

AOP ID and Title:

AOP 379: Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation

Short Title: SARS-CoV2 to thrombosis and DIC

Graphical Representation**Authors**

Shihori Tanabe¹, Youngjun Kim², Sally Mayasich³, Maria João Amorim⁴, Nikolaos Parissis⁵, Penny Nymark⁶, Marvin Martens⁷, Dan Jacobson⁸, Felicity N. E. Gavins⁹, Luigi Margiotta-Casaluci¹⁰, Sabina Halappanavar¹¹, Natália Garcia-Reyero¹², Julija Filipovska¹³, Stephen W. Edwards¹⁴, Rebecca Ram¹⁵, Adrienne Layton¹⁶, Brigitte Landesmann⁵, Hasmik Yepiskoposyan¹⁷, Jukka Sund¹⁸, Clemens Wittwehr⁵, Laure-Alix Clerbaux⁵

¹Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan²KIST Europe Forschungsgesellschaft mbH, Saarbrücken, Germany³University of Wisconsin-Madison at U.S. Environmental Protection Agency, Duluth, Minnesota, United States⁴Instituto Gulbenkian de Ciência – Fundação Calouste Gulbenkian, Oeiras, Portugal⁵European Commission, Joint Research Centre (JRC), Ispra, Italy⁶Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden⁷Maastricht University, Maastricht, Netherlands⁸Oak Ridge National Laboratory, Oak Ridge, United States⁹Brunel University London, London, United Kingdom¹⁰King's College London, London, United Kingdom¹¹Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada¹²U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, United States¹³Independent Scientist & Consultant, North Macedonia¹⁴GenOomics, Bioinformatics, and Translational Research Center, RTI International, Washington DC, United States¹⁵Safer Medicines Trust, Kingsbridge, United Kingdom¹⁶U.S. Consumer Product Safety Commission, Bethesda, United States¹⁷Philip Morris International, Neuchatel, Switzerland¹⁸Finnish Safety and Chemicals Agency, Finland**Status**

Author status	OECD status	OECD project	SAAOP status
---------------	-------------	--------------	--------------

Under development: Not open for comment. Do not cite Under Development 1.96 Included in OECD Work Plan

Abstract

Coronavirus disease-19 (COVID-19) is circulating all over the world. To understand and find a way of the COVID-19 treatment, the signaling pathway and therapeutic mechanism of COVID-19 should be investigated. The pathogenesis of COVID-19 includes molecular networks such as the binding of the membrane proteins, signaling pathways, and RNA replication. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a new type of coronavirus causing COVID-19, infects the cells via the binding of the membrane proteins of human cells and is internalized by the cells. The viral genome is replicated by RNA-dependent RNA polymerase (RdRp), followed by the packaging and releasing of the viral particles. These steps can be the main targets for the therapeutics of COVID-19. The AOP379 "Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation" consists of the molecular initiating event (MIE) as "Binding to ACE2" (KE1739), key events (KEs) as "SARS-CoV-2 cell entry" (KE1738), "Interferon-1 antiviral response, antagonized by SARS-CoV-2" (KE1901), "Increased SARS-CoV-2 production" (KE1847), and the outcome as "Thrombosis and disseminated intravascular coagulation" (KE1869).

production" (KE1847), "Diminished protective oxidative stress response" (KE1869) and "Coagulation" (KE1845), and adverse outcome (AO) as "Thrombosis and Disseminated Intravascular Coagulation" (KE1846).

Summary of the AOP

Events

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Sequence	Type	Event ID	Title	Short name
1	MIE	1739	Binding to ACE2	Binding to ACE2
2	KE	1738	SARS-CoV-2 cell entry	SARS-CoV-2 cell entry
		1901	Interferon-I antiviral response, antagonized by SARS-CoV-2	IFN-I response, antagonized
3	KE	1847	Increased SARS-CoV-2 production	SARS-CoV-2 production
4	KE	1869	Diminished protective oxidative stress response	Diminished Protective Response to ROS
5	KE	1845	Coagulation	Coagulation
6	AO	1846	Thrombosis and Disseminated Intravascular Coagulation	Thrombosis and DIC

Key Event Relationships

Upstream Event	Relationship Type	Downstream Event	Evidence	Quantitative Understanding
Binding to ACE2	adjacent	SARS-CoV-2 cell entry	High	Moderate
SARS-CoV-2 cell entry	adjacent	Interferon-I antiviral response, antagonized by SARS-CoV-2	Moderate	Moderate
Interferon-I antiviral response, antagonized by SARS-CoV-2	adjacent	Increased SARS-CoV-2 production	Moderate	Moderate
Increased SARS-CoV-2 production	adjacent	Diminished protective oxidative stress response	Moderate	Not Specified
Diminished protective oxidative stress response	adjacent	Coagulation	Moderate	Not Specified
Coagulation	adjacent	Diminished protective oxidative stress response	Moderate	Not Specified
Coagulation	adjacent	Thrombosis and Disseminated Intravascular Coagulation	High	

Stressors

Name	Evidence
Stressor:624 SARS-CoV-2	High

Overall Assessment of the AOP

Domain of Applicability

Life Stage Applicability

Life Stage	Evidence
All life stages	Moderate

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
Homo sapiens	Homo sapiens	High	NCBI

Sex Applicability

Sex	Evidence
Unspecific	High

This AOP is applicable to all sexes in Homo sapiens.

Considerations for Potential Applications of the AOP (optional)

The AOP379 focuses on the coronavirus-induced thrombosis and disseminated intravascular coagulation, which may contribute to the development of therapeutics of COVID-19 and long COVID syndrome. The understanding of the mechanism of the coronavirus-induced vascular adverse outcome may predict adverse responses of COVID-19 vaccines.

References

Blanco Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. *Cell*. 181;(5):1036-1045.

Chen B, Tian EK, He B, Tian L, Han R, Wang S, et al. Overview of lethal human Coronaviruses. *Signal Transduction and Targeted Therapy*, 2020;5(1):89.

Clerbaux, L.-A., Amigó, N., Amorim, M. J., Bal-Price, A., Batista Leite, S., Beronius, A., Bezemer, G. F. G., Bostroem, A.-C., Carusi, A., Coecke, S., Concha, R., Daskalopoulos, E. P., De Bernardi, F., Edrosa, E., Edwards, S. W., Filipovska, J., Garcia-Reyero, N., Gavins, F. N. E., Halappanavar, S., Hargreaves, A. J., Hogberg, H. T., Huynh, M. T., Jacobson, D., Josephs-Spaulding, J., Kim, Y. J., Kong, H. J., Krebs, C. E., Lam, A., Landesmann, B., Layton, A., Lee, Y. O., Macmillan, D. S., Mantovani, A., Margiotta-Casaluci, L., Martens, M., Masereeuw, R., Mayasich, S. A., Mei, L. M., Mortensen, H., Munoz Pineiro, A., Nymark, P., Ohayon, E., Ojas, J., Paini, A., Parissis, N., Parvatam, S., Pistollato,

F., Sachana, M., Sørli, J. B., Sullivan, K. M., Sund, J., Tanabe, S., Tsaioun, K., Vinken, M., Viviani, L., Waspe, J., Willett, C. and Wittwehr, C. (2022) "COVID-19 through adverse outcome pathways: Building networks to better understand the disease – 3rd CIAO AOP Design Workshop", ALTEX - Alternatives to animal experimentation, 39(2), pp. 322–335. doi: 10.14573/altex.2112161.

Cui J, Li F, Shi ZL. Origin and evolution of pathogenic Coronaviruses. *Nature Reviews Microbiology*. 2019;17(3):181-192.

Florindo HF, Kleiner R, Vaskovich-Koubi D, Acúrcio RC, Carreira B, Yeini, E, et al. Immune-mediated approaches against COVID-19. *Nature Nanotechnology*. 2020;15(8):630-45.

Kowalewski J, Ray A. Predicting novel drugs for SARS-CoV-2 using machine learning from a & g 10 million chemical space. *Heliyon*. 2020;6(8).

Pizzorno A, Padey B, Julien T, Trouillet-Assant S, Traversier A, Errazuriz-Cerda E, et al. Characterization and Treatment of SARS-CoV-2 in Nasal and Bronchial Human Airway Epithelia. *Cell Reports Medicine*. 2020;1(4).

Riva L, Yuan S, Yin X, Martin-Sancho L, Matsunaga N, Pache L, et al. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. *Nature*. 2020.

Tanabe S (2020a). Cellular Internalization and RNA Regulation of RNA virus. *Adv Clin Med Res*. 2020;1(1):1-3. <https://www.genesispub.org/cellular-internalization-and-rna-regulation-of-rna-virus>

Tanabe S (2020b). The Therapeutic Mechanism of COVID-19. *J Clin Med Res*. 2020;2(5):1-3. DOI: [https://doi.org/10.37191/MapSci-2582-4333-2\(5\)-048](https://doi.org/10.37191/MapSci-2582-4333-2(5)-048)

Tanabe, S., Beaton, D., Chauhan, V., Choi, I., Danielsen, P. H., Delrue, N., Esterhuizen, M., Filipovska, J., FitzGerald, R., Fritsche, E., Gant, T., Garcia-Reyero, N., Helm, J., Huliganga, E., Jacobsen, N., Kay, J. E., Kim, Y.-J., Klose, J., La Rocca, C., Luettich, K., Mally, A., O'Brien, J., Poulsen, S. S., Rudel, R. A., Sovadinova, I., Tollesen, K. E., Vogel, U., Yepiskoposyan, H. and Yauk, C. (2022) "Report of the 1st and 2nd Mystery of Reactive Oxygen Species Conferences", ALTEX - Alternatives to animal experimentation, 39(2), pp. 336–338. doi: 10.14573/altex.2203011.

Appendix 1

List of MIEs in this AOP

[Event: 1739: Binding to ACE2](#)

Short Name: Binding to ACE2

Key Event Component

Process	Object	Action
receptor binding	angiotensin-converting enzyme 2	occurrence

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:320 - Binding of SARS-CoV-2 to ACE2 receptor leading to acute respiratory distress associated mortality	MolecularInitiatingEvent
Aop:374 - Binding of Sars-CoV-2 spike protein to ACE 2 receptors expressed on brain cells (neuronal and non-neuronal) leads to neuroinflammation resulting in encephalitis	MolecularInitiatingEvent
Aop:381 - Binding of viral S-glycoprotein to ACE2 receptor leading to dysgeusia	MolecularInitiatingEvent
Aop:385 - Viral spike protein interaction with ACE2 leads to microvascular dysfunction, via ACE2 dysregulation	MolecularInitiatingEvent
Aop:394 - SARS-CoV-2 infection of olfactory epithelium leading to impaired olfactory function (short-term anosmia)	MolecularInitiatingEvent
Aop:395 - Binding of Sars-CoV-2 spike protein to ACE 2 receptors expressed on pericytes leads to disseminated intravascular coagulation resulting in cerebrovascular disease (stroke)	MolecularInitiatingEvent
Aop:406 - SARS-CoV-2 infection leading to hyperinflammation	MolecularInitiatingEvent
Aop:407 - SARS-CoV-2 infection leading to pyroptosis	MolecularInitiatingEvent
Aop:426 - SARS-CoV-2 spike protein binding to ACE2 receptors expressed on pericytes leads to endothelial cell dysfunction, microvascular injury and myocardial infarction.	MolecularInitiatingEvent
Aop:427 - ACE2 downregulation following SARS-CoV-2 infection triggers dysregulation of RAAS and can lead to heart failure.	MolecularInitiatingEvent
Aop:422 - Binding of SARS-CoV-2 to ACE2 in enterocytes leads to intestinal barrier disruption	MolecularInitiatingEvent
Aop:428 - Binding of S-protein to ACE2 in enterocytes induces ACE2 dysregulation leading to gut dysbiosis	MolecularInitiatingEvent
Aop:430 - Binding of SARS-CoV-2 to ACE2 leads to viral infection proliferation	MolecularInitiatingEvent
Aop:379 - Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation	MolecularInitiatingEvent
Aop:468 - Binding of SARS-CoV-2 to ACE2 leads to hyperinflammation (via cell death)	MolecularInitiatingEvent

Stressors

Name

Sars-CoV-2

Biological Context

Level of Biological Organization

Molecular

Cell term**Cell term**

cell

Organ term**Organ term**

organ

Evidence for Perturbation by Stressor**Overview for Molecular Initiating Event**

Receptor recognition is an essential determinant of molecular level in this AOP. ACE2 was reported as an entry receptor for SARS-CoV-2. The viral entry process is mediated by the envelope-embedded surface-located spike (S) glycoprotein. Jun Lan and Walls, A.C et al (Nature 581, 215–220; Cell 180, 281–292) demonstrated a critical initial step of infection at the molecular level from the interaction of ACE2 and S protein. ACE2 has shown that receptor binding affinity to S protein is nM range. To elucidate the interaction between the SARS-CoV-2 RBD and ACE2 at a higher resolution, they also determined the structure of the SARS-CoV-2 RBD–ACE2 complex using X-ray crystallography. The expression and distribution of the ACE2 in human body may indicate the potential infection of SARS-CoV-2. Through the developed single-cell RNA sequencing (scRNA-Seq) technique and single-cell transcriptomes based on the public database, researchers analyzed the ACE2 RNA expression profile at single-cell resolution. High ACE2 expression was identified in type II alveolar cells (Zou, X. et al. Front. Med.2020)

SARS-CoV-2 belongs to the Coronaviridae family, which includes evolutionary related enveloped (+) strand RNA viruses of vertebrates, such as seasonal common coronaviruses, SARS-CoV and CoV-NL63, SARS-CoV (Kim Young Jun et al)

Human viruses strains	Genus	Major cell receptor	First report	Animal reservoir	Intermediate host	Pathology	Diagnostic test	Evidence
HCoV-NL63	Alphacoronavirus	ACE2	2004	Bat	Unknown	Mild respiratory tract illness	RT-PCR, IF, ELISA, WB	Strong
SARS-CoV	Betacoronavirus	ACE2	2003	Bat	Pangolin	Severe acute respiratory syndrome	RT-PCR, IF, ELISA, WB	Strong
SARS-CoV-2	Betacoronavirus	ACE2	2020	Bat	Pangolin	Severe acute respiratory syndrome	RT-PCR, IF, ELISA, WB	Strong

Domain of Applicability**Taxonomic Applicability**

Term	Scientific Term	Evidence	Links
Homo sapiens	Homo sapiens	High	NCBI
mouse	Mus musculus	High	NCBI
Mustela lutreola	Mustela lutreola	High	NCBI
Felis catus	Felis catus	Moderate	NCBI
Panthera tigris	Panthera tigris	Moderate	NCBI
Canis familiaris	Canis lupus familiaris	Low	NCBI

Life Stage Applicability

Life Stage	Evidence
Adult, reproductively mature	High
During development and at adulthood	High

Sex Applicability

Sex	Evidence
Mixed	High

The KE is applicable to broad species/life stage/sex. The binding of ACE2 occurs in the cells which express ACE2.

Key Event Description

Angiotensin-converting enzyme 2 (ACE2) is an enzyme that can be found either attached to the membrane of the cells (mACE2) in many tissues and in a soluble form (sACE2).

A table on ACE2 expression levels according to tissues (Kim et al.)

	Sample size	ACE2 mean expression	Standard deviation of expression
Intestine	51	9.50	1.183
Kidney	129	9.20	2.410
Stomach	35	8.25	3.715
Bile duct	9	7.23	1.163
Liver	50	6.86	1.351
Oral cavity	32	6.23	1.271
Lung	110	5.83	0.710

Thyroid	59	5.65	0.646
Esophagus	11	5.31	1.552
Bladder	19	5.10	1.809
Breast	113	4.61	0.961
Uterus	25	4.37	1.125
Prostate	52	4.35	1.905

ACE2 receptors in the brain (endothelial, neuronal and glial cells):

The highest ACE2 expression level in the brain was found in the pons and medulla oblongata in the human brainstem, containing the medullary respiratory centers (Lukiw et al., 2020). High ACE2 receptor expression was also found in the amygdala, cerebral cortex and in the regions involved in cardiovascular function and central regulation of blood pressure including the sub-fornical organ, nucleus of the tractus solitarius, paraventricular nucleus, and rostral ventrolateral medulla (Gowrisankar and Clark 2016; Xia and Lazartigues 2010). The neurons and glial cells, like astrocytes and microglia also express ACE-2.

In the brain, ACE2 is expressed in endothelium and vascular smooth muscle cells (Hamming et al., 2004), as well as in neurons and glia (Gallagher et al., 2006; Matsushita et al., 2010; Gowrisankar and Clark, 2016; Xu et al., 2017; de Morais et al., 2018) (from Murta et al., 2020). Astrocytes are the main source of angiotensinogen and express ATR1 and MasR; neurons express ATR1, ACE2, and MasR, and microglia respond to ATR1 activation (Shi et al., 2014; de Morais et al., 2018).

ACE2 receptors in the intestines

The highest levels of ACE2 are found at the luminal surface of the enterocytes, the differentiated epithelial cells in the small intestine, lower levels in the crypt cells and in the colon (Liang et al, 2020; Hashimoto et al., 2012; Fairweather et al. 2012; Kowalcuk et al. 2008).

How it is Measured or Detected

In vitro methods supporting interaction between ACE2 and SARS-CoV-2 spike protein

Several reports using surface plasmon resonance (SPR) or biolayer interferometry binding (BLI) approaches. to study the interaction between recombinant ACE2 and S proteins have determined a dissociation constant (Kd) for SARS-CoV S and SARS-CoV-2 S as follow,

Reference	ACE2 protein	SARS-CoV S	SARS-CoV2 S	Method	Measured Kd
doi: 10.1126/science.abb2507	1–615 aa	306–577 aa	1–1208 aa	SPR	325.8 nM
					14.7 nM
doi: 10.1001/jama.2020.3786	19–615 aa	306–527 aa	319–541 aa	SPR	408.7 nM
					133.3 nM
Lan et al., 2020	19–615 aa	306–527 aa	319–541 aa	SPR	31.6 nM
					4.7 nM
doi: 10.1016/j.cell.2020.02.058	1–614 aa	306–575 aa	328–533 aa	BLI	1.2 nM
					5 nM
doi: 10.1126/science.abb2507	1–615 aa	306–577 aa	319–591 aa	BLI	13.7 nM
					34.6 nM

Pseudo typed vesicular stomatitis virus expressing SARS-CoV-2 S (VSV-SARS-S2) expression system can be used efficiently infects cell lines, with Calu-3 human lung adenocarcinoma epithelial cell line, CaCo-2 human colorectal adenocarcinoma colon epithelial cell line and Vero African grey monkey kidney epithelial cell line being the most permissive (Hoffmann et al., 2020; Ou et al., 2020). It can be measured using a wide variety of assays targeting different biological phases of infection and altered cell membrane permeability and cell organelle signaling pathway. Other assay measured alteration in the levels of permissive cell lines all express ACE2 or hACE2-expressing 293T cell (e.g. pNUO1-hACE2, pFUSE-hIG1-Fc2), as previously demonstrated by indirect immunofluorescence (IF) or by immunoblotting are associated with ELISA (W Tai et al., nature 2020). To prioritize the identified potential KEs for selection and to select a KE to serve as a case study, further in-silico data that ACE2 binds to SARS-CoV-2 S is necessary for virus entry. The above analysis outlined can be used evidence-based assessment of molecular evidence as a MIE.

References

de Morais SDB, et al. Integrative Physiological Aspects of Brain RAS in Hypertension. *Curr Hypertens Rep.* 2018 Feb 26; 20(2):10.

Gallagher PE, et al. Distinct roles for ANG II and ANG-(1-7) in the regulation of angiotensin-converting enzyme 2 in rat astrocytes. *Am J Physiol Cell Physiol.* 2006 Feb; 290(2):C420-6.

Gowrisankar YV, Clark MA. Angiotensin II regulation of angiotensin-converting enzymes in spontaneously hypertensive rat primary astrocyte cultures. *J Neurochem.* 2016 Jul; 138(1):74-85.

Hamming I et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. *J Pathol.* 2004 Jun;203(2):631-7.

Jakhmola S, et al. SARS-CoV-2, an Underestimated Pathogen of the Nervous System. *SN Compr Clin Med.* 2020.

Lukiw WJ et al. SARS-CoV-2 Infectivity and Neurological Targets in the Brain. *Cell Mol Neurobiol.* 2020 Aug 25;1-8.

Matsushita T, et al. CSF angiotensin II and angiotensin-converting enzyme levels in anti-aquaporin-4 autoimmunity. *J Neurol Sci.* 2010 Aug 15; 295(1-2):41-5.

Murta et al. Severe Acute Respiratory Syndrome Coronavirus 2 Impact on the Central Nervous System: Are Astrocytes and Microglia Main Players or Merely Bystanders? *ASN Neuro.* 2020. PMID: 32878468

Shi A, et al. Isolation, purification and molecular mechanism of a peanut protein-derived ACE-inhibitory peptide. *PLoS One.* 2014; 9(10):e111188.

Xia, H. and Lazartigues, E. Angiotensin-Converting Enzyme 2: Central Regulator for Cardiovascular Function. *Curr. Hypertens.* 2010 Rep. 12 (3), 170– 175

List of Key Events in the AOP

Event: 1738: SARS-CoV-2 cell entry

Short Name: SARS-CoV-2 cell entry

Key Event Component

Process	Object	Action
membrane fusion	transmembrane protease serine 2	occurrence
endocytosis involved in viral entry into host cell	cathepsin L1 (human)	occurrence
viral entry into host cell	viral genome	occurrence
viral entry into host cell	viral protein	occurrence

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:320 - Binding of SARS-CoV-2 to ACE2 receptor leading to acute respiratory distress associated mortality	KeyEvent
Aop:379 - Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation	KeyEvent
Aop:394 - SARS-CoV-2 infection of olfactory epithelium leading to impaired olfactory function (short-term anosmia)	KeyEvent
Aop:395 - Binding of Sars-CoV-2 spike protein to ACE 2 receptors expressed on pericytes leads to disseminated intravascular coagulation resulting in cerebrovascular disease (stroke)	KeyEvent
Aop:406 - SARS-CoV-2 infection leading to hyperinflammation	KeyEvent
Aop:407 - SARS-CoV-2 infection leading to pyroptosis	KeyEvent
Aop:426 - SARS-CoV-2 spike protein binding to ACE2 receptors expressed on pericytes leads to endothelial cell dysfunction, microvascular injury and myocardial infarction.	KeyEvent
Aop:422 - Binding of SARS-CoV-2 to ACE2 in enterocytes leads to intestinal barrier disruption	KeyEvent
Aop:430 - Binding of SARS-CoV-2 to ACE2 leads to viral infection proliferation	KeyEvent
Aop:468 - Binding of SARS-CoV-2 to ACE2 leads to hyperinflammation (via cell death)	KeyEvent

Stressors

Name
Sars-CoV-2

Biological Context

Level of Biological Organization

Cellular

Cell term

Cell term
cell

Organ term

Organ term
organ

Domain of Applicability

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
Homo sapiens	Homo sapiens	High	NCBI
Manis javanica	Manis javanica	Low	NCBI
Canis familiaris	Canis lupus familiaris	Moderate	NCBI
Macaca fascicularis	Macaca fascicularis	Not Specified	NCBI
Mesocricetus auratus	Mesocricetus auratus	Not Specified	NCBI
Mustela putorius furo	Mustela putorius furo	Not Specified	NCBI
Felis catus	Felis catus	Moderate	NCBI
Mustela lutreola	Mustela lutreola	High	NCBI
Neovison vison	Neovison vison	High	NCBI
Panthera tigris	Panthera tigris	Moderate	NCBI

Life Stage Applicability

Life Stage	Evidence
------------	----------

All life stages, High
Sex Applicability

Sex Evidence

Unspecific High

TMPRSS2 vertebrates (Lam et al., 2020)

NRP1 in human & rodents (but also present in monkey and other vertebrates (Lu and Meng, 2015)

The ability for SARS-CoV-2 to use multiple host pathways for viral entry, means that it is critical to map which viral entry pathway is prevalent in specific cell types. This is key for understanding coronavirus biology, but also use informed decisions to select cells for cell-based genetic and small-molecule screens and to interpret data. In fact, a combination of protease inhibitors that block both TMPRSS2 and cathepsin L is the most efficient combination to block coronavirus infection (Yamamoto et al., 2020, Shang et al., 2020, Shirato et al., 2018). In accordance, SARS-CoV-2 entry processes are highly dependent on endocytosis and endocytic maturation in cells that do not express TMPRSS2, such as VeroE6 or 293T cells (Murgolo et al., 2021, Kang et al., 2020, Mirabelli et al., 2020, Riva et al., 2020). However, even in these cells, heterologous expression of TMPRSS2 abrogates the pharmacological blockade of cathepsin inhibitors (Kawase et al., 2012, Hoffmann et al., 2020a). Treatment of SARS-CoV-2 with trypsin enables viral cell surface entry, even when TMPRSS2 is absent. Moreover, TMPRSS2 is more efficient to promote viral entry than cathepsins (Lamers et al., 2020), as when both factors are present, cathepsin inhibitors are less effective than TMPRSS2 inhibitors (Hoffmann et al., 2020b). Therefore it is critical to map which cells contain the different types of proteases.

In summary, TMPRSS2 appears to be expressed in a wide range of healthy adult organs, but in restricted cell types, including:

- AT2 and Clara cells of lungs
- sinusoidal endothelium, and hepatocyte of the liver,
- endocrine cells of the prostate,
- goblet cells, and enterocytes of the small intestine,
- intercalated cells, and the proximal tubular of the kidney.
- Ciliated, secretory and suprabasal of nasal
- spermatogonial stem cells of testes
- cyto tropoblast and peri vascular cells of placenta
- The nasal epithelium expresses various combinations of factors that, in principle, could facilitate SARS-CoV-2 infection, but it also expresses robust basal levels of RFs, which may act as a strong protective barrier in this tissue.

There is a shift in TMPRSS2 regulation during nasal epithelium differentiation in young individuals that is not occurring in old individuals (Lin et al., 1999, Lucas et al., 2008, Singh et al., 2020).

Only a small minority of human respiratory and intestinal cells have genes that express both ACE2 and TMPRSS2. Amongst the ones that do, three main cell types were identified: A) lung cells called type II pneumocytes (which help maintain air sacs, known as alveoli); B) intestinal cells called enterocytes, which help the body absorb nutrients; and C) goblet cells in the nasal passage, which secrete mucus (Ziegler et al., 2020).

The clinical manifestations of COVID-19 include not only complications from acute myocardial injury, elevated liver enzymes, and acute kidney injury in patients presenting to hospitals, but also gastrointestinal symptoms in community patients experiencing milder forms of the disease (Madjid et al., 2020, Pan et al., 2020).

