells leading to exacerbation of systemic lupus erythematosus (https://aopwiki.org/aops/314)	KeyEvent

Biological Context

Level of Biological Organization
Cellular

Cell term

Cell term
B cell

Organ term

Organ term
immune system

Key Event Description

In the development of T-cell dependent antibody producing cells, the interaction between IL-4 and its receptor delivers the first signal for switching to IgE. IL-4 produced by Th2 stimulates B-cells to proliferate, to switch immunoglobulin classes, and to differentiate into plasma and memory cells. The engagement of CD40 on B cells by CD154 (CD40L) expressed on T cells and DC provides the second signal required for switching to IgE.

In a study to investigate a novel subpopulation of B-1 cells and its roles in murine lupus, anti-double-stranded DNA (anti-dsDNA) autoantibodies were preferentially secreted by a subpopulation of CD5+ B-1 cells that expressed programmed death ligand 2 (L2pB1 cells) (Xuemei et al. 2009). A substantial proportion of hybridoma clones generated from L2pB1 cells reacted to dsDNA. L2pB1 cells are potent antigen-presenting cells and a dramatic increase of circulating L2pB1 cells in lupus-prone BXSB mice correlates with elevated serum titers of anti-dsDNA antibodies (Xuemei et al. 2009).

Bisphenol-A (BPA) as well as E2 and DES enhanced anti-Br-RBC autoantibody production by B1 cells *in vivo*. IgM production by B1 cells in the presence of EDs was more prominent on aged BWF1 mice developing lupus nephritis. B1 cells from aged mice exhibited increased expression of ER α mRNA compared to young mice (Yurino H. 2004).

How it is Measured or Detected

For the detection of anti-DNA antibodies in serum of female NZB/W F1 mice administrated of the estrogen antagonist tamoxifen, enzyme-linked immunosorbent assay (ELISA) was carried out. For the quantitated of total B cells and CD5+B cells expression in spleen and in peritoneal exudates were analyzed with fluorescence activated cell sorting (FACScan) (Wu et al. 2000). For the B cell subset analysis (including immature (transitional T1 and T2) and mature (MZ and follicular)) in BALB/c R4Ag-gamma 2b transgenic mice administrated the tamoxifen were performed with FACScan (Peeva et al. 2005).

In another study, used ER α deficiency in NZB/W F1 mice, autoantibody (anti-dsDNA antibodies) development and concentration was assessed by ELISA using serum isolated from blood collected monthly via (Bynote et al. 2008).

Using female NZB/WF1 mice, silastic implants containing the powdered form of endocrine disruptors were placed subcutaneously on the back of ovariectomized mice, and 3 to 4 months blood samples were collected peritoneal. 4 months after implantation, peritoneal lavage cells and splenic cells were obtained from mice. Anti-DNA antibody was measured in ELISA using ssDNA for the culture supernatant of and dsDNA for the serum. To examine the effect of EDs on autoantibody production by B1 cells, a PFC assay using autologous bromelain-treated erythrocytes (Br-RBC) was conducted. To evaluate autoantibody (IgG) production including plaque forming cell (PFC) assay for anti-RBC Ab. It has been reported

that B1 cells produce autoantibody against phosphatidylcholine expressed on bromelain-treated red blood cells (Br-RBC) using PFC assay (Yurino H. 2004).

To examine a direct effect of endocrine disruptors on IgM antibody production by B1 or B2 cells, B1 cells were prepared from peritoneal cells and B2 cells from spleen, B1 or B2 cells were cultured in the presence of endocrine disruptors (E2: 100 nM, DES: 100 nM, BPA: 1 μ M) for 4 days. The amount of total IgM and IgM anti-DNA Ab in the culture supernatant was measured by ELISA. Expression level of ER α and ER β genes in B

cells was examined by RT-PCR and quantitative real-time PCR analysis (Yurino H. 2004).

For the investigate the in vitro effects of 17 β -estradiol (E2) on spontaneous immunoglobulin production by human PBMCs, PBMCs from healthy human volunteers were cultured with E2. Levels of IgG and IgM and cytokine activity were measured by ELISA. Proliferation was determined by [3H]-thymidine uptake. The cell viability was assessed by a trypan blue exclusion test (Kanda et al. 1999).

References

1. Xuemei, Z., Stanley, L., Chunyan, B., Nicolas, D., Nichol, E. H., Scott, J. S., Joseph, T., Wenda, G. and Thomas, L. R. (2009). A Novel Subpopulation of B-1 Cells Is Enriched with Autoreactivity in Normal and Lupus-Prone Mice. *Arthritis & Rheumatology* 60 (12):3734-3743
2. Goto, M., Takano-Ishikawa, Y., Ono, H., Yoshida, M., Yamaki, K. and Shinmoto, H. (2007). Orally Administered Bisphenol A Disturbed Antigen Specific Immunoresponses in the Naive Condition. *Bioscience, Biotechnology, and Biochemistry* 71(9): 2136–2143.
3. Yoshino S., Yamaki, K., Li, X., Sai, T., Yanagisawa, R., Takano, H., Taneda, S., Hayashi, H. and Mori, Y. (2004). Prenatal exposure to bisphenol A up-regulates immune responses, including T helper 1 and T helper 2 responses, in mice. *Immunology* 112: 489–495.
4. Wu WM., Lin, B.-F., Su, Y.-C., Suen, J.-L. and Chiang, B.-L. (2000). Tamoxifen decreases renal inflammation and alleviates disease severity in autoimmune NZB/W F1 mice. *Scandinavian Journal of Immunology* 52(4): 393-400.
5. Peeva, E., Venkatesh, J. and Diamond, B. (2005). Tamoxifen Blocks Estrogen-Induced B Cell Maturation but Not Survival. *The Journal of Immunology* 175: 1415-1423.
6. Bynote, K. K., Hackenberg, J. M., Korach, K.S., Lubahn, D. B., Lane, P. H. and Gould, K. A. (2008). Estrogen receptor-alpha deficiency attenuates autoimmune disease in (NZB xNZW) F1 mice. *Genes and Immunity*. 9: 137-152.
7. Kanda N. and Tamaki, K. (1999). Estrogen enhances immunoglobulin production by human PBMCs. *The Journal of Allergy and Clinical Immunology* 103(2): 282-288.
8. Yurino, H., Ishikawa, S., Sato, T., Akadegawa, K., Ito, T., Ueha, S., Inadera, H. and Matsushima, K. (2004). Endocrine disruptors (environmental estrogens) enhance autoantibody production by B1 cells. *Toxicological Sciences* 81(1): 139-147.

