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Abstract

SAAOP status

Included in OECD Work Plan

Malfunctioning of sex hormones (e.g., estradiol, estrone and progesterone) may result in ovarian cancer (Fooladi et al. 2020,
Meehan and Sadar 2003). Exposure to endocrine-disrupting chemicals (EDCs) in the form of occupational usage of pesticides,
fungicides, herbicides, plasticizers, cosmetics, etc. are the causes of ovarian cancer (Samtani, Sharma and Garg 2018). Some
stressors molecules (e.g., clomiphene citrate, Tamoxifen, Toremifene) act on neuronal cell in the hypothalamus (molecular
initiating event, MIE), where they inhibit hypothalamic Estrogen Receptors selectively and these chemicals increase the risk of
ovarian cancer (McLemore et al. 2009). These stressors molecules stimulate the releasing of gonadotropin-releasing hormone
(GnRH) from hypothalamic region of brain by the suppression of hypothalamic Estrogen Receptors. Subsequently, secretion of
luteinizing hormone (LH) from pituitary becomes high(Cassidenti et al. 1992, Mungenast and Thalhammer 2014a, Tomao et al.
2014). This hormone regulates the synthesis of sex hormones (e.g., estrogens) at cellular level (Shoemaker et al. 2010a, Tomao
et al. 2014). These sex hormones are primarily produced in the gonads through a series of enzyme-mediated reactions from
cholesterol (precursor) and control through complex signalling pathway along hypothalamus — pituitary — gonadal (HPG) axis
(Shoemaker et al. 2010a, Perkins et al. 2019). High estrogen level increases the risk of ovarian cancer via ovarian epithelial cell
hyperplasia (McLemore et al. 2009, Tomao et al. 2014).
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Background

AOP440

Development and progression of certain types of cancer disease (e.g. ovarian cancer, breast cancer, prostate cancer etc.) is
related with the hormonal levels in human. Lack of proper diagnosis at early stage of the disease increase the mortality rate of
the cancer. Among many types of cancer ovarian cancer has the high mortality rate (~50%) due to the lack of proper diagnosis at
early stage of the disease progression. Circulating levels of the steroidal sex hormones in conjunction with the gene expression is
related with the progression of this disease. Some important sex hormones which are related with many cancer diseases include
oestrogen, progesterone and testosterone. Oestrogen hormone mainly involved in female sex organ development, controlling of
menstruation cycle etc. Progesterone also involved in controlling menstrual cycle, maintaining pregnancy and spermatogenesis.
Testosterone hormone regulates sexual development, bone mass development, red blood cell production in male.

Summary of the AOP

Events

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Sequence Type

MIE

KE
KE
KE

KE
KE
KE

AO
AO

E‘:;’“ Title

1046 Suppression. Estrogen receptor (ER) activity

1047 Increased, secretion of GnRH from
hypothalamus

1050 Increased. secretion of LH from anterior pituitary

1972 Increased, Steroidogenic acute regulatory protein
(StAR)

1973 Increased. estrogens

1076 Increased. circulating estrogen levels

1052 Hyperplasia, ovarian epithelium

1053 Promotion, ovarian adenomas

2092 Promotion, Ovarian Cancer

Key Event Relationships

Short name

Suppression, Estrogen receptor (ER) activity

Increased, secretion of GnRH from hypothalamus

Increased, secretion of LH from anterior pituitary

Increased, Steroidogenic acute regulatory protein
(StAR)

Increased, estrogens
Increased, circulating estrogen levels

Hyperplasia, ovarian epithelium

Promotion, ovarian adenomas

Promotion, Ovarian Cancer

Upstream Event ARG Downstream Event Evidence Quantltatl\{e
Type Understanding
Su. _ressmn Estrogen receptor (ER adjacent Increased, secretion of GnRH from High Not Specified
activity hypothalamus
Increased. secretion of GnRH from . Increased, secretion of LH from anterior .
adjacent . High Moderate

hypothalamus pituitary
Increased. secretion of LH from anterior . Increased, Steroidogenic acute .

L adjacent : High Moderate
pituitary regulatory protein (StAR)
Increased. Steroidogenic acute . .
requlatory brotein (StAR adjacent Increased, estrogens High Moderate
Increased. estrogens adjacent Increased, circulating estrogen levels High Moderate
Increased. circulating estrogen levels non-adjacent Hyperplasia, ovarian epithelium High Not Specified
Hyperplasia. ovarian epithelium non-adjacent Promotion, ovarian adenomas High Not Specified
Promotion, ovarian adenomas non-adjacent Promotion, Ovarian Cancer Moderate Low

Stressors
Name Evidence
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Tamoxifeame Madeiie

Raloxifene Moderate

Clomiphene citrate (1:1) High

Overall Assessment of the AOP

Suppression, Estrogen receptor (ER) activity [Evidence- Strong]: There are number of reports available
related to suppression of Estrogen receptor activity (ER) (Baez-Jurado et al., 2018; Cosman, 2003; Haskell, 2003; Ng et
al., 2009; Kang et al., 2001; Roy et al., 1999; Marques P, 2018; Mungenast and Thalhammer, 2014b; Ghasemnejad-Bereniji
et al., 2020; J. H. Liu, 2020; Oride et al., 2020; Zhang et al., 2020; John F. Kerin et al., 1985b; The Practice Committee of
the American Society for Reproductive Medicine, 2013; Moskovic et al., 2012 ; Bryan ). Herzog, 2020). Stressors act on
neuronal cell in the hypothalamus, where it inhibits hypothalamic Estrogen Receptors selectively. A number of
compounds or molecules (e.g. Clomiphene citrate, Tamoxifen, Toremifene etc.) are detected which show the
modulation activity of estrogen receptor in brain leading to high GnRH pulses (Haskell, 2003; Cosman, 2003).

Increased, secretion of GnRH from hypothalamus[Evidence- Strong]: A number of evidencesare found by the
researchesthat the increased secretion of gonadotropin-releasing hormone (GnRH)(Shander and Goldman, 1978;
Tsourdi et al., 2009). Studies had shown that of inhibition of Estrogen receptor activity (ER) enhances the secretion of
GnRH in human (Adashi et al., 1980; Bussenot et al., 1990; JOHN F KERIN et al.,, 1985a; Tan et al., 1996), rat and mice
(Bharti et al., 2013; Kumar and Pakrasi, 1995; Zoeller and Young, 1988). Studies on human patient had shown the
application of clomiphene is able to promote response of GnRH secretion (Goerzen et al., 1985; Tan et al., 1996).

Increased, secretion of LH from anterior pituitary [Evidence- Strong]: Good evidence may be acquired from
different published articles for the increased secretion of LH increases from anterior pituitary (Plouffe and Siddhanti,
2001; Wright et al, 2012; Shoemaker et al.,, 2010b). It is also reported that increased secretion of the GnRH in
hypothalamus leads to high levelofLH in human (John F Kerin et al., 1985a; Adashi et al., 1980; Bussenot et al., 1990),
mice/rat.(Bharti et al., 2013; Kumar and Pakrasi, 1995; Botte et al., 1999) and cow (Fields et al., 2009).

Increased, Steroidogenic acute regulatory protein (StAR) [Evidence- Strong]: Steroidogenic acute
regulatory protein (StAR) plays critical role in luteal steroidogenesis by controlling the transport of cholesterol from the
outer to inner mitochondrial membrane(Wu et al., 2003; Shoemaker et al., 2010b).It had been reported that increase in
LH level leads to increase StAR protein concentration in human(Tsang et al.,, 1980; Johnson and Bridgham, 2001;
Murayama et al., 2012; Rekawiecki et al., 2005), rat(T. Liu et al., 2007; Martinat et al., 2005) and mice(Eacker et al., 2008;
Tsuchiya et al., 2003).