NRP-1:

All life stages

The expression of isoforms 1 (NRP1) and 2 (NRP2) does not seem to overlap. Isoform 1 is expressed by the blood vessels of different tissues. In the developing embryo it is found predominantly in the nervous system. In adult tissues, it is highly expressed in heart and placenta; moderately in lung, liver, skeletal muscle, kidney and pancreas; and low in adult brain. Isoform 2 is found in liver hepatocytes, kidney distal and proximal tubules. Expressed in colon and 234 other tissues with Low tissue specificity (UniProtKB).

The expression of NRP1 protein in gastric cancer was not related to gender or age (Cao et al., 2020).

Sex Applicability:

TMPRSS2:

Androgen receptors (ARs) play a key role in the transcription of TMPRSS2 (Fig. 1). This may explain the predominance of males to COVID-19 infection, fatality, and severity because males tend to have a higher expression and activation of ARs than females, which is due to the presence of dihydrotestosterone (DHT).

Regulation of COVID-19 severity and fatality by sex hormones. Females have aromatase, the enzyme that converts androgen substrates into estrogen. On the other hand, males have steroid 5 α reductase, the enzyme that is responsible for the conversion of testosterone into dihydrotestosterone (DHT). In case of males, DHT activates androgen receptor (AR) that binds to the androgen response element (ARE) present in the promoter of TMPRSS2 gene, leading to its transcription. This ultimately results into enhanced processing of viral spike protein for greater entry and spread of SARS-CoV-2 into host cells. On the other hand, in females, estrogen activates estrogen receptor (ER), which binds to the estrogen response element (ERE) present in the promoter of eNOS gene to drive its transcription and catalyze the formation of nitric oxide (NO) from L-arginine. This NO is involved in vasodilation as well as inhibition of viral replication.

NRP-1:

For more information difference of NRP1 expression between male and female see <https://www.proteinatlas.org/ENSG00000099250-NRP1/tissue>.

The expression of NRP1 protein in gastric cancer was not related to gender, age. The expression of NRP1 protein in gastric cancer is closely correlated to clinical stage, tumor size, TNM stage, differentiation, and lymph node metastasis (Cao et al., 2020).

SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor signalling to induce analgesia had same results on both male and female rodents (Moutal et al., 2020).

Key Event Description

Coronavirus is recognized by the binding of S protein on the viral surface and angiotensin-converting enzyme 2 (ACE2) receptor on the cellular membrane, followed by viral entry via processing of S protein by transmembrane serine protease 2 (TMPRSS2) (Hoffmann et al., 2020b). ACE2 is expressed on epithelial cells of the lung and intestine, and also can be found in the heart, kidney, adipose, and male and female reproductive tissues (Lukassen et al., 2020, Lamers et al., 2020, Chen et al., 2020, Jing et al., 2020, Subramanian et al., 2020).

SARS-CoV-2 is an enveloped virus characterized by displaying spike proteins at the viral surface (Juraszek et al., 2021). Spike is critical for viral entry (Hoffmann et al., 2020b) and is the primary target of vaccines and therapeutic strategies, as this protein is the immunodominant target for antibodies (Yuan et al., 2020, Ju et al., 2020, Robbiani et al., 2020, Premkumar et al., 2020, Liu et al., 2020). Spike is composed of S1 and S2 subdomains. S1 contains the N-terminal (NTD) and receptor-binding (RBD) domains, and the S2 contains the fusion peptide (FP), heptad repeat 1 (HR1) and HR2, the transmembrane (TM) and cytoplasmic domains (CD) (Lan et al., 2020). S1 leads to the recognition of the angiotensin-converting enzyme 2 (ACE2) receptor and S2 is involved in membrane fusion (Hoffmann et al., 2020b, Letko et al., 2020, Shang et al., 2020).

Upon binding to ACE2, the spike protein needs to be activated (or primed) through proteolytic cleavage (by a host protease) to allow membrane fusion. Fusion is a key step in viral entry as it is the way to release SARS-CoV-2 genetic material inside the cell. Cleavage happens between its spike's S1 and S2 domains, liberating S2 that inserts its N-terminal domain into a host cell membrane and mediates membrane fusion (Millet and Whittaker, 2018). Many proteases were identified to activate coronaviruses including furin, cathepsin L, trypsin-like serine proteases TMPRSS2, TMPRSS4, TMPRSS11, and human airway trypsin-like protease (HATs). These may operate at four different stages of the [virus infection cycle](#): (a) pro-protein convertases (e.g., furin) during virus packaging in virus-producing cells, (b) extracellular proteases (e.g., elastase) after virus release into extracellular space, (c) cell surface proteases (e.g., type II transmembrane serine protease (TMPRSS2)) after virus attachment to virus-targeting cells, and (d) lysosomal proteases (e.g., cathepsin L) after virus endocytosis in virus-targeting cells (Li, 2016). SARS-CoV-2 lipidic envelope may fuse with two distinct membrane types, depending on the host protease(s) responsible for cleaving the spike protein: (i) cell surface following activation by serine proteases such as TMPRSS2 and furin (Hoffmann et al., 2020b); or (ii) endocytic pathway within the endosomal-lysosomal compartments including processing by lysosomal cathepsin L (Yang and Shen, 2020). These flexibility for host cell factors mediating viral entry, highlights that the availability of factors existing in a cell type dictates the mechanism of viral entry (Kawase et al., 2012). When TMPRSS2 (or other serine proteases such as TMPRSS4 (Zang et al., 2020) or human airway trypsin-like protease [HAT] (Bestle et al., 2020a)) is expressed,

fusion of the virus with the cell surface membrane is preferred (Shirato et al., 2018), while in their absence, the virus can penetrate the cell by endocytosis (Kawase et al., 2012). A third factor has also been shown to facilitate SARS-CoV-2 entry in cells that have ACE2 and even promote, although to very low levels, SARS-CoV-2 entry in cells that lack ACE2 and TMPRSS2 which is the neuropilin-1 (NRP-1) (Cantuti-Castelvetri et al., 2020). This key event deals with SARS-CoV-2 entry in host cells and is divided in three categories: TMPRSS2, cathepsin L and NRP-1.

TMPRSS2 Spike cleavage:

TMPRSS2 (transmembrane serine protease 2, (<https://www.ncbi.nlm.nih.gov/gene/7113>) is a cell-surface protease (Hartenian et al., 2020) that facilitates entry of viruses into host cells by proteolytically cleaving and activating viral envelope glycoproteins. Viruses found to use this protein for cell entry include Influenza virus and the human coronaviruses HCoV-229E, MERS-CoV, SARS-CoV and SARS-CoV-2 (COVID-19 virus).

TMPRSS2 is a membrane bound serine protease also known as epithelin. TMPRSS2 belongs to the S1A class of serine proteases alongside proteins such as factor Xa and trypsin. Whilst there is evidence that TMPRSS2 autocleaves to generate a secreted protease, its physiological function has not been clearly identified. However, it is known to play a crucial role in facilitating entry of coronavirus particles into cells by cleaving the spike protein (Huggins, 2020).

After ACE2 receptor binding, SARS-CoV-2 S proteins can be subsequently cleaved and activated by host cell-surface protease at the S1/S2 and S2' sites, generating the subunits S1 and S2 that remain non-covalently linked. Cleavage leads to activation of the S2 domain that drives fusion of the viral and host membranes (Hartenian et al., 2020, Walls et al., 2016). For other coronaviruses, processing of spike was proposed to be sequential with S1/S2 cleavage preceding that of S2. Cleavage at S1/S2 may be crucial for inducing conformational changes required for receptor binding or exposure of the S2 site to host proteases.

The S1/S2 site of SARS-CoV-2 S protein contains an insertion of four amino acids providing a minimal furin cleavage site (RRRAR685↓) (that is absent in SARS-CoV). Interestingly, the furin cleavage site has been implicated in increased viral pathogenesis (Bestle et al., 2020b, Huggins, 2020). Processing of the spike protein by furin at the S1/S2 cleavage site is thought to occur following viral replication in the endoplasmic reticulum/Golgi intermediate compartment (ERGIC) (Hasan et al., 2020). The spike S2' cleavage site of SARS-CoV-2 possesses a paired dibasic motif with a single KR segment (KR815↓) (as SARS-CoV) that is recognized by trypsin-like serine proteases such as TMPRSS2. **The current data support a model for SARS-CoV-2 entry in which furin-mediated cleavage at the S1/S2 site pre-primes spike during biogenesis, facilitating the activation for membrane fusion by a second cleavage event at S2' by TMPRSS2 following ACE2 binding** (Bestle et al., 2020b, Johnson et al., 2020).

Virus	S1/S2 site	S2' site
SARS-CoV-2	TNSP R RAR SVA	PSKPSK R SFIEDL
SARS-CoV	S---LLR STS	PLKPTK R SFIEDL

Camostat mesylate, an inhibitor of TMPRSS2, blocks SARS-CoV-2 infection of lung cells like Calu-3 cells but not Huh7.5 and Vero E6 cells. Cell entry was assessed using a viral isolate and viral pseudotypes (artificial viruses) expressing the COVID-19 spike (S) protein. The ability of the viral pseudotypes (expressing S protein from SARS-CoV and SARS-CoV-2) to enter human and animal cell lines was demonstrated, showing that SARS-CoV-2 can enter similar cell lines as SARS-CoV. Amino acid analysis and cell culture experiments showed that, like SARS-CoV, SARS-CoV-2 spike protein binds to human and bat angiotensin-converting enzyme 2 (ACE2) and uses a cellular protease TMPRSS2 for priming. Priming activates the spike protein to facilitate viral fusion and entry into cells. Cell culture experiments were performed using immortalized cell lines and primary human lung cells (Hoffmann et al., 2020b, Rahman et al., 2020).

Spike binding to neuropilin-1:

Neuropilin-1 (NRP1) is a transmembrane glycoprotein that serves as a cell surface receptor for semaphorins and various ligands involved in angiogenesis in vertebrates. NRP1 is expressed in neurons, blood vessels (endothelial cells), immune cells and many other cell types in the mammalian body (maternal fetal interface) and binds a range of structurally and functionally diverse extracellular ligands to modulate organ development and function (Raimondi et al., 2016). NRP1 is well described as a co-receptor for members of the class 3 semaphorins (SEMA3) or vascular endothelial growth factors (VEGFs) (Gelfand et al., 2014). Structurally, NRP1 comprises seven sub-domains, of which the first five are extracellular; two CUB domains (a1 and a2), two coagulation factor V/VIII domains (FV/VIII; b1 and b2) and a meprin, A5 μ-phosphatase domain (MAM; c). NRP1 contains only a short cytosolic tail with a PDZ-binding domain lacking internal signaling activity. The different ligand families bind to different sites of NRP1; SEMA3A binding requires the first three sub-domains of NRP1 (a1, a2, and b1), whereas binding of VEGF-A requires the b1 and b2 domains (Muhl et al., 2017). Additional studies conducted by means of in silico computational technology to identify and validate inhibitors of the interaction between NRP1 and SARS-CoV-2 Spike protein are reported in (Perez-Miller et al., 2020). Represents a schematic picture of VEGF-A triggered phosphorylation of VEGF-R2. Screening of NRP-1/VEGF-A165 inhibitors by in-cell Western (Perez-Miller et al., 2020). NRP1 acts as a co-receptor for SARS-CoV-2.

NRP1 is a receptor for furin-cleaved SARS-CoV-2 spike peptide (Cantuti-Castelvetri et al., 2020, Daly et al., 2020, Johnson et al., 2020). Blockade of NRP1 reduces infectivity and entry, and alteration of the furin site leads to loss of NRP1 dependence, reduced replication in Calu3, augmented replication in Vero E6, and attenuated disease in a hamster pathogenesis disease model (Johnson et al., 2020). In fact, a small sequence of amino acids was found that appeared to mimic a protein sequence found in human proteins that interact with NRP1. The spike protein of SARS-CoV-2 binding with NRP1 aids viral infection of human cells. This was confirmed by applying a range of structural and biochemical approaches to establish that the spike protein of SARS-CoV-2 does indeed bind to NRP1. The host protease furin cleaves the full-length precursor S glycoprotein into two associated polypeptides: S1 and S2. Cleavage of S generates a polybasic RRAR C-terminal sequence on S1, which conforms to a C-end rule (CendR) motif that binds to cell surface neuropilin-1 (NRP1) and neuropilin-2 (NRP2) receptors. It was reported that the S1 CendR motif directly bound NRP1 by X-ray crystallography and biochemical approaches. Blocking this interaction using RNAi or selective inhibitors reduced SARS-CoV-2 entry and infectivity in cell culture (Daly et al., 2020).

NRP1, known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, which was revealed by a monoclonal blocking antibody against NRP1. It was found that a SARS-CoV-2 mutant with an altered furin cleavage site did not depend on NRP1 for infectivity. Pathological analysis of olfactory epithelium obtained from human COVID-19 autopsies revealed that SARS-CoV-2 infected NRP1-positive cells faced the nasal cavity (Cantuti-Castelvetri et al., 2020). Furthermore, it has been found that NRP1 is a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Preclinical studies have suggested that NRP1, a transmembrane receptor that lacks a cytosolic protein kinase domain and exhibits high expression in the respiratory and olfactory epithelium, may also be implicated in COVID-19 by enhancing the entry of SARS-CoV-2 into the brain through the olfactory epithelium. NRP1 is also expressed in the CNS, including olfactory-related regions such as the olfactory tubercles and paraolfactory gyri. Supporting the potential role of NRP1 as an additional SARS-CoV-2 infection mediator implicated in the neurologic manifestations of COVID-19. Accordingly, the neurotropism of SARS-CoV-2 via NRP1-expressing cells in the CNS merits further investigation (Davies et al., 2020).

Up-regulation of NRP1 protein in diabetic kidney cells hints at its importance in a population at risk of severe COVID-19. Involvement of NRP-1 in immune function is compelling, given the role of an exaggerated immune response in disease severity and deaths due to COVID-19. NRP-1 has been suggested to be an immune checkpoint of T cell memory. It is unknown whether involvement and up-regulation of NRP-1 in COVID-19 may translate into disease outcome and long-term consequences, including possible immune dysfunction (Mayi et al., 2021).

The main feature of NRP1 co-receptor is to form complexes with multiple other receptors. Hence, there is a competition between receptors to complex with NRP-1, which may determine their abilities both quantitatively and qualitatively to transduce signals. It is tempting to hypothesize that the occupancy of NRP-1 with one receptor may thus decrease its availability for virus entry. Recent proteomics work has shown that NRP-1 can form a complex with the $\alpha 7$ nicotinic receptor in mice. Both receptors are expressed in the human nasal and pulmonary epithelium (Mayi et al., 2021).

NRP1, is highly expressed in the respiratory and olfactory epithelium; it is also expressed in the CNS, including olfactory related regions such as the olfactory tubercles and paraolfactory gyri (Davies et al., 2020).

More information on tissue distribution and protein expression of NRP1 can be found in <https://www.proteinatlas.org/ENSG00000099250-NRP1>

Spike entry via lysosomal cathepsins and endocytosis:

Evidence shows the role of TMPRSS2 and other serine proteases in activating the coronavirus spike protein for plasma membrane fusion. However, studies using various cell culture systems showed that SARS-CoV2 could enter cells via an alternative endosomal-lysosomal pathway. Evidence came from studies demonstrating that lysosomotropic agents reduced SARS-CoV replication in cells lacking TMPRSS2 and other studies, using highly potent and specific small-molecule cathepsin inhibitors, to understand the role of cathepsins in processing and activating the spike for membrane fusion, mainly of cathepsin L (one of the 11 cathepsins) (Rossi et al., 2004, Simmons et al., 2005). SARS-CoV-2 and other coronaviruses can establish infection through endosomal entry in commonly used *in vitro* cell culture systems. Of relevance, inhibitors of the endosomal pathway, as the cathepsin inhibitor Z-FA-FMK and PIKfyve inhibitor apilimod, blocked viral entry in Huh7.5 and Vero E6 cells but not Calu-3 cells.

Viral entry leads to delivery of virion proteins and translation of viral proteins immediately:

Coronavirus is a class of viruses that have single-stranded positive-sense RNA genomes in their envelopes [Kim D, et al., 2020]. The virus contains a 29.7 kB positive-sense RNA genome flanked by 5' and 3' untranslated regions of 265 and 342 nucleotides, respectively that contain cis-acting secondary RNA structures essential for RNA synthesis [Huston N. C. et al., 2021]. The genome just prior to the 5' end contains the transcriptional regulatory sequence leader (TRS-L) [Budzilowicz C.J., et al., 1985]. The SARS-CoV genome is polycistronic and contains 14 open reading frames (ORFs) that are expressed by poorly understood mechanisms [Snijder E. J., et al., 2003]. Preceding each ORF there are other TRSs called the body TRS (TRS B). The 5' two-

thirds of the genome contains two large, overlapping, nonstructural ORFs and the 3' third contains the remainder ORFs [Di H., et al., 2018]. Genome expression starts with the translation of two large ORFs of the 5' two-thirds: ORF1a of 4382 amino acids and ORF1b of 7073 amino acid that occurs via a programmed (-1) ribosomal frameshifting [Snijder E. J., et al., 2003], yielding pp1a and pp1ab. These two polyproteins are cleaved into 16 subunits by two viral proteinases encoded by ORF1a, nsp3, and nsp5 that contain a papain-like protease domain and a 3C-like protease domain [Sacco M. D. et al., 2020]. The processing products are a group of replicative enzymes, named nsp1-nsp16, that assemble into a viral replication and transcription complex (RTC) associated with membranes of endoplasmic reticulum (ER) with the help of various membrane-associated viral proteins [Klein S., et al., 2021, Snijder E. J., et al., 2020, V'Kovski P., et al., 2021]. This association leads to replication factories or organelles, that are originate new membranous structures that are observed by electron microscopy. They are a feature of all coronaviridae and the site of viral replication and transcription hidden from innate immune molecules.

How it is Measured or Detected

SARS-CoV2 entry can be determined by many different ways:

- 1) quantitative RT-PCR specific to the subgenomic mRNA of the N transcript, in cells manipulated with host factors that express or not TMPRSS2, cathepsinL, neuropilin-1, hACE2 [Glowacka I., et al. (2011)], or exogenous addition of HAT or furin.
- 2) using spike-pseudotyped viral particles expressing GFP/luciferase/bgalactosidase and comparing with vesicular stomatitis virus G pseudotyped particles expressing the same reporter analysed in manipulated cultured with cell lines, followed by determining fluorescence, bioluminescence, luciferase activity in cell lysates [Hoffmann M., et al. (2020)].

TMPRSS2:

TMPRSS2 gene expression can be measured by RNAseq and microarray (Baughn et al., 2020).

Expression levels of TMPRSS2 can be measured by RNA in situ hybridization (RNA-ISH) (Qiao et al., 2020)

NRP-1:

Several methods have been identified in the literature for measuring and detecting NRP1 receptor binding. Briefly described:

1. X-ray crystallography and biochemical approaches help to show that the S1 CendR motif directly bound NRP1 (1). Binding of the S1 fragment to NRP1 was assessed and ability of SARS-CoV-2 to use NRP1 to infect cells was measured in angiotensin-converting enzyme-2 (ACE-2)-expressing cell lines by knocking out NRP1 expression, blocking NRP1 with 3 different anti-NRP1 monoclonal antibodies, or using NRP1 small molecule antagonists (Centers for Disease Control and Prevention, 2020, Daly et al., 2020).

Key findings (Centers for Disease Control and Prevention, 2020, Daly et al., 2020):

- The S1 fragment of the cleaved SARS-CoV-2 spike protein binds to the cell surface receptor neuropilin-1 (NRP1).
- SARS-CoV-2 utilizes NRP1 for cell entry as evidenced by decreased infectivity of cells in the presence of: NRP1 deletion ($p < 0.01$). Three different anti-NRP1 monoclonal antibodies ($p < 0.001$). Selective NRP1 antagonist, EG00229 ($p < 0.01$).
- 2. Cell lines were modified to express ACE2 and TMPRSS2, the two known SARS-CoV-2 host factors, and NRP1 to assess the contribution of NRP1 to infection. Autopsy specimens from multiple airway sites were stained with antibodies against SARS-CoV-2 proteins, ACE2, and NRP1, to visualize co-localization of proteins (6, 15).

Key findings (Cantuti-Castelvetri et al., 2020, Centers for Disease Control and Prevention, 2020):

- Infectivity of cells expressing angiotensin converting enzyme-2 (ACE2, receptor for SARS-CoV-2), transmembrane protease serine-2 (TSS2, primes the Spike [S] protein), and neuropilin-1 (NRP1) with pseudovirus expressing the SARS-CoV-2 S1 protein was approximately 3-fold higher than in cells expressing either ACE2 or TSS2 alone ($p < 0.05$).
- Analysis of autopsy tissue from COVID-19 patients showed co-localization of the SARS-CoV-2 spike (S) protein and NRP1 in olfactory and respiratory epithelium.

Virtual screen of nearly 0.5 million compounds against the NRP-1 CendR site, resulting in nearly 1,000 hits. A pharmacophore model was derived from the identified ligands, considering both steric and electronic requirements. Preparation of receptor protein and grid for virtual screening, docking of known NRP-1 targeting compounds, ELISA based NRP1-VEGF-A165 protein binding assay; more details on methodology in the referenced paper (Perez-Miller et al., 2020)

References

BAUGHN, L. B., SHARMA, N., ELHAIK, E., SEKULIC, A., BRYCE, A. H. & FONSECA, R. 2020. Targeting TMPRSS2 in SARS-CoV-2 Infection. *Mayo Clin Proc*, 95, 1989-1999.

BESTLE, D., HEINDL, M. R., LIMBURG, H., VAN LAM VAN, T., PILGRAM, O., MOULTON, H., STEIN, D. A., HARDES, K., EICKMANN, M., DOLNIK, O., ROHDE, C., KLENK, H.-D., GARTEN, W., STEINMETZER, T. & BÖTTCHER-FRIEBERTSHÄUSER, E. 2020a. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. *Life Sci Alliance*, 3.

BESTLE, D., HEINDL, M. R., LIMBURG, H., VAN LAM VAN, T., PILGRAM, O., MOULTON, H., STEIN, D. A., HARDES, K., EICKMANN, M., DOLNIK, O., ROHDE, C., KLENK, H. D., GARTEN, W., STEINMETZER, T. & BOTTCHER-FRIEBERTSHÄUSER, E. 2020b. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. *Life Sci Alliance*, 3.

BUDZILOWICZ, C.J., WILCZYNKI, S.P., AND WEISS, S.R. (1985). Three intergenic regions of coronavirus mouse hepatitis virus strain A59 genome RNA contain a common nucleotide sequence that is homologous to the 3' end of the viral mRNA leader sequence. *J Virol*, 53, 834-840.

CANTUTI-CASTELVETRI, L., OJHA, R., PEDRO, L. D., DJANNATIAN, M., FRANZ, J., KUIVANEN, S., VAN DER MEER, F., KALLIO, K., KAYA, T., ANASTASINA, M., SMURA, T., LEVANOV, L., SZIROVICZA, L., TOBI, A., KALLIO-KOKKO, H., OSTERLUND, P., JOENSUU, M., MEUNIER, F. A., BUTCHER, S. J., WINKLER, M. S., MOLLENHAUER, B., HELENIUS, A., GOKCE, O., TEESALU, T., HEPOJOKI, J., VAPALAHTI, O., STADELmann, C., BALISTRERI, G. & SIMONS, M. 2020. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. *Science*, 370, 856-860.

CAO, H., LI, Y., HUANG, L., BAI, B. & XU, Z. 2020. Clinicopathological Significance of Neuropilin 1 Expression in Gastric Cancer: A Meta-Analysis. *Dis Markers*, 2020, 4763492.

CENTERS FOR DISEASE CONTROL AND PREVENTION, U. S. D. O. H. A. H. S. 2020. Covid-19 Science Update 2020.

CHEN, L., LI, X., CHEN, M., FENG, Y. & XIONG, C. 2020. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. *Cardiovasc Res*, 116, 1097-1100.

DALY, J. L., SIMONETTI, B., KLEIN, K., CHEN, K. E., WILLIAMSON, M. K., ANTON-PLAGARO, C., SHOEMARK, D. K., SIMON-GRACIA, L., BAUER, M., HOLLANDI, R., GREBER, U. F., HORVATH, P., SESSIONS, R. B., HELENIUS, A., HISCOX, J. A., TEESALU, T., MATTHEWS, D. A., DAVIDSON, A. D., COLLINS, B. M., CULLEN, P. J. & YAMAUCHI, Y. 2020. Neuropilin-1 is a host factor for SARS-CoV-2 infection. *Science*, 370, 861-865.

DAVIES, J., RANDEVA, H. S., CHATHA, K., HALL, M., SPANDIDOS, D. A., KARTERIS, E. & KYROU, I. 2020. Neuropilin1 as a new potential SARSCoV2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID19. *Mol Med Rep*, 22, 4221-4226.

DI, H., MCINTYRE, A.A., AND BRINTON, M.A. (2018). New insights about the regulation of Nidovirus subgenomic mRNA synthesis. *Virology* 517, 38-43.

GELFAND, M. V., HAGAN, N., TATA, A., OH, W. J., LACOSTE, B., KANG, K. T., KOPYCINSKA, J., BISCHOFF, J., WANG, J. H. & GU, C. 2014. Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding. *Elife*, 3, e03720.

HARTENIAN, E., NANDAKUMAR, D., LARI, A., LY, M., TUCKER, J. M. & GLAUNSINGER, B. A. 2020. The molecular virology of coronaviruses. *J Biol Chem*, 295, 12910-12934.

HASAN, A., PARAY, B. A., HUSSAIN, A., QADIR, F. A., ATTAR, F., AZIZ, F. M., SHARIFI, M., DERAKHSHANKHAH, H., RASTI, B., MEHRABI, M., SHAHPASAND, K., SABOURY, A. A. & FALAHATI, M. 2020. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. *J Biomol Struct Dyn*, 1-9.

HOFFMANN, M., KLEINE-WEBER, H. & POHLMANN, S. 2020a. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. *Mol Cell*, 78, 779-784 e5.

HOFFMANN, M., KLEINE-WEBER, H., SCHROEDER, S., KRUGER, N., HERRLER, T., ERICHSEN, S., SCHIERGENS, T. S., HERRLER, G., WU, N. H., NITSCHE, A., MULLER, M. A., DROSTEN, C. & POHLMANN, S. 2020b. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. *Cell*, 181, 271-280 e8.

HUGGINS, D. J. 2020. Structural analysis of experimental drugs binding to the SARS-CoV-2 target TMPRSS2. *J Mol Graph Model*, 100, 107710.