List of Adverse Outcomes in this AOP

Event: 1714: Exacerbation of systemic lupus erythematosus (<https://aopwiki.org/events/1714>)

Short Name: Exacerbation of SLE

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:314 - Activation of estrogen receptor in immune cells leading to exacerbation of systemic lupus erythematosus (https://aopwiki.org/aops/314)	AdverseOutcome

Biological Context

Level of Biological Organization
Individual

Domain of Applicability

Exacerbation of SLE is common in humans and rodents, and is considered likely to occur in other animal species, as well. SLE is an autoimmune disease that occurs primarily in women (9:1 compared to men) (Rider et al., 2001). SLE is an autoimmune disease that affects predominantly women during reproductive years, and its evolution is altered by hormonal events such as menses, menopause, and especially pregnancy (Luis et al., 2014). The incidence of SLE is markedly increased in females of child-bearing age (Grainne et al., 2013). Th1/Th2 shift is one of the most important immunologic changes during gestation. It is due to the progressive increase of estrogens, which reach peak level in the third trimester of pregnancy. At these high levels, estrogens suppress the Th1-mediated responses and stimulate Th2-mediated immunologic responses. For this reason, Th1-mediated diseases, such as rheumatoid arthritis, tend to improve, while Th2-mediated diseases, such as systemic lupus erythematosus (SLE) tend to worsen during pregnancy (Doria et al., 2006).

Key Event Description

SLE is an autoimmune disease characterized by overproduction of a variety of anti-cell nuclear and other pathogenic autoantibodies. It is characterized by B-cell hyperactivity, polyclonal hypergammaglobulinemia, and immune complex deposition. Epstein– Barr virus (EBV) has been identified as a possible factor in the development of lupus. Over 100 drugs have been reported to cause drug-induced lupus (DIL), including a number of the newer biologics and antiviral agents. Although the pathogenesis of DIL is not well understood, these drugs may alter gene expression in CD4+ T cells by inhibiting DNA methylation and induce over-expression of lymphocyte function-associated antigen 1, thus promoting autoreactivity. Generally, sunlight is the most obvious environmental factor that may exacerbate SLE. High estrogen levels and BPA-induced ER activation skewed T cells toward a Th2 phenotype, thereby inducing hyperactivity by B-cells, which leads to exacerbation of SLE. T cell dysfunction is a characteristic of SLE, which is also associated with high levels of autoantibodies (Crispин et al. 2010).

How it is Measured or Detected

Most of the mouse models of lupus produce autoantibodies and develop immune complex glomerulonephritis. For the disease onset, mice can monitor by proteinuria levels, body weights, blood urea nitrogen and appearance over time. Additionally, serum levels of anti-dsDNA, anti-glomerular antigens (GA), total IgG can measure by ELISA. (Gabriela et al., 2019, Yurino et. al., 2004, John et. al., 2008, Wang et. al. 1996).

References

1. Crispín, J. C., Stamatis-Nick, C. L., Katalin Kis-Toth1, Linda A. Lieberman1, Vasileios C. Kyttaris1, Yuang-Taung Juang1, and George C. Tsokos1. (2010) Pathogenesis of human systemic lupus erythematosus: recent advance. *Trends in Molecular Medicine* 16(2): 47-57.
2. Wu, W.-M., Lin, B.-F., Su, Y.-C., Suen, J.-L. and Chiang, B.-L. (2000). Tamoxifen decreases renal inflammation and alleviates disease severity in autoimmune NZB/W F1 mice. *Scandinavian Journal of Immunology* 52(4): 393-400.
3. Rider, V. and Abdou, N. I. (2001). Gender differences in autoimmunity: molecular basis for estrogen effects in systemic lupus erythematosus. *International Immunopharmacology* 1(6): 1009-1024.
4. Luis, J. J., Gabriela, M., Pilar, C.-D., Carmen, N., Olga V.-L. and Miguel., A. S. (2014). Risk factors of systemic lupus erythematosus flares during pregnancy. *Immunologic Research* 60: 184-192
5. Grainne, M. and David, I. (2013). Effect of gender on clinical presentation in systemic lupus erythematosus. *Rheumatology* 52: 2108-2115
6. Doria, A., Iaccarino, L., Sarzi-Puttini, P., Ghirardello, A., Zampieri, S., Arienti, S., Cutolo, M. and Todesco, S. (2006). Estrogens in pregnancy and systemic lupus erythematosus. *Annals of the New York Academy of Sciences* 1069: 247-256
7. Buyon JP. Oral contraceptives in women with systemic lupus erythematosus. *Ann Med Interne (Paris)* (1996) 147(4):259-264.
8. Buyon JP. Hormone replacement therapy in postmenopausal women with systemic lupus erythematosus. *J Am Med Womens Assoc* (1998) 53(1):13-17.
9. Gabriela, T., Yessia, H., Maria, R. B. and Mario, R. (2019), A Spontaneous Mouse Model of Lupus: Physiology and Therapy. IntechOpen Limited: 1-24
10. Yurino, H., Ishikawa, S., Sato, T., Akadegawa, K., Ito, T., Ueha, S., Inadera, H., and Matsushima, K. (2004), Endocrine Disruptors (Environmental Estrogens) Enhance Autoantibody Production by B1 Cells. *Toxicological Sciences* 81: 139-147.
11. John, L. S., Jackie, E., Phil, R., Kenneth, S. K. and Gary, S. G. (2008), Impact of estrogen receptor deficiency on disease expression in the NZM2410 lupus prone mouse. *Clin Immunol.* 128(2): 259-268.
12. Wang, Y., Hu, Q., Madri, J. A., Rollins, S.A., Chodera, A, and Matis, L. A. (1996), Amelioration of lupus-like autoimmune disease in NZB/W F1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. *Proc Natl Acad Sci U S A.* 93(16):8563-8568.
13. George, B., Ricard, C. and Dimitrios, T. B. (2012). Systemic Lupus Erythematosus: Pathogenesis and Clinical Feature. *EULAR Textbook on Rheumatic Diseases*