Increased, estrogens [Evidence- Strong]: Aromatase is a key enzyme for estrogen formation in human tissues. In
female, one of the important sites of estrogen enzyme synthesis is ovarian granulose cells(Holesh et al., 2017;
Shoemaker et al., 2010b). Although ovarian aromatase enzyme expression in postmenopausal female is very low, high
estrogen level is maintained in the blood through aromatase expression in other tissues. A number of researches had
shown increased synthesis of StAR Protein increases the estrogen in ovarian granulosa cellsin human (Kiriakidou et al.,
1996; Fang et al., 2016; Men et al., 2017), rat (Ronen-Fuhrmann et al., 1998; Nimrod, 1981) and fish (Kusakabe et al.,
2002).

Increased, circulating estrogen levels [Evidence- Strong]: Researches had shown increased synthesis of
estrogen in ovarian granulosa cells leads to maintain the high circulating estrogen levels in blood (Holesh et al., 2017;
Shoemaker et al., 2010b).

Hyperplasia, ovarian epithelium [Evidence- High]: Ovarian surface is covered by the epithelium cells often called
as ovarian mesothelium tissue. High evidence is available which supports that hyperplasia of the stromal cells might
lead towards the hyperplasia of the ovarian epithelium tissue(Nyboe Andersen et al., 2008; Kang et al., 2001).

Promotion, ovarian adenomas[Evidence- Moderate]: Ovarian adenoma or cystadenoma is classified as benign
tumor in the epithelial tissue. Evidence on the promotion of ovarian adenoma due to the hyperplasia in the ovarian
epithelial tissue is available.

Promotion, ovarian cancer [Evidence- Strong]: Promotion of ovarian adenomas leads to the phenotype outcome of ovarian
cancer at individual level (Johansson et al., 2022, Christine Stewart et al., 2019).

Domain of Applicability
Life Stage Applicability
Life Stage Evidence

Adult, reproductively mature High
Taxonomic Applicability

Term Scientific Term Evidence Links
human Homo sapiens High NCBI

rat Rattus norvegicus High NCBI
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rieem Nedestific Term  Bigdence hinks

Sex Applicability
Sex Evidence

Female High

Sex: This particular AOP is mainly applicable for the females. Sex hormone regulation in female is more complex
compare to the male. Development and growth of the ovaries depend on the hormonal balance in the body. This
hormonal balance in female changes often observed during the menstrual cycle and pregnancy. Imbalance in the
hormonal levels leads to the abnormal function of the ovaries.Predominant form of estrogen (estradiol) hormone also
found in male and plays critical role in sexual behavior and spermatogenesis. However, males more likely experiences
imbalance in testosterone hormonelevels.

Life stage: This AOP is closer to the adult female. In particular the females (at the age of 45-55) going through the
menopause are having greater chance of developing ovarian cancer compared to the young adult female. Young female
undergoing through the hormonal therapy (usually estrogen) also having high risk of developing ovarian cancer. Risk
factor of ovarian canceris high in case of adult females who are taking ovulation stimulating drugs to increase fertility.

Taxonomic: Forthis AOP taxonomic domain is applicable to the different species like mice, rat, guinea pig and human.

Essentiality of the Key Events

In this AOP the essentiality of the proposed events are supported by a number of scientific works.

Kettel et al., had shown the treatment of seventeen females with clomiphene citrate with 150mg/day dose for 5 days
enhance the estrogen levels. Analysis of the other hormones (follicle-stimulating hormone, Iuteinizing hormone,
gonadotropin-releasing hormone) levels suggest the clomiphene citrate involved in the modulation in hormonal
secretion at the hypothalamic site (Kettel et al., 1993).

Koch et al, had shown female rat injected with the clomiphene citrate (1-100 ng/kg) for 20 days increase the
gonadotropin-releasing hormone (GnRH) release in the hypothalamus region (Koch et al., 1971).

Research by Kurosawa et al., on 293T cells (transfectable derivative of human embryonic kidney 293 cells, revealed that
effect of clomiphene citrate depend on the concentration of the molecule. Clomiphene citrate at higher concentration

(1010 - 1012 M) showed the estrogenic activity. However at higher concentration (10°® - 10-12 M) no estrogenic
activity was observed. Results of the study also suggest that clomiphene citrate either act as agonist or as an
antagonist depends onthe presence of 17B-estradiol (E2) receptor(Kurosawa et al., 2010).

Weight of Evidence Summary

Overall assessment of the biological plausibility, empirical support and quantitative understanding of the KEs and KERs
associated with this AOP shows that molecular mechanism or signaling pathway of tumor development in the female
ovaries due to the suppression of estrogen receptors activities in the hypothalamus is still unclear.

Empirical evidence is available which shows the release of gonadotropin-releasing hormone (GnRH) depends on the
concentration of the Selective Estrogen Receptors Modulator (SERM) compound (e.g. clomiphene citrate). However,
molecular mechanism for the enhancement of GnRH by suppression of Estrogen receptor activity is poorly known.A
number of researches had shown secretion of luteinizing hormone (LH) from anterior pituitary depends on the GnRH
concentration or dose. Scientific reports have shown the both stimulatory and inhibitory effects on the GnRH secretion
exhibited by the estradiol depending on the concentration of stressor (clomiphene) molecules and presence of types
of receptors. The requirement of the GnRH dose for the secretary release of the LH in the different species varies
widely.

A number of articles had shown that release of LH from the anterior pituitary regulates the steroidogenic function of
cells by controlling the cholesterol transportation to the mitochondria. Biological plausibility of this event is very high as
a number of studies have shown the similar results using different biological models (e.g. granulosa cells of adult
female, bovine luteal cells, leydig cells of mice and rat etc.) in their study. Estradiol synthesis during menstrual cycle is
governed via expression of StAR protein synthesis. Quantitative estimation of the event has been performed through
indirect measurement (e.g. Northern blot analysis of mRNA collected from ovarian follicle granulosa cells). Therefore in
many studies finding results are inconsistent. Circulating estrogen levels increases due to the increased estradiol
synthesis and concentration controlled by the negative feedback loop of the other steroidal hormone
synthesis.Biological evidence of tumor formation in the ovarian granulose cells due to the high circulating estrogen
levels in the plasma is pretty high. High circulating estrogen drives the endometrial hyperplasia towards the progression
of endometrial cancer.

Quantitative Consideration

Quantitative understanding in many KEs and KERs are available. However, exploitation of different biological models and
use of different assay techniques provide incoherent results. Inconsistent results also have been mentioned in many
KEs and KERs. A few assay technigues such as radioimmunoassay, radioreceptor assay, estrogen receptor binding assay
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etc. are sensitive enough to measure the concentration of a molecule at pictogram level. Some other techniques such
as quantitative real time PCR (gRT-PCR), northern blot analysis of RNA also have been used for quantitative estimation
of molecules at low concentration. Some indirect methods such as immunohistochemistry also have been employed for
identification and quantitative estimation of biological molecule.