HUSTON, N.C., WAN, H., STRINE, M.S., DE CESARIS ARAUJO TAVARES, R., WILEN, C.B., AND PYLE, A.M. (2021). Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. *Mol Cell* 81, 584-598 e585.

JING, Y., RUN-QIAN, L., HAO-RAN, W., HAO-RAN, C., YA-BIN, L., YANG, G. & FEI, C. 2020. Potential influence of COVID-19/ACE2 on the female reproductive system. *Mol Hum Reprod*, 26, 367-373.

JOHNSON, B. A., XIE, X., KALVERAM, B., LOKUGAMAGE, K. G., MURUATO, A., ZOU, J., ZHANG, X., JUELICH, T., SMITH, J. K., ZHANG, L., BOPP, N., SCHINDEWOLF, C., VU, M., VANDERHEIDEN, A., SWETNAM, D., PLANTE, J. A., AGUILAR, P., PLANTE, K. S., LEE, B., WEAVER, S. C., SUTHAR, M. S., ROUTH, A. L., REN, P., KU, Z., AN, Z., DEBBINK, K., SHI, P. Y., FREIBERG, A. N. & MENACHERY, V. D. 2020. Furin Cleavage Site Is Key to SARS-CoV-2 Pathogenesis. *bioRxiv*.

JU, B., ZHANG, Q., GE, J., WANG, R., SUN, J., GE, X., YU, J., SHAN, S., ZHOU, B., SONG, S., TANG, X., YU, J., LAN, J., YUAN, J., WANG, H., ZHAO, J., ZHANG, S., WANG, Y., SHI, X., LIU, L., ZHAO, J., WANG, X., ZHANG, Z. & ZHANG, L. 2020. Human neutralizing antibodies elicited by SARS-CoV-2 infection. *Nature*, 584, 115-119.

JURASZEK, J., RUTTEN, L., BLOKLAND, S., BOUCHIER, P., VOORZAAT, R., RITSCHEL, T., BAKKERS, M. J. G., RENAULT, L. L. R. & LANGEDIJK, J. P. M. 2021. Stabilizing the closed SARS-CoV-2 spike trimer. *Nat Commun*, 12, 244.

KANG, Y.-L., CHOU, Y.-Y., ROTHLAUF, P. W., LIU, Z., SOH, T. K., CURETON, D., CASE, J. B., CHEN, R. E., DIAMOND, M. S., WHELAN, S. P. J. & KIRCHHAUSEN, T. 2020. Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. *bioRxiv*, 2020.04.21.505305.

KAWASE, M., SHIRATO, K., VAN DER HOEK, L., TAGUCHI, F. & MATSUYAMA, S. 2012. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. *J Virol*, 86, 6537-45.

KIM, D., LEE, J.Y., YANG, J.S., KIM, J.W., KIM, V.N., AND CHANG, H. (2020). The Architecture of SARS-CoV-2 Transcriptome. *Cell* 181, 914-921 e910.

KLEIN, S., CORTESE, M., WINTER, S.L., WACHSMUTH-MELM, M., NEUFELDT, C.J., CERIKAN, B., STANIFER, M.L., BOULANT, S., BARTENSCHLAGER, R., AND CHLANDA, P. (2020). SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. *Nat Commun* 11, 5885.

LAM, S. D., BORDIN, N., WAMAN, V. P., SCHOLES, H. M., ASHFORD, P., SEN, N., VAN DORP, L., RAUER, C., DAWSON, N. L., PANG, C. S. M., ABBASIAN, M., SILLITOE, I., EDWARDS, S. J. L., FRATERNALI, F., LEES, J. G., SANTINI, J. M. & ORENGO, C. A. 2020. SARS-CoV-2 spike protein predicted to form complexes with host receptor protein orthologues from a broad range of mammals. *Sci Rep*, 10, 16471.

LAMERS, M. M., BEUMER, J., VAN DER VAART, J., KNOOPS, K., PUSCHHOF, J., BREUGEM, T. I., RAVELLI, R. B. G., PAUL VAN SCHAYCK, J., MYKYTYN, A. Z., DUILMEL, H. Q., VAN DONSELAAR, E., RIESEBOSCH, S., KUIJPERS, H. J. H., SCHIPPER, D., VAN DE WETERING, W. J., DE GRAAF, M., KOOPMANS, M., CUPPEN, E., PETERS, P. J., HAAGMANS, B. L. & CLEVERS, H. 2020. SARS-CoV-2 productively infects human gut enterocytes. *Science*, 369, 50-54.

LAN, J., GE, J., YU, J., SHAN, S., ZHOU, H., FAN, S., ZHANG, Q., SHI, X., WANG, Q., ZHANG, L. & WANG, X. 2020. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. *Nature*, 581, 215-220.

LETKO, M., MARZI, A. & MUNSTER, V. 2020. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. *Nat Microbiol*, 5, 562-569.

LI, F. 2016. Structure, Function, and Evolution of Coronavirus Spike Proteins. *Annu Rev Virol*, 3, 237-261.

LIN, B., FERGUSON, C., WHITE, J. T., WANG, S., VESSELLA, R., TRUE, L. D., HOOD, L. & NELSON, P. S. 1999. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. *Cancer Res*, 59, 4180-4.

LIU, L., WANG, P., NAIR, M. S., YU, J., RAPP, M., WANG, Q., LUO, Y., CHAN, J. F., SAHI, V., FIGUEROA, A., GUO, X. V., CERUTTI, G., BIMELA, J., GORMAN, J., ZHOU, T., CHEN, Z., YUEN, K. Y., KWONG, P. D., SODROSKI, J. G., YIN, M. T., SHENG, Z., HUANG, Y., SHAPIRO, L. & HO, D. D. 2020. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. *Nature*, 584, 450-456.

LU, Y. & MENG, Y. G. 2015. Quantitation of Circulating Neuropilin-1 in Human, Monkey, Mouse, and Rat Sera by ELISA. *Methods Mol Biol*, 1332, 39-48.

LUCAS, J. M., TRUE, L., HAWLEY, S., MATSUMURA, M., MORRISSEY, C., VESSELLA, R. & NELSON, P. S. 2008. The androgen-regulated type II serine protease TMPRSS2 is differentially expressed and mislocalized in prostate adenocarcinoma. *J Pathol*, 215, 118-25.

LUKASSEN, S., CHUA, R. L., TREFZER, T., KAHN, N. C., SCHNEIDER, M. A., MULEY, T., WINTER, H., MEISTER, M., VEITH, C., BOOTS, A. W., HENNIG, B. P., KREUTER, M., CONRAD, C. & EILS, R. 2020. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. *EMBO J*, 39, e105114.

MADJID, M., SAFAVI-NAEINI, P., SOLOMON, S. D. & VARDENY, O. 2020. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. *JAMA Cardiol*, 5, 831-840.

MAYI, B. S., LEIBOWITZ, J. A., WOODS, A. T., AMMON, K. A., LIU, A. E. & RAJA, A. 2021. The role of Neuropilin-1 in COVID-19. *PLoS Pathog*, 17, e1009153.

MILLET, J. K. & WHITTAKER, G. R. 2018. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. *Virology*, 517, 3-8.

MIRABELLI, C., WOTRING, J. W., ZHANG, C. J., MCCARTY, S. M., FURSMIDT, R., FRUM, T., KADAMBI, N. S., AMIN, A. T., O'MEARA, T. R., PRETTO, C. D., SPENCE, J. R., HUANG, J., ALYSANDRATOS, K. D., KOTTON, D. N., HANDELMAN, S. K., WOBUS, C. E., WEATHERWAX, K. J., MASHOUR, G. A., O'MEARA, M. J. & SEXTON, J. Z. 2020. Morphological Cell Profiling of SARS-CoV-2 Infection Identifies Drug Repurposing Candidates for COVID-19. *bioRxiv*, 2020.05.27.117184.

MOUTAL, A., MARTIN, L. F., BOINON, L., GOMEZ, K., RAN, D., ZHOU, Y., STRATTON, H. J., CAI, S., LUO, S., GONZALEZ, K. B., PEREZ-MILLER, S., PATWARDHAN, A., IBRAHIM, M. M. & KHANNA, R. 2020. SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor signaling to induce analgesia. *bioRxiv*.

MUHL, L., FOLESTAD, E. B., GLADH, H., WANG, Y., MOESSINGER, C., JAKOBSSON, L. & ERIKSSON, U. 2017. Neuropilin 1 binds PDGF-D and is a co-receptor in PDGF-D-PDGFbeta signaling. *J Cell Sci*, 130, 1365-1378.

MUKHERJEE, S. & PAHAN, K. 2021. Is COVID-19 Gender-sensitive? *J Neuroimmune Pharmacol*, 16, 38-47.

MURGOLO, N., THERIEN, A. G., HOWELL, B., KLEIN, D., KOEPLINGER, K., LIEBERMAN, L. A., ADAM, G. C., FLYNN, J., MCKENNA, P., SWAMINATHAN, G., HAZUDA, D. J. & OLSEN, D. B. 2021. SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development. *PLoS Pathog*, 17, e1009225.

PAN, X. W., XU, D., ZHANG, H., ZHOU, W., WANG, L. H. & CUI, X. G. 2020. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. *Intensive Care Med*, 46, 1114-1116.

PEREZ-MILLER, S., PATEK, M., MOUTAL, A., CABEY, C. R., THORNE, C. A., CAMPOS, S. K. & KHANNA, R. 2020. In silico identification and validation of inhibitors of the interaction between neuropilin receptor 1 and SARS-CoV-2 Spike protein. *bioRxiv*.

PREMKUMAR, L., SEGOVIA-CHUMBEZ, B., JADI, R., MARTINEZ, D. R., RAUT, R., MARKMANN, A., CORNABY, C., BARTELT, L., WEISS, S., PARK, Y., EDWARDS, C. E., WEIMER, E., SCHERER, E. M., ROUPHAEL, N., EDUPUGANTI, S., WEISKOPF, D., TSE, L. V., HOU, Y. J., MARGOLIS, D., SETTE, A., COLLINS, M. H., SCHMITZ, J., BARIC, R. S. & DE SILVA, A. M. 2020. The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. *Sci Immunol*, 5.

QIAO, Y., WANG, X. M., MANNAN, R., PITCHIAYA, S., ZHANG, Y., WOTRING, J. W., XIAO, L., ROBINSON, D. R., WU, Y. M., TIEN, J. C., CAO, X., SIMKO, S. A., APEL, I. J., BAWA, P., KREGEL, S., NARAYANAN, S. P., RASKIND, G., ELLISON, S. J., PAROLIA, A., ZELENKA-WANG, S., MCMURRY, L., SU, F., WANG, R., CHENG, Y., DELEKTA, A. D., MEI, Z., PRETTO, C. D., WANG, S., MEHRA, R., SEXTON, J. Z. & CHINNAIYAN, A. M. 2020. Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2 and TMPRSS2. *Proc Natl Acad Sci U S A*.

RAHMAN, N., BASHARAT, Z., YOUSUF, M., CASTALDO, G., RASTRELLI, L. & KHAN, H. 2020. Virtual Screening of Natural Products against Type II Transmembrane Serine Protease (TMPRSS2), the Priming Agent of Coronavirus 2 (SARS-CoV-2). *Molecules*, 25.

RAIMONDI, C., BRASH, J. T., FANTIN, A. & RUHRBERG, C. 2016. NRP1 function and targeting in neurovascular development and eye disease. *Prog Retin Eye Res*, 52, 64-83.

RIVA, L., YUAN, S., YIN, X., MARTIN-SANCHO, L., MATSUNAGA, N., BURGSTALLER-MUEHLBACHER, S., PACHE, L., DE JESUS, P. P., HULL, M. V., CHANG, M., CHAN, J. F.-W., CAO, J., POON, V. K.-M., HERBERT, K., NGUYEN, T.-T., PU, Y., NGUYEN, C., RUBANOV, A., MARTINEZ-SOBRIDO, L., LIU, W.-C., MIORIN, L., WHITE, K. M., JOHNSON, J. R., BENNER, C., SUN, R., SCHULTZ, P. G., SU, A., GARCIA-SASTRE, A., CHATTERJEE, A. K., YUEN, K.-Y. & CHANDA, S. K. 2020. A Large-scale Drug Repositioning Survey for SARS-CoV-2 Antivirals. *bioRxiv*, 2020.04.16.044016.

ROBBIANI, D. F., GAEBLER, C., MUECKSCH, F., LORENZI, J. C. C., WANG, Z., CHO, A., AGUDELO, M., BARNES, C. O., GAZUMYAN, A., FINKIN, S., HAGGLOF, T., OLIVEIRA, T. Y., VIANI, C., HURLEY, A., HOFFMANN, H. H., MILLARD, K. G., KOST, R. G., CIOPPOLA, M., GORDON, K., BIANCHINI, F., CHEN, S. T., RAMOS, V., PATEL, R., DIZON, J., SHIMELIOVICH, I., MENDOZA, P., HARTWEGER, H., NOGUEIRA, L., PACK, M., HOROWITZ, J., SCHMIDT, F., WEISBLUM, Y., MICHAELIDIS, E., ASHBROOK, A. W., WALTARI, E., PAK, J. E., HUEY-TUBMAN, K. E., KORANDA, N., HOFFMAN, P. R., WEST, A. P., JR., RICE, C. M., HATZIOANNOU, T., BJORKMAN, P. J., BIENIASZ, P. D., CASKEY, M. & NUSSENZWEIG, M. C. 2020. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. *Nature*, 584, 437-442.

ROSSI, A., DEVERAUX, Q., TURK, B. & SALI, A. 2004. Comprehensive search for cysteine cathepsins in the human genome. *Biol Chem*, 385, 363-72.

SACCO, M.D., MA, C., LAGARIAS, P., GAO, A., TOWNSEND, J.A., MENG, X., DUBE, P., ZHANG, X., HU, Y., KITAMURA, N., et al. (2020). Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against M(pro) and cathepsin L. *Sci Adv* 6(50):eabe0751.

SHANG, J., WAN, Y., LUO, C., YE, G., GENG, Q., AUERBACH, A. & LI, F. 2020. Cell entry mechanisms of SARS-CoV-2. *Proc Natl Acad Sci U S A*, 117, 11727-11734.

SHIRATO, K., KAWASE, M. & MATSUYAMA, S. 2018. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. *Virology*, 517, 9-15.

SIMMONS, G., GOSALIA, D. N., RENNEKAMP, A. J., REEVES, J. D., DIAMOND, S. L. & BATES, P. 2005. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. *Proc Natl Acad Sci U S A*, 102, 11876-81.

SINGH, M., BANSAL, V. & FESCHOTTE, C. 2020. A single-cell RNA expression map of human coronavirus entry factors. *bioRxiv*.

SNIJDER, E.J., BREDENBEEK, P.J., DOBBE, J.C., THIEL, V., ZIEBUHR, J., POON, L.L.M., GUAN, Y., ROZANOV, M., SPAAN, W.J.M., AND GORBALENYA, A.E. (2003). Unique and Conserved Features of Genome and Proteome of SARS-coronavirus, an Early Split-off From the Coronavirus Group 2 Lineage. *Journal of Molecular Biology* 331, 991-1004.

SNIJDER, E.J., LIMPENS, R., DE WILDE, A.H., DE JONG, A.W.M., ZEVENHOVEN-DOBBE, J.C., MAIER, H.J., FAAS, F., KOSTER, A.J., AND BARCENA, M. (2020). A unifying structural and functional model of the coronavirus replication organelle: Tracking down RNA synthesis. *PLoS Biol* 18, e3000715.

SUBRAMANIAN, A., VERNON, K. A., SLYPER, M., WALDMAN, J., LUECKEN, M. D., GOSIK, K., DUBINSKY, D., CUOCO, M. S., KELLER, K., PURNELL, J., NGUYEN, L., DIONNE, D., ROZENBLATT-ROSEN, O., WEINS, A., REGEV, A. & GREKA, A. 2020. RAAS blockade, kidney disease, and expression of ACE2, the entry receptor for SARS-CoV-2, in kidney epithelial and endothelial cells.

UNIPROTKB - O14786 (NRP1_HUMAN)

V'KOVSKI, P., KRATZEL, A., STEINER, S., STALDER, H., AND THIEL, V. (2021). Coronavirus biology and replication: implications for SARS-CoV-2. *Nat Rev Microbiol*. 19, 155-170.

WALLS, A. C., TORTORICI, M. A., BOSCH, B. J., FRENZ, B., ROTTIER, P. J. M., DIMAIO, F., REY, F. A. & VEESLER, D. 2016. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. *Nature*, 531, 114-117.

WANG, Y., LIU, M. & GAO, J. 2020. Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. *Proc Natl Acad Sci U S A*, 117, 13967-13974.

YAMAMOTO, M., KISO, M., SAKAI-TAGAWA, Y., IWATSUKI-HORIMOTO, K., IMAI, M., TAKEDA, M., KINOSHITA, N., OHMAGARI, N., GOHDA, J., SEMBA, K., MATSUDA, Z., KAWAGUCHI, Y., KAWAOKA, Y. & INOUYE, J. I. 2020. The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner. *Viruses*, 12.

YANG, N. & SHEN, H.-M. 2020. Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in COVID-19. *International Journal of Biological Sciences*, 16, 1724-1731.

YUAN, M., WU, N. C., ZHU, X., LEE, C. D., SO, R. T. Y., LV, H., MOK, C. K. P. & WILSON, I. A. 2020. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. *Science*, 368, 630-633.

ZANG, R., GOMEZ CASTRO, M. F., MCCUNE, B. T., ZENG, Q., ROTHLAUF, P. W., SONNEK, N. M., LIU, Z., BRULOIS, K. F., WANG, X., GREENBERG, H. B., DIAMOND, M. S., CIORBA, M. A., WHELAN, S. P. J. & DING, S. 2020. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. *Sci Immunol*, 5.

ZIEGLER, C. G. K., ALLON, S. J., NYQUIST, S. K., MBANO, I. M., MIAO, V. N., TZOUANAS, C. N., CAO, Y., YOUSIF, A. S., BALS, J., HAUSER, B. M., FELDMAN, J., MUUS, C., WADSWORTH, M. H., 2ND, KAZER, S. W., HUGHES, T. K., DORAN, B., GATTER, G. J., VUKOVIC, M., TALIAFERRO, F., MEAD, B. E., GUO, Z., WANG, J. P., GRAS, D., PLAISANT, M., ANSARI, M., ANGELIDIS, I., ADLER, H., SUCRE, J. M. S., TAYLOR, C. J., LIN, B., WAGHRAY, A., MITSIALIS, V., DWYER, D. F., BUCHHEIT, K. M., BOYCE, J. A., BARRETT, N. A., LAIDLAW, T. M., CARROLL, S. L., COLONNA, L., TKACHEV, V., PETERSON, C. W., YU, A., ZHENG, H. B., GIDEON, H. P., WINCHELL, C. G., LIN, P. L., BINGLE, C. D., SNAPPER, S. B., KROPSKI, J. A., THEIS, F. J., SCHILLER, H. B., ZARAGOSI, L. E., BARBRY, P., LESLIE, A., KIEM, H. P., FLYNN, J. L., FORTUNE, S. M., BERGER, B., FINBERG, R. W., KEAN, L. S., GARBER, M., SCHMIDT, A. G., LINGWOOD, D., SHALEK, A. K., ORDOVAS-MONTANES, J., LUNG-NETWORK@HUMANCELLATLAS.ORG, H. C. A. L. B. N. E. A. & NETWORK, H. C. A. L. B. 2020. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. *Cell*, 181, 1016-1035 e19.

Event: 1901: Interferon-I antiviral response, antagonized by SARS-CoV-2

Short Name: IFN-I response, antagonized

Key Event Component

Process	Object	Action
type I interferon signaling pathway	interferon alpha	decreased
type I interferon signaling pathway	interferon beta	decreased
cellular response to exogenous dsRNA	RNA viral genome	occurrence

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:430 - Binding of SARS-CoV-2 to ACE2 leads to viral infection proliferation	KeyEvent
Aop:422 - Binding of SARS-CoV-2 to ACE2 in enterocytes leads to intestinal barrier disruption	KeyEvent
Aop:320 - Binding of SARS-CoV-2 to ACE2 receptor leading to acute respiratory distress associated mortality	KeyEvent
Aop:379 - Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation	KeyEvent
Aop:468 - Binding of SARS-CoV-2 to ACE2 leads to hyperinflammation (via cell death)	KeyEvent

Stressors**Name**

Stressor:624 SARS-CoV-2

Biological Context**Level of Biological Organization**

Cellular

Cell term**Cell term**

epithelial cell

Organ term**Organ term**

organ

Domain of Applicability**Taxonomic Applicability**

Term	Scientific Term	Evidence	Links
humans	Homo sapiens	High	NCBI
mink	Mustela lutreola	High	NCBI
cat	Felis catus	High	NCBI
rhesus macaque	Macaca mulatta	High	NCBI
dog	Canis lupus familiaris	Moderate	NCBI
mammals	mammals	High	NCBI

Life Stage Applicability**Life Stage Evidence**

All life stages High

Sex Applicability**Sex Evidence**

Unspecific High

Broad mammalian host range based on spike protein tropism for and binding to ACE2 (Conceicao et al. 2020; Wu et al. 2020) and cross-species ACE2 structural analysis (Damas et al. 2020). Some literature found on non-human hosts indicates that NSPs and accessory proteins can interact in a similar manner with bird (chicken) and other mammal proteins in the IFN-I pathway (Moustaqil et al. 2021; Rui et al. 2021).

Key Event Description

SARS-CoV-2 is an enveloped virus with a single-stranded RNA genome of ~30 kb, sequence orientation in a 5' to 3' direction typical of positive sense and reflective of the resulting mRNA (doi:<https://doi.org/10.1161/cell.2020.04.01>). The SARS-CoV-2 genome contains a 5'-untranslated region (UTR; 265 bp), [ORF1ab](#) (21,289 bp) holding two overlapping open reading frames (13,217 bp and 21,289 bp, respectively) that encode two polyproteins (Kim et al. 2020; O'Leary et al. 2020). Viral transcription and replication is explained in depth in [KE1847](#). Briefly, the first event upon cell entry is the primary translation of the ORF1a and ORF1b genomic RNA to produce non-structural proteins (NSPs). The ORF1a produces polypeptide 1a (pp1a, 440–500 kDa) that is cleaved into NSP-1 through NSP-11. A -1-ribosome frameshift occurs immediately upstream of the ORF1a stop codon, to allow translation through ORF1b, yielding 740–810 kDa polypeptide pp1ab, which is cleaved into 15 NSPs (duplications of NSP1-11 and five additional proteins, NSP12-16). Viral proteases NSP3 and NSP5 cleave the polypeptides through domains functioning as a papain-like protease and a 3C-like protease, respectively (doi:<https://doi.org/10.1161/cell.2020.04.01>). The NSPs, structural proteins, and accessory proteins are encoded by 10 ORFs in the SARS-CoV-2 RNA genome. They may have multiple functions during viral replication as well as in evasion of the host innate immune response, thus augmenting viral replication and spread (Amor et al. 2020). Extensive protein-protein interaction (Gordon et al. 2020) and viral protein-host RNA interaction networks have been demonstrated between the viral NSPs and accessory proteins and host molecules.

This key event is focused on the specific viral:host protein interactions within the infected cell that are involved in the [IFN-I antiviral response pathways](#). IFN-I is the main component of the innate immune system that is suppressed by the SARS-CoV-2 coronavirus early in infection. The primary form of host intracellular virus surveillance detects viral components to induce an immediate systemic type I interferon (IFN) response. Cellular RNA sensors called pattern recognition receptors (PRRs) such as RIG-I, MDA5 and LGP2 detect the presence of viral RNAs and promote nuclear translocation of the transcription factor IRF3, leading to transcription, translation, and secretion of IFN- α and IFN- β . This in turn leads to interaction with the IFN receptor (IFNAR), phosphorylation of STAT1 and 2, and transcription and translation of hundreds of antiviral genes (Quarleri and Delpino, 2021).

Interactions between SARS-CoV-2 proteins and human RNAs thwart the IFN response upon infection: NSP1 binds to 40S ribosomal RNA in the mRNA entry channel of the ribosome to inhibit host mRNA translation; NSP8 and NSP9 displace signal recognition particle proteins (SRP54, 27 and 19) to bind to the 7SL RNA and block protein trafficking to the cell membrane (Banerjee et al. 2020; Gordon et al. 2020). Xia et al. (2020) found that NSP6 and NSP13 antagonize IFN-I production via distinct mechanisms: NSP6 binds TANK binding kinase 1 (TBK1) to suppress interferon regulatory factor 3 (IRF3) phosphorylation, and NSP13 binds and blocks TBK1 phosphorylation. NSP14 induces lysosomal degradation of type I IFNAR to prevent STAT activation (Hayn et al. 2021). ORF6 hijacks KPN42 to block IRF3, and Nup98/RAE1 to block STAT nuclear import, to silence IFN-I gene expression (Xia and Shi, 2020). ORF7a suppresses STAT phosphorylation and ORF7b suppresses STAT1 and STAT2 phosphorylation to block ISGF3 complex formation with IRF9 (Xia and Shi, 2020). ORF8 interacts and downregulates MHC-I (Zhang et al 2020), and has been reported to block INF β expression, but the mechanism has not been identified (Rashid et al. 2021; Li et al. 2020). ORF9b antagonizes Type I Interferons by targeting multiple components of RIG-I/MDA-5-MAVS, TOMM70, NEMO and cGAS-STING signalling (Han et al. 2020; Jiang et al. 2020; Wu et al. 2021; Gordon et al 2020).

Following is a table of the current state of knowledge of SARS-CoV-2 protein putative functions in relation to IFN-I antiviral response antagonism.