Appendix 2

List of Key Event Relationships in the AOP

List of Adjacent Key Event Relationships

Relationship: 2020: Activation of estrogen receptor leads to Induction of GATA3 expression (<https://aopwiki.org/relationships/2020>)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
Activation of estrogen receptor in immune cells leading to exacerbation of systemic lupus erythematosus (https://aopwiki.org/aops/314)	adjacent	Moderate	Moderate

Key Event Relationship Description

Stressors bind to the ERs in immune cells, a ligand-activated transcription factor that regulates transcription of target genes in the nucleus or located in or adjacent to the plasma membrane (Deroo BJ. 2006). ER α is a nuclear hormone transcription factor that classically binds ligand stressors estrogen or EDC, further stabilizing dimers that subsequently bind estrogen response elements to transactivate or suppress specific target genes.

Evidence Supporting this KER

Biological Plausibility

The GATA3 expression induced by TNF- α was enhanced in the presence of BPA. However, the T-bet expression did not change when tested at various culture conditions (Guo H. 2010, Uemura Y. 2008). Naive Th cells primed by BPA/TNF- α -matured DCs differentiated into Th2 cells with characteristically high IL-5/IFN- γ , IL-10/IFN- γ , and IL-13/IFN- γ ratios. However, the IFN- γ production was not affected at all, thus indicating that

Th2 bias was induced by enhanced Th2 cytokine production (Guo H. 2010, Uemura Y. 2008). Also, dendritic cells exposed to BPA (100 nM) and TNF- α produced high levels of IL-10 relative to IL-12, and this induced Th2 deviation (Liu Y. 2009).

Uncertainties and Inconsistencies

Dendritic cells exposed to human exposure-relevant concentrations of BPA (10-100 nM) preferentially skewed T cells toward a Th2 phenotype. Th cells were primed by BPA/TNF- α -DCs. The administration of 17 β -estradiol enhanced the differentiation of dendritic cells and increased IFN- γ production by dendritic cells in C57BL/6 mice.

Quantitative Understanding of the Linkage

Response-response relationship

When estrogen levels are low, T cell expansion shifts toward a Th1 phenotype that produces IL-12, TNF- α , and IFN- γ . This response results in cellular immunity inducing inflammation and exacerbating cellular autoimmune diseases such as multiple sclerosis (MS), rheumatoid arthritis (RA), and experimental autoimmune encephalomyelitis (EAE) rather than SLE.

The effects of estrogen receptor signaling on T cells also appear to be dose dependent (Melissa, and Gary 2011). Low serum levels (60–100 pg/mL or 0.26–0.43 nM) of estradiol have been shown to increase Th1 T-cell development in vitro through an ER α mediated mechanism (Maret et al. 2003). Treatment with low doses of estrogen (25 pg/ml or 0.1 nM) ameliorated disease, while high doses (>1000 pg/ml or 4.3 nM), which mimic pregnancy levels, prevented EAE onset and polarized T-cells to a Th2 phenotype in the EAE model (Bebo et al. 2001). High levels of estrogen during pregnancy have been reported to ameliorate T cell mediated diseases such as multiple sclerosis (Korn-Lubetzki et al. 1984).

Known modulating factors

The Th1/Th2 shift is one of the most important immunologic changes during the menstrual cycle and gestation. Immune activity shifts across the menstrual cycle, with higher follicular-phase Th1 cell activity and higher luteal-phase Th2 cell activity (Tierney et al. 2015). This is due to the progressive increase of estrogens, which reach peak level in the third trimester of pregnancy. At these high levels, estrogens suppress the Th1-mediated responses and stimulate Th2-mediated immunologic responses (Doria et al. 2006).