Considerations for Potential Applications of the AOP (optional)

This AOP provides the valuable informations regarding chemical messengers and different glands of endocrine system that are
related for the risk and promotion of ovarian cancer. Linkage of qualitative and quantitative informations of different chemical
messengers for the promotion of ovarian cancer would be beneficial for the cancer therapy and cancer drug development. Further,
this AOP would be helpful to evaluate the hazardous long-term effects of the endocrine-disrupting chemicals and drugs which may
lead towards the development of the ovarian cancer. This AOP would also help to regulate the uses of these stressor molecules
which have inhibitory effects on the hypothalamic Estrogen Receptors. Understanding of the molecular events related with this
AOP would help to screen these molecules and provide guideline to access the risk associated with these stressors.
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Appendix 1

List of MIEs in this AOP

Event: 1046: Suppression, Estrogen receptor (ER) activit
Short Name: Suppression, Estrogen receptor (ER) activity
Key Event Component

Process Object Action

estrogen receptor activity estrogen receptor decreased

AOPs Including This Key Event

AOP ID and Name Event Type
Aop:165 - Antiestrogen activity leading to ovarian adenomas and granular cell tumors in the mouse KeyEvent

Aop:440 - Hypothalamus estrogen receptors activity suppression leading to ovarian cancer via ovarian
epithelial cell hyperplasia

MolecularinitiatingEvent

Stressors

Name
Clomiphene citrate (1:1)
Tamoxifen

Raloxifene
Biological Context

Level of Biological Organization

Molecular
Cell term

Cell term

neuron
Organ term

Organ term

hypothalamus
Evidence for Perturbation by Stressor
Overview for Molecular Initiating Event

Clomiphene citrate (a stressor) at 10710 - 10712 M concentrations exhibits approximately 30% of the estrogenic activity
which is same from 17B-estradiol (at 10710 M) in ERa-expressing cells where as no activity in ERB cells.

8/39


https://aopwiki.org/events/1046
https://aopwiki.org/aops/165
https://aopwiki.org/aops/440

AOP440

Clomiphene citrate at the concentration of 10710 M reveals weak estrogen agonist activity in the presence of 17 B -
estradiol (E2) at the concentration of 10-14 M in ERa-expressing cells, and no activity was found in ERB cells.

Clomiphene citrate at lower doses (10-10 - 10-12 M), but not higher doses (1076 - 10-8 M) showed estrogenic activity via

ERa. However, clomiphene citrate at concentrations between 10® M and 10712 M did not reveal any estrogenic activity
via ERB. In the presence of E2, clomiphene citrate worked as either as an agonist or an antagonist through ERa
depending on the concentrations of E2. Clomiphene citrate worked as antagonistic when it is combined with the higher
E2 concentrations and worked as agonistic with the lower E2 concentrations. On the other hand, via ER B, clomiphene
citrate acted as an estrogen antagonist irrespective of the concentration of E2. (Kurosawa et al., 2010).

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links

human Homo sapiens High NCBI
rat Rattus norvegicus High NCBI
mice  Mus sp. High NCBI

Life Stage Applicability
Life Stage Evidence

Not Otherwise Specified High
Sex Applicability
Sex Evidence

Mixed High

Neuronal cell in Hypothalamus
Key Event Description

Estrogen receptors are produced in all vertebrates and located in either the cell cytoplasm or nucleus(Bondesson et al.,
2015; Eick and Thornton, 2011). Estrogen receptors are localized either in cytoplasm, or on the cell surface.

Site of action: Stressors (e.g., clomiphene) act on neuronal cell in the hypothalamus, where it inhibits hypothalamic
Estrogen Receptors selectively.

Responses at the macromolecular level: Stressors activate the Estrogen Receptor a in the presence of lower
level of estrogen and partially blocks the same for higher level of estrogen and works as antagonist for the Estrogen
Receptor B(Trost and Khera, 2014). Stressors appear to act in the brain's pituitary gland to secrete an increased
amount of gonadotropins hormone (GnRH) in hypothalamus leading towards increased GnRH level in blood.

Estrogen Receptor a: ERa (Estrogen Receptor a or NR3A1l or ESR1) - A nuclear receptor and it is activated by the
estrogen (sex hormone). Estrogen located at chromosome number 6 ( 6g25.1)

Estrogen Receptor B: ERP (Estrogen Receptor B or NR3A2 or ESR2) - This is also nuclear receptorand activated by
the sex hormone estrogen which is located at chromosome number 14 (14g23.2). | ERB has both N-terminal has DNA
binding domain and C-terminal has ligand binding domain. This is localized to the nucleus, cytoplasm, and mitochondria.
Selective estrogen receptor modulators (SERM) inhibits the ERP. Drugs used as SERM are clomiphene, tamoxifen,
raloxifene etc.

Biological compartments: Estrogenreceptors (ER) are present in the plasma membrane. Both ERa and ERB have
diverse functions depending on cells and organs. ERs have also been loacated in cytoplasmic organelles including
mitochondria and the endoplasmic reticulum(Levin, 2009).

General role in biology: Estrogen receptors (both estrogen receptor alpha (ERa) and estrogen receptor beta (ERB)
binds the estrogens to promote the the biological functions of estrogens. Depending upon a balance between ERa and
ERP activities in target organs, estrogen signaling is selectively stimulated or inhibited (Welboren et al., 2009). ERB has a
high degree of sequence homology with the classical estrogen receptor. Interestingly, ERB is detected in many tissues,
including those previously assumed to be estrogen insensitive. In tissues where both ERs are expressed, such as the
hypothalamus, uterus, mammary glands, and immune system, ERa promotes proliferation whereas ERB has pro-
apoptotic and pro-differentiating functions(Morani et al., 2008). ERa is present mainly in ovary (thecal cells) where as
ERB is found mainly in ovary (granulosa cells)(Paterni et al., 2014). ERa and ERB is identical approximately 97% in the
DNA-binding domain and approximately 56% in the ligand-binding domain(Dahiman-Wright et al., 2006).
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How it is Measured or Detected

Radioreceptor assay/The estrogen receptor binding assay (using Rat Uterine Cytosol): This assay identifies chemicals
that have the potential to interact with the estrogen receptor (ER) in vitro. Principle of this particular assay is based on
the competitive protein-binding methods. A radiolabelled ligand and an unlabelled ligand are presented togetherto a
specific receptor. The radioactivity measurement provides the quantitative estimation of the bound and unbound
fraction of the ligand with the receptor. All cytosolic estrogen receptor subtypes that are expressed in the specific
tissue, including ERa and ERB are used for the determination of estrogen receptor binding. This assay is simple and rapid
to perform when optimal conditions for binding are determined. Assay determines if a ligand/chemical can interact and
displace the endogenous hormone 17B-estradiol (Freyberger et al., 2010).
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List of Key Events in the AOP

Event: 1047: Increased, secretion of GnRH from hypothalamus
Short Name: Increased, secretion of GnRH from hypothalamus
Key Event Component

Process Object Action

hormone secretion Gonadotropin Releasing Hormone decreased

AOPs Including This Key Event

AOP ID and Name

Aop:165 - Antiestrogen activity leading to ovarian adenomas and granular cell tumors in the mouse
Aop:440 - Hypothalamus estrogen receptors activity suppression leading to ovarian cancer via ovarian epithelial cell

hyperplasia
Biological Context

Level of Biological Organization

Cellular
Cell term

Cell term

gonadotropin releasing neuron
Event: 1050: Increased, secretion of LH from anterior pituitary
Short Name: Increased, secretion of LH from anterior pituitary

Key Event Component

Process Object Action

luteinizing hormone secretion Luteinizing hormone decreased

AOPs Including This Key Event

AOP ID and Name

Aop:165 - Antiestrogen activity leading to ovarian adenomas and granular cell tumors in the mouse
Aop:440 - Hypothalamus estrogen receptors activity suppression leading to ovarian cancer via ovarian epithelial cell