Gene	Protein	Function	Role in early innate immune evasion
ORF1a	NSP1	NSP1 antagonizes	DNA Polymerase Alpha Complex:

	interferon induction to suppress host antiviral response.	Regulates the activation of IFN-I through cytosolic RNA-DNA synthesis (POLA1/2-PRIM1/2) and primes DNA replication in the nucleus (Gordon et al. 2020; Chaudhuri et al. 2020). Can also inhibit host gene expression by binding to ribosomes and modifying host mRNAs (Shi et al. 2020; Schubert et al. 2020; Thome et al. 2020).
NSP2	While not essential for viral replication, deletion of NSP2 diminishes viral growth and RNA synthesis	Translation repression through binding GIGYF2 and EIF4E2 (4EHP) (Gupta et al. 2021)
NSP3	Papain-like protease (3CLpro); Cleaves the ORF1a and 1ab polypeptides	Suppresses IFN-I: Cleaves IRF3 (Moustaqil et al. 2021); binds/cleaves ISG15 (Rui et al. 2021; Shin et al. 2020; Liu et al. 2021; Klemm et al. 2020)
NSP5	3C-like protease (3CLpro); Cleaves the ORF1a and 1ab polypeptides	Binds STING (Rui et al. 2021)
NSP6	Limits autophagosome expansion	Suppresses IFN-I expression: Binds TBK-1 to suppress IRF3 phosphorylation (Xia et al. 2020; Quarleri and Delpino, 2021)
NSP7	In complex with NSP8 forms primase as part of multimeric RNA-dependent RNA replicase (RdRp)	
NSP8	Replication complex with NSP7, NSP9 and NSP12	Binds SRP72/54/19 (Gordon et al. 2020) and 7SL RNA to block IFN membrane transport (Banerjee et al. 2020)
NSP9	Replication complex with NSP7, NSP8 and NSP12	Binds SRP and 7SL RNA with NSP8 to block IFN membrane transport (Banerjee et al. 2020)
ORF1b	NSP13	Helicase and triphosphatase that initiates the first step in viral mRNA capping.
	NSP14	Induces lysosomal degradation of IFNAR1 (Hayn et al. 2021)
ORF2	Spike (S)	ACE2 interaction, cell entry
ORF3a	ORF3a	Interacts with M, S, E and 7a; form viroporins; immune evasion
ORF4	Envelope (E)	Viral assembly and budding
ORF5	Membrane (M)	Viral assembly
		Interacts with RIG-I and MAVS sensors of viral RNA (Fu et al 2020)
ORF6	ORF6	Viral pathogenesis and virulence; interacts with ORF8; promotes RNA polymerase activity
		Hijacks the nuclear importin Karyopherin a 2 (KPN42) to block IRF3 (Xia and Shi, 2020) and Nup98/RAE1 to block STAT nuclear import (Miorin et al. 2020; Katz et al. 2020), leading to the silence of downstream ISGs
ORF7a	ORF7a	Interacts with S, ORF3a; immune evasion
		Suppresses STAT2 phosphorylation to block IFN-I response (Xia and Shi, 2020).
ORF7b	ORF7b	Structural component of virion
		Suppresses STAT1 and STAT2 phosphorylation to block IFN-I response (Xia and Shi, 2020)
ORF8	ORF8	Immune evasion
		Interacts and downregulates MHC-I (Zhang et al. 2020). May inhibit type I interferon (IFN- β) and interferon-stimulated response element (ISRE) (Rashid et al. 2020; Li et al. 2020)
ORF9	Nucleocapsid (N)	Stabilizes viral RNA
		Attenuates stress granule formation: G3BP1/2 (Chen et al. 2020; Cascarina et al. 2020); G3BP1 also interacts with RIG-I (Kim et al. 2019) and STAT1/2 (Mu et al. 2020)
ORF9b	ORF9b	Immune evasion
		Membrane protein antagonizes Type I Interferons by targeting multiple components of RIG-I/MDA-5-MAVS, TOMM70, NEMO, and cGAS-STING signaling pathways (Fu et al. 2020; Chen et al. 2020; Han et al. 2020; Jiang et al. 2020; Wu et al. 2021; Gordon et al 2020)

How it is Measured or Detected

Detection of IFN-I suppression involves measuring gene promoter/transcription activation (luciferase assays), gene up/down regulation (quantitative PCR), protein-protein interaction (immunoprecipitation, immunoblotting) or in-situ co-location of viral and host proteins (immunofluorescent or confocal microscopy) in cell culture. Examples of methods used include the following:

Interferon I decrease (Xia et al. 2020):

- IFN-I production and signaling luciferase reporter assays
- Co-immunoprecipitation and western blot
- Indirect immunofluorescence assays
- DNA assembly and RNA transcription of a luciferase replicon for SARS-CoV-2
- Replicon RNA electroporation and luciferase reporter assay

SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling (Wu et al. 2021)

- Viral- and host-protein-specific antibodies
- Immunoprecipitation
- Immunofluorescent microscopy
- Dual-luciferase reporter assays
- Fluorescence quantification immunoblotting

SARS-CoV-2-Human Protein-Protein Interaction Map (Gordon et al. 2020)

- Cloning and expression of viral proteins via plasmid transfection into HEK293T cell line
- Protein affinity purification using MagStrep beads with detection by anti-strep western blot of cell lysate
- Global analysis of SARS-CoV-2 host interacting proteins using affinity purification-mass spectrometry

References

Amor et al. 2020. Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. *Clinical and Experimental Immunology*, 202: 193–209. doi: 10.1111/cei.13523

Andres et al. 2020. SARS-CoV-2 ORF9c Is a Membrane-Associated Protein that Suppresses Antiviral Responses in Cells. *bioRxiv* preprint doi: <https://doi.org/10.1101/2020.08.18.256776>

Banerjee et al. 2020. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. *Cell* 183, 1325–1339. <https://doi.org/10.1016/j.cell.2020.10.004>

Cascarina and Ross, 2020. A proposed role for the SARS-CoV-2 nucleocapsid protein in the formation and regulation of biomolecular condensates. *The FASEB Journal*, 34:9832–9842. DOI: 10.1096/fj.202001351

Chaudhuri, A. 2021. Comparative analysis of non-structural protein 1 of SARS-CoV2 with SARS-CoV1 and MERS-CoV: An in-silico study. *Journal of Molecular Structure*, Volume 1243, 130854, <https://doi.org/10.1016/j.molstruc.2021.130854>.

Chen et al. 2021. SARS-CoV-2 Nucleocapsid Protein Interacts with RIG-I and Represses RIG-Mediated IFN-β Production. *Viruses*. 13(1):47. <https://doi.org/10.3390/v13010047>

Conceicao et al. 2020. The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins. *PLoS Biol* 18(12): e3001016. <https://doi.org/10.1371/journal.pbio.3001016>

Damas et al. 2020. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. *PNAS* vol. 117 no. 36:22311–22322 www.pnas.org/cgi/doi/10.1073/pnas.2010146117

Fu et al. 2021. SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-mediated innate antiviral response. *Cell Mol Immunol* 18: 613–620. <https://doi.org/10.1038/s41423-020-00571-x>

Gordon et al. 2020. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. *Nature* 483:459–473. <https://doi.org/10.1038/s41586-020-2286-9>

Gupta et al. 2021. CryoEM and AI reveal a structure of SARS-CoV-2 Nsp2, a multifunctional protein involved in key host processes. *bioRxiv* 2021.05.10.443524; doi: <https://doi.org/10.1101/2021.05.10.443524>

Han et al. 2020. SARS-CoV-2 ORF9b Antagonizes Type I and III Interferons by Targeting Multiple Components of RIG-I/MDA-5-MAVS, TLR3-TRIF, and cGAS-STING Signaling Pathways. *bioRX* <https://doi.org/10.1101/2020.08.16.252973>

Hayn et al. 2021. Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. *Cell Reports* 35, 109126. <https://doi.org/10.1016/j.celrep.2021.109126>

Jiang et al. 2020. SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70. *Cellular & Molecular Immunology* 17:998–1000; <https://doi.org/10.1038/s41423-020-0514-8>

Kato et al. 2021. Overexpression of SARS-CoV-2 protein ORF6 dislocates RAE1 and NUP98 from the nuclear pore complex. *Biochemical and Biophysical Research Communications* 536:59–66 <https://doi.org/10.1016/j.bbrc.2020.11.115>

Kim et al. 2019. The stress granule protein G3BP1 binds viral dsRNA and RIG-I to enhance interferon-β response. *J. Biol. Chem.* 294(16): 6430–6438. DOI 10.1074/jbc.RA118.005868

Kim et al. 2020. The Architecture of SARS-CoV-2 Transcriptome. *Cell* 181, 914–921. <https://doi.org/10.1016/j.cell.2020.04.011>

Li et al. 2020. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. *Virus Research* vol. 286. <https://doi.org/10.1016/j.virusres.2020.198074>

Liu et al. 2021. ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. *Nature Microbiol* 6: 467–478. <https://doi.org/10.1038/s41564-021-00884-1>

Moustaqil et al. 2021. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. *Emerging Microbes & Infections*, 10:1, 178–195. <https://doi.org/10.1080/22221751.2020.1870414>

Mu et al. 2020. SARS-CoV-2 N protein antagonizes type I interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2. *Cell Discov* 6, 65. <https://doi.org/10.1038/s41421-020-00208-3>

O’Leary et al. 2020 Unpacking Pandora from Its Box: Deciphering the Molecular Basis of the SARS-CoV-2 Coronavirus. *Int. J. Mol. Sci.* 2021, 22, 386. <https://doi.org/10.3390/ijms22010386>

Quarleri and Delpino, 2020. Type I and III IFN-mediated antiviral actions counteracted by SARS-CoV-2 proteins and host inherited factors. *Cytokine & Growth Factor Reviews*, 58: 55–65. <https://doi.org/10.1016/j.cytogfr.2021.01.003>

Rashid et al. The ORF8 protein of SARS-CoV-2 induced endoplasmic reticulum stress and mediated immune evasion by antagonizing production of interferon beta. *Virus Research* 296, 198350. <https://doi.org/10.1016/j.virusres.2021.198350>

Ren et al. 2020. The ORF3a protein of SARS-CoV-2 induces apoptosis in cells. *Cellular & Molecular Immunology* 17:881–883; <https://doi.org/10.1038/s41423-020-0485-9>

Rui et al. 2021. Unique and complementary suppression of cGAS-STING and RNA sensing-triggered innate immune responses by SARS-CoV-2 proteins. *Sig Transduct Target Ther* 6, 123. <https://doi.org/10.1038/s41392-021-00515-5>

Schubert et al. 2020. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. *Nature Structural & Molecular Bio.* 27:959–966. <https://doi.org/10.1038/s41594-020-0511-8>

Shin et al. 2020. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. *Nature* 587: 657–662. <https://doi.org/10.1038/s41586-020-2601-5>

Thoms et al. 2020. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. *Science* 369(6508): 1249–1255. DOI: 10.1126/science.abc8665

Wu et al. 2021. SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO. *Cell Reports* 34, 108761. <https://doi.org/10.1016/j.celrep.2021.108761>

AOP379

Wu et al. 2020. Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. *Cell Discovery* 6:68. <https://doi.org/10.1038/s41421-020-00210-9>

Xia et al. 2020. Evasion of Type I Interferon by SARS-CoV-2. *Cell Reports* 33, 108234. <https://doi.org/10.1016/j.celrep.2020.108234>

Xia and Shi, 2020. Antagonism of Type I Interferon by Severe Acute Respiratory Syndrome Coronavirus 2. *Journal of Interferon & Cytokine Research* v.40, no. 12 DOI:10.1089/jir.2020.0214

Zhang et al. 2020. The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through Potently Downregulating MHC-I. *bioRxiv* preprint doi: <https://doi.org/10.1101/2020.05.24.111823>

Event: 1847: Increased SARS-CoV-2 production

Short Name: SARS-CoV-2 production

Key Event Component

Process	Object	Action
viral RNA genome replication	viral RNA-directed RNA polymerase complex	increased
positive stranded viral RNA replication	viral RNA-directed RNA polymerase complex	increased
viral RNA genome packaging	viral assembly compartment	increased
mRNA transcription	ssRNA viral genome	increased
viral translation	ssRNA viral genome	increased

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:379 - Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation	KeyEvent
Aop:320 - Binding of SARS-CoV-2 to ACE2 receptor leading to acute respiratory distress associated mortality	KeyEvent
Aop:406 - SARS-CoV-2 infection leading to hyperinflammation	KeyEvent
Aop:407 - SARS-CoV-2 infection leading to pyroptosis	KeyEvent
Aop:422 - Binding of SARS-CoV-2 to ACE2 in enterocytes leads to intestinal barrier disruption	KeyEvent
Aop:430 - Binding of SARS-CoV-2 to ACE2 leads to viral infection proliferation	KeyEvent
Aop:394 - SARS-CoV-2 infection of olfactory epithelium leading to impaired olfactory function (short-term anosmia)	KeyEvent
Aop:468 - Binding of SARS-CoV-2 to ACE2 leads to hyperinflammation (via cell death)	KeyEvent

Stressors

Name

Sars-CoV-2

Biological Context

Level of Biological Organization

Cellular

Cell term

Cell term

cell

Organ term

Organ term

organ

Domain of Applicability

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
Homo sapiens	Homo sapiens	High	NCBI
Mus musculus	Mus musculus	Moderate	NCBI
Mustela putorius furo	Mustela putorius furo	Moderate	NCBI

Life Stage Applicability

Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

Broad mammalian host range has been demonstrated based on spike protein tropism for and binding to ACE2 [Conceicao *et al.* 2020; Wu *et al.* 2020] and cross-species ACE2 structural analysis [Damas *et al.* 2020]. No literature has been found on primary translation and molecular interactions of nsps in non-human host cells, but it is assumed to occur if the virus replicates in other species.

Very broad mammalian tropism: human, bat, cat, dog, civet, ferret, horse, pig, sheep, goat, water buffalo, cattle, rabbit, hamster, mouse

Key Event Description

This KE1847 "Increase coronavirus production" deals with how the genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is translated, replicated, and transcribed in detail, and how the genomic RNA (gRNA) is packaged, and the virions are assembled and released from the cell.

Coronavirus is a class of viruses that have single-stranded positive-sense RNA genomes in their envelopes [D. Kim *et al.*]. The virus contains a 29.7 kB positive-sense RNA genome flanked by 5' and 3' untranslated regions of 265 and 342 nucleotides, respectively [E. J. Snijder *et al.*] that contain cis-acting secondary RNA structures essential for RNA synthesis [N. C. Huston *et al.*]. The genome just prior to the 5' end contains the transcriptional regulatory sequence leader (TRS-L) [C.J. Budzilowicz *et al.*]. The SARS-CoV genome is polycistronic and contains 14 open reading frames (ORFs) that are expressed by poorly understood mechanisms [E. J. Snijder *et al.*]. Preceding each ORF there are other TRSs called the body TRS (TRS B). The 5' two-thirds of the genome contains two large, overlapping, nonstructural ORFs and the 3' third contains the remainder ORFs [H. Di *et al.*]. Genome expression starts with the translation of two large ORFs of the 5' two-thirds: ORF1a of 4382 amino acids and ORF1ab of 7073 amino acid that occurs via a programmed (-1) ribosomal frameshift [E. J. Snijder *et al.*], yielding pp1a and pp1ab. These two polyproteins are cleaved into 16 subunits by two viral proteinases encoded by ORF1a, nsp3, and nsp5 that contain a papain-like protease domain and a 3C-like protease domain [M. D. Sacco *et al.*]. The processing products are a group of replicative enzymes, named nsp1-nsp16, that assemble into a viral replication and transcription complex (RTC) associated with membranes of endoplasmic reticulum (ER) with the help of various membrane-associated viral proteins [S. Klein *et al.*, E. J. Snijder *et al.*, P. V'Kovski, *et al.*]. Besides replication, which yields the positive-sense gRNA, the replicase also mediates transcription leading to the synthesis of a nested set of subgenomic (sg) mRNAs to express all ORFs downstream of ORF1b that encode structural and accessory viral proteins. These localize to the 3' one-third of the genome, as stated above, and result in a 3' c-terminal nested set of 7-9 mRNAs that share ~70-90 nucleotide (nt) in the 5' leader and that is identical to the 5' end of the genome [P. Liu, and J. Leibowitz]. sgRNAs encode conserved structural proteins (spike protein [S], envelope protein [E], membrane protein [M], and nucleocapsid protein [N]), and several accessory proteins. SARS-CoV-2 is known to have at least six accessory proteins (3a, 6, 7a, 7b, 8, and 10). Overall the virus is predicted to express 29 proteins [D. Kim *et al.*]. The gRNA is packaged by the structural proteins to assemble progeny virions.

Viral translation:

SARS-CoV-2 is an enveloped virus with a single-stranded RNA genome of ~30 kb, sequence orientation in a 5' to 3' direction typical of positive sense and reflective of the resulting mRNA [D. Kim *et al.*]. The SARS-CoV-2 genome contains a 5'-untranslated region (UTR; 265 bp), ORF1ab (21,289 bp) holding two overlapping open reading frames (13,217 bp and 21,289 bp, respectively) that encode two polyproteins [D. Kim *et al.*]. Other elements of the genome include are shown below [V. B. O'Leary *et al.*]. **The first event upon cell entry is the primary translation of the ORF1a and ORF1b gRNA to produce non-structural proteins (nsps).**

This is completely dependent on the translation machinery of the host cell. Due to fewer rare "slow-codons", SARS-CoV-2 may have a higher protein translational rate, and therefore higher infectivity compared to other coronavirus groups [V. B. O'Leary *et al.*]. The ORF1a produces polypeptide 1a (pp1a, 440–500 kDa) that is cleaved into nsp-1 through nsp-11. A -1 ribosome frameshift occurs immediately upstream of the ORF1a stop codon, to allow translation through ORF1b, yielding 740–810 kDa polypeptide pp1ab, which is cleaved into 15 nsps [D. Kim *et al.*]. Two overlapping ORFs, ORF1a and ORF1b, generate continuous polypeptides, which are cleaved into a total of 16 so-called nsps [Y Finkel *et al.*]. Functionally, there are five proteins from pp1ab (nsp-12 through nsp-16) as nsp-1-11 are duplications of the proteins in pp1a due to the ORF overlap. The pp1a is approximately 1.4–2.2 times more expressed than pp1ab. After translation, the polyproteins are cleaved by viral proteinases nsp3 and nsp5. Nsp5 protease can be referred to as 3C-like protease (3CL^{pro}) or as main protease (M^{pro}), as it cleaves the majority of the polyprotein cleavage sites. [H.A. Hussein *et al.*] Nsp1 cleavage is quick and nsp1 associates with host cell ribosomes and results in host cellular shutdown, suppressing host gene expression [M. Thoms *et al.*]. Fifteen proteins, nsp2–16 constitute the viral RTC. They are targeted to defined subcellular locations and establish a network with host cell factors. Nsp2–11 remodel host membrane architecture, mediate host immune evasion and provide cofactors for replication, whilst nsp12–16 contain the core enzymatic functions involved in RNA synthesis, modification and proofreading [P. V'Kovski *et al.*]. nsp-7 and nsp-8 form a complex priming the RNA-dependent RNA polymerase (RdRp or RTC) - nsp-12. nsp14 provides a 3'-5' exonuclease activity protecting RNA proofreading function. Nsp-10 composes the RNA capping machinery nsp-9. nsp13 provides the RNA 5'-triphosphatase activity. Nsp-14 is a N7-methyltransferase and nsp-16 the 2'-O-methyltransferase. Many of the nsps have multiple functions and many viral proteins are involved in innate immunity inhibition. Nsp-3 is involved in vesicle formation along with nsp-4 and nsp-6 where viral replication occurs. Interactions between SARS-CoV-2 proteins and human RNAs thwart the IFN response upon infection: nsp-16 binds to U1 and U2 splicing RNAs to suppress global mRNA splicing; nsp-1 binds to 40S ribosomal RNA in the mRNA entry channel of the ribosome to inhibit host mRNA translation; nsp-8 and nsp-9 bind to the 7SL RNA to block protein trafficking to the cell membrane [A. K. Banerjee *et al.*]. Xia *et al.* [H. Xia *et al.*] found that nsp-6 and nsp-13 antagonize IFN-1 production via distinct mechanisms: nsp-6 binds TANK binding kinase 1 (TBK1) to suppress interferon regulatory factor 3 (IRF3) phosphorylation, and nsp-13 binds and blocks TBK1 phosphorylation.

Viral transcription and replication:

Viral transcription and replication occur at the viral replication organelle (RO) [E. J. Snijder *et al.*]. The RO is specifically formed during infection by reshaping ER and other membranes, giving rise to small spherular invaginations, and large vesiculotubular clusters, consisting of single- and/or double-membrane vesicles (DMV), convoluted membranes (CM) and double-membrane spherules invaginating from the ER [S. Klein *et al.*, E. J. Snijder *et al.*]. There is some evidence that DMV accommodate viral replication which is based on radiolabelling viral RNA with nucleoside precursor ([5,3]³H]uridine) and detection by EM autoradiography [E. J. Snijder *et al.*].

Viral replicative proteins and specific host factors are recruited to ROs [E. J. Snijder *et al.*]. RNA viral genome is transcribed into messenger RNA by the viral RTC [P. Ahlquist *et al.*]. Viral RTC act in combination with other viral and host factors involved in selecting template RNAs, elongating RNA synthesis, differentiating genomic RNA replication from mRNA transcription, modifying product RNAs with 5' caps or 3' polyadenylate [P. Ahlquist *et al.*]. Positive-sense (messenger-sense) RNA viruses replicate their genomes through negative-strand RNA intermediates [M. Schwartz *et al.*]. The intermediates comprise full-length negative-sense complementary copies of the genome, which functions as templates for the generation of new positive-sense gRNAs, and a nested set of sg mRNAs that lead to the expression of proteins encoded in all ORFs downstream of ORF1b. The transcription of coronaviruses is a discontinuous process that produces nested 3' and 5' co-terminal sgRNAs. Of note, the synthesis of sg mRNAs is not exclusive to the order *Nidovirales* but a discontinuous minus-strand synthesis strategy to produce a nested set of 3' co-terminal sg mRNAs with a common 5' leader in infected cells are unique features of the *coronaviruses* and *arteriviruses* [W. A. Miller and G. Koev.]. Of note, the produced genomic RNA represents a small fraction of the total vRNA [N. S. Ogando *et al.*].

The discontinuous minus-strand synthesis of a set of nested sg mRNAs happens during the synthesis of the negative-strand RNA, by an interruption mechanism of the RTC as it reads the TRS-B preceding each gene in the 3' one-third of the viral genome [I. Sola, F. Almazan *et al.*, I. Sola, J. L. Moreno, *et al.*]. The synthesis of the negative-strand RNA stops and is re-initiated at the TRS-L of the genome sequence close from the 5' end of the genome [H. Di *et al.*]. Therefore, the mechanism by which the leader sequence is added to the 5' end requires that the RTC switches template by a jumping mechanism. This interruption process involves the interaction between complementary TRSs of the nascent negative-strand RNA TRS-B and the positive-strand gRNA at the positive-sense TRS-L. The TRS-B site has a 7-8 bp conserved core sequence (CS) that facilitates RTC template switching as it hybridizes with a near complementary CS in the TRS-L [I. Sola, F. Almazan *et al.*, I. Sola, J. L. Moreno, *et al.*]. Upon re-initiation of RNA synthesis at the TRS-L region, a negative-strand copy of the leader sequence is added to the nascent RNA to complete the synthesis of negative-strand sgRNAs. This means that all sg mRNAs as well as the genomic RNA share a common 5' sequence, named leader sequence [X. Zhang *et al.*]. This programmed template switching leads to the generation of sg mRNAs with identical 5' and 3' sequences, but alternative central regions corresponding to the beginning of each structural ORF [I. Sola *et al.* 2015, S. G. Sawicki *et al.*, Y. Yang *et al.*]. Of note, the existence of TRSs also raises the possibility that these sites are at the highest risk of recombining through TRS-B mediated template switching [Y. Yang]. The set of sg mRNAs is then translated to yield 29 identified different proteins [F. Wu *et al.*], although many papers have identified additional ORFs [D. Kim *et al.*, Y. Finkel *et al.*, A. Vandelli *et al.*]. The translation of the linear single-stranded RNA conducts to the generation of the following proteome: 4 are structural proteins, S, N, M, and E; 16 proteins nsp: the first 11 are encoded in ORF1a whereas the last 5 are encoded in ORF1ab. In addition, 9 accessory proteins named ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c, and ORF10 have been identified [F. Wu *et al.*]. At the beginning of infection, there is the predominant expression of the nsp that result from ORF1a and ORF1ab, however, at 5 hpi, the proteins encoded by the 5' last third are found in higher amounts, and the nucleoprotein is the protein found in higher levels [Y. Finkel *et al.*].

Viral assembly:

The final step of viral production requires virion assembly and this process is not well explored for SARS-CoV-2. For example, the role of the structural proteins of SARS-CoV-2 in virus assembly and budding is not known. In general, all beta-coronavirus structural proteins assemble at the endoplasmic reticulum (ER)-to-Golgi compartment [J. R. Cohen *et al.*, A. Perrier *et al.*] and viral assembly requires two steps: Genome packaging which is a process in which the SARS-CoV-2 gRNA must be coated by the viral protein nucleoprotein (N) protein, forming viral ribonucleoprotein (vRNPs) complexes, before being selectively packaged into progeny virions [P. V'Kovski *et al.*, D. E. Gordon *et al.*, R. McBride, and M. van Zyl, B. C.J.]. In relation to transcription and replication, the N protein could provide a cooperative mechanism to increase protein and RNA concentrations at specific localizations S. Alberti, and S. Carra, S. F. Banani *et al.*, and this way organize viral transcription. Five studies have shown that N protein undergoes liquid-liquid phase separation (LLPS) *in vitro* [A. Savastano *et al.*, H. Chen *et al.*, C.

Iserman *et al.*, T. M. Perdikari *et al.*, J. Cubuk *et al.*], dependent on its C-terminal domain (CTD) [H. Chen *et al.*] It has been hypothesised that N could be involved in replication close to the ER and in packaging of gRNA into vRNPs near the ERGIC where genome assembly is thought to take place [A. Savastano *et al.*], but so far this is still speculative. Phosphorylation of N could adjust the physical properties of condensates differentially in ways that could accommodate the two different functions of N: transcription and progeny genome assembly [A. Savastano *et al.*, C. Iserman *et al.*, C. R. Carlson *et al.*].

The ERGIC constitutes the main assembly site of coronaviruses [S. Klein *et al.*, E. J. Snijder *et al.*, L. Mendonca *et al.*] and budding events have been seen by EM studies. For SARS-CoV-2, virus-budding was mainly clustered in regions with a high vesicle density and close to ER- and Golgi-like membrane arrangements [S. Klein *et al.*, E. J. Snijder *et al.*, L. Mendonca *et al.*]. The ectodomain of S trimers were found facing the ERGIC lumen and not induce membrane curvature on its own, therefore proposing that vRNPs and spike trimers [S. Klein *et al.*].

Finally, it has been shown that SARS-CoV-2 virions de novo formed traffic to lysosomes for unconventional egress by Arf8b-dependent lysosomal exocytosis [S. Ghosh *et al.*]. This process results in lysosome deacidification, inactivation of lysosomal degradation enzymes, and disruption of antigen presentation [S. Ghosh *et al.*].