References

1. Deroo BJ, Korach KS. Estrogen receptors and human disease. *J Clin Invest.* 2006 Mar;116(3):561-70.
2. Guo H, Liu T, Ling F, et al. Bisphenol A in combination with TNF-alpha selectively induces Th2 cell-promoting dendritic cells in vitro with an estrogen-like activity. *Cell Mol Immunol.* 2010;7(3):227-34.
3. Uemura Y, Liu TY, Narita Y, Suzuki M, Matsushita S. 17 Beta-estradiol (E2) plus tumor necrosis factor-alpha induces a distorted maturation of human monocyte derived dendritic cells and promotes their capacity to initiate T-helper 2 responses. *Hum Immunol.* 2008;69(3):149-57.
4. Liu Y, Shi J, Ding B. Activation of peroxisome proliferator-activated receptor-gamma potentiates pro-inflammatory cytokine production, and adrenal and somatotropic changes of weaned pigs after *Escherichia coli* lipopolysaccharide challenge. *Innate Immun.* 2009;15(3):169-78.
5. Kamogawa, Y., Lee, H.J., Johnston, J.A., McMahon, M., O'Garra, A., and Arai, N. (1998). Cutting Edge: A conditionally active form of STAT6 can mimic certain effects of IL-4. *J. Immunol.* 161, 1074–1077.
6. Melissa, C. and Gary, G (2011). Estrogen Receptors in Immunity and Autoimmunity. *Clinical Reviews in Allergy & Immunology* 40: 66-73.
7. Maret, A., Couder, J. D., Garidou, L., Foucras, G., Gourdy, P., Krust, A., Dupont, S., Chambon, P., Druet, P., Bayard, F. and Guéry, J. C. (2003). Estradiol enhances primary antigen-specific CD4 T cell responses and Th1 development in vivo. Essential role of estrogen receptor α expression in hematopoietic cells. *The European Journal of Immunology* 33: 512-521.
8. Bebo, B. F. Jr., Fyfe-Johnson, A., Adlard, K., Beam, A. G., Vandenbark, A. A. and Offner, H. Low-Dose Estrogen Therapy Ameliorates Experimental Autoimmune Encephalomyelitis in Two Different Inbred Mouse Strains. (2001). *The Journal of Immunology.* 166: 2080-2089
9. Korn-Lubetzki, I., Kahana, E., Cooper, G. and Abramsky, O. (1984). Activity of multiple sclerosis during pregnancy and puerperium. *Annals of Neurology* 16(2): 229-231.
10. Tierney, K. L., Julia, R. H. and Gregory, E. D. (2015). Sexual activity modulates shifts in Th1/Th2 cytokine profile across the menstrual cycle: An observational study. *Fertility and Sterility* 104 (6): 1513–1521.
11. Doria, A., Iaccarino, L., Sarzi-Puttini, P., Ghirardello, A., Zampieri, S., Arienti, S., Cutolo, M. and Todesco, S. (2006). Estrogens in pregnancy and systemic lupus erythematosus. *Annals of the New York Academy of Sciences* 1069: 247-256.

Relationship: 2021: Induction of GATA3 expression leads to Overproduction of IL-4
(<https://aopwiki.org/relationships/2021>)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
Activation of estrogen receptor in immune cells leading to exacerbation of systemic lupus erythematosus (https://aopwiki.org/aops/314)	adjacent	Moderate	Moderate

Key Event Relationship Description

Th2 cells produce IL-4, IL-5, IL-10, and IL-13, meanwhile Th1 cells produce IL-12, TNF- α , and IFN- γ . During Th2 polarization, IL-4 produced by Th2 cell. IL-12 plays a central role in promoting the differentiation of naive CD4+ T cells into mature Th1 effector cells. Secretion of IL-10 from Th2 has been suggested to downregulate the DC-derived IL-12 production and lead to a Th2 differentiation (Aste-Amezaga M. 1998).

Evidence Supporting this KER

Biological Plausibility

IFN- γ is noticeably reduced in pregnant women compared with non-pregnant women or in response to high levels of estrogen (Kruse et al. 2000). Thus, pharmacological or pregnancy levels of estrogen may skew the immune system from a Th1 to a Th2 profile (Ebru et al. 2011). Th2 differentiation is completely abolished both in vitro and in vivo when GATA3 is conditionally deleted in peripheral CD4 T cells from GATA-3-deficient (FF and FF cre) mice (Sung-Yun. 2004, Zhu J. 2004). Antigen-specific immune response is evaluated with lymphocyte from FF and FF cre mice injected with KLH, and cytokine production was measured by sandwich ELISA (Sung-Yun. 2004). Mouse lymphocytes stimulated with a massive amount of BPA (50 μ M) were Th2 polarized, with prominent elevation of IL-4 as well as IL-10 (Lee MH. 2010). Similarly, BPA enhanced IL-4 production in antigen-activated T cells by ELISA or RT-PCR, although the concentrations of BPA that they utilized (10–50 μ M) were high (Lee MH. 2003). In this experiment, IL-4 level is confirmed baseline when treated with anti-CD4 mAb. Exposure to BPA in adulthood mice promoted antigen-stimulated levels of IL-4, IL-10, and IL-13, but not IFN- γ (Huimin et al. 2008).

Empirical Evidence

The proliferation of Stat6:ER Th1 cells was enhanced in a dose-dependent manner on days 10 and 31 after polarization by [3 H]thymidine incorporation (the effective concentration of 4-HT was between 0.08 and 2 μ M, and the toxic concentration was greater than 5 μ M) (Kurata H. 1999, Zhu J. 2001).

Uncertainties and Inconsistencies

The essential transcription factors of Th2 are GATA-3 and STAT5. Activation of GATA-3 and STAT5 induce IL-4 production in naïve CD4 T cells. IL-4-mediated STAT6 activation promotes Th2 differentiation (Kaplan MH. 1996, Shimoda K. 1996, Takeda K. 1996).

Quantitative Understanding of the Linkage

When estrogen levels are low, T cell expansion shift toward a Th1 phenotype that produces IL-12, TNF- α , and IFN- γ . This response results in cellular immunity inducing inflammation and exacerbating cellular type autoimmune disease such as multiple sclerosis (MS) and EAE rather than SLE.

The effects of estrogen receptor signaling on T cells also appear to be dose dependent (Cunningham and Gilkeson, 2011). Treatment with low serum levels (60–100 pg/mL or 0.26–0.43 nM) of estradiol increased Th1 T-cell development in vitro by acting through an ER α mediated mechanism (Maret et al. 2003). Treatment with low doses of estrogen (25 pg/ml or 0.1 nM) ameliorated disease, while high dose levels (>1000 pg/ml or 4.3 nM), which mimic pregnancy levels, prevented EAE onset and polarized T-cells to a Th2 phenotype in the EAE. (Bebo et al. 2001). High levels of estrogen during pregnancy have been reported to ameliorate T cell mediated diseases such as multiple sclerosis (Korn-Lubetzki et al. 1984).

IL-4 may serve multiple roles in the development of lupus: it may enhance autoantibody production via its direct B-cell effects, protect against autoimmunity via its T-cell suppressor effect, or perpetuate tissue damage via its direct effects on target organs (Ram Raj Singh 2003).