Event
Type

KeyEvent

KeyEvent

Event
Type

KeyEvent

KeyEvent
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Biological Context

Level of Biological Organization

Cellular
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AOP ID and Name

Event: 1972: Increased, Steroidogenic acute requlatory protein (StAR

Short Name: Increased, Steroidogenic acute regulatory protein (StAR)

Key Event Component

Process

Object Action

increased luteinizing hormone level StAR-related lipid transfer protein 3 increased

increased luteinizing hormone level StAR-related lipid transfer protein 4 increased

increased luteinizing hormone level StAR-related lipid transfer protein 5 increased

increased luteinizing hormone level StAR-related lipid transfer protein 6 increased

AOPs Including This Key Event

Aop:440 - Hypothalamus estrogen receptors activity suppression leading to ovarian cancer via ovarian epithelial cell

hyperplasia
Biological Context

Level of Biological Organization

Cellular

Cell term

Cell term

steroid hormone secreting cell

Organ term

Organ term

reproductive organ

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence

human Homo sapiens High
mice Mus sp. High
rat Rattus norvegicus High
Monkey Monkey Low

Links
NCBI
NCBI
NCBI
NCBI

AOP ID and Name

Event
Type

Event
Type

KeyEvent
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Life Stage Applicability
Life Stage Evidence

Adult, reproductively mature High
Sex Applicability
Sex Evidence

Female High

Male Low

In Granulosa cells
Key Event Description

Biological state: Steroidogenic acute regulatory protein (StAR) plays important role in luteal
steroidogenesis(Christenson and Devoto, 2003). Steroidogenic acute regulatory protein (StAR) controls the transport
of cholesterol from the outer to inner mitochondrial membrane(Stocco, 2000). There are several pathways involved for
the transport of cholesterol from different subcellular pools into the inner mitochondria(Martin et al., 2016).

Biological compartments: Cholesterol is one type of lipid which is crystalline solid with yellow colour. It is
biosynthesized by animal cells and is an essential structural component of animal cell membranes (Hanukoglu, 1992). It
is the precursor molecule for the synthesis all steroid hormones(Payne and Hales, 2004). Cytochrome P450 enzymes
are present in most tissues of the body, and play important roles in hormone synthesis in mitochondria using
cholesterol as precursor(Poderoso et al., 2013).

General role in biology: It is been reported that high in cholesterol levels in mitochondrial resulted several
diseases like cancer, neurodegenerative diseases, steatohepatitis ischemia, and influence disease (Martin et al., 2016).
The alteration in mitochondrial cholesterol import may change the cholesterol concentrations that may lead to proper
mitochondrial function along with biophysical properties of mitochondrial membranes. In absence of StAR protein,
cholesterol transport into the mitochondria did not occurs leading to no conversion of progesterone from cholesterol
precursors doesn’t occur(Kiriakidou et al., 1996; Pescador et al., 1996). All Steroidogenic acute regulatory protein
(StAR) promoters contain steroidogenic factor 1 binding sites which is responsible for sex hormones regulation(Manna
et al.,, 2002).

One of the important function of the steroid hormones is maintaining reproductive capacity. For this purpose,
steroidogenic cells must move large amounts of cholesterol from the outer mitochondrial membrane to the inner
membrane. In the granulosa cells, this cholesterol is ultimately converted to progesterone. The initial transport of
cholesterol across the mitochondrial membrane requires Steroidogenic Acute Regulatory (StAR) protein. Expression of
StAR protein in preovulatory cells of the developing follicle is low. The dramatic upregulation of StAR protein expression
within the dominant follicle is found after the luteinizing hormone (LH) surge. This upregulation allows the corpus luteum
to produce substantial amounts of progesterone to maintain the reproductive capacity in human/animal (Men et al,,
2017; Stocco, 2000).

How it is Measured or Detected

StAR protein is measure by quantitative real time PCR (gRT-PCR):

For gRT-PCR analyses, cDNA is synthesized using reagent kit in a 20-pl reaction containing 0.5 ug of total RNA collected
from human ovarian granulosa tumor cell line ( KGN cells ), mouse Leydig cells. gPCR is performed in a 25-pl reaction
containing 0.5 to 1.5 pl of cDNA using fluorescein in real-time PCR detection systems. PCR was performed by initial
denaturation at 95°C for 5 minutes, followed by 40 cycles of 30 seconds at 95°C, 30 seconds at 60°C, and 30 seconds
at 72°C. The threshold cycle values of each sample are used to calculate mRNA levels. The PCR primers for the
indicated human and mouse genes are as follows (Men et al., 2017).

Human H19 forward: 5-GCACCTTGGACATCTGGAGT

Human H19 reverse: 5-TTCTTTCCAGCCCTAGCTCA

Human StAR forward: 5-GGCATCCTTAGCAACCAAGA

Human StAR reverse: 5-TCTCCTTGACATTGGGGTTC

Mouse StAR forward: 5-TTGGGCATACTCAACAACCA

Mouse StAR reverse: 5-GAAACACCTTGCCCACATCT

Indirect immunohistochemistry for the detection of Steroidogenic Acute Regulatory Protein (StAR):

Ovarian or peritoneal tissues from the human patients are collected. Ovarian or peritoneal tissues from the patient are
fixed using 10% paraformaldehyde. Tissues are embedded in paraffin. Serial sections of 5 um are made using
microtome. Tissue sections are prepared by microwave heating in 10x citrate buffer, pH 6.0, for 10 min. Tissues are
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rinsed three times in 20 mM phosphate buffered saline (PBS), pH 7.2, for 10 min each, before incubation with 1:200
dilutions of polyclonal anti-human StAR antibodies at 37°C for 60 min. Tissue sections were washed three times in 20
mM PBS, pH 7.2, for 2 min each, before incubation with a 1:1000 dilution of secondary mouse- anti-rabbit antibody at
37°C for 30 min. Indirect immunohistochemistry kits were used according to the manufacturer’s instructions to visualize
StAR protein stained tissue under microscope and image collected. A pathological image analysis system is used to
measure mean optical density (MOD) analysis under high-magnification (x400) microscopy. The MOD, which reflected
the positive staining intensity, and the positive staining ratio (area %) of every positively stained area, are measured.
The area % is calculated as ([the area of positive stainingl/[total nuclear area in the field of view]) x 100. The MOD and
area % are used to calculate the expression index, El (%) = MOD x area %(Tian et al., 2009).
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Event: 1973: Increased, estrogens

Short Name: Increased, estrogens

Key Event Component

Process Object  Action

estrogen secretion Estrogen increased
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AOPs Including This Key Event

AOP ID and Name Event
Type
Aop:440 - Hypothalamus estrogen receptors activity suppression leading to ovarian cancer via ovarian epithelial cell e

hyperplasia
Biological Context

Level of Biological Organization

Cellular

Cell term

Cell term

steroid hormone secreting cell

Organ term

Organ term

reproductive organ

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

human Homo sapiens High NCBI
rat Rattus norvegicus High NCBI
mice  Mus sp. High NCBI

Life Stage Applicability
Life Stage Evidence

Adult, reproductively mature High
Sex Applicability
Sex Evidence

Female High

Male Moderate

It is applicable in reproduction system, cell growth and cell function

Key Event Description

Biological state: The most predominant form of estrogens is 17B-estradiol (E2) which is sex hormone. In women
having premenopausal it is mainly produced in the ovaries. For postmenopausal women, it E2 primarily is sythesized from
testosterone by aromatase enzyme in extragonadal tissues(Simpson, 2003). Estradiol stimulates both cell growth and
cholesterogenesis in the MCF-7 line (breast cancer cell line) (Cypriani et al., 1988). Cholesterol increases neuronal
estradiol release into the medium through synapse formation(Fester et al., 2009).