How it is Measured or Detected

Viral translation:

SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation [Schubert *et al.* 2020]

- Sucrose pelleting binding assay to verify Nsp1-40S complex formation
- In vivo translation assay
- Transient expression of FLAG-Nsp1 in HeLa cells and puromycin incorporation assay

SARS-CoV-2 disrupts splicing, translation, and protein trafficking [Banerjee *et al.* 2020]

- SARS-CoV-2 viral protein binding to RNA
- Interferon stimulation experiments
- Splicing assessment experiments
- IRF7-GFP splicing reporter, 5EU RNA labeling, capture of biotinylated 5EU labeled RNA

Membrane SUnSET assay for transport of plasma membrane proteins to the cell surface

Viral transcription:

The mRNA transcripts are detected by the real-time reverse transcription-PCR (RT-PCR) assay. Several methods targeting the mRNA transcripts have been developed, which includes the RT-PCR assays targeting RdRp/helicase (Hel), spike (S), and nucleocapsid (N) genes of SARS-CoV-2 [Chan *et al.*]. RT-PCR assays detecting SARS-CoV-2 RNA in saliva include quantitative RT-PCR (RT-qPCR), direct RT-qPCR, reverse transcription-loop-mediated isothermal amplification (RT-LAMP) [Nagura-Ikeda M, *et al.*]. The viral mRNAs are reverse-transcribed with RT, followed by the amplification by PCR.

Viral replication:

viral replication is measured by RT-qPCR in infected cells, formation of liquid organelles is assessed in vitro reconstitution systems and in infected cells. Labelling by radioactive nucleosides.

Viral production:

Plaque assays, infectivity assays, RT-qPCR to detect viral RNA in released virions, sequencing to detect mutations in the genome, electron microscopy.

References

1. D. Kim *et al.*, The Architecture of SARS-CoV-2 Transcriptome. *Cell* **181**, 914-921 e910 (2020).
2. E. J. Snijder *et al.*, Unique and Conserved Features of Genome and Proteome of SARS-coronavirus, an Early Split-off From the Coronavirus Group 2 Lineage. *Journal of Molecular Biology* **331**, 991-1004 (2003).
3. N. C. Huston *et al.*, Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. *Mol Cell* **81**, 584-598 e585 (2021).
4. C. J. Budzilowicz, S. P. Wilczynski, S. R. Weiss, Three intergenic regions of coronavirus mouse hepatitis virus strain A59 genome RNA contain a common nucleotide sequence that is homologous to the 3' end of the viral mRNA leader sequence. *J Virol* **53**, 834-840 (1985).
5. H. Di, A. A. McIntyre, M. A. Brinton, New insights about the regulation of Nidovirus subgenomic mRNA synthesis. *Virology* **517**, 38-43 (2018).
6. M. D. Sacco *et al.*, Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against M(pro) and cathepsin L. *Sci Adv* **6**, (2020).
7. S. Klein *et al.*, SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. *BioRxiv*, (2020).
8. E. J. Snijder *et al.*, A unifying structural and functional model of the coronavirus replication organelle: Tracking down RNA synthesis. *PLoS Biol* **18**, e3000715 (2020).
9. P. V'Kovski, A. Kratzel, S. Steiner, H. Stalder, V. Thiel, Coronavirus biology and replication: implications for SARS-CoV-2. *Nat Rev Microbiol*, (2020).
10. P. Liu, J. Leibowitz, in *Molecular Biology of the SARS-CoV-2*. (2010), chap. Chapter 4, pp. 47-61.
11. V. B. O'Leary, O. J. Dolly, C. Hoschl, M. Cerna, S. V. Ovsepian, Unpacking Pandora From Its Box: Deciphering the Molecular Basis of the SARS-CoV-2 Coronavirus. *Int J Mol Sci* **22**, (2020).
12. Y. Finkel *et al.*, The coding capacity of SARS-CoV-2. *Nature* **589**, 125-130 (2021).
13. H. A. Hussein, R. Y. A. Hassan, M. Chino, F. Fabbriao, Point-of-Care Diagnostics of COVID-19: From Current Work to Future Perspectives. *Sensors (Basel)* **20**, (2020).
14. M. Thoms *et al.*, Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. *Science* **369**, 1249-1255 (2020).
15. A. K. Banerjee *et al.*, SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses. *Cell* **183**, 1325-1339 e1321 (2020).
16. H. Xia *et al.*, Evasion of Type I Interferon by SARS-CoV-2. *Cell Rep* **33**, 108234 (2020).
17. P. Ahlquist, RNA-dependent RNA polymerases, viruses, and RNA silencing. *Science* **296**, 1270-1273 (2002).
18. M. Schwartz *et al.*, A Positive-Strand RNA Virus Replication Complex Parallels Form and Function of Retrovirus Capsids. *Molecular Cell* **9**, 505-514 (2002).
19. W. A. Miller, G. Koev, Synthesis of subgenomic RNAs by positive-strand RNA viruses. *Virology* **273**, 1-8 (2000).
20. N. S. Ogando *et al.*, SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. *J Gen Virol* **101**, 925-940 (2020).
21. I. Sola, F. Almazan, S. Zuniga, L. Enjuanes, Continuous and Discontinuous RNA Synthesis in Coronaviruses. *Annu Rev Virol* **2**, 265-288 (2015).
22. I. Sola, J. L. Moreno, S. Zuniga, S. Alonso, L. Enjuanes, Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis. *J Virol* **79**, 2506-2516 (2005).
23. X. Zhang, C. L. Liao, M. M. Lai, Coronavirus leader RNA regulates and initiates subgenomic mRNA transcription both in trans and in cis. *J Virol* **68**, 4738-4746 (1994).
24. S. G. Sawicki, D. L. Sawicki, S. G. Siddell, A contemporary view of coronavirus transcription. *J Virol* **81**, 20-29 (2007).
25. Y. Yang, W. Yan, B. Hall, X. Jiang, Characterizing transcriptional regulatory sequences in coronaviruses and their role in recombination. *bioRxiv*, (2020).

26. F. Wu *et al.*, A new coronavirus associated with human respiratory disease in China. *Nature* **579**, 265-269 (2020).

27. A. Vandelli *et al.*, Structural analysis of SARS-CoV-2 genome and predictions of the human interactome. *Nucleic Acids Res* **48**, 11270-11283 (2020).

28. J. R. Cohen, L. D. Lin, C. E. Machamer, Identification of a Golgi complex-targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein. *J Virol* **85**, 5794-5803 (2011).

29. A. Perrier *et al.*, The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. *J Biol Chem* **294**, 14406-14421 (2019).

30. D. E. Gordon *et al.*, A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. *Nature* **583**, 459-468 (2020).

31. R. McBride, M. van Zyl, B. C. Fielding, The coronavirus nucleocapsid is a multifunctional protein. *Viruses* **6**, 2991-3018 (2014).

32. S. Alberti, S. Carra, Quality Control of Membraneless Organelles. *Journal of Molecular Biology* **430**, 4711-4729 (2018).

33. S. F. Banani, H. O. Lee, A. A. Hyman, M. K. Rosen, Biomolecular condensates: organizers of cellular biochemistry. *Nature Reviews Molecular Cell Biology* **18**, 285-298 (2017).

34. A. Savastano, A. I. de Opakua, M. Rankovic, M. Zweckstetter, Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. (2020).

35. H. Chen *et al.*, Liquid-liquid phase separation by SARS-CoV-2 nucleocapsid protein and RNA. *Cell Res*, (2020).

36. C. Iserman *et al.*, Specific viral RNA drives the SARS CoV-2 nucleocapsid to phase separate. *bioRxiv*, (2020).

37. T. M. Perdikari *et al.*, SARS-CoV-2 nucleocapsid protein undergoes liquid-liquid phase separation stimulated by RNA and partitions into phases of human ribonucleoproteins. *bioRxiv*, (2020).

38. J. Cubuk *et al.*, The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. *bioRxiv*, (2020).

39. C. Iserman *et al.* (Cold Spring Harbor Laboratory, 2020).

40. C. R. Carlson *et al.*, Phosphoregulation of phase separation by the SARS-CoV-2 N protein suggests abioophysical basis for its dual functions. *Molecular Cell*, (2020).

41. L. Mendonca *et al.*, SARS-CoV-2 Assembly and Egress Pathway Revealed by Correlative Multi-modal Multi-scale Cryo-imaging. *bioRxiv*, (2020).

42. S. Ghosh *et al.*, beta-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway. *Cell* **183**, 1520-1535 e1514 (2020).

43. Schubert, K., Karousis, E.D., Jomaa, A. *et al.* SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. *Nat Struct Mol Biol* **27**, 959-966 (2020).

44. Chan, Jasper Fuk-Woo *et al.* Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/HeL Real-Time Reverse Transcription-PCR Assay Validated *In Vitro* and with Clinical Specimens. *J Clin Microbiol*. 2020;58(5):e00310-20. doi:10.1128/JCM.00310-20

45. Nagura-Ikeda M, Imai K, Tabata S, *et al.* Clinical Evaluation of Self-Collected Saliva by Quantitative Reverse Transcription-PCR (RT-qPCR), Direct RT-qPCR, Reverse Transcription-Loop-Mediated Isothermal Amplification, and a Rapid Antigen Test To Diagnose COVID-19. *J Clin Microbiol*. 2020;58(9):e01438-20. doi:10.1128/JCM.01438-20

46. Conceicao C, Thakur N, Human S, Kelly JT, Logan L, Bialy D, *et al.* (2020) The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins. *PLoS Biol* 18(12): e3001016. <https://doi.org/10.1371/journal.pbio.3001016>

47. Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, Hiller M, Koepfli KP, Pfenning AR, Zhao H, Genereux DP, Swofford R, Pollard KS, Ryder OA, Nweeia MT, Lindblad-Toh K, Teeling EC, Karlsson EK, Lewin HA. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. *Proc Natl Acad Sci U S A*. 2020 Sep 8;117(36):22311-22322. doi: 10.1073/pnas.2010146117. Epub 2020 Aug 21. PMID: 32826334; PMCID: PMC7486773.

[Event: 1869: Diminished protective oxidative stress response](#)

Short Name: Diminished Protective Response to ROS

Key Event Component

Process	Object	Action
cellular response to oxidative stress	reactive oxygen species	increased
response to reactive oxygen species	reactive oxygen species	increased

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:379 - Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation	KeyEvent
Aop:406 - SARS-CoV-2 infection leading to hyperinflammation	KeyEvent
Aop:407 - SARS-CoV-2 infection leading to pyroptosis	KeyEvent
Aop:377 - Dysregulated prolonged Toll Like Receptor 9 (TLR9) activation leading to Multi Organ Failure involving Acute Respiratory Distress Syndrome (ARDS)	KeyEvent
Aop:488 - Increased reactive oxygen species production leading to decreased cognitive function	KeyEvent

Stressors

Name
Stressor:624 SARS-CoV-2

Biological Context

Level of Biological Organization

Cellular

Cell term

Cell term

Cell term**Organ term****Organ term**

organ

Domain of Applicability**Taxonomic Applicability**

Term	Scientific Term	Evidence	Links
Homo sapiens	Homo sapiens	High	NCBI

Life Stage Applicability**Life Stage Evidence**

All life stages High

Sex Applicability**Sex Evidence**

Unspecific High

Response to ROS occurs in many cell types and tissues in all life stages and the broad range of mammals.

Key Event Description

Oxidative stress is caused by an imbalance between the production of reactive oxygen and the detoxification of reactive intermediates. Reactive intermediates such as peroxides and free radicals can be very damaging to many parts of cells such as proteins, lipids, and DNA. Severe oxidative stress can trigger apoptosis and necrosis. (Ref. IPA, NRF2-mediated Oxidative Stress Response, version60467501, release date: 2020-11-19)

The cellular defence/defense response to oxidative stress includes induction of detoxifying enzymes and antioxidant enzymes. Nuclear factor-erythroid 2-related factor 2 (Nrf2) binds to the antioxidant response elements (ARE) within the promoter of these enzymes and activates their transcription. Inactive Nrf2 is retained in the cytoplasm by association with an actin-binding protein Keap1. Upon exposure of cells to oxidative stress, Nrf2 is phosphorylated in response to the protein kinase C, phosphatidylinositol 3-kinase and MAP kinase pathways. After phosphorylation, Nrf2 translocates to the nucleus, binds AREs, and transactivates detoxifying enzymes and antioxidant enzymes, such as glutathione S-transferase, cytochrome P450, NAD(P)H quinone oxidoreductase, heme oxygenase, and superoxide dismutase. (Ref. IPA, NRF2-mediated Oxidative Stress Response, version60467501, release date: 2020-11-19)

Nrf2, a master regulator of oxidative stress through enhanced expression of anti-oxidant genes of glutathione and thioredoxin-antioxidant systems, has anti-inflammatory, anti-apoptotic, and antioxidant effects. Dimethyl fumarate (DMF), an activator of Nrf2, can decrease inflammation and reactive oxygen species (ROS) through the inhibition of NF-kappaB by inducing anti-oxidant enzymes (Jackson et al, 2014; Hassan et al, 2020; Timpani et al, 2021).

Inactivation of Nrf2 causes diminished protective responses to ROS.

How it is Measured or Detected

Oxidative stress can be measured as follows:

1. Direct detection of reactive oxygen species (ROS)

ROS can be detected by intracellular ROS assay, in vitro ROS/RNS assay. Nitric oxide can be detected in intracellular nitric oxide assay (Ashoka et al, 2020).

Hydroxyl, peroxyl, or other ROS can be measured using a fluorescence probe, 2', 7'-Dichlorodihydrofluorescein diacetate (DCFH-DA), at fluorescence detection at 480 nm/530 nm.

Hydrogen peroxide (H₂O₂) can be detected with a colorimetric probe, which reacts with H₂O₂ in a 1:1 stoichiometry to produce a bright pink colored product, followed by the detection with a standard colorimetric microplate reader with a filter in the 540-570 nm range.

ROS can be detected by PEGylated bilirubin-coated iron oxide nanoparticles in whole blood (Lee et al, 2020).

2. Measurement of anti-oxidants

The level of catalase, glutathione, or superoxide dismutase can be measured as anti-oxidants. Catalase is an anti-oxidative enzyme that catalyses the resolution of hydrogen peroxide (H₂O₂) into H₂O and O₂. The chemiluminescence or fluorescence of HRP catalytic reaction can be detected with residual H₂O₂ and probes (DHBS+AAP, or ADHP (10-Acetyl-3, 7-dihydroxyphenoxazine)).

Anti-oxidant capacity is also one of the oxidative stress markers. Oxygen radical antioxidant capacity (ORAC), hydroxyl radical antioxidant capacity (HORAC), total antioxidant capacity (TAC), the cell-based exogenous antioxidant assay can be used for measuring the antioxidant capacity.

3. Detection of damages in protein, lipid, DNA or RNA

Oxidation of protein can be measured by the detection of protein carbonyl content (PCC), 3-nitrotyrosine, advanced oxidation protein products, or BPDE protein adduct.

DNA oxidation can be detected with 8-oxo-dG / 8-hydroxy-2'-deoxyguanosine (8-OHdG) by ELISA or HPLC (Chepelev et al, 2015; Valavanidis et al, 2009).

Lipid peroxides decompose to form malonaldehyde (MDA) and 4, hydroxyxenonol (4-HNE), natural bi-products of lipid peroxidation. Lipid peroxidation can be monitored by thiobarbituric acid (TBA) reactive substances in biological samples. MDA and TBA form MDA-TBA adduct in a 1:2 stoichiometry and detected by colorimetric or fluorometric measurement.

References

Ashoka, A.H. et al. (2020), "Recent Advances in Fluorescent Probes for Detection of HOCl and HNO", ACS omega, 5(4), 1730-1742. <https://doi.org/10.1021/acsomega.9b03420>.

Chepelev, N.L. et al. (2015), "HPLC Measurement of the DNA Oxidation Biomarker, 8-oxo-7,8-dihydro-2'-deoxyguanosine, in Cultured Cells and Animal Tissues", J Vis Exp, e52697-e52697, <https://doi.org/10.3791/52697>.

Hassan, S.M. et al. (2020), "The Nrf2 Activator (DMF) and Covid-19: Is there a Possible Role?", Med Arch, 74(2), 134-138. <https://doi.org/10.5455/medarch.2020.74.134-138>.

AOP379

Jackson, A.F. et al. (2014), "Case study on the utility of hepatic global gene expression profiling in the risk assessment of the carcinogen furan", *Toxicol Appl Pharmacol*, 274, 63-77, <https://doi.org/10.1016/j.taap.2013.10.019>.

Lee, D.Y. et al. (2020), "PEGylated Bilirubin-coated Iron Oxide Nanoparticles as a Biosensor for Magnetic Relaxation Switching-based ROS Detection in Whole Blood", *Theranostics*, 10(5), 1997-2007. <https://doi.org/10.7150/thno.39662>.

Timpani, C.A. E. Rybalka. (2021), "Calming the (Cytokine) Storm: Dimethyl Fumarate as a Therapeutic Candidate for COVID-19.", *Pharmaceuticals*, 14(1), 15. <https://doi.org/10.3390/ph14010015>.

Valavanidis, A. et al. (2009), "8-hydroxy-2' -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis", *J Environ Sci Health C Environ Carcinog Ecotoxicol Rev*. 27, 120-39. <https://doi.org/10.1080/10590500902885684>

Event: 1845: Coagulation

Short Name: Coagulation

Key Event Component

Process	Object	Action
abnormal blood coagulation	blood	occurrence

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:379 - Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation	KeyEvent

Stressors

Name

Sars-CoV-2

Biological Context

Level of Biological Organization

Organ

Organ term

Organ term

blood plasma

Domain of Applicability

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
Homo sapiens	Homo sapiens	Moderate	NCBI

Life Stage Applicability

Life Stage Evidence

All life stages Moderate

Sex Applicability

Sex Evidence

Unspecific Moderate

The KE is applicable to broad species/life stage/sex.

Key Event Description

Coagulation is a process that responds to injury by the rapid formation of a clot. Activation of coagulation factor proteins are involved in coagulation. In the extrinsic pathway, platelets, upon the contact with collagen in the injured blood vessel wall, release thromboxane A2 (TXA2) and adenosine 2 phosphates (ADP), leading to the clot formation. Extravascular tissue factor (TF) binds to plasma factor VIIa (FVIIa) and promotes the activation of FXa. Activated FXa assembles with cofactors FVa and FVIIa on the surface of aggregated platelets, which lead to generation of thrombin (FIIa). Thrombin catalyzes the production of fibrin (FG) which creates a clot.

The binding of prekallikrein and high-molecular weight kininogen activate FXIIa in the intrinsic pathway.

Many proteins are involved in coagulation system. Plasmin is one of the modulators required for dissolution of the fibrin clot. Plasmin is activated by tissue plasminogen activator (tPA) and urokinase plasminogen activation (uPA). SERPINS inhibit thrombin, plasmin and tPA. For example, SERPINE1 or plasminogen activator inhibitor-1 (PAI-1) inhibits tPA/uPA and results in hypofibrinolysis [Bernard I, et al. *Viruses*. 2021; 13(1):29.]. In addition, SERPING1 inhibits FXII, and thus down-regulation of SERPING1 lifts suppression of FXII of the intrinsic coagulation cascade [Garvin et al. *eLife* 2020;9:e59177]. Protein C, protein S and thrombomodulin degrade FVa and FVIIa. [Ref. IPA, Coagulation System, version60467501, release date: 2020-11-19]

How it is Measured or Detected

Coagulation and inflammatory parameters are measured in COVID-19 patients [Di Nisio et al. 2021]. Coagulation parameters include platelet count, prothrombin time, activated partial thromboplastin time, D-dimer, fibrinogen, antithrombin III [Di Nisio et al. 2021]. These parameters are measured in the blood.

In vitro systems

AOP379

Whole human blood model for testing the activation of coagulation and complement system, as well as clot formation [Ekstrand-Hammarström, B. et al. Biomaterials 2015, 51, 58-68, Ekdahl, K.N., et al. Nanomedicine: Nanotechnology, Biology and Medicine 2018, 14, 735-744, Ekdahl, K.N., et al. Science and Technology of Advanced Materials, 20:1, 688-698.]

References

1. Bernard I, Limonta D, Mahal LK, Hobman TC. Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. *Viruses*. 2021; 13(1):29. DOI: <https://doi.org/10.3390/v13010029>
2. Garvin et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. *eLife* 2020;9:e59177. DOI: <https://doi.org/10.7554/elife.59177>
3. Di Nisio, Marcello et al. Interleukin-6 receptor blockade with subcutaneous tocilizumab improves coagulation activity in patients with COVID-19 European Journal of Internal Medicine, Volume 83, 34 - 38 DOI: <https://doi.org/10.1016/j.ejim.2020.10.020>
4. Ekstrand-Hammarström, B.; Hong, J.; Davoodpour, P.; Sandholm, K.; Ekdahl, K.N.; Bucht, A.; Nilsson, B. TiO₂ nanoparticles tested in a novel screening whole human blood model of toxicity trigger adverse activation of the kallikrein system at low concentrations. *Biomaterials* 2015, 51, 58-68 DOI: <https://doi.org/10.1016/j.biomaterials.2015.01.031>
5. Ekdahl, K.N.; Davoodpour, P.; Ekstrand-Hammarström, B.; Fromell, K.; Hamad, O.A.; Hong, J.; Bucht, A.; Mohlin, C.; Seisenbaeva, G.A.; Kessler, V.G.; Nilsson, B. Contact (kallikrein/kinin) system activation in whole human blood induced by low concentrations of α-Fe₂O₃ nanoparticles. *Nanomedicine: Nanotechnology, Biology and Medicine* 2018, 14, 735-744 DOI: <https://doi.org/10.1016/j.nano.2017.12.008>
6. Kristina N Ekdahl, Karin Fromell, Camilla Mohlin, Yuji Teramura & Bo Nilsson (2019) A human whole-blood model to study the activation of innate immunity system triggered by nanoparticles as a demonstrator for toxicity, *Science and Technology of Advanced Materials*, 20:1, 688-698, DOI: 10.1080/14686996.2019.1625721

List of Adverse Outcomes in this AOP

Event: 1846: Thrombosis and Disseminated Intravascular Coagulation

Short Name: Thrombosis and DIC

Key Event Component

Process	Object	Action
Venous thrombosis	platelet	increased
fibrinolysis		decreased
blood coagulation, fibrin clot formation	Fibrin	increased

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:379 - Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation	AdverseOutcome
Aop:395 - Binding of Sars-CoV-2 spike protein to ACE 2 receptors expressed on pericytes leads to disseminated intravascular coagulation resulting in cerebrovascular disease (stroke)	KeyEvent
Aop:377 - Dysregulated prolonged Toll Like Receptor 9 (TLR9) activation leading to Multi Organ Failure involving Acute Respiratory Distress Syndrome (ARDS)	KeyEvent

Stressors

Name
Sars-CoV-2

Biological Context

Level of Biological Organization

Individual

Organ term

Organ term
blood

Domain of Applicability

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
Homo sapiens	Homo sapiens	Moderate	NCBI

Life Stage Applicability

Life Stage	Evidence
All life stages	Not Specified

Sex Applicability

Sex	Evidence
Unspecific	Not Specified

Homo sapiens

Key Event Description

Thrombosis is defined as the formation or presence of a thrombus. Clotting within a blood vessel may cause infarction of tissues supplied by the vessel. Extreme aggravation of blood coagulation induces multiple thrombi in the microvasculature, which leads to consumption coagulopathy followed by disseminated intravascular coagulation (DIC).

DIC is a pathological syndrome resulting from the formation of thrombin, subsequent activation and consumption of coagulation proteins, and the production of fibrin thrombi. The initial pathologic events are thrombotic in nature resulting in thrombotic vascular occlusions. The initial clinical events are usually hemorrhagic resulting in oozing from mucosa and massive gastrointestinal blood loss. The occlusive events occur as a result of fibrin microthrombi or platelet microthrombi that obstruct the microcirculation of organs. This obstruction can result in organ hypoperfusion and ischemia, infarction, and necrosis. All organs are potentially vulnerable to the effects of thrombotic occlusions.

The renal effects of DIC are multifactorial and may be associated with hypovolemia or hypotension. If the hypotension is not corrected it may lead to renal failure due to acute tubular necrosis. Fibrin thrombi may also block glomerular capillaries causing ischemic, renal cortical necrosis (Colman, 1984).

The cerebral effects of DIC often result in nonspecific changes such as altered state of consciousness, convulsions, and coma. Major vascular occlusions, subarachnoid hemorrhage, multiple cortical and brain stem hemorrhages may occur following microvascular occlusions (Schwartzman RJ, 1982).

The pulmonary effects of DIC may be caused by interstitial hemorrhage resulting in a clinical effect resembling acute respiratory distress syndrome (Schwartzman RJ, 1973; Shah RL, 1984).

How it is Measured or Detected

Clinical laboratory tests are used to diagnose DIC.

Prothrombin time (PT) is a blood test that measures how long it takes blood to clot. PT measures the time required for fibrin clot formation after the addition of tissue thromboplastin and calcium. The average time range for blood to clot is about 10 to 13 seconds.

Activated partial prothrombin time (APTT). Platelet poor plasma [PPP] is incubated at 37°C then phospholipid (cephalin) and a contact activator (e.g. Kaolin, micronized silica, or ellagic acid) are added. This leads to the conversion of Factor XI [FXI] to FXIa. The remainder of the pathway is not activated as no calcium is present. The addition of calcium (pre-warmed to 37°C) initiates clotting. The APTT is the time taken from the addition of calcium to the formation of a fibrin clot. The clotting time for the APTT lies between 27-35 seconds.

Decreased fibrinogen concentrations

Diluted plasma is clotted with a high concentration of Thrombin. The tested plasma is diluted (usually 1:10 but this may vary if the Fibrinogen concentration is very low or very high) to minimize the effect of 'inhibitory substances' within the plasma e.g. heparin, elevated levels of FDPs. The use of a high concentration of Thrombin (typically 100 U/ml) ensures that the clotting times are independent of Thrombin concentration over a wide range of Fibrinogen levels.

The test requires a reference plasma with a known Fibrinogen concentration and that has been calibrated against a known international reference standard. A calibration curve is constructed using this reference plasma by preparing a series of dilutions (1:5 –1:40) in the buffer to give a range of Fibrinogen concentrations. The clotting time of each of these dilutions is established (using duplicate samples) and the results (clotting time(s)/Fibrinogen concentration (g/L) are plotted on Log-Log graph paper. The 1:10 concentration is considered to be 100% i.e. normal. There should be a linear correlation between clotting times in the region of 10-50 sec.

The test platelet-poor diluted plasma (diluted 1:10 in buffer) is incubated at 37°C, Thrombin (~100 U/mL) added (all pre-warmed to 37°C). The time taken for the clot to form is compared to the calibration curve and the Fibrinogen concentration deduced. Test samples whose clotting times fall out with the linear part of the calibration curve should be re-tested using different dilutions.