Known modulating factors

The Th1/Th2 shift is one of the most important immunologic changes during gestation. This is due to the progressive increase of estrogens, which reach peak level in the third trimester of pregnancy. At these high levels, estrogens suppress the Th1-mediated responses and stimulate Th2-mediated immunologic responses (Doria et al. 2006).

References

1. Aste-Amezaga M, Ma X, Sartori A, Trinchieri G. Molecular mechanisms of the induction of IL-12 and its inhibition by IL-10. *J Immunol*. 1998; 15;160(12):5936-44.
2. Sung-Yun, Morgan L. T. I-Cheng H. (2004). GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. *Proceedings of the National Academy of Sciences*. 101 (7): 1993-1998.
3. Zhu J, Min B, Paul WE, et al. Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. *Nat Immunol*. 2004;5(11):1157-65.
4. Melissa, C. and Gary, G (2011). Estrogen Receptors in Immunity and Autoimmunity. *Clinical Reviews in Allergy & Immunology* 40: 66-73.
5. Lee, M. H., Chung, S. W., Kang, B. Y., Park, J., Lee, C. H., Hwang, S. Y. and Kim, T. S. (2003). Enhanced interleukin-4 production in CD4+ T cells and elevated immunoglobulin E levels in antigen-primed mice by bisphenol A and nonylphenol, endocrine disruptors: involvement of nuclear factor-AT and Ca2+. *Immunology* 109(1): 76-86.
6. Huimin, Y., Masaya, T. and Kazuo, S. (2008). Exposure to Bisphenol A Prenatally or in Adulthood Promotes TH2 Cytokine Production Associated with Reduction of CD4+CD25+ Regulatory T Cells. *Environmental Health Perspective* 116(4): 514-519.
7. Cunningham, M., Gilkeson, G., 2011. Estrogen receptors in immunity and autoimmunity. *Clinical Reviews in Allergy and Immunology* 40, 66-73.
8. Maret, A., Coudert, J. D., Garidou, L., Foucras, G., Gourdy, P., Krust, A., Dupont, S., Chambon, P., Druet, P., Bayard, F. and Guéry, J. C. (2003). Estradiol enhances primary antigen-specific CD4 T cell responses and Th1 development in vivo. Essential role of estrogen receptor α expression in hematopoietic cells. *The European Journal of Immunology* 33: 512-521.
9. Bebo, B. F. Jr., Fyfe-Johnson, A., Adlard, K., Beam, A. G., Vandenberg, A. A. and Offner, H. Low-Dose Estrogen Therapy Ameliorates Experimental Autoimmune Encephalomyelitis in Two Different Inbred Mouse Strains. (2001). *The Journal of Immunology* 166: 2080-2089.
10. Korn-Lubetzki, I., Kahana, E., Cooper, G. and Abramsky, O. (1984). Activity of multiple sclerosis during pregnancy and puerperium. *Annals of Neurology* 16(2): 229-231.
11. Doria, A., Iaccarino, L., Sarzi-Puttini, P., Ghirardello, A., Zampieri, S., Arienti, S., Cutolo, M. and Todesco, S. (2006). Estrogens in pregnancy and systemic lupus erythematosus. *Annals of the New York Academy of Sciences* 1069: 247-256.
12. Kaplan MH, Schindler U, Smiley ST, Grusby MJ. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. *Immunity*. 1996;4(3):313-9.
13. Shimoda K, van Deursen J, Ihle JN, et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. *Nature*. 1996. 18;380(6575):630-3.
14. Takeda K, Tanaka T, Akira S, et al. Essential role of Stat6 in IL-4 signalling. *Nature*. 1996. 18;380(6575):627-30.
15. Zhu, J., Guo, L., Watson, C. J., Hu-Li, J. and Paul, W. E. (2001). STAT6 is necessary and sufficient for IL-4's role in Th2 differentiation and cell expansion. *The Journal of Immunology* 166(12): 7276-7281.
16. Lee, J. and Lim K. T. (2010). Plant-originated glycoprotein (36kDa) suppresses interleukin-4 and -10 in bisphenol A-stimulated primary

cultured mouse lymphocytes. *Drug and Chemical Toxicology*. 33(4): 421-429.
 17. Ram Raj Singh (2003). IL-4 and many roads to lupuslike autoimmunity. *Clinical Immunology* 108: 73–79

Relationship: 2022: Overproduction of IL-4 leads to Increase of autoantibody production
<https://aopwiki.org/relationships/2022>

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
Activation of estrogen receptor in immune cells leading to exacerbation of systemic lupus erythematosus (https://aopwiki.org/aops/314)	adjacent	Moderate	Moderate

Key Event Relationship Description

The receptor for IL-4 is IL-4R α , which expresses in B cells. Th2 cells secrete cytokines IL-4 that upregulate antibody formation via B cells. Naive B cells that have not yet encountered antigen express immunoglobulin M and immunoglobulin D on their surface. During an immune response, B cells can express different immunoglobulin heavy chain isotypes sharing the same variable–diversity–joining (VDJ) region. This isotype-switching recombination allows a B-cell clone to produce antibodies with the same specificity for antigens but with different effector functions. To switch to a particular isotype, a B cell needs two signals, one cytokine-dependent and the other CD40-dependent. In B cells, estrogen-mediated events could occur through the CD40/CD40L costimulatory pathway. Estrogen can also enhance differentiation of immature DCs into mature functional DCs and regulate the expression of cytokines and chemokines such as IL-6, IL-10, CXCL8, and CCL2 (Liu Y. 2009, Guo H. 2010). This increase the number of B cells producing autoantibodies.

Evidence Supporting this KER

Biological Plausibility

Lack of ER α , in either male or female mice, did not increase B cell precursors (Smithson G. 1998).