Biological compartments: Estrogen is considered as the risk of developing cholesterol gallstones by enhancing
the hepatic secretion of biliary cholesterol leading to an increase in cholesterol(Wang et al., 2009).

General role in biology: When estrogen levels decline, levels of low-density lipoprotein, the harmful kind of
cholesterol increases, and levels of high-density lipoprotein, the positive kind of cholesterol decrease, due to which fat
build up in the body and cholesterol in the arteries that causes heart attack and stroke(Fahraeus, 1988; Wahl et al.,
1983). Granulosa cells are the primary cell which provides the support and microenvironment required for the developing
oocyte in the ovary(Sen and Hammes, 2010; Sterneck et al., 1997).
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How it is Measured or Detected

Radioimmunoassay (RIA) and analytical method based on mass spectroscopic are used for estrogen measurement
present in serum (Smy and Straseski, 2018; Giese, 2003).
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Event: 1076: Increased, circulating estrogen levels

Short Name: Increased, circulating estrogen levels

Key Event Component

Process Object Action

estrogen increased

AOPs Including This Key Event

AOP ID and Name Event
Type
Aop:168 - GnRH pulse disruption leading to mammary adenomas and carcinomas in the SD rat. KeyEvent
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Aop:169 - GnRH pulse disruption leading to pituitary adenomas and carcinomas in the SD rat. Kegﬁgﬁ@t

AOP ID and Name
Aop:440 - Hypothalamus estrogen receptors activity suppression leading to ovarian cancer via ovarian epithelial cell Ke;g\?:nt

hyperplasia
Biological Context

Level of Biological Organization

Organ

Event: 1052: Hyperplasia, ovarian epithelium
Short Name: Hyperplasia, ovarian epithelium
Key Event Component

Process Object Action

hyperplasia epithelium of female gonad increased

AOPs Including This Key Event

AOP ID and Name Event
Type
Aop:165 - Antiestrogen activity leading to ovarian adenomas and granular cell tumors in the mouse KeyEvent

Aop:440 - Hypothalamus estrogen receptors activity suppression leading to ovarian cancer via ovarian epithelial cell KeyEvent

hyperplasia
Biological Context

Level of Biological Organization

Tissue

Organ term

Organ term

epithelium of female gonad

List of Adverse Outcomes in this AOP

Event: 1053: Promotion, ovarian adenomas

Short Name: Promotion, ovarian adenomas
Key Event Component

Process Object Action

Adenoma increased

AOPs Including This Key Event

AOP ID and Name Event Type
Aop:165 - Antiestrogen activity leading to ovarian adenomas and granular cell tumors in the mouse AdverseOutcome
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Ao.p:44.0 - Hvoothalamu.s estrogen receptors 2AQR B @anstdName leading to ovarian cancer via ovarian Ad\l;(\alres%tOL goeme
epithelial cell hyperplasia

Biological Context

Level of Biological Organization

Tissue

Event: 2092: Promotion, Ovarian Cancer

Short Name: Promotion, Ovarian Cancer

Key Event Component

Process Object Action

endocrine signaling estrone increased
AOPs Including This Key Event

AOP ID and Name Event Type

Aop:440 - Hypothalamus estrogen receptors activity suppression leading to ovarian cancer via ovarian
epithelial cell hyperplasia

AdverseOutcome
Biological Context

Level of Biological Organization

Organ
Organ term

Organ term

female reproductive organ

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links

human Homo sapiens High NCBI
rat Rattus norvegicus High NCBI
mice  Mus sp. High NCBI

Life Stage Applicability
Life Stage Evidence

Adult High
Sex Applicability
Sex Evidence

Female High

It is applicable in ovary for reproductive matured female.

Key Event Description
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Biological state: Ovarian cancer is fatal gynecological malignancy and ranked as fifth most commonly diagnosed cancer among
women. Generally, mortality rate is highest (~ 50 %) from this cancer as there is lack of proper diagnosis at early stage(Siegel et al.
2019). Ovarian cancers are broadly categorised into three types based on origin of cells namely epithelial, stromal and germ cell
cancers (Gilks and Prat 2009). Recent research efforts revealed that numbers of molecular level (genome, transcriptome and
proteome level) perturbations are responsible for the development and progression of ovarian cancer (Cheng and Zhan 2017).
There is need to develop a molecular level biomarker for early detection, treatment and development of personalized medicine.
Understanding of molecular level interactions in large and complex biological networks using systems biology approach will be key
factors to identify the major regulatory motifs (Zhang et al. 2018). This approach not only reduces the animal experiments
substantially, but will able to quick detect of key perturbations

Biological compartments: Recent studies have suggested that FSH stimulates the proliferation and invasion of ovarian cancer
cells, inhibits apoptosis and facilitates neovascularisation (Tao et al. 2013). Earlier studies also have established that the estrogen
(ER) and progesterone (PR) receptors are important prognostic indicators of breast and endometrial cancers, and epithelial ovarian
cancer. Despite acceptance regarding the influence of reproductive hormones on ovarian cancer risk and considerable advances in
the understanding of epithelial ovarian carcinogenesis on a molecular level, complete understanding of the biologic processes
underlying malignant transformation of ovarian surface epithelium is still lacking (Gharwan et al. 2015).

General role in biology: Malfunctioning of sex hormones (e.g., estradiol, estrone and progesterone) may result ovarian cancer
(Fooladi et al. 2020, Meehan and Sadar 2003). Exposure to endocrine-disrupting chemicals (EDCs) in the form of occupational
usage of pesticides, fungicides, herbicides, plasticizers, cosmetics, etc. are the cause of ovarian cancer (Samtani et al. 2018).
Clomiphene which is used as drug to treat infertility and it is reported that this chemical increases the risk of ovarian cancer
(McLemore et al. 2009). Clomiphene (molecular initiating event, MIE) stimulates the releasing of gonadotropin-releasing hormone
(GnRH) from hypothalamic. Also, it stimulates the secretion of the Follicle-stimulating hormone (FSH) and luteinizing hormone (LH)
from pituitary (Cassidenti et al. 1992, Mungenast and Thalhammer 2014, Tomao et al. 2014). These hormones regulate the
synthesis of sex hormons (e.g., estrogen) level (Shoemaker et al. 2010, Tomao et al. 2014). These sex hormones are primarily
produced in the gonads through a series of enzyme-mediated reactions from cholesterol (precursor) and control through complex
signalling pathway along hypothalamus — pituitary - gonadal (HPG) axis (Perkins et al. 2019, Shoemaker et al. 2010). The series of
complex signalling pathways in ovary include G-protein cycle, G-protein activation, adenylate cyclase (AC) activation, cyclic AMP
(cAMP) activation, protein kinase A (PKA) activation, steroidogenic factor 1 (SF1) and StAR transcription. Ultimately, this signalling
pathway activates the StAR protein which regulates the intake of cholesterol into the inner mitochondria where synthesis of sex
hormones takes place. It may be noted that cholesterol is the precursor of the sex hormones synthesis. Again, releasing of LH is
regulated by estradiol and testosterone level resulting complex signalling pathway that includes genes, transcritome, proteome and
metabolites (Perkins et al. 2019, Shoemaker et al. 2010). Under clomiphene exposure, synthesis of estrogen level becomes high
resulting risk of ovarian cancer (McLemore et al. 2009, Tomao et al. 2014). Therefore, perturbations of GnRH, FSH and LH can
result adverse phenotype as ovarian cancer.