Most laboratories use an automated method in which clot formation is deemed to have occurred when the optical density of the mixture has exceeded a certain threshold.

Platelet Measurements-

A platelet count is the number of platelets a person has per microliter. The ideal platelet range is 150,000 – 400,000 per microliter in most healthy people.

Fibrinolysis measurements-

d-dimer concentration ALERE TRIAGE® D-DIMER TEST

D-Dimer can be measured by a fluorescence immunoassay. To determine cross-linked fibrin degradation products containing D-dimer in EDTA anticoagulated whole blood and plasma specimens. The test is used as an aid in the assessment and evaluation of patients suspected of having disseminated intravascular coagulation or thromboembolic events including pulmonary embolism

Procedure:

Commercially available kits are available to measure d-dimer in whole blood or plasma. The kits contain all the reagents necessary for the quantification of cross-linked fibrin degradation products containing D-dimer in EDTA anticoagulated whole blood or plasma specimens.

Regulatory Significance of the AO

Thrombosis is one of the world's main concerns in terms of severe symptoms or adverse responses of the vaccine for COVID-19 which is caused by SARS-CoV-2. Excess thrombosis leads to DIC, which might be mortal. For safely developing the therapeutics and vaccines of COVID-19, it is regulatory significant to understand the cellular and molecular mechanisms in the pathogenesis of coronaviral infection, which may include thrombosis and DIC, AO1846.

References

Hemostasis and Thrombosis Basic Principles and Clinical Practices Robert W Colman, Jack Hirsh, Victor J. Marder, Edwin W. Salzman (ed) Philadelphia, 1994.

Schwartzman RJ, Hill JB: Neurologic complications of DIC. Neurology 32:791, 1982

Robboy SJ, Minna JD, Colman RW et.al. Pulmonary hemorrhage syndrome as a manifestation of DIC: Analysis of 10 cases. Chest 63:718, 1973.

Stahl RL, Javid JP, Lackner H: Unrecognized pulmonary embolism presenting as DIC. SM J Med 76:772, 1984.

Appendix 2

List of Key Event Relationships in the AOP

List of Adjacent Key Event Relationships

[Relationship: 2056: Binding to ACE2 leads to SARS-CoV-2 cell entry](#)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
Binding of SARS-CoV-2 to ACE2 receptor leading to acute respiratory distress associated mortality	adjacent	High	High
SARS-CoV-2 infection of olfactory epithelium leading to impaired olfactory function (short-term anosmia)	adjacent		
SARS-CoV-2 infection leading to hyperinflammation	adjacent		
Binding of SARS-CoV-2 to ACE2 in enterocytes leads to intestinal barrier disruption	adjacent	High	High
Binding of SARS-CoV-2 to ACE2 leads to viral infection proliferation	adjacent	High	Moderate
Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation	adjacent	High	Moderate
Binding of SARS-CoV-2 to ACE2 leads to hyperinflammation (via cell death)	adjacent	High	High

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
Homo sapiens	Homo sapiens	High	NCBI

Life Stage Applicability

Life Stage	Evidence
All life stages	High

Sex Applicability

Sex	Evidence
Unspecific	High

Key Event Relationship Description

This KER deals with the evidence supporting the individual weight that the surface protein of SARS-CoV-2 spike needs to bind:ACE2, and of being cleaved in two different sites, for viral entry to occur. Viral entry is essential for initiating a cascade of events leading to COVID19.

Quantitative Understanding of the Linkage

Known modulating factors

Modulating Factor (MF)	MF Specification	Effect(s) on the KER	Reference(s)
Chemicals (weak evidence)	PFAS (PFOS, PFOA, PFNA, PFHxS, and GenX)	Short-term (10 days), high dose (20 mg/kg/day) exposure to PFOA leads to about 1.6 fold upregulation of the pulmonary mRNA level of Ace2 and to about 1.5 upregulation of the pulmonary mRNA level of <i>Tmprss2</i> in CD1 mice. [1] Long-term (12 weeks) of an environmentally relevant PFAS mixture (PFOS, PFOA, PFNA, PFHxS, and GenX; each in 2 mg/l concentration) exposure leads to downregulation of pulmonary mRNA expression of Ace2 2.5-fold in C57BL/6 J male mice. A similar decreasing trend was observed in PFAS-exposed male mice for <i>Tmprss2</i> . [2]	1. doi: 10.1016/j.toxrep.2021.11.014 2. doi: 10.1016/j.taap.2022.116284
Sex (strong evidence)	female sex (XX chromosomes)	ACE2 localizes to the X sex chromosome and displays a sex-dependent expression profile with higher expression in female than in male tissues [1,2]. Estradiol inhibits TMPRSS2, needed to facilitate SARS-CoV-2 entry into the cell [3]. Estrogen therapy has been shown to mitigate endoplasmic reticulum stress induced by SARS-CoV-2 invasion through activation of cellularunfold protein response and regulation of inositol triphosphate (IP3) and phospholipase C [4]. Different studies have also illustrated that estradiol increases the expression of ADAM17, leading to high-circulating soluble ACE2 potentially neutralizing SARS-CoV-2 and preventing its binding to mACE2. [5] Thus, Estradiol might reduce SARS-CoV-2 infectivity through modulation of cellular ACE2/TMPRSS2/ADAM17 axis expression.	1. doi: 10.1177/1933719115597760 2. doi: 10.1016/j.mce.2015.11.004 3. doi: 10.1007/s11033-021-06390-1 4. doi: 10.1016/j.mehy.2020.110148 5. doi: 10.2217/pgs-2020-0092
	Male sex (XY chromosomes)	Androgen receptors (ARs) play a key role in increasing transcription of TMPRSS2. This may explain the predominance of males to COVID-19 fatality and severity. [6]	6. doi: 10.1073/pnas.2021450118
Age	Young/old people	ACE2 protein expression is increased with aging in several tissues [1], including lungs and particularly in patients requiring mechanical ventilation [2]. During aging, telomere dysfunction activates a DNA damage response leading to higher ACE2 expression. Thus, telomere shortening could contribute to make elderly more susceptible to SARS-CoV-2 infection [3].	1. doi: 10.1016/j.exger.2021.111507 2. doi: 10.1371/journal.pone.0247060 3. doi: 10.1525/embr.202153658
Lipids	Atherogenic dyslipidemia	Lipids, as important structural components of cellular and sub-cellular membranes, are crucial in the infection process [1]. Changes in intracellular cholesterol alter cell membrane composition, impacting structures such as lipid rafts, which accommodate many cell-surface receptors [2], including ACE2 and TMPRSS2 [3, 4]. In COVID-19. In an <i>in vitro</i> study, the depletion of membrane-bound cholesterol in ACE2-expressing cells led to a reduced infectivity of SARS-CoV [3]. In vitro, higher cellular cholesterol increased uptake of SARS-CoV-2 S protein; this effect was decreased with Methyl-beta-cyclodextrin, a compound which extracts cholesterol from cell membranes [5]. HDL scavenger receptor B type 1 (SR-B1), a receptor found in pulmonary and many other cells, could facilitate ACE2-dependent entry of SARS-CoV-2 [6].	1. doi: 10.1001/jama.2020.12839 2. doi: 10.3389/fcell.2020.618296 3. doi: 10.1016/j.bbrc.2008.02.023 4. doi: 10.1096/fj.202000654R 5. doi: 10.1101/2020.05.09.086249
		In COVID-19, ACE2 is highly expressed in adipose tissue, thus excess adiposity may drive more infection [8]. Obese patients have more adipose tissue and therefore more ACE2-expressing cells [9]. SARS-CoV-2 dysregulates lipid metabolism in the host and the effect of such dysregulated lipogenesis on the	6. doi: 10.1038/s42255-020-00324-0 7. doi: 10.1016/j.bbap.2020.158849

Modulating Factor (MF)	MF Specification	regulation of ACE2, specifically in obesity [10]. Lung epithelial cells infected with SARS-CoV-2 showed upregulation of genes associated with lipid metabolism [11], including the SOC3 gene. Effects on the KEF Severe obesity showed higher Ace2 expression in the lungs, which negatively correlated with the expression of Srebp1 showed a significant increase in Ace2 expression in the lung. Lipids, including fatty acids, could interact directly with SARS-CoV-2 influencing spike configuration and modifying the affinity for ACE2 and thus its infectivity [12]. The dysregulated lipogenesis and the subsequently high ACE2 expression in obese patients might be one mechanism underlying the increased risk for severe complications [10].	8.doi: 10.1016/j.jobmed.2020.100283 9.doi: 10.3390/ijms21103544 10.doi: 10.1101/2020.04.16.20068528	Reference(s)
Vitamin D (moderate evidence)	Vitamin D deficiency	Vitamin D administration enhanced mRNA expression of VDR and ACE2 in a rat model of acute lung injury [1]. In particular, vitamin D upregulates the soluble ACE2 form [2]. Thus, low vitamin D status may impair the trapping protective mechanism of soluble ACE2 [3]. Furthermore, vitamin D deficiency has been shown to reduce the expression of antimicrobial peptides (-defensin, cathelicidin), which act against enveloped viruses [4,5]. In COVID-19. Decreased sACE2 and cellular viral defense might be some mechanisms explaining how low vitamin D modulate SARS-CoV-2 infectability.	1. doi: 10.1016/j.injury.2016.09.025 2. doi: 10.1152/ajplung.00071.2009 3. doi: 10.3390/ijms22105251 4. doi: 10.1007/s11154-021-09679-5 5. doi: 10.1080/14787210.2021.1941871	
Gut microbiota	Gut dysbiosis (alteration of gut microbiota)	Some evidence shows that gut microbiota influences Ace2 expression in the gut. Colonic Ace2 expression decreased significantly upon microbial colonization in mice and rats [1,2]. <i>Coprococcus</i> enrichment was associated with severe COVID-19 in patients [3] and was shown to upregulate colonic ACE2 in mice [4]. The abundance of <i>Bacteroides</i> species was associated with reduced ACE2 expression in the murine gut [4] and negatively correlated with fecal SARS-CoV-2 load [3,5]. Thus, gut dysbiosis might lead to higher levels of ACE2 in the gut, potentially increasing the ability of SARS-CoV-2 to enter enterocytes.	1. doi: 10.1080/19490976.2021.1984105 2. doi: 10.1161/HYPERTENSIONAHA.120.15360 3. doi: 10.1053/j.gastro.2020.05.048 4. doi: 10.1016/j.cell.2017.01.022 5. doi: 10.1016/j.tifs.2020.12.009	
Genetic factors		Polymorphisms inducing amino acid residue changes of ACE2 in the binding interface would influence affinity for the viral S protein. Evidence exists that K353 and K31 in hACE2, the main hotspots that form hydrogen bonds with the main chain of N501 and Q493 in receptor-binding motif respectively, play a role in tightly binding to the S protein of SARS-CoV-2 [1]. Around the twenty natural ACE2 variants, three alleles of 17 variants were found to affect the attachment stability [2]. Thus, the ACE2 variants modulating the interaction between the virus and the host have been reported to be rare, consistently with the overall low appearance of ACE2 polymorphisms. In this context, it is key to approach both the ACE2 genotypes and the clinical descriptions of the phenotypes in a population-wide manner, in order to better understand how ACE2 variations are relevant in the susceptibility for SARS-CoV-2 infection [3]. In addition, since ACE2 is X-linked, the rare variants that enhance ACE2 binding are expected to increase susceptibility to COVID-19 in males [4]. On the other hand, the X-chromosome inactivation of the female causes a "mosaic pattern", which might be an advantage for females in terms of reduced viral binding [5]. TMPRSS2 single-nucleotide polymorphisms (SNPs) were associated with a frequent "European haplotype" [6], which not observed in Asians, is suggested to upregulate TMPRSS2 gene expression in an androgen-specific way. Thus, there is a need for <i>in vitro</i> validation studies to assess the involvements of population-specific SNPs of both ACE2 and TMPRSS2 in susceptibility toward SARS-CoV-2 infection. The occurrence of a pandemic is related to the genetics of the infecting agent. In the case of SARS-CoV-2, through genomic surveillance it is possible to track the spread of SARS-CoV-2 lineages and variants, and to monitor changes to its genetic code that can influence viral entry and production. Consequently, genomic surveillance is crucial to understand how mutations occurring on SARS-CoV-2 genome influence and drive the pandemic [7]. For example, a recent study [8] highlights that through genomic surveillance it is possible to trace co-infections by distinct SARS-CoV-2 genotypes, which are expected to have a different impact on factors modulating COVID-19. Genomic surveillance of SARS-CoV-2 is able to reveal tremendous genomic diversity [9], and coupled with language models and machine learning approaches, contributes to predicting the impact of mutations (such as those occurring in the spike protein), and thus can better address challenging aspects, like an estimation of the efficacy of therapeutic treatments [10].	[1] doi: 10.1080/07391102.2020.1796809 [2] doi: 10.1002/jmv.26126 [3] doi: 10.1038/s42003-021-02030-3 [4] doi: 10.1101/2020.04.05.026633 [5] doi: 10.3390/ijms21103474 [6] doi: 10.18632/aging.103415 [7] doi: 10.1038/s41588-022-01033-y [8] doi: 10.1038/s41598-022-13113-4 [9] doi: 10.1371/journal.pone.0262573 [10] doi: 10.3389/fgene.2022.858252	
Therapeutic intervention against COVID-19	Casirivimab, Imdevimab and Sotrovimab	Are monoclonal antibodies designed to recognize and attach to two different sites of the Receptor-Binding Domain (RBD) of the S protein of SARS-CoV-2, blocking the virus to enter cells [1,2,3].	1) 10.1056/NEJMoa2035002 2) EMA Starts Rolling Review of REGN-COV2 Antibody Combination (Casirivimab / Imdevimab). EMA 2021. Available online: https://www.ema.europa.eu/en/news/ema-starts-rolling-review-regn-cov2-antibody-combination-casirivimab-imdevimab (accessed on 12 May 2022)	3) EMA Starts Rolling Review of Sotrovimab (VIR-7831) for COVID-19. EMA 2021. Available online: https://www.ema.europa.eu/en/news/ema-starts-rolling-review-sotrovimab-vir-7831-covid-19 (accessed on 12 May 2022)
Heparin		Interacts directly with viral particles and has been shown to bind to the SARS-CoV-2 S1 Spike RBD, causing significant protein architecture alteration, impacting infectivity [1,2].	1) 10.3389/fmed.2021.615333 2) 10.1055/s-0040-1721319	
Air pollution		Air pollution induces Increased expression of ACE2 which may result in increased viral entry and coronavirus production. Increased ACE2 expression has been reported in the respiratory system in response to air pollution exposure (1-4). Increased expression may affect susceptibility to SARS-CoV-2 infection. Similarly, some constituents of air pollution (PM, ozone) have been reported to increase the expression of TMPRSS2 (3, 5-6).	1) https://doi.org/10.1186/s12989-015-0094-4 2) 10.1016/j.burns.2015.04.010 3) 10.1016/j.envres.2021.110722 4) 10.3390/ijerph17155573 5) 10.1186/s12989-021-00404-3 6) https://doi.org/10.1038/s41598-022-04906-8	

Modulating Factor (MF)	MF Specification	ACE2 mRNA and protein levels, as well as enzymatic activity, were shown to be upregulated in endothelial cells parts from patients with end-stage HF, as well as in the HF rat model [1-3].	Reference(s)
Pre-existing heart failure		<p>Myocytes, fibroblasts, vascular smooth muscle cells, pericytes [4] and endothelial cells of the coronaries [5] express ACE2, while myocytes in patients suffering from heart disease exhibit higher ACE2 expression [6].</p> <p>Pericytes - the mural cells lining microvasculature, interacting with endothelial cells notably to maintain microvascular stability - exhibited the strongest ACE2 expression in HF patients [7], rendering these cells involved in the coronary vasculature of the myocardium, more susceptible to infection.</p> <p>Furthermore, SARS-CoV-2 infects and replicates in pericytes, and a decrease in their numbers follows [8].</p> <p>Patients with pre-existing HF showed increased ACE2 levels in myocytes and pericytes, having thereby higher risk of heart injury [7, 9].</p> <p>In addition, sACE2 levels are higher in HF patients [10, 11] and sACE2 activity is increased in HF [12].</p> <p>In contrast to a protective role of sACE2, it has been proposed that viral binding to circulating sACE2 forms SARS-CoV-2/sACE2 complexes, which might mediate infection of cells in distal tissues [13]; hence, pre-existing HF might disseminate SARS-CoV-2 infection.</p> <p>Interestingly, the increase in sACE2 activity is associated with HF with reduced ejection fraction (HFREF) but not with HF with preserved ejection fraction (HFpEF), suggesting (i) a rather complex role of HF in regulating ACE2-mediated infection by SARS-CoV-2 [10] and (ii) the potential of sACE2 activity to be used as a biomarker to distinguish between the two HF types.</p> <p>Lastly, it is noteworthy that Khouri et al. provided evidence in a different direction, by showing that ADAM17 and TMPRSS2 [14] expression levels are downregulated in a HF rat model, thus potentially conferring a protective role against infection by SARS-CoV-2 in HF [3].</p>	<p>1: https://doi.org/10.1186/1741-7015-2-19</p> <p>2: https://doi.org/10.1161/01.CIR.0000094734.67990.99</p> <p>3: https://onlinelibrary.wiley.com/doi/10.1111/jcmm.16310#:~:text=https%3A//doi.org/10.1111/jcmm.16310</p> <p>4: https://doi.org/10.1161/CIRCULATIONAHA.120.047911</p> <p>5: https://doi.org/10.1152/ajpheart.00331.2008</p> <p>6: https://doi.org/10.1093/eurheartj/ehaa311</p> <p>7: https://doi.org/10.1093/cvr/cvaa078</p> <p>8: https://doi.org/10.21203/rs.3.rs-105963/v1</p> <p>9: https://doi.org/10.1016/j.jacbs.2020.06.007</p> <p>10: https://doi.org/10.1177/1470320316668435</p> <p>11: https://doi.org/10.1093/eurheartj/ehaa697</p> <p>12: https://doi.org/10.1002/jmv.27144</p> <p>13: https://doi.org/10.1002/rmv.2213</p> <p>14: https://doi.org/10.1016/j.cell.2020.02.052</p>
Diet	Chemicals in foods affect ACE3 expression	<ul style="list-style-type: none"> Geranium and lemon oils were found to reduce in vitro ACE2 activity and expression, as well as ACE2 and TMPRSS2 mRNA levels [207]. Several molecular modelling and docking studies indicate the potential for compounds found in garlic [208], turmeric (curcumin) [209], thyme and oregano (carvacrol) [210], green tea [211] and other plant foods (quercetin) [212] to inhibit binding of SARS-CoV-2. Pelargonidin, found in red and black berries, was shown to dose-dependently block SARS-CoV-2 binding to ACE2, reduce SARS-CoV-2 replication in vitro and reduce ACE2 expression [213]. Quercetin and related compounds inhibit recombinant human ACE2 activity [214] at physiologically relevant concentrations in vitro. In a human crossover study, 30-day supplementation with resveratrol decreased ACE2 in adipose tissue [216], potentially attenuating an increased risk for infection and viral replication in humans with obesity. In vitro, resveratrol inhibited the replication of SARS-CoV-2 [217]. 	<ul style="list-style-type: none"> 207: http://doi.org/10.3390/plants9060770 208: http://doi.org/10.1021/acsomega.0c00772 209: http://doi.org/10.1007/s13337-020-00598-8 210: http://doi.org/10.1080/07391102.2020.1772112 211: http://doi.org/10.1080/07391102.2020.1779818 212: http://doi.org/10.18632/aging.103001 213: http://doi.org/10.1016/j.bcp.2021.114564 214: http://doi.org/10.1021/acs.jafc.0c05064 216: http://doi.org/10.1080/21623945.2021.1965315 217: http://doi.org/10.1002/ptr.6916

References

COVID19 References related to CNS:

de Morais SDB, et al. Integrative Physiological Aspects of Brain RAS in Hypertension. *Curr Hypertens Rep.* 2018 Feb 26; 20(2):10.

Gallagher PE, et al. Distinct roles for ANG II and ANG-(1-7) in the regulation of angiotensin-converting enzyme 2 in rat astrocytes. *Am J Physiol Cell Physiol.* 2006 Feb; 290(2):C420-6.

Gowrisankar YV, Clark MA. Angiotensin II regulation of angiotensin-converting enzymes in spontaneously hypertensive rat primary astrocyte cultures. *J Neurochem.* 2016 Jul; 138(1):74-85.

Hamming I et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. *J Pathol.* 2004 Jun;203(2):631-7.

Jakhmola S, et al. SARS-CoV-2, an Underestimated Pathogen of the Nervous System. *SN Compr Clin Med.* 2020.

Lukiw WJ et al. SARS-CoV-2 Infectivity and Neurological Targets in the Brain. *Cell Mol Neurobiol.* 2020 Aug 25;1-8.

Matsushita T, et al. CSF angiotensin II and angiotensin-converting enzyme levels in anti-aquaporin-4 autoimmunity. *J Neurol Sci.* 2010 Aug 15; 295(1-2):41-5.

Murta et al. Severe Acute Respiratory Syndrome Coronavirus 2 Impact on the Central Nervous System: Are Astrocytes and Microglia Main Players or Merely Bystanders? *ASN Neuro.* 2020. PMID: 32878468

Shi A, et al. Isolation, purification and molecular mechanism of a peanut protein-derived ACE-inhibitory peptide. *PLoS One.* 2014; 9(10):e111188.

Xia, H. and Lazartigues, E. Angiotensin-Converting Enzyme 2: Central Regulator for Cardiovascular Function. *Curr. Hypertens.* 2010 Rep. 12 (3), 170– 175

Relationship: 2496: SARS-CoV-2 cell entry leads to IFN-I response, antagonized

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
Binding of SARS-CoV-2 to ACE2 leads to viral infection proliferation	adjacent	High	Not Specified
Binding of SARS-CoV-2 to ACE2 in enterocytes leads to intestinal barrier disruption	adjacent	Low	

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
Binding of SARS-CoV-2 to ACE2 receptor leading to acute respiratory distress associated mortality	adjacent	Moderate	Moderate
Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation	adjacent	High	Moderate
Binding of SARS-CoV-2 to ACE2 leads to hyperinflammation (via cell death)			

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
mammals	mammals	High	NCBI

Life Stage Applicability

Life Stage	Evidence
All life stages	High

Sex Applicability

Sex	Evidence
Unspecific	High

Sex and age applicability

It has been shown that in human populations males are more likely to suffer severe infections and deaths due to COVID-19 than females. However, in the viral entry and infection phase, one study found that women of working age had higher infection rates than men, but the suggested cause was higher contact rates among women (Doerre and Dobhammer, 2022). Contact rate increase is an important transmission factor but would not constitute a gender-based biological difference in viral entry or IFN-I pathway antagonism. A biological basis for females having higher levels of Type I IFN has been proposed concerning Toll-like receptor (TLR) 7. TLR7 is expressed in plasmacytoid dendritic cells (pDCs), an immune cell type that on infection with SARS-CoV-2 migrates from peripheral blood into the respiratory tract epithelium. TLR7 stimulates higher IFN-I production in pDCs in women than in men (Van der Sluis et al. 2022). It is proposed that this is due to the TLR7 gene being on the X chromosome, and that X inactivation in males is incomplete regarding the TLR7 gene, creating a double gene-dose effect in females (Spiering and de Vries, 2021). In a mouse SARS-CoV model, XY males had more adverse outcomes than XX females and XXY males (Gadi et al. 2020). Additionally, loss-of-function TLR7 mutations have been identified that are associated with increased COVID-19 severity (Szeto et al. 2021). However, these results focus on disease outcome as the endpoint, where factors beyond the initial antiviral response could be involved. Also note that the nasal and upper respiratory tract (URT) epithelial cells express ACE2 receptors for SARS-CoV-2 entry while the pDCs do not, relying on viral endocytosis (Van der Sluis et al. 2022). There is not a clear picture in the literature of the timing of pDC arrival in the epithelium after exposure, and the role of TLR7 in sex differences is currently hypothetical (Spiering and de Vries, 2021).

In a large study modelling URT viral load dynamics drawn from measurements in 605 human subjects, variations over 5 orders of magnitude in URT viral load from the time of symptom onset was not explained by age, sex, or severity of illness. Additionally, these variables did not explain modelling results concerning control of viral load by immune responses in the early (innate) or late (adaptive) phases (Challenger et al. 2022). Other sources also support that rate of infection and measured viral load does not differ by gender (e.g., Arnold et al. 2022; Qi et al. 2021; Cheemarla et al. 2021). Therefore, evidence exists that the components of cell entry and the early antiviral response are not influenced by gender specific differences such as sex hormone levels or sex chromosomes to the extent of affecting viral load. Elderly people are more susceptible to severe disease than children and young adults, but Challenger et al. (2022) found no evidence indicating that life stage increases infectability or early viral load generation. However, Sharif-Askari et al. (2022) reported that children had higher expression of IFN-I and associated ISGs than adults.

Taxonomic applicability

Generally, most mammals are likely susceptible to the SARS-CoV-2 virus based on reports of naturally and experimentally infected animals (See AO 1939). No infections have been reported in other classes of vertebrates. Other than bioinformatic studies on the ACE2 sequence across vertebrates however, there have been few studies on the mechanisms of susceptibility to infection of non-human hosts. Three studies were found on protein targets in the IFN-I innate immune response pathway that included other vertebrates. Rui et al. (2021) showed that SARS-CoV-2 3CLpro and ORF3a inhibit vertebrate (human, mouse, and chicken) STING ability to induce IFN β promoter activity in a dose-dependent manner in HEK293T cells transfected with IFN β -luciferase reporter plasmid vectors, together with tagged STING and cGAS vectors and increasing amounts of the SARS-CoV-2 3CLpro or ORF3a expression vectors. This study shows that the vulnerability of the host IFN-I pathway protein components to inhibition by SARS-CoV-2 protein stressors is not limited to humans, however Rui et al. (2021) did not determine the specific amino acids involved in the STING-ORF3a or STING-3CLpro interactions. Mostaqil et al. (2020) studied the cleavage site of IRF3 by PLpro (SARS-CoV-2 NSP3) and compared sequences across mammals. They determined that the IRF3 cleavage site in mammalian species in the taxonomic orders of primates, carnivora, artiodactyla, chiroptera (bats) and a few other mammals was conserved and would generally be susceptible to cleavage, and therefore IFN-I antagonism, but rodentia IRF3 would likely not be susceptible. Hameedi et al. (2022) compared molecular dynamic simulations of 3CLpro cleavage of NEMO in humans and mice showing a decrease in the average number of contacts between mNEMO and 3CLpro compared to hNEMO. Also, hNEMO may be more strongly bound to the catalytic site, and the mNEMO/3CLpro interaction appears more prone to destabilization (Hameedi et al., 2022).