Estrogen upregulates CD40L on B and T cells from SLE patients (Desai-Mehta A. 1996, Li X. 2006), and CD40L expression on B cells is increased two-fold in SLE patients (Díaz-Alderete A. 2004). Whereas anti-CD40L antibodies downregulate CD86 expression on normal and SLE B lymphocytes, blockade of CD86 only diminishes anti-DNA antibody production by SLE B cells (Nagafuchi H. 2003). Moreover, mice overexpressing CD40L develop a lupus-like disease with high levels of antibodies to nuclear antigens, DNA, and histones, as well as glomerulonephritis (Higuchi T. 2002). It is possible that this estrogen modulated elevation in CD40/CD40L crosstalk as well as stimulation via CD86 synergizes in the exacerbation of SLE by promoting autoantibody secretion as well as activation of T cells (Karpuzoglu E. 2011). In a murine model of SLE, BPA increased the number of B cells producing autoantibodies, and IgM antibody secretion by B1 cells was augmented (Yurino et al. 2004).

Direct exposure of PBMCs from SLE patients to 17 β -estradiol induces secretion of anti-dsDNA antibodies and enhances the secretion of IgS, in particular IgG (Kanda et al. 1999).

Empirical Evidence

CD23 on M12.4.1 cells, transfected with the luciferase reporter gene by inserting three copies of human STAT6 binding site oligonucleotide, is up-regulated with treatment 1 μ M 4HT for 16 hr (Kamogawa et al. 1998).

The production of IgA and IgG2a was increased in B cells from mice fed BPA (Goto et al. 2007). Similarly, in mice exposed prenatally to BPA and then immunized in adulthood with hen egg lysozyme (HEL), the anti-HEL IgG2a measured three weeks later was elevated (Yoshino et al. 2004). These Ig can be measured by ELISA. The administration of the estrogen antagonist tamoxifen diminishes anti-DNA antibody levels by ELISA as well as decreases percentages of total B cells and CD5+ B cells by FCM (Wu et al. 2000). Tamoxifen Blocks Estrogen-Induced B Cell Maturation but not survival (Peeva et al. 2005). ER α deficiency in (NZB \times NZW) F1 female mice downregulated levels of anti-dsDNA IgG antibodies, and the absence of ER α in (NZB \times NZW) F1 males resulted in decreased anti-dsDNA antibodies (Bynote et al. 2008).

Quantitative Understanding of the Linkage

Response-response relationship

When estrogen levels are low, T cell expansion shift toward a Th1 phenotype that produces IL-12, TNF- α , and IFN- γ . This response results in cellular immunity inducing inflammation and exacerbating cellular type autoimmune disease such as multiple sclerosis (MS) and EAE rather than SLE.

The effects of estrogen receptor signaling on T cells also appear to be dose dependent (Cunningham and Gilkeson, 2011). Treatment with low serum levels (60–100 pg/mL or 0.26–0.43 nM) of estradiol increased Th1 T-cell development in vitro by acting through an ER α mediated mechanism (Maret et al. 2003). Treatment with low doses of estrogen (25 pg/ml or 0.1 nM) ameliorated disease, while high dose levels (>1000 pg/ml or 4.3 nM), which mimic pregnancy levels, prevented EAE onset and polarized T-cells to a Th2 phenotype in the EAE. (Bebo et al. 2001). High levels of estrogen during pregnancy have been reported to ameliorate T cell mediated diseases such as multiple sclerosis (Korn-Lubetzki et al. 1984).

Time-scale

The Th1/Th2 shift is one of the most important immunologic changes during gestation. This is due to the progressive increase of estrogens, which reach peak level in the third trimester of pregnancy. At these high levels, estrogens suppress the Th1-mediated responses and stimulate Th2-mediated immunologic responses (Doria et al. 2006).