How it is Measured or Detected

Gossmann et al., had shown the effects of angiogenesis inhibition on tumor microvascular permeability was monitored with the help
of magnetic resonance imaging (MRI) technique in a rat model of human ovarian cancer (Gossmann et al. 2000).

Gitsch et al., had developed gamma-ray detection probe for overcoming the conventional radio-immunoscintigraphy problems for
the detection of ovarian cancer in female patients (Gitsch and Pateisky 1989).

Kim et al., had used the detection of magnetic resonance imaging (MRI) and positron emission tomography/computed tomography
(PET/CT) for the detection of ovarian tumor in human patient. Sensitivity and accuracy of the PET/CT technique for detecting the
ovarian tumor was reported 73% and 91%. Whereas, the sensitivity and accuracy of the MRI technique was reported 81% and 89%
(Kim et al. 2007).

Harrington et al., had used immunotechniques (Anti-CDCP1 immuno-conjugates) for detection of the ovarian cancer. Expression
and binding properties of the cell surface protein was detected in ovarian cancer cell (in vitro) using flow cytometry and western blot
technique (Harrington et al.).

Regulatory Significance of the AO

Informations related with ovarian cancer will be helpful for the regulatory authorities to develop monographs, frame the rules of
assesments and monitoring of the process.
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List of Key Event Relationships in the AOP
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List of Adjacent Key Event Relationships

Relationship: 2580: Suppression, Estrogen receptor (ER) activity leads to Increased, secretion of GhRH from
hypothalamus

AOPs Referencing Relationship

Weight of Quantitative

AOP N Adj
OP Name ey Evidence Understanding

Hypothalamus estrogen receptors activity suppression leading to ovarian cancer

via ovarian epithelial cell hyperplasia Hlefree! aleld Meiggasilied

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links

human Homo sapiens High NCBI
rat Rattus norvegicus High NCBI
mice  Mus sp. High NCBI

Life Stage Applicability
Life Stage Evidence

Adult, reproductively mature High
Sex Applicability

Sex Evidence
Female High

Male Low

Negative feedback action on GnRH secretion had shown in female guinea pig (Kelly et al., 1984).
Reduced firing of GnRH neurone was shown in adult female mice (Chu et al., 2009).
Alterations in the concentrations of oestrogen receptors in the hypothalamus was shown in rat (Adashi et al., 1980).

Negative Feedback of estrogen on GnRH secretion was studied in adult woman (Shaw et al., 2010).
Key Event Relationship Description

Study on female human patient had shown Selective Estrogen Receptors Modulator (Clomiphene) act on the
hypothalamic site and increase the hypothalamic GnRH secretion significantly (KERIN et al., 1985). Study on female rat
had shown increased gonadotropin hormone secretion upon administration of very low dose (1-100 ng/kg) of
clomiphene citrate. However, high dose (1pg/kg -2 mg/kg) of clomiphene citrate in female rat inhibit the gonadotropin
hormone secretion (Koch et al,, 1971).

Estradiol i.e. Estrogen receptor beta acts as a potent feedback molecule between the ovary and hypothalamic GnRH
neurons, and exerts both positive and negative regulatory actions on GnRH synthesis and secretion (Hu et al., 2008).
ESR; control the GnRH release through the intracellular calcium ions release (Kenealy et al., 2011). Research had shown
that nanomolar concentration of membrane-associated G protein-coupled estrogen receptor alter the pattems of
Ca2+ release in GnRH neurone (Komatsuzaki and Kawato, 2007). Studies on mouse have shown several molecules such
as, eastradiol, non-peptide neurotransmitters, gasotransmitters can modulate the GnRH neuron activity and GnRH
secretion and control the reproductive functions (Spergel, 2019; Temple et al., 2004; Temple and Wray, 2005).

Evidence Supporting this KER

Koch et al., had shown the ~107% increase in GnRH secretion after administration of clomiphene citrate (1-100 ng/kg)
in adult female rat (Koch et al., 1971).

Boyer et al., had also shown the increasing GnRH secretion after administration of clomiphene citrate (1.0 mg/kg/day)in
immature female rats (Boyar, 1970).

Roy et al.,, had shown that 17B-estradiol at 1 nm concentration over a 48 h time period down regulate (~55%) the
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expression of GhRH mRNA in GnRH-secreting, hypothalamic cell line (GT1-7) (Roy et al., 1999).

Chu et al, had shown using whole cell electrophysiology of the brain slice in adult female mice 10 picomolar
concentration of estradiol reduce the firing of GnRH neurone (Chu et al., 2009).

Biological Plausibility
Molecular mechanism for the enhancement of GnRH by suppression of Estrogen receptor activity is poorly known.

Empirical Evidence

Compound class Species Study type Dose KER findings Reference
GnRH - 37.0+ 3.6
pg/mg (Control)
Adult Rat Quantification W10 (Koch et al
Clomiphene citrate e f GNRH ng/kg, 21- || GnRH - 76.7+5.8 1971) i
emale ° 48 days) pg/mg
(Clomiphene
treated)
e FSH-RF - 32.0
Oquaptlflcatlon (22.3- 41.7) ug/mg
pituitary Control
| concentra- 1.0 (Control)
mmature i vionof FSH | mg/kg/da
Clomiphene citrate | female rats | /12" fogr 28 Y| FSH-RF - 122.0 (Boyar, 1970)
(female) . (29.2- 215.8)
weight days ug/mg
ENEITIEEE (Clomiphene
tion method) treated)
Hypothalamic ~55% down
) q cell line of Expression of regulation of the (Roy et al.,
sl transgenic GnRH mRNA 1 nm expression of 1999)
mice (GT1-7) GnRH mRNA.

Uncertainties and Inconsistencies
The release GnRH neurons depends on the concentration of the Selective Estrogen Receptors Modulator compound
(Clomiphene). Scientific reports have shown the both stimulatory and inhibitory effects on the GnRH secretion

exhibited by the estradiol depending on the concentration of clomiphene molecules and presence of types of
receptors (Chu et al., 2009; Micevych and Kelly, 2012; Boyar, 1970).

Quantitative Understanding of the Linkage

Not Specified

Response-response relationship

Not Specified

Time-scale

Neural activity and elevated hormone release are observed for hours inin vivo study (Chu et al., 2009).
Known modulating factors

GnRH secretion from the neurone can be modulated by prostaglandin, glutamate, ATP, carbon monoxide, nitric oxide,
neurotransmitters (norepinephrine, epinephrine, GABA, histamine and acetylcholine) (Spergel, 2019).

Known Feedforward/Feedback loops influencing this KER

Not Specified
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Relationship: 1089: Increased, secretion of GnRH from hypothalamus leads to Increased, secretion of LH from
anterior pituitary

AOPs Referencing Relationship

Weight of Quantitative

AOP N Adj
OP Name Sl Evidence Understanding

Antiestrogen activity leading to ovarian adenomas and granular cell tumors in the

adjacent High
mouse

Hypothalamus estrogen receptors activity suppression leading to ovarian cancer
via ovarian epithelial cell hyperplasia

adjacent High Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links

human Homo sapiens High NCBI
rat Rattus norvegicus High NCBI
mice  Mus sp. High NCBI
cow Bos taurus Low NCBI

Life Stage Applicability
Life Stage Evidence
Adult, reproductively mature High
Sex Applicability
Sex Evidence
Female High

Male Low

Adult
Key Event Relationship Description

The release of gonadotrophin-releasing hormone (GnRH) stimulate the secretion of Iuteinising hormone (LH) (Fields et
al., 2009). GnRH causes the pituitary gland to secrete LH. Gonadotropin releasing hormone (GnRH) is the key regulator
of the secretion of luteinising hormone (Marques et al., 2018; Bowen et al.,, 1998; Tsutsumi and Webster, 2009).
Metastin or kisspeptin in the control of gonadotropin-releasing hormone (GnRH) release and then it causes for pulsatile
release of luteinizing hormone(Ohkura et al., 2009).