Key Event Relationship Description

Upon entry of a virus into the host cell (KE1738), the virus is unpackaged from the structural nucleocapsid (N), envelope (E), and membrane (M) proteins. The viral RNA is detected by Pattern Recognition Receptor (PRR) proteins including RIG-I and MDA5 but the M proteins can interact with these PRRs directly, and block this initial host reaction (Fu et al., 2021). The viral genomic RNA can then be translated directly at the host ribosomes. The viral proteins are processed through cleavage by viral protease enzymes. This releases a repertoire of non-structural proteins (NSPs) and accessory open reading frame (ORF) proteins that has evolved, for example in the SARS-CoV-2 virus, to bind and block the proteins in the interferon I (IFN-I) antiviral cascade (KE1901). The normal function of the host's IFN-I response to other viruses is the expression of IFN-I which in turn stimulates the expression of many interferon-stimulated gene (ISG) proteins with antiviral functions. The SARS-CoV-2 antagonism of the IFN-I pathway delays or curtails the expression of IFN-I and ISG proteins.

Evidence Supporting this KER

Empirical evidence supporting this relationship is described below.

Biological Plausibility

This relationship is concerned with how entry of the virus into the host cell and subsequent release and transcription of viral proteins affects the downstream innate immune response. In particular, literature suggests the main pathway antagonized is the expression of type I interferons (IFN-I), consisting primarily of IFN α and IFN β , and IFN-I stimulated genes (ISGs) (Banerjee et al., 2020; Blanco-Melo et al., 2020; Cheemarla et al., 2021; Xia et al., 2020; Sharif-Askari et al., 2022). Although there are few studies with evidence for cell entry leading directly to reduced IFN expression (Xia et al., 2020; Hatton et al. 2021), several studies demonstrate individual viral protein interactions with and blocking of host proteins in the IFN-I pathway or ISG proteins (Schubert et al. 2020; Thoms et al. 2020; Rui et al. 2021; Shin et al. 2020; Liu et al. 2021; Mostaqil et al., 2021; Xia et al. 2020; Quarleri and Delpino, 2021; Xia and Shi, 2020; Miorin et al. 2020; Kato et al. 2020; Fu et al. 2020; Chen et al. 2020; Han et al. 2020; Jiang et al. 2020; Wu et al. 2021; Gordon et al. 2020; see below and also key event 1901). These studies provide the biological rationale that SARS-CoV-2 entry into the host cell causes interactions between viral proteins and known protein components of the host IFN-I antiviral response, resulting in inhibition of IFN-I and ISG expression.

Empirical Evidence

Empirical evidence in support of temporal concordance comes from patient reports, showing that interferon expression is delayed by SARS-CoV-2 compared to other viruses like influenza, which is also described as an untuned or imbalanced response between interferons being initially low in moderate to severe cases (Banco-Melo et al. 2020; Galani et al., 2021; Hadjadj et al., 2020; Hatton et al., 2021; Rouchka et al., 2021). This indicates that SARS-CoV-2 stressors are suppressing the interferon response and highlights an important point regarding the difference between SARS-CoV-2 and other viruses in the stressors produced upon viral entry. Other viruses, as well as non-viral compounds used in research (e.g., polyinosinic:polycytidilic acid or poly[I:C]) enter the cell and stimulate the normal functional operation of the immune response, while SARS-CoV-2 blocks the response at multiple points, acting as a true prototypical stressor.

Hatton et al. (2021) used human nasal epithelium differentiated at the air-liquid interface (ALI) cultures (organoids) with several cell types. Secretory cells were the cell type with the highest

expression of viral transcripts, with ciliated and deuterosomal cells also showing expression. The SARS-CoV-2-infected secretory and ciliated cells also had many downregulated ISGs. Compared to SARS-CoV-2, influenza A virus induced significantly higher levels of IFN-I (IFN β) and IFN-III (IFNA1) at 6 and 24 hours post infection, as well as ISGs Ubiquitin specific peptidase 18 (USP18), radical s-adenosyl methionine domain containing 2 (RSAD2), and ubiquitin-like protein ISG15 at 24 hours post infection (Hatton et al., 2021).

Individual stressors from the virus were investigated by Xia et al. (2020) using an IFN- β promoter luciferase assay. HEK293T cells were co-transfected with luciferase reporter plasmids, the specific viral protein expressing plasmid, and stimulator plasmid RIG-I (2CARD). Of the viral proteins tested (NSPs 1, 2, 4-16, S, N, E, M, and ORFs 3a, 3b, 6, 7a, 7b, 8, and 10), four proteins (NSPs 1, 6, and 13 and ORF6) significantly reduced IFN- β induction compared to the control (empty vector). A similarly conducted ISRE-promoter luciferase assay showed significant inhibition of the IFN-I signaling pathway (normally resulting in induction of ISGs) by NSPs 1, 6, 7, 13 and 14, ORFs 3a, 6, 7a and 7b, and M protein (Xia et al., 2020). See Xia et al. (2020) and Xia and Shi (2020) for schematics depicting the actions of the SARS-CoV-2 proteins on the protein components of the IFN-I antiviral response pathway.

SARS-CoV-2 stressor proteins and the IFN-I pathway responses were investigated individually in the following studies:

Viral protein stressor	Host protein	Crystal Structure PDB	KER findings: Binding, Stressor/IFN-I or ISG expression
N (nucleocapsid)	RIG-I: Retinoic acid-inducible gene I	Not available (NA)	Significant reductions in IFN β mRNA induction were seen when SARS-CoV-2 N protein was co-transfected into A549 cells with RIG-I, MAVS, or TBK1, and similar transfections resulted in IFN β promoter activity reduction in poly(I:C)-stimulated HEK293T cells (Chen et al., 2020).
NSP3 Papain-like protease (P ₁ pro)	MDA5: Melanoma differentiation-associated gene 5	NA	Sun et al. (2022) determined that SARS-CoV-2 and avian coronavirus infectious bronchitis virus (IBV) NSP3 PLpro N-terminal domain directly interacts with MDA5 to inhibit IFN β expression when co-transfected in HEK293T cells.
M (membrane)	MAVS: Mitochondrial antiviral signaling protein	NA	Fu et al. (2020) found M interaction with MAVS (as determined by coimmunoprecipitation and in vitro pull-down assay) interferes with recruitment of downstream pathway proteins TRAF, TBK1, and IRF3, inhibiting IFN β 1 promoter, IFN-stimulated response element (ISRE), and NF κ B promoter activity in a dose-dependent manner. The M protein inhibited the transcription of ISGs (ISG56, CXCL10, and TNF) based on mRNA levels, and inhibited IFN β and TNF α secretion based on measures of these proteins in HEK293 cell culture.
NSP3 Papain-like protease (P ₁ pro)	ISG15: Ubiquitin-like interferon stimulated gene 15	6YVA	Shin et al. (2020) generated a crystal structure and found that SARS-CoV-2 P ₁ pro preferentially cleaves ISG15. ISG15 functions in antiviral immunity to directly inhibit viral replication (Peng and Lenschow, 2018).
ORF9b	TOMM70: Translocase of outer mitochondrial membrane	7KDT	Gordon et al. (2020) showed interaction between TOMM70 and ORF9b via affinity purification-mass spectrometry (AP-MS). TOMM70-ORF9b interaction is supported by several studies (Gao et al., 2021; Brandherm et al., 2021; Ayinde et al., 2022). Jiang et al. (2020) used a dual luciferase reporter assay to show human IFN- β promoter activity was significantly reduced in the presence SARS-CoV-2 Orf9b compared to controls.
ORF6	Nup98-RAE1: Nuclear pore complex 98-ribonucleic acid export 1	7VPG , 7VPH	Gordon et al. (2020) showed interaction between ORF6 and the host Nup98-RAE1 protein pair via AP-MS. The interaction was confirmed by Miorin et al., 2020 and Li et al., 2021 (see crystal structures). Miorin et al. (2020) also demonstrate that upon treatment with recombinant IFN-I in HEK293T cells, Nup98 binding to SARS-CoV-2 Orf6 blocks translocation of STAT1 into the nucleus, resulting in suppression of ISRE-dependent gene expression.
ORF6	KPNA2: Karyopherin subunit alpha 1	NA	Using co-immunoprecipitation, Xia et al. (2020) showed that ORF6 selectively bound with KPNA2. Expression of ORF6 blocked nuclear translocation of IRF3, suggesting that ORF6 inhibited IFN- β production by binding to KPNA2 to block IRF3 nuclear translocation.
N (nucleocapsid)	G3BP1/2: GTPase-activating protein SH3 domain-binding protein	7SUO	Biswal et al. (2022) solved the X-ray crystal structure of the G3BP1 N-terminal nuclear transport factor 2-like domain bound to the first intrinsically disordered region of SARS-CoV-2 N protein.
ORF9b	NEMO: Nuclear factor kappa-B (NF- κ B) essential modulator	NA	The interaction of the N-terminus of ORF9b with NEMO upon viral infection interrupts its K63-linked polyubiquitination, thereby inhibiting viral-RNA-induced IFN β 1 activation in HEK293T cells in an ORF9b-dose-dependent manner (Wu et al., 2021)
NSP5 (3CLpro)	NEMO	7T2U	Hameedi et al. (2022) solved the X-ray crystal structure of 3CLpro bound to NEMO and characterized 3CLpro cleavage of NEMO.
	POLA1: DNA polymerase alpha 1,	7OPL	Kilkenny et al., 2021 demonstrate that components of the host DNA polymerase α (Pol α)-primase complex or primosome directly bind with SARS-CoV-2 NSP1. They also provide a

NSP1	catalytic subunit 40S ribosomal subunit	6ZQJ , 6ZOK , 6ZOL	cryo-electron microscopy structure of NSP1 bound to the primosome. Schubert et al. (2020) provide cryo-EM structures of NSP1 bound to the 40S ribosome subunit, inhibiting translation of host proteins.	
NSP6, NSP13	TBK1: TANK-binding kinase 1	NA	Sui et al. (2022) show that NSP13 recruits TBK1 to an aggregation of ubiquitinated proteins (p62) for autophagic degradation, resulting in inhibition of IFN β production, and that NSP13 impaired IRF3 luciferase reporter activity induced by TBK1 in a dose-dependent manner. Xia et al. (2020) co-transfected HEK293T cells with plasmids containing TBK1 and either nsp6 or nsp13. Only NSP13 inhibited TBK1 phosphorylation, and did so in a dose-dependent manner, but both NSP6 and NSP13 suppressed IRF3 phosphorylation. Both NSP6 and NSP13 bind TBK1, as shown by co-immunoprecipitation. NSP6 binds to TBK1 without affecting TBK1 phosphorylation but this decreases IRF3 phosphorylation, while NSP13/TBK1 binding inhibits TBK1 phosphorylation. In both cases, IFN- β production is reduced (Xia et al., 2020).	
NSP5 (3CLpro), ORF3a	STING: Stimulator of interferon genes	NA	Rui et al. (2021) SARS-CoV-2 ORF3a and 3CLpro inhibited IFN β promoted activity through cyclic GMP-AMP synthase (cGAS)-STING pathways, specifically through interaction with STING, as indicated by co-immunoprecipitation. 3CLpro also bound to STING and specifically inhibited K63-ubiquitin-mediated modification of STING, which is required for signaling and downstream expression of IFN-I.	
NSP3 Papain-like protease (P1pro)	IRF3: Interferon regulatory factor 3	NA	Mostaquil et al. (2020) showed with a fluorescent-based cleavage assay that NSP3 (P1pro) cleaves IRF-3, and thereby reduces IRF-3 available for induction of IFN-I expression.	
N (nucleocapsid)	STAT1/STAT2: Signal transducer and activator of transcription	NA	Mu et al. (2020) used Sendai virus (SeV)-induced ISRE-promoter activation via the luciferase reporter assay to determine that SARS-CoV-2 N protein can inhibit the phosphorylation of STAT1 and STAT2 resulting in decrease in ISG production. They also showed through co-immunoprecipitation that N interacts with both STAT1 and STAT2, and that N inhibits STAT1/2 phosphorylation by blocking interactions with kinases including JAK1.	

Uncertainties and Inconsistencies

There are uncertainties based on differing disease outcomes, especially associated with timing of IFN increase or suppression under different cell culture circumstances and in different people infected with SARS-CoV-2. Effectiveness of IFN treatment is still uncertain due to some studies evaluating IFN along with other drugs (Sodeifian et al., 2021).

Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) are ISGs that have been implicated in SARS-CoV-2 entry as well as antiviral activity (Prelli Bozzo et al., 2021), in addition to the fact that the SARS-CoV-2 entry receptor ACE2 is an IFN-I stimulated gene (Ziegler et al., 2020). These are some of the paradoxes that confound transcriptomic studies that determine up- or downregulation of IFNs and ISGs in response to infection, and responses are highly dependent on the time points sampled. Efforts to address uncertainties around when and under what circumstances IFNs and ISGs either promote or suppress the virus are ongoing.

Quantitative Understanding of the Linkage

The current quantitative understanding of this relationship is described below.

Response-response relationship

A specific titer of virus can be used for infection, but as shown by Hatton et al. (2021), different cell types may express different levels of the actual stressors (viral protein transcripts). Because there are many stressors from each viral particle, which might be differentially expressed and also differentially inhibit each of their targets, a consistent whole viral entry dose leading to IFN-I or ISG response is difficult to measure. However, Chen et al. (2020), Xia et al. (2020), Fu et al. (2021), Wu et al. (2021) and Sui et al., (2022) all showed that individual protein stressor components of SARS-CoV-2 reduced IFN-I expression in a dose-dependent manner.

Time-scale

The viral entry MIE and early KEs coincide with the time from exposure to symptoms, within which are the latent period, or time from exposure to infectiousness, and the serial interval, or the time interval between the onset of symptoms in the primary (infector) and secondary case (infectee). Viral entry leading to antagonism of the IFN response occurs during the latent period of the disease prior to symptom onset. Latent period calculation is based on serial interval and median pre-symptomatic infectious period: Serial interval 5.2 days (Rai et al. 2021) – 2.5 days pre-symptomatic infectious period (Byrne et al. 2020) equals approximately 2.7 days. The latent period was longer in asymptomatic cases (4-9 days); pre-symptomatic transmission occurs from about 3 days after exposure to symptom onset at about day 5-7, viral load peaks from about day 5-7 to day 9-11, and the host can remain infectious to symptom clearance or death (Byrne et al. 2020). As noted, IFN administered prior to exposure or within the latent period window can stop replication. However, IFN administered too late, in the inflammatory stage (post-symptom onset), led to long-lasting harm and worsened disease outcome (Sodeifian et al., 2022). In a study using a primary nasal cell model (differentiated at air-liquid interface), the virus did not proliferate beyond the limit of assay detection if treated with IFN beta or lambda 16 hours prior to infection, and virus was significantly reduced in cultures treated 6h post-infection compared to untreated cultures. Treatments 24h post infection were not significantly different from untreated controls for either type of IFN (Hatton et al., 2021).

Known modulating factors

Genetic mutations. Autoimmunity to IFNs has been found in some COVID-19 patients. These individuals produce autoantibodies that attack IFN (Bastard et al., 2021 and 2022), which may be associated with human leukocyte antigen (HLA) gene mutations (Ku et al., 2016; Chi et al., 2013). Zhang et al., 2020 note inborn errors (genetic mutations) in IFN-I immunity that result in severe COVID-19, but some are also genes for proteins involved in the initial response (TBK1, IRF3, NEMO, IFNAR1, IFNAR2, STAT1, and STAT2). Zhang et al. (2022) also found similar mutations (STAT2 and IFNAR1) in children with COVID-19 pneumonia.

Pollutant exposures. Most studies have been conducted with the endpoints to determine whether prior or concurrent exposure to chemical or air particulate pollutants exacerbates COVID-19 symptoms resulting in *more severe disease or higher mortality rates*. This would point to effects downstream of viral replication usually relating to antibody suppression, inflammation and organ/tissue damage. Fewer studies can be found that study pollutant effects on *susceptibility to infection*, which are relevant to this KER, specifically cell entry or interferon response antagonism.

Marques et al., (2022) reviews associations between COVID-19 and outdoor air pollutants including PM_{2.5}, PM₁₀, O₃, NO₂, SO₂ and CO, reporting that environmental air pollution increases

both disease incidence and severity. Physiological mechanism is not investigated for most studies. One relevant study estimated significant odds ratios for increased risk of severe COVID-19 and gene transcriptional analysis showing downregulation of genes associated with the IFN-I pathway in patients with high short-term NO₂ exposure (Feng et al., 2023).

Per- and polyfluoroalkyl substances (PFAS) are a large group of contaminants of current concern, due to their potential for toxicity, ubiquitous presence in the environment and consumer products, as well as their resistance to degradation. Although most community exposure to PFAS is through diet and drinking water, airborne and dermal exposures may also occur, especially in the workplace (CDC/NIOSH 2022). Statistical links between high measured serum or urine concentrations of specific PFAS compounds or mixtures and higher rates of COVID-19-positive cases have been found. One study in Sweden calculated a sex- and age-Standardized Incidence Ratio (SIR) for the town of Ronneby that had highly PFAS-contaminated drinking water compared to a demographically matched town with background PFAS levels (Nielsen et al. 2021). Serum PFAS concentrations were previously measured in 2014-15 for 3507 participants (Xu et al. 2021), after the Ronneby drinking water contamination issue was identified in 2013. Ronneby residents had higher infection risk, with a SIR of 1.19 [95% CI: 1.12-1.27]. Ji et al. (2021) measured urine and serum in a smaller study in China with 160 subjects. They reported statistically significant odds ratios for infection of 1.94 [95% CI: 1.39-2.96] for perfluorooctane sulfonate (PFOS), 2.73 [1.71-4.55] for perfluorooctanoic acid (PFOA), and 2.82 [1.97-3.51] for Σ (12) PFASs, after controlling for age, sex, body mass index (BMI), comorbidities, and urine albumin-to-creatinine ratio (UACR). These odds of infection were clearly higher even though the PFAS-exposed subjects in China had serum concentrations lower than in the Ronneby study participants. Additionally, the risk of infection was similar for residents in a significantly more contaminated section of Ronneby compared with a less contaminated section, so there was no dose-response relationship (Nielsen et al. 2021). However, these associations warrant more study to determine causality. Ji et al. (2021) also found elevated PFAS to be associated with altered mitochondrial metabolism. A potential consideration is that inhibition of mitochondrial oxidative phosphorylation impairs MAVS-mediated induction of IFNs, indicating the coordination between antiviral response and mitochondrial metabolism (Yoshizumi et al., 2017). Another study proposes modulation of ACE2 and TMPRSS2 expression in the lungs of PFAS-exposed mice may play a role in PFAS-associated immune suppression (Yang et al. 2022). Houck et al., (2022) report testing 147 PFAS substances in screening platforms including the BioMAP® Diversity PLUS panel, which is used to model complex tissue adverse effects of pharmaceuticals and environmental chemicals. Toxicity Signatures within the BioMAP profile indicated the Skin Rash (MEK-Associated) Signature for PFOA, with IFN α / β as one of the target mechanisms. While not specific to COVID-19, one study found that exposure to aryl hydrocarbons and dioxins may block IFN production (Franchini and Lawrence, 2018).

Known Feedforward/Feedback loops influencing this KER

SARS-CoV-2 uses the host ACE2-receptor for entry, upon which the host IFN response could upregulate ACE2 to enhance infection (Ziegler et al., 2020), a positive feedback loop for viral entry, while the IFN response also induces antiviral protein expression to help restore homeostasis as a positive feedback loop to KE 1901.

References

Arnold C.G., Libby, A., Vest, A. et al. 2022. Immune mechanisms associated with sex-based differences in severe COVID-19 clinical outcomes. *Biol Sex Differ* **13**, 7. <https://doi.org/10.1186/s13293-022-00417-3>

Ayinde et al. 2022. Binding of SARS-CoV-2 protein ORF9b to mitochondrial translocase TOM70 prevents its interaction with chaperone HSP90. *Biochimie* **200**, 99-106. <https://doi.org/10.1016/j.biichi.2022.05.016>

Banerjee et al., 2020 SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. *Cell* **183**, 1325-1339. <https://doi.org/10.1016/j.cell.2020.10.004>

Biswal et al. 2022. SARS-CoV-2 Nucleocapsid protein targets a conserved surface groove of the NTF2-like domain of G3BP1. *J Mol Biol* **434**, 9, 167516. <https://doi.org/10.1016/j.jmb.2022.167516>

Blanco-Melo et al., 2020. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. *Cell* **181**, 1036-1045 <https://doi.org/10.1016/j.cell.2020.04.026>

Brandherm L, Kobaš AM, Klöhn M, Brüggemann Y, Pfaender S, Rassow J, Kreimendahl S. Phosphorylation of SARS-CoV-2 Orf9b Regulates Its Targeting to Two Binding Sites in TOM70 and Recruitment of Hsp90. *International Journal of Molecular Sciences*. 2021; 22(17):9233. <https://doi.org/10.3390/ijms22179233>

Byrne, A.W., McEvoy, D., Collins, A.B., Hunt, K., Casey, M., Barber, A., Butler, F., Griffin, J., Lane, E.A., McAlloon, C., O'Brien, K., Wall, P., Walsh, K.A., More, S.J., 2020. Inferred duration of infectious period of SARS-CoV-2: Rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases. *BMJ Open* **10**, 1-16. <https://doi.org/10.1136/bmjopen-2020-039856>

CDC/NIOSH, Workplace Safety and Health Topics, Per- and polyfluoroalkyl substances (PFAS), website: <https://www.cdc.gov/niosh/topics/pfas/default.html#:~:text=Community%20exposure%20to%20PFAS%20may,their%20workplace>. Updated September 15, 2022, retrieved 12/29/2022.

Challenger et al. 2022. Challenger, J.D., Foo, C.Y., Wu, Y. et al. Modelling upper respiratory viral load dynamics of SARS-CoV-2. *BMC Med* **20**, 25. <https://doi.org/10.1186/s12916-021-02220-0>

Channappanavar, R., Fehr A. R., Zheng, J., Wohlford-Lenane, C., Abrahante, J. E., Mack, M., Sompallae, R., McCray Jr, P. B., Meyerholz, D. K., Perlman, S. (2019) IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes *J Clin Invest.* 2019;129(9):3625-3639. <https://doi.org/10.1172/JCI126363>

Cheemarla et al. 2021. Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics. *J Exp Med* 2 August 2021; 218 (8): e20210583. doi: <https://doi.org/10.1084/jem.20210583>

Chen K, Xiao F, Hu D, Ge W, Tian M, Wang W, Pan P, Wu K, Wu J. (2021) SARS-CoV-2 Nucleocapsid Protein Interacts with RIG-I and Represses RIG-Mediated IFN- β Production. *Viruses*. 13(1):47. <https://doi.org/10.3390/v13010047>

Chi CY, Chu CC, Liu JP, et al. Anti-IFN-gamma autoantibodies in adults with disseminated nontuberculous mycobacterial infections are associated with HLA-DRB1*16:02 and HLA-DQB1*05:02 and the reactivation of latent varicella-zoster virus infection. *Blood*. 2013;121:1357-66. <https://doi.org/10.1182/blood-2012-08-452482>

Doerre, A. and Dobhammer, G. 2022. The influence of gender on COVID-19 infections and mortality in Germany: Insights from age- and gender-specific modeling of contact rates, infections, and deaths in the early phase of the pandemic. *PLoS ONE* 17(5): e0268119. <https://doi.org/10.1371/journal.pone.0268119>

Feng B., et al., 2022. Impact of short-term ambient air pollution exposure on the risk of severe COVID-19, *Journal of Environmental Sciences* **135**, 610-618, <https://doi.org/10.1016/j.jes.2022.09.040>

Franchini, AM and Lawrence, BP (2018) Environmental exposures are hidden modifiers of anti-viral immunity. *Current Opinion in Toxicology* **10**, 54-59 <https://doi.org/10.1016/j.cotox.2018.01.004>

Fu, YZ., Wang, SY., Zheng, ZQ. et al. SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-mediated innate antiviral response. *Cell Mol Immunol* **18**, 613-620 (2021). <https://doi.org/10.1038/s41423-020-00571-x>

Gadi et al. 2020. What's sex got to do with COVID-19? gender-based differences in the host immune response to coronaviruses. *Front. Immunol.*, Sec. Viral Immunology **11** <https://doi.org/10.3389/fimmu.2020.02147>

Galani et al. 2021. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. *Nature Immunology* **22**, 32-40. <https://doi.org/10.1038/s41590-020-00840-x>

Gao, X., Zhu, K., Qin, B. et al. 2021. Crystal structure of SARS-CoV-2 Orf9b in complex with human TOM70 suggests unusual virus-host interactions. *Nat Commun* **12**, 2843. <https://doi.org/10.1038/s41467-021-23118-8>

Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. Coronavirus Study Group of the International Committee on Taxonomy of Viruses. 2020. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. *Nat Microbiol.* 2020;04;5(4):536-44. <https://doi.org/10.1038/s41564-020-0695-z>

Gordon, D.E., Jang, G.M., Bouhaddou, M. et al. (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. *Nature* **483**:459-473. <https://doi.org/10.1038/s41586-020-2286-9>

Hadjadj et al. 2020. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. *Science* **369**, 718-724. <https://www.science.org/doi/10.1126/science.abc6027>

Hameedi M.A., T. Prates, E., Garvin, M.R...Jacobson, D. 2022. Structural and functional characterization of NEMO cleavage by SARS-CoV-2 3CLpro. *Nat Commun* **13**, 5285. <https://doi.org/10.1038/s41467-022-32922-9>

Han et al. 2021. SARS-CoV-2 ORF9b Antagonizes Type I and III Interferons by Targeting Multiple Components of RIG-I/MDA-5-MAVS, TLR3-TRIF, and cGAS-STING Signaling Pathways. *J Med Virology*, <https://doi.org/10.1002/jmv.27050>

Hatton, C.F., Botting, R.A., Dueñas, M.E. et al. Delayed induction of type I and III interferons mediates nasal epithelial cell permissiveness to SARS-CoV-2. 2021. *Nat Commun* 12, 7092. <https://doi.org/10.1038/s41467-021-27318-0>

Hoagland, D.A., Rasmus Møller, Skyler A. Uhl, Kohei Oishi, Justin Frere, Ilona Golynker, Shu Horiuchi, Maryline Panis, Daniel Blanco-Melo, David Sachs, Knarik Arkun, Jean K. Lim, Benjamin R. tenOever. 2021. Leveraging the antiviral type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity. *Immunity* 54, 3 557-570.e5 <https://doi.org/10.1016/j.immuni.2021.01.017>