References

1. Liu Y, Shi J, Ding B. Activation of peroxisome proliferator-activated receptor-gamma potentiates pro-inflammatory cytokine production, and adrenal and somatotropic changes of weaned pigs after *Escherichia coli* lipopolysaccharide challenge. *Innate Immun*. 2009;15(3):169-78.
2. Guo H, Liu T, Ling F, et al. Bisphenol A in combination with TNF-alpha selectively induces Th2 cell-promoting dendritic cells in vitro with an estrogen-like activity. *Cell Mol Immunol*. 2010;7(3):227-34.
3. Smithson G, Couse JF, Lubahn DB, Korach KS, Kincade PW. The role of estrogen receptors and androgen receptors in sex steroid regulation of B lymphopoiesis. *J Immunol*. 1998;161(1):27-34.
4. Desai-Mehta A, Lu L, Ramsey-Goldman R, Datta SK. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. *J Clin Invest*. 1996; 1:97(9):2063-73.
5. Li X, Rider V, Kimler BF, Abdou NI. Estrogen does not regulate CD154 mRNA stability in systemic lupus erythematosus T cells. *Lupus*. 2006;15(12):852-7.
6. Díaz-Alderete A, Crispin JC, Vargas-Rojas MI, Alcocer-Varela J. IL-10 production in B cells is confined to CD154+ cells in patients with systemic lupus erythematosus. *J Autoimmun*. 2004;23(4):379-83.
7. Nagafuchi H, Shimoyama Y, Suzuki N, et al. Preferential expression of B7.2 (CD86), but not B7.1 (CD80), on B cells induced by CD40/CD40L interaction is essential for anti-DNA autoantibody production in patients with systemic lupus erythematosus. *Clin Exp Rheumatol*. 2003;21(1):71-7.
8. Higuchi T, Aiba Y, Tsubata T. Cutting Edge: ectopic expression of CD40 ligand on B cells induces lupus-like autoimmune disease. *J Immunol*. 2002; 1:168(1):9-12.
9. Karpuzoglu E, Zouali M. The Multi-faceted Influences of Estrogen on Lymphocytes: Toward Novel Immuno-interventions Strategies for Autoimmunity Management. *Clin Rev Allergy Immunol*. 2011;40(1):16-26.
10. Wu WM., Lin, B.-F., Su, Y.-C., Suen, J.-L. and Chiang, B.-L. (2000). Tamoxifen decreases renal inflammation and alleviates disease severity in autoimmune NZB/W F1 mice. *Scandinavian Journal of Immunology* 52(4): 393-400.
11. Peeva, E., Venkatesh, J. and Diamond, B. (2005). Tamoxifen Blocks Estrogen-Induced B Cell Maturation but Not Survival. *The Journal of Immunology* 175: 1415-1423.
12. Bynote, K. K., Hackenberg, J. M., Korach, K.S., Lubahn, D. B., Lane, P. H. and Gould, K. A. (2008). Estrogen receptor-alpha deficiency attenuates autoimmune disease in (NZB x NZW) F1 mice. *Genes and Immunity*. 9: 137-152.
13. Kanda N. and Tamaki, K. (1999). Estrogen enhances immunoglobulin production by human PBMCs. *The Journal of Allergy and Clinical Immunology* 103(2): 282-288.
14. Yurino, H., Ishikawa, S., Sato, T., Akadegawa, K., Ito, T., Ueha, S., Inadera, H. and Matsushima, K. (2004). Endocrine disruptors (environmental estrogens) enhance autoantibody production by B1 cells. *Toxicological Sciences* 81(1): 139-147.
15. Goto, M., Takano-Ishikawa, Y., Ono, H., Yoshida, M., Yamaki, K. and Shinmoto, H. (2007). Orally Administered Bisphenol A Disturbed Antigen Specific Immunoresponses in the Naive Condition. *Bioscience, Biotechnology, and Biochemistry* 71(9): 2136-2143.
16. Yoshino S., Yamaki, K., Li, X., Sai, T., Yanagisawa, R., Takano, H., Taneda, S., Hayashi, H. and Mori, Y. (2004). Prenatal exposure to bisphenol A up-regulates immune responses, including T helper 1 and T helper 2 responses, in mice. *Immunology* 112: 489-495.
17. Melissa, C. and Gary, G (2011). Estrogen Receptors in Immunity and Autoimmunity. *Clinical Reviews in Allergy & Immunology* 40: 66-7
18. Maret, A., Couder, J. D., Garidou, L., Foucras, G., Gourdy, P., Krust, A., Dupont, S., Chambon, P., Druet, P., Bayard, F. and Guéry, J. C. (2003). Estradiol enhances primary antigen-specific CD4 T cell responses and Th1 development in vivo. Essential role of estrogen receptor α expression in hematopoietic cells. *The European Journal of Immunology* 33: 512-521.
19. Bebo, B. F. Jr., Fyfe-Johnson, A., Adlard, K., Beam, A. G., Vandenbark, A. A. and Offner, H. Low-Dose Estrogen Therapy Ameliorates Experimental Autoimmune Encephalomyelitis in Two Different Inbred Mouse Strains. (2001). *The Journal of Immunology*. 166: 2080-2089.
20. Korn-Lubetzki, I., Kahana, E., Cooper, G. and Abramsky, O. (1984). Activity of multiple sclerosis during pregnancy and puerperium. *Annals of Neurology* 16(2): 229-231.
21. Doria, A., Iaccarino, L., Sarzi-Puttini, P., Ghirardello, A., Zampieri, S., Arienti, S., Cutolo, M. and Todesco, S. (2006). Estrogens in pregnancy and systemic lupus erythematosus. *Annals of the New York Academy of Sciences* 1069: 247-256
22. Kamogawa, Y., Lee, H.J., Johnston, J.A., McMahon, M., O'Garra, A., and Arai, N. (1998). Cutting Edge: A conditionally active form of STAT6 can mimic certain effects of IL-4. *J. Immunol*. 161, 1074-1077.

Relationship: 2023: Increase of autoantibody production leads to Exacerbation of SLE
(<https://aopwiki.org/relationships/2023>)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
Activation of estrogen receptor in immune cells leading to exacerbation of systemic lupus erythematosus (https://aopwiki.org/aops/314)	adjacent	Moderate	Moderate

Key Event Relationship Description

SLE patients appear to produce significant amounts of the anti-double-stranded DNA (anti-dsDNA) autoantibodies that cause the disease. Activation of autoantibody-producing B cells only serves to exacerbate that condition.

Evidence Supporting this KER

Biological Plausibility

SLE has been seen to flare up during pregnancy (Petri et al., 1991). Female MRL/lpr mice that developed lymphadenopathy and a lupus-like disease also exhibited a 50% higher mortality rate than males at 5 months of age (Carlsten H. 1992).

In (NZB×NZW) F1 mice too, females develop signs of SLE several months before males, with severe autoimmune hemolytic anemia, glomerulonephritis, and autoantibodies to single-stranded DNA, doublestranded DNA, and histones. In both (NZB×NZW) F1 and MRL/lpr mice, estrogen treatment exacerbates the lupus disease, with augmented levels of autoantibodies against dsDNA and phospholipids as well as formation of circulating immune complexes (Grimaldi CM. 2002, Peeva E. 2000).

Murine lupus models such as NZB×NZW F1 (NZB/W F1), NZB.H-2bm12, NZB×SWR F1 (SNF1), MRL.lpr/lpr, and BXSB mice have led to a better understanding of the pathogenic mechanisms of lupus (Zhang DH. 1997, Pai SY. 2004). All of these species of mice develop immunoglobulin G (IgG) anti-dsDNA antibody, which is a characteristic of lupus, and die of uremia in early life. Among these murine lupus models, the natural course of NZB/W F1 mice is closer to human lupus than MRL.lpr/lpr and BXSB mice. The administration of the estrogen antagonist tamoxifen diminishes immune complex deposition in the kidneys and increases survival. Renal disease was evaluated by the development of albuminuria and histological changes in the kidney (Wu et al. 2000).

In NZM female mice, ER α inactivation markedly prolonged life-span, lowered proteinuria, and ameliorated glomerulonephritis but resulted in higher serum anti-dsDNA antibody levels (Svenson JL. 2008).