Evidence Supporting this KER

e Gonadotropin-releasing hormone (GnRH) is the master hormone for regulating the reproduction. GnRH pulses
stimulate the synthesis and secretion of LH from the anterior pituitary(Tsutsumi and Webster, 2009).
e Nicol et al., reported that high GnRH dose enhances the secretion of LH (Nicol et al., 2002)

Biological Plausibility

GnRH was isolated from porcine hypothalamus. It was structurally identified as a decapeptide (pGlu-His-Trp-Ser-Tyr-
Gly-Leu-Arg-Pro-Gly-NH2)(AV et al., 971). During the childhood, GnRH levels are low but as puberty begins. GnRH levels
start to rise and when the testes and ovaries are fully developed. GnRH regulates LH and these hormones to control
the production of sex hormones in adult (Marques et al., 2018). GnRH secretion have been described in pulsatile (in
minutes) and surge modes. Pulsatile mode refers to episodic release of GnRH while the surge mode of GnRH secretion
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occurs in females during the pre-ovulatory phase (Maeda et al., 2010). Secretion of LH is also in pulsatile nature ( in
hrs)(Bolt, 1971).

Empirical Evidence

Compound class Species | Study type | Dose KER findings Reference
GnRH dose GnRH dose .
GnRH Cows In-vivo of 100 micro | increases LH %%lg)s G el
gram secration
GnRH dose
GnRH Possums | In-vivo increases LH (Cremerel & &l
! 2009)
secration

GnRH dose GnRH dose
GnRH Bitches In-vivo of 06.-2.4 increases LH
microgram/kg || secration

(Concannon et
al., 2006)

GnRH agonist

GnRH dose (triptorelin

GnRH agonist (triptorelin acetate) (Sonntag et al,,

dose Humans | In-vivo of 3.75mg/ | acetate)dose 2005)
person decrease LH
seccretion

Uncertainties and Inconsistencies

Not Specified
Quantitative Understanding of the Linkage

e Fields et al., studied the dose response of GnRH (100 micro gram) on cows and observed greater release of LH (25
%) aftrer 12-18 hours (Fields et al., 2009)

e Crawford et al., used PCR techniques to study the effect of GnRH on LH in vivo on Possums. They reported the
increase of LH quantitavely in absence of pulse of LH(Crawford et al., 2009)

e Guillaume et al., studied the two GnRH antagonist Antarelix and Cetrorelix (0.01 mg/kg) on mare and observed
that there is strong suppression of LH (Guillaume et al., 2002)

e Washington et al., developed one mathematical model for the respose of LH under the pulsatile and continuous
exposure of GnRH (Washington et al., 2004

e Shoemaker et al., developed a mathematical model on steroidogenesis in the fathead minnow. They quantified the
relationship between GnRH and LH(Shoemaker et al., 2010)

Response-response relationship
Not Specified
Time-scale

e Generally time scale is in hours (6-18) between GnRH and LH response (Fields et al., 2009).

e GnRH is degraded by proteolysis within a few minutes(Kenealy et al., 2011).

e |t has very low activity during childhood, and is activated at puberty or adolescence and in reproductive years,
pulse activity is critical for successful reproductive function(Berger et al., 1983).

Known modulating factors

e Protein kinase C cross-talk with gonadotrope progesterone receptoris involved in GnRH-induced LH secretion
(Garrido-Gracia et al., 2006)

Known Feedforward/Feedback loops influencing this KER

Not Specified
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Relationship: 2581: Increased, secretion of LH from anterior pituitary leads to Increased, Steroidogenic acute
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regulatory protein (StAR)

AOPs Referencing Relationship

Weight of Quantitative

AOP N Adj
ame Jacency Evidence Understanding

Hypothalamus estrogen receptors activity suppression leading to ovarian cancer
via ovarian epithelial cell hyperplasia

adjacent High Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links

human Homo sapiens High NCBI
rat Rattus norvegicus Moderate NCBI
mice  Mus sp. Moderate NCBI

Life Stage Applicability

Life Stage Evidence

Adult, reproductively mature High
Sex Applicability

Sex Evidence
Female High

Male Low

Adult
Key Event Relationship Description

The activity of StAR proteinin theca cells is control by LH (Murayama et al., 2012). Subsequently, StAR protein regulates
cholesterol transportation to the mitochondria and therefore, the production of steroid hormones is regulated by StAR
protein (Clark and Stocco, 1995).

Evidence Supporting this KER

e Murayama et al. studied the in vitro LH pulse dose in Bovine ovaries and reported LH dose enhances the activity
of StAR protein (Murayama et al., 2012).

e Johnson and Bridgham performed in vitro studied in granulosa cells from prehierarchal and preovulatory hen follicles
to examine the regulation of steroidogenic acute regulatory protein (StAR) by LH. They reported the treatment
with LH rapidly increased StAR mRNA and protein (Johnson and Bridgham, 2001).

Biological Plausibility

In mammalian species (e.g., rat,rabbit, human), LH stimulates the StAR protein to increase the cholesterol transport in
to the inner mitochondrial membrane. Cholesterol is the precursor of sex hormones. Therefore, LH regulate the
steroidogenic function of theca cells (Murayama et al., 2012; Johnson and Bridgham, 2001; Rekawiecki et al., 2005).

Empirical Evidence

Compound class | Species Study type || Dose KER findings Reference
LH Bovine ovaries, Human In vitro i-?r?ﬂ LA ITEEESES S0aR | ANEYETE &
’ 9 protein activity al.,, 2012)
LH dose
, LH increases StAR | (Johnson and

LH granulosa cells,Human In vitro LH dose protein activity Bridgham, 2001)

. . LH-induced StAR (Martinat et al.,
LH Leydig cells, Rat In vivo LH dose protein expression | 2005)
LH Bovine luteal cells, Human || In vitro LH dose || LH increases StAR [ (Rekawiecki et
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ETP e GRBLse A, | o 2007
LH Leydig cells, Rat In vivo LH dose h . (Liu et al., 2007)
protein expression
LH increases five
LH Leydig cell, Mice In vivo LH dose [ fold StAR protein (z%a(;:g)eret al,
expression

Uncertainties and Inconsistencies

No uncertainties and inconsistencies are observed
Quantitative Understanding of the Linkage

e Rekawieck et al. conducted the in vitro study on Bovine luteal cells to investigate the effect of LH on steroid
acute regulatory protein (StAR). They reported the LH enhances the activity of StAR protein (Rekawiecki et al.,
2005).

e Liu et al. investigated the effect of LH on StAR protein using rat as model and reported the positive correlation
between Lh and StAR protein (Liu et al., 2007)

e FEackeret al. reported that LH up regulates the StAR protein (around five fold) using mice model (Eacker et al.,
2008)

Response-response relationship
Not specified
Time-scale

Time scale for the response between LH to StAR protein in hours (3-20 h) (Johnson and Bridgham, 2001; Martinat et al.,
2005; Rekawiecki et al., 2005).