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Muller, M. A., Drosten, C. & Pohlmann, S. 2020. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. *Cell*, 181, 271-280 e8. <https://doi.org/10.1016/j.cell.2020.02.052>

Houck, K. A., Paul Friedman, K., Feshuk, M., Patlewicz, G., Smeltz, M., Clifton, M. S., Wetmore, B. A., Velichko, S., Bérenyi, A. and Berg, E. L. 2023. Evaluation of 147 perfluoroalkyl substances for immunotoxic and other (patho)physiological activities through phenotypic screening of human primary cells, *ALTEX - Alternatives to animal experimentation*, 40(2), 248-270. <https://doi.org/10.14573/alTEX.2203041>

Ji et al. 2021. Association between urinary per- and poly-fluoroalkyl substances and COVID-19 susceptibility. *Env Intl* 153, 106524. <https://doi.org/10.1016/j.envint.2021.106524>

Jiang et al. 2020. SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70. *Cellular & Molecular Immunology* 17:998–1000; <https://doi.org/10.1038/s41423-020-0514-8>

Kato et al. 2021. Overexpression of SARS-CoV-2 protein ORF6 dislocates RAE1 and NUP98 from the nuclear pore complex. *Biochemical and Biophysical Research Communications* 536:59-66 <https://doi.org/10.1016/j.bbrc.2020.11.115>

Kilkenny, M.L., Veale, C.E., Guppy, A., Hardwick, S.W., Chirgadze, D.Y., Rzechorzek, N.J., et al. 2022. Structural basis for the interaction of SARS-CoV-2 virulence factor nsp1 with DNA polymerase α -primase. *Protein Science* 31: 333–344. <https://doi.org/10.1002/pro.4220>

Kim et al. 2019. The stress granule protein G3BP1 binds viral dsRNA and RIG-I to enhance interferon- β response. *J. Biol. Chem.* 294(16): 6430–6438. DOI 10.1074/jbc.RA118.005868

Kim, Dongwan et al. 2020. The Architecture of SARS-CoV-2 Transcriptome. *Cell* 181, 914–921. <https://doi.org/10.1016/j.cell.2020.04.011>

Ku CL, Lin CH, Chang SW, Chu CC, Chan JF, Kong XF, et al. Anti-IFN-gamma autoantibodies are strongly associated with HLA-DR*15:02/16:02 and HLA-DQ*05:01/05:02 across Southeast Asia. *J Allergy Clin Immunol.* 2016;137:945-8.e8. <https://doi.org/10.1016/j.jaci.2015.09.018>

Li, T., Wen, Y., Guo, H., Yang, T., Yang, H., Ji, X. 2021. Molecular Mechanism of SARS-CoVs Orf6 Targeting the Rae1-Nup98 Complex to Compete With mRNA Nuclear Export. *Front Mol Biosci* 8: 813248-813248. <http://dx.doi.org/10.3389/fmbo.2021.813248>

Liu et al. 2021. Liu et al. 2021. ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. *Nature Microbiol* 6: 467–478. <https://doi.org/10.1038/s41564-021-00884-1>

Madonov et al. 2021. Evaluation of the anti-viral activity of human recombinant Interferon Lambda-1 against SARS-CoV-2. *Bulletin of Experimental Biology and Medicine*, Vol. 172, No. 1. DOI 10.1007/s10517-021-05330-0

Marquès, M., Domingo, J.L. 2022. Positive association between outdoor air pollution and the incidence and severity of COVID-19. A review of the recent scientific evidences, *Environmental Research* 203, 111930. <https://doi.org/10.1016/j.envres.2021.111930>

Miorin, L.; Kehler, T.; Sanchez-Aparicio, M.T.; Zhang, K.; Cohen, P.; Patel, R.S.; Cupic, A.; Makio, T.; Mei, M.; Moreno, E.; et al. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. *Proc. Natl. Acad. Sci. USA* 2020, 117, 28344–28354. <https://doi.org/10.1073/pnas.2016650117>

Mostaqil et al., 2021. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species, *Emerging Microbes & Infections*, 10:1, 178-195. <https://doi.org/10.1080/22221751.2020.1870414>

Mu et al. 2020. SARS-CoV-2 N protein antagonizes type I interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2. *Cell Discov* 6, 65. <https://doi.org/10.1038/s41421-020-00208-3>

Nielsen C, Jöjd A. 2021. Susceptibility to COVID-19 after High Exposure to Perfluoroalkyl Substances from Contaminated Drinking Water: An Ecological Study from Ronneby, Sweden. *International Journal of Environmental Research and Public Health*, 18(20):10702. <https://doi.org/10.3390/ijerph182010702>

Perng, Y.C., Lenschow, D.J. ISG15 in antiviral immunity and beyond. *Nat Rev Microbiol* 16, 423–439 (2018). <https://doi.org/10.1038/s41579-018-0020-5>

Prelli Bozzo, C., Nchioua, R., Volcic, M., ... Kirchhoff, F. (2021). IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro. *Nature communications*, 12(1), 4584. <https://doi.org/10.1038/s41467-021-24817-y>

Quarleri and Delpino, 2021. Type I and III IFN-mediated antiviral actions counteracted by SARS-CoV-2 proteins and host inherited factors. *Cytokine & Growth Factor Reviews*, 58: 55-65. <https://doi.org/10.1016/j.cytogfr.2021.01.003>

Qi, S., Ngwa, C., Morales Scheibling, D.A. et al. 2021. Sex differences in the immune response to acute COVID-19 respiratory tract infection. *Biol Sex Differ* 12, 66. <https://doi.org/10.1186/s13293-021-00410-2>

Rai B, Shukla A, Dwivedi LK. 2021. Estimates of serial interval for COVID-19: A systematic review and meta-analysis. *Clin Epidemiol Glob Health*. 9:157-161. doi: 10.1016/j.cegh.2020.08.007.

Rouchka et al. 2021. Induction of interferon response by high viral loads at early stage infection may protect against severe outcomes in COVID-19 patients. *Nature Scientific Reports* 11:15715 <https://doi.org/10.1038/s41598-021-95197-y>

Rui et al. 2021. Unique and complementary suppression of cGAS-STING and RNA sensing-triggered innate immune responses by SARS-CoV-2 proteins. *Sig Transduct Target Ther* 6, 123. <https://doi.org/10.1038/s41392-021-00515-5>

Schubert et al. 2020. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. *Nature Structural & Molecular Bio*. 27:959-966. <https://doi.org/10.1038/s41594-020-0511-8>

Sharif-Askari et al. 2022. Airways tissue expression of type I interferons and their stimulated genes is higher in children than adults. *Heliyon* 8, e11724 <https://doi.org/10.1016/j.heliyon.2022.e11724>

Shin et al. 2020. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. *Nature* 587: 657–662. <https://doi.org/10.1038/s41586-020-2601-5>

Sodeifian F, Nikfarjam, M., Kian, N., Mohamed, K., Rezaei, N. The role of type I interferon in the treatment of COVID-19. *J Med Virol.* 2021; 94: 63- 81. <https://doi.org/10.1002/jmv.27317>

Sui et al. 2022. SARS-CoV-2 NSP13 Inhibits Type I IFN Production by Degradation of TBK1 via p62-Dependent Selective Autophagy. *J Immunol* 208 (3): 753–761. <https://doi.org/10.4049/jimmunol.2100684>

Sun, X.; Quan, L.; Chen, R.; Liu, D. 2022. Direct Interaction of Coronavirus Nonstructural Protein 3 with Melanoma Differentiation-Associated Gene 5 Modulates Type I Interferon Response during Coronavirus Infection. *Int. J. Mol. Sci.* 23, 11692. <https://doi.org/10.3390/ijms231911692>

Thoms et al. 2020. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. *Science* 369(6508): 1249-1255. DOI: 10.1126/science.abc8665

Spiering, A.E. and de Vries, T.J. 2021. Why Females Do Better: The X chromosomal TLR7 gene-dose effect in COVID-19. *Front Immunol* 12. <https://doi.org/10.3389/fimmu.2021.756262>

Szeto M, D, Maghfour J, Sivesind T, E, Anderson J, Olayinka J, T, Mamo A, Runion T, M, Dellavalle R. 2021. Interferon and Toll-Like Receptor 7 response in COVID-19: Implications of topical Imliquimod for prophylaxis and treatment. *Dermatology* 237:847-856. <https://doi.org/10.1159/000518471>

Van der Sluis et al. 2022. Plasmacytoid dendritic cells during COVID-19: Ally or adversary? *Cell Reports* 40, 111148. <https://doi.org/10.1016/j.celrep.2022.111148>

Wu et al. 2021. SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO. *Cell Reports* 34, 108761. <https://doi.org/10.1016/j.celrep.2021.108761>

Xia et al. 2020. Evasion of Type I Interferon by SARS-CoV-2. *Cell Reports* 33, 108234. <https://doi.org/10.1016/j.celrep.2020.108234>

Xia and Shi, 2020. Antagonism of Type I Interferon by Severe Acute Respiratory Syndrome Coronavirus 2. *Journal of Interferon & Cytokine Research* v.40, no. 12 DOI:10.1089/jir.2020.0214

Xu et al. 2021. Serum perfluoroalkyl substances in residents following long-term drinking water contamination from firefighting foam in Ronneby, Sweden. *Environment International* 147, 106333. <https://doi.org/10.1016/j.envint.2020.106333>

Yang, Z, Katherine Roth, Jiahui Ding, Christopher D. Kassotis, Gil Mor, Michael C. Petriello (2022) Exposure to a mixture of per- and polyfluoroalkyl substances modulates pulmonary expression of ACE2 and circulating hormones and cytokines, *Toxicology and Applied Pharmacology* 456, 116284 <https://doi.org/10.1016/j.taap.2022.116284>

Yoshizumi, T., Imamura, H., Taku, T., Kuroki, T., Kawaguchi, A., Ishikawa, K., et al. (2017). RLR-mediated antiviral innate immunity requires oxidative phosphorylation activity. *Sci. Rep.* 7:5379 DOI:10.1038/s41598-017-05808-w

Zhang, Q., P. Bastard, Z. Liu, J. Le Pen, M. Moncada-Velez, et al. 2020, Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. *Science* 370, eabd4570. <https://doi.org/10.1126/science.abd4570>

Zhang, Q., D. Matuozzo, J. Le Pen, D. Lee, L. Moens, et al., 2022, Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. *J Exp Med* 219, e20220131. <https://doi.org/10.1084/jem.20220131>

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. *N Engl J Med.* 2020 02 20;382(8):727-33. <https://doi.org/10.1056/NEJMoa2001017>

Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, ... HCA Lung Biological Network. 2020. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. *Cell.* 28;181(5):1016-1035.e19. <https://doi.org/10.1016/j.cell.2020.04.035>

[Relationship: 2497: IFN-I response, antagonized leads to SARS-CoV-2 production](#)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
Binding of SARS-CoV-2 to ACE2 leads to viral infection proliferation	adjacent	High	Not Specified
Binding of SARS-CoV-2 to ACE2 in enterocytes leads to intestinal barrier disruption	adjacent	Low	
Binding of SARS-CoV-2 to ACE2 receptor leading to acute respiratory distress associated mortality	adjacent	High	
Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation	adjacent	Moderate	Moderate
Binding of SARS-CoV-2 to ACE2 leads to hyperinflammation (via cell death)	adjacent	High	Moderate

[Relationship: 2358: SARS-CoV-2 production leads to Diminished Protective Response to ROS](#)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation	adjacent	Moderate	Not Specified
SARS-CoV-2 infection leading to hyperinflammation	adjacent		

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
human	<i>Homo sapiens</i>	Moderate	NCBI

Life Stage Applicability

Life Stage	Evidence
All life stages	Moderate

Sex Applicability

Sex	Evidence
Unspecific	Moderate

The KER applies to species including *Homo sapiens* which have ACE2 receptors to bind to SARS-CoV-2 and protective responsive system to ROS, as ROS scavenging system. The KER has relatively broad applicability among *Homo sapiens*.

Key Event Relationship Description

ROS is generated upon the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in coronavirus disease 2019 (COVID-19), and induces oxidative stress (Janardhan VV and Kalousek V, 2020). SARS-CoV-2 infection induces cytokine storm (Frisoni P et al., 2021, Kaidashev I et al., 2021). Cytokine storm includes ROS-induced oxidative stress and immune cell dysregulation. Glutathione S-transferase genes, which have functions in the elimination of ROS, involves the morbidity and mortality from COVID-19 (Kaidashev I et al., 2021). The heme oxygenase-1 (HO-1) induction may be involved in the inflammation-induced coagulation in COVID-19 (Kaidashev I et al., 2021). ROS quenching by vitamin C, E, beta-carotene and polyphenols has been suggested in COVID-19 in the point of view of the nutrient, since oxidative stress causes inflammation (Iddir M et al., 2020). Potential roles of omega-3 fatty acids accompanied by antioxidants have been suggested in the cytokine storm due to SARS-CoV-2 infection (Rogerio MM, 2020).

Evidence Supporting this KER

Biological Plausibility

Increased coronavirus production increase in angiotensin II (Ang II). Ang II increases ROS production via NADPH oxidase activation (Nishida et al., 2005). Coronavirus pathogenesis pathway is involved in molecules in production of reactive oxygen species (ROS), oxidative stress responses (Tanabe, 2021). The fixation of SARS-CoV-2 in angiotensin-converting enzyme 2 (ACE2) receptor results in reduction of AC2 activity, leading to dysfunction of the renin-angiotensin system (RAS) and excessive production of pro-inflammatory and pro-oxidant agents (Ramdani and Bachari, 2022).

Empirical Evidence

Nrf2 activator, dimethyl fumarate(DMF), which was recently approved for the treatment of multiple sclerosis, and is a potent anti-oxidant and anti-inflammatory agent inhibiting the NF-kappaB pathway through binding and activation of the IKKbeta at Cys-179, inhibited SARS-CoV-2 entry (Hassan et al., 2020). As SARS-CoV-2 is attached to ACE2,

ACE2 is not available within the renin-angiotensin system to convert Ang II to angiotensin-(1,7) resulting in Ang II to accumulate. Ang II stimulates membrane-bound NADPH oxidase, which in turn generate ROS and oxidative stress (Janardhan et al., 2020). Resveratrol, a natural compound possessing anti-oxidant properties by trapping ROS, has a potential to inhibit SARS-CoV-2 infection (Ramdani and Bachari, 2020, van Brummelen and van Brummelen, 2022).

Uncertainties and Inconsistencies

The transient up-regulation of ROS may serve as an inhibitory factor of pathogen (Zhu et al., 2021).

Quantitative Understanding of the Linkage

Quercetin inhibits one of the main proteases highly conserved among coronaviruses, SARS-CoV-2 3CLpro ($K_i = \sim 7 \text{ uM}$) (Abian, Ortega-Alarcon et al. 2020).

Response-response relationship

Angiotensin II dose-dependently increases ROS (Nishida, Tanabe et al. 2005).

Time-scale

Catalytic activity of SARS-CoV-2 3CLpro or inhibitory effect of the SARS-CoV-2 3CLpro can be measured in 10-100 sec or 10-40 min *in vitro* (Abian, Ortega-Alarcon et al. 2020).

Known modulating factors

Modulating Factor (MF)	MF Specification	Effect(s) on the KER	Reference(s)
Selenium	Nutrient	Lower level of selenium and higher levels of reactive oxygen species are observed in COVID-19 patients.	Škesters et al. 2023
Vitamin D	Nutrient	Vitamin D supplementation reduce the number of virus particles that could attach to ACE2 and enter the cell.	Iddir M et al. 2020

References

Abian, O., D. Ortega-Alarcon, A. Jimenez-Alesanco, L. Ceballos-Laita, S. Vega, H. T. Reyburn, B. Rizzuti and A. Velazquez-Campoy (2020). "Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening." International Journal of Biological Macromolecules 164: 1693-1703.

Frisoni P, Neri M, D'Errico S, Alfieri L, Bonuccelli D, et al. (2021) Cytokine storm and histopathological findings in 60 cases of COVID-19-related death: from viral load research to immunohistochemical quantification of major players IL-1 β , IL-6, IL-15 and TNF- α . Forensic Sci Med Pathol. 31:1-15.

Hassan, S. M., M. J. Jawad, S. W. Ahjel, R. B. Singh, J. Singh, S. M. Awad and N. R. Hadi (2020). "The Nrf2 Activator (DMF) and Covid-19: Is there a Possible Role?" Med Arch 74(2): 134-138.

Iddir M, Brito A, Dingeo G, Fernandez Del Campo SS, Samouda H, et al. (2020) Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients. 12(6):1562.

Janardhan, V., V. Janardhan and V. Kalousek (2020). "COVID-19 as a Blood Clotting Disorder Masquerading as a Respiratory Illness: A Cerebrovascular Perspective and Therapeutic Implications for Stroke Thrombectomy." Journal of Neuroimaging 30(5): 555-561.

Kaidashev I, Shlykova O, Izmailova O, Torubara O, Yushchenko Ya, et al. (2021) Host gene variability and SARS-CoV-2 infection: A review article. Heliyon. 7(8): e07863.

Nishida, M., S. Tanabe, Y. Maruyama, S. Mangmool, K. Urayama, Y. Nagamatsu, S. Takagahara, J. H. Turner, T. Kozasa, H. Kobayashi, Y. Sato, T. Kawanishi, R. Inoue, T. Nagao and H. Kurose (2005). "G alpha 12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes." J Biol Chem 280(18): 18434-18441.

Ramdani, L.H., K. Bachari. (2020). "Potential therapeutic effects of Resveratrol against SARS-CoV-2" Acta virologica 64.

Rogero MM. (2020) Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free Radic Biol Med. 156:190-99.

Škesters A, Lece A, Kustovs D, Zolovs M. Selenium Status and Oxidative Stress in SARS-CoV-2 Patients. Medicina (Kaunas). 2023 Mar 8;59(3):527. doi: 10.3390/medicina59030527.

Tanabe S. (2021) Involvement of Reactive Oxygen Species (ROS) and Coagulation in Coronaviral Infection. Adv Clin Med Res. 2(2):21.

van Brummelen, R. and A. C. van Brummelen (2022). "The potential role of resveratrol as supportive antiviral in treating conditions such as COVID-19 – A formulator's perspective." Biomedicine & Pharmacotherapy 148: 112767.

Zhu, Z., Z. Zheng and J. Liu (2021). "Comparison of COVID-19 and Lung Cancer via Reactive Oxygen Species Signaling." Front Oncol 11: 708263.

[Relationship: 2359: Diminished Protective Response to ROS leads to Coagulation](#)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation	adjacent	Moderate	Not Specified

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
human	Homo sapiens	Moderate	NCBI

Life Stage Applicability

Life Stage	Evidence
All life stages	Moderate

Sex Applicability

Sex	Evidence

Unspecific **Sex** **Moderate** **Evidence**

This KER is applied for human.

Key Event Relationship Description

ROS are oxygen-derived molecules that oxidize molecules or are converted into oxygen radicals (André-Lévine D, et al., 2017). ROS have dual-effects which are cell damaging or beneficial roles (André-Lévine D, et al., 2017, Beckman KB and Ames BN, 1998, Bedard K and KH Krause, 2007). ROS generated by NOX2, a NADPH oxidase, in macrophage play an important role in killing of phagocytosed microorganisms (Bedard K and KH Krause, 2007). The ROS accumulation cause mitochondrial dysfunction which leads to coagulopathy associated with inflammatory signaling pathways (Saleh J et al., 2020). Polymorphonuclear leucocytes, commonly referred to as neutrophils, generate large amounts of ROS via the NADPH oxidase complex (Barrett CD et al., 2018).

Evidence Supporting this KER

Biological Plausibility

The ROS released from the polymorphonuclear leucocytes following trauma and haemorrhagic shock led to lung injury and coagulopathy (Barrett CD et al., 2018). Serpin family A member 1 (SERPINA1/alpha-1-antitrypsin), a serine protease inhibitor, inhibits coagulation factor 2a (thrombin) (Cohen AB, 1973). SERPINA1 is a member of low-density lipoprotein (LDL) and involved in ROS network (Lubrano V, and Balzan S. 2020). ROS are required for release of granzyme B (GzmB), a cytotoxic lymphocyte protease, into the cytosol (Mangan MS et al., 2016). SERPINA1 is converted into a ROS-sensitive granzyme B (GzmB) inhibitor by replacing the P4-P3' reactive center loop residues (Mangan MS et al., 2016). Thrombin activates NADPH oxidase and produces ROS, which leads to fibroblast proliferation (Zhou SY et al., 2010). Endothelial exposure of thrombin induces NOX-dependent superoxide superoxide anion and hydrogen peroxide (Pai WY et al., 2017, Holland JA et al., 1998).

Empirical Evidence

The presence of ROS assists in the transformation of a circulating, non-oxidized, circular-shaped beta2-glycoprotein 1 into an oxidized J-shape, which binds to antiphospholipid antibodies such as anticardiolipin, lupus anticoagulant, and anti-beta2-GP1 antibodies (Janardhan et al., 2020). Domain V of beta2gP1 binds with the phospholipid layer of platelets or endothelial cells via Annexin (Janardhan et al., 2020).

Quantitative Understanding of the Linkage

Known modulating factors

Modulating Factor (MF) **MF Specification** **Effect(s) on the KER** **Reference(s)**

Known Feedforward/Feedback loops influencing this KER

Fibrin may induce oxidative stress.

References

André-Lévine D, Modarressi A, Pepper MS, Cuenod BP. (2017) Reactive Oxygen Species and NOX Enzymes Are Emerging as Key Players in Cutaneous Wound Repair. *Int J Mol Sci.* 18(10):2149.

Barrett CD et al., (2018) Blood clotting and traumatic injury with shock mediates complement-dependent neutrophil priming for extracellular ROS, ROS-dependent organ injury and coagulopathy. *Clin Exp Immunol.* 194(1):103-117.

Beckman KB, BN Ames. (1998) The free radical theory of aging matures. *Physiol Rev.* 78(2):547-81.

Bedard K, KH Krause. (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. *Physiol Rev.* 87(1):245-313.

Cohen AB. (1973) Mechanism of action of alpha-1-antitrypsin. *J Biol Chem.* 248(20):7055-9.

Holland JA, Meyer JW, Donnell RW, Johnson DK, Ziegler LM. (1998) Thrombin Stimulated Reactive Oxygen Species Production in Cultured Human Endothelial Cells. *Endothelium.* 6(2):113-121.

Janardhan, V., V. Janardhan and V. Kalousek (2020). "COVID-19 as a Blood Clotting Disorder Masquerading as a Respiratory Illness: A Cerebrovascular Perspective and Therapeutic Implications for Stroke Thrombectomy." *Journal of Neuroimaging* 30(5): 555-561.

Lubrano V, S Balzan. (2020) Role of oxidative stress-related biomarkers in heart failure: galectin 3, α 1-antitrypsin and LOX-1: new therapeutic perspective? *Mol Cell Biochem.* 464(1-2):143-152.

Mangan MS, Bird HS, Kaiserman D, Matthews AY, Hitchen C, et al. (2016) A Novel Serpin Regulatory Mechanism: SerpinB9 is reversibly inhibited by vicinal disulfide bond formation in the reactive center loop. *J Biol Chem.* 291(7):3626-38.

Pai WY, Lo WY, Hsu T, Peng CT, Wang Hj. (2017) Angiotensin-(1-7) Inhibits Thrombin-Induced Endothelial Phenotypic Changes and Reactive Oxygen Species Production via NADPH Oxidase 5 Downregulation. *Front Physiol.* 8:994.

Saleh J, Peyssonaux, Singh KK, Edeas M. (2020) Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. *Mitochondrion.* 54:1-7.

Zhou SY, Xiao W, Pan XJ, Zhu MX, Yang ZH, et al. (2010) Thrombin promotes human lung fibroblasts to proliferate via NADPH oxidase/reactive oxygen species/extracellular regulated kinase signaling pathway. *Chin Med J (Engl).* 123(17):2432-9.

[Relationship: 2360: Coagulation leads to Diminished Protective Response to ROS](#)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation	adjacent	Moderate	Not Specified

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term **Scientific Term** **Evidence** **Links**

human Homo sapiens Moderate [NCBI](#)

Life Stage Applicability

Life Stage Evidence

All life stages Moderate

Sex Applicability**Sex Evidence**

Unspecific Moderate

Relationship: 2290: Coagulation leads to Thrombosis and DIC**AOPs Referencing Relationship**

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
Binding to ACE2 leading to thrombosis and disseminated intravascular coagulation	adjacent	High	

Evidence Supporting Applicability of this Relationship**Taxonomic Applicability**

Term	Scientific Term	Evidence	Links
Homo sapiens	Homo sapiens	High	NCBI

Life Stage Applicability**Life Stage Evidence**

All life stages High

Sex Applicability**Sex Evidence**

Unspecific High

Key Event Relationship Description

Many regulators are involved in coagulation system. Plasmin is one of the modulators required for dissolution of the fibrin clot. Plasmin is activated by tissue plasminogen activator (tPA) and urokinase plasminogen activation (uPA). SERPINS inhibit thrombin, plasmin and tPA. For example, SERPINE1 or plasminogen activator inhibitor-1 (PAI-1) inhibits tPA/uPA and results in hypofibrinolysis (Bernard I et al., 2021). In addition, SERPING1 inhibits FXII, and thus down-regulation of SERPING1 lifts suppression of FXII of the intrinsic coagulation cascade (Garvin et al., 2020). Protein C, protein S and thrombomodulin degrade FVa and FVIIa. [Ref. IPA, Coagulation System, version60467501, release date: 2020-11-19]

Quantitative Understanding of the Linkage**Known modulating factors****Modulating Factor (MF) MF Specification Effect(s) on the KER Reference(s)****Known Feedforward/Feedback loops influencing this KER**

Decreased fibrinolysis is involved in coagulation system. Coagulopathy induced by excess coagulation may be key for thrombosis and disseminated intravascular coagulation. (Mast AE et al., 2021, Garvin MR et al., 2020).

References

Bernard I, Limonta D, Mahal LK, Hobman TC. Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. *Viruses*. 2021; 13(1):29. DOI: <https://doi.org/10.3390/v13010029>

Garvin et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. *eLife* 2020;9:e59177. DOI: <https://doi.org/10.7554/eLife.59177>

Mast AE, Wolberg AS, Gailani D, Garvin MR, Alvarez C, Miller JL, Aronow B, Jacobson D (2021) SARS-CoV-2 suppresses anticoagulant and fibrinolytic gene expression in the lung. *eLife* 10:e64330. doi:10.7554/eLife.64330