Empirical Evidence

Estrogen enhances anti-double-stranded DNA antibody and IgG, IgM production by PBMCs. PBMCs or B cells were cultured for 7 days with E2 (10^{-8} mol/L). The amounts of total IgG and IgM in the supernatants were measured by ELISA. Proliferative responses PBMCs or B cells were measured by [3 H]-thymidine (Kanda N. 1999).

Quantitative Understanding of the Linkage

Response-response relationship

When estrogen levels are low, T cell expansion shift toward a Th1 phenotype that produces IL-12, TNF- α , and IFN- γ . This response results in cellular immunity inducing inflammation and exacerbating cellular type autoimmune disease such as multiple sclerosis (MS) and EAE rather than SLE.

The effects of estrogen receptor signaling on T cells also appear to be dose dependent (Cunningham and Gilkeson, 2011). Treatment with low serum levels (60–100 pg/mL or 0.26–0.43 nM) of estradiol increased Th1 T-cell development in vitro by acting through an ER α mediated mechanism (Maret et al. 2003). Treatment with low doses of estrogen (25 pg/ml or 0.1 nM) ameliorated disease, while high dose levels (>1000 pg/ml or 4.3 nM), which mimic pregnancy levels, prevented EAE onset and polarized T-cells to a Th2 phenotype in the EAE. (Bebo et al. 2001). High levels of estrogen during pregnancy have been reported to ameliorate T cell mediated diseases such as multiple sclerosis (Korn-Lubetzki et al. 1984).

Known modulating factors

The Th1/Th2 shift is one of the most important immunologic changes during the menstrual cycle and gestation. Immune activity shifts across the menstrual cycle, with higher follicular-phase Th1 cell activity and higher luteal-phase Th2 cell activity (Tierney et al. 2015). This is due to the progressive increase of estrogens, which reach peak level in the third trimester of pregnancy. At these high levels, estrogens suppress the Th1-mediated responses and stimulate Th2-mediated immunologic responses (Doria, A., et al. 2006).

References

1. Petri, M. Howard, D. and Repke, J. (1991). Frequency of lupus flare in pregnancy. The Hopkins Lupus Pregnancy Center experience. *Arthritis & Rheumatology*. 34(12): 1538-1545.
2. Estrogen accelerates immune complex glomerulonephritis but ameliorates T cell-mediated vasculitis and sialadenitis in autoimmune MRL lpr/lpr mice. Estrogen alters thresholds for B cell apoptosis and activation.
3. Carlsten H, Nilsson N, Tarkowski A, et al. Estrogen accelerates immune complex glomerulonephritis but ameliorates T cell-mediated vasculitis and sialadenitis in autoimmune MRL lpr/lpr mice. *Cell Immunol.* 1992;144(1):190-202.
4. Grimaldi CM, Cleary J, Dagtas AS, Moussai D, Diamond B. Estrogen alters thresholds for B cell apoptosis and activation. *J Clin Invest.* 2002;109(12):1625-33.
5. Peeva E, Grimaldi C, Spatz L, Diamond B. Bromocriptine restores tolerance in estrogen-treated mice. *J Clin Invest.* 2000;106(11):1373-9.
6. Zhang DH, Cohn L, Ray P, Bottomly K, Ray A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. *J Biol Chem.* 1997. 22;272(34):21597-603.
7. Pai SY, Truitt ML, Ho IC. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. *Proc Natl Acad Sci U S A.* 2004 Feb 17;101(7):1993-8.
8. Wu, W.-M., Lin, B.-F., Su, Y.-C., Suen, J.-L. and Chiang, B.-L. (2000). Tamoxifen decreases renal inflammation and alleviates disease severity in autoimmune NZB/W F1 mice. *Scandinavian Journal of Immunology* 52(4): 393-400.
9. Svenson JL, EuDaly J, Ruiz P, Korach KS, Gilkeson GS. Impact of estrogen receptor deficiency on disease expression in the NZM2410 lupus prone mouse. *Clin Immunol.* 2008;128(2):259-68.
10. Kanda N. and Tamaki, K. (1999). Estrogen enhances immunoglobulin production by human PBMCs. *The Journal of Allergy and Clinical Immunology* 103(2): 282-288.
11. Melissa, C. and Gary, G (2011). Estrogen Receptors in Immunity and Autoimmunity. *Clinical Reviews in Allergy & Immunology* 40: 66–73.
12. Maret, A., Couder, J. D., Garidou, L., Foucras, G., Gourdy, P., Krust, A., Dupont, S., Chambon, P., Druet, P., Bayard, F. and Guéry, J. C. (2003). Estradiol enhances primary antigen-specific CD4 T cell responses and Th1 development in vivo. Essential role of estrogen receptor α expression in hematopoietic cells. *The European Journal of Immunology* 33: 512–521.
13. Bebo, B. F. Jr., Fyfe-Johnson, A., Adlard, K., Beam, A. G., Vandenbark, A. A. and Offner, H. Low-Dose Estrogen Therapy Ameliorates Experimental Autoimmune Encephalomyelitis in Two Different Inbred Mouse Strains. (2001). *The Journal of Immunology*. 166: 2080-2089.
14. Korn-Lubetzki, I., Kahana, E., Cooper, G. and Abramsky, O. (1984). Activity of multiple sclerosis during pregnancy and puerperium. *Annals of Neurology* 16(2): 229-231
15. Tierney, K. L., Julia, R. H. and Gregory, E. D. (2015). Sexual activity modulates shifts in Th1/Th2 cytokine profile across the menstrual

cycle: An observational study. *Fertility and Sterility* 104 (6): 1513–1521.

16. Doria, A., Iaccarino, L., Sarzi-Puttini, P., Ghirardello, A., Zampieri, S., Arienti, S., Cutolo, M. and Todesco, S. (2006). Estrogens in pregnancy and systemic lupus erythematosus. *Annals of the New York Academy of Sciences* 1069: 247-256.