Known modulating factors
Not specified
Known Feedforward/Feedback loops influencing this KER

Not specified
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Relationship: 2582: Increased, Steroidogenic acute regulatory protein (StAR) leads to Increased, estrogens

AOPs Referencing Relationship

Weight of Quantitative

AOP N Adj
OP Name & EEEE Evidence Understanding

Hypothalamus estrogen receptors activity suppression leading to ovarian cancer
via ovarian epithelial cell hyperplasia

adjacent High Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links

human Homo sapiens High NCBI
rat Rattus norvegicus Low NCBI
mice Mus sp. Low NCBI
fish fish Low NCBI

Life Stage Applicability
Life Stage Evidence
Adult, reproductively mature High
Sex Applicability
Sex Evidence

Female High
Male Low
Adult

Key Event Relationship Description

Steroidogenic acute regulatory (StAR) protein (37-kDa) is synthesized with a mitochondrial leader sequence in response
to the cell stimulation to produce steroid and plays a crucial role in steroidogenesis (Hanukoglu, 1992). Research had
shown in human ovary StAR protein was produced in response to the Luteinizing Hormone (LH) surge (Kiriakidou et al.,
1996). In particular, StAR protein involved in the transportation of the cholesterol (substrate for steroid hormone) from
outer to inner mitochondrial membrane. This step is crucial and rate limiting in steroid biosynthesis. In the inner
membrane of the mitochondria with the help of cleaved cholesterol pregnenolone is formed, which is the precursorto
the different steroid hormones including estrogen (P. R. Manna et al., 2016). Effects of StAR protein on steroidal
biosynthesis had been studied by number of researchers (Pulak R Manna et al., 2002; Pescador et al., 1996; Stocco,
2001).

Estradiol synthesis during menstrual cycle is governed via expression of StAR protein synthesis. Presence of StAR
protein allows follicular production of androgens which allows the progesterone dominated microenvironment and help in
sexual differentiation, growth, reproduction, development and metabolism. Kusakabe et al., had shown in trout fish
(Salvelinus fontinalis) model that peak of StAR protein coincide with the menstrual hormone production peak
(Kusakabe et al., 2002). Research had shown some toxic chemicals can caused alteration in steroidal regulation and
resulted in the agonist effect on estrogen receptors (Lauretta et al., 2019).

Evidence Supporting this KER

Study on immature female rat model had shown rapid changes of the StAR protein level in the ovary during follicular
development facilitate the production of estrogen (Ronen-Fuhrmann et al., 1998).

Fang et al., had studied StAR protein expression under the influence of amphiregulin protein in cultured primary human
granulosa cells collected from female. Results of the study had shown that human chorionic gonadotropin (hCG) rapidly
induces amphiregulin (AREG) expression in the culture cells. Treatment with amphiregulin increase StAR expression and
progesterone production in the cells (Fang et al., 2016).

Biological Plausibility

StAR protein catalyzes the movement of cholesterolin the outer mitochondrial membrane to the inner membrane.
There, cytochrome P450scc converts cholesterol to the steroid pregnenolone. Studies have shown (in mouse and rat

29/39


https://aopwiki.org/relationships/2582
https://aopwiki.org/aops/440
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10095
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0

AOP440

model) some molecules (e.g. 25-hydroxycholesterol) can serve as a substrate forinducing the expression of StAR and
influence the steroid production in different tissues. Other oxysterols molecules also capable of increasing STAR
expression and pregnenolone synthesis in human endometrial stromal cells (P. R. Manna et al., 2016).

Empirical Evidence

Compound class | Species Study type Dose KER findings Reference
Increased in StAR
transcripts in
tissues exhibiting
In situ enhanced steroid
hybridization, | Stressor production and
Trout fish || cloning of concentration increased
StAR Protein (Salvelinus | cDNAs, . circulating levels of (zléug,;)kabe =Eel,
fontinalis) | Northern (0.5 ml/liter 2- 17B-estradiol and
blot analysis | phenoxyethanol) | maturation
of mRNA inducing steroid (
170,208 -
dihydroxy-4-
pregnen-3-one).
Northern MAP kinase
blot analysis | inhibitor . .
Hgn of MRNA (U0126)-50 mM, Acute increase in
iigle- collected Follicle progesterone (Johnson et al
StAR Protein comb from ovarian I stimulatin production in 2002) v
ES follicle hormone(I?SH) L || EEEeEE o Ea
L= o) granulosa 100 ng/ml, TGFa St
cells (50 ng/ml)
The mouse StAR Protein
MA-10 Northern inhibition by
StAR Protein Leydig blot analysis Fillc;rozole (2 antifungal drugs (zvgggs)h Gl
tumorcell | of total RNA H econazole and
line miconazole

Uncertainties and Inconsistencies
Chang et al., had investigated the effects of antimullerian hormone (AMH) on estradiol production in primary culture of
human granulosa-lutein (hGL) cells. In the control cell estradiol concentration was found 43.2-93.7 ng/mL.

Whereas,treatment with AMH (10 ng/mL) significantly reduced the estradiol accumulation in the cells (Chang et al.,
2013).

Quantitative Understanding of the Linkage

Pescador et al., had studied the StAR mRNA levels in the bovine corpus luteum. Result of the study had shown that
expression of StAR mRNA was low in developing corpus luteum. In mid to late luteal phase the concentration increased
9- to 15-fold compared to the expression of StAR mRNA during developing stage. Results confirms that StAR mRNA
and protein are tightly coupled in the corpus luteum cells and present at low levels during CL development and present
elevated concentrations during the midluteal phase (Pescador et al., 1996).

Response-response relationship

Not specified

Time-scale

Observed for hours

Known modulating factors

Arukwe had shown nonylphenol (15 pg/L) can induce the StAR protein in juvenile Atlantic salmon (Salmo salar) fish
(Arukwe, 2005).

Known Feedforward/Feedback loops influencing this KER

Not specified
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Relationship: 2583: Increased, estrogens leads to Increased, circulating estrogen levels

AOPs Referencing Relationship

Weight of Quantitative

AOP N Adj
OP Name ol ey Evidence Understanding

Hypothalamus estrogen receptors activity suppression leading to ovarian cancer
via ovarian epithelial cell hyperplasia

adjacent High Moderate

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links
human Homo sapiens High NCBI

rat Rattus norvegicus High NCBI
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Life Stage Evidence

Adult, reproductively mature High
Sex Applicability
Sex Evidence

Female High
Male High

Judd et al, had measured the circulating estrogen level in the male and female lizards (Iguana iguana) (Judd et al., 1976).

Roberts et al.,, had estimated the circulating estrogen in the plasma collected from human volunteer (Roberts and
Szego, 1946).

Truan et al., had shown the high circulating estrogen levels in the mice model (Truan et al., 2010).
Key Event Relationship Description

Ovaries are the principle source of estrogen hormone in premenopausal women. This estrogen functions as a circulating
hormone to act on different tissues. In postmenopausal women, estrogen is produced in a number of extragonadal
sites and acts locally at these sites as a paracrine or even intracrine factor. The monthly menstrual cycle in female is
controlled through unique co-ordination between secreted hormones by the hypothalamus, the pituitary gland, and the
ovary. Estrogen is synthesized from androgen, upon calalysis of aromatse enzyme present in the endoplasmic reticulam
of the cells. Presence of aromatase enzyme is found majorly in the ovarian granulosa cells (premenopausal female), in
the skin and adipose tissue (postmenopausal woman). Estrogen was synthesized in postmenopausal women due to the
aromatization of steroids, found in the adipose and skin tissue.

Aromatase is a key enzyme for estrogen formation in human tissues. In men and postmenopausal women C19 steroids
undergoes aromatization in different tissues (e.g. skin, adipose) to generate estrogen. In men, testicular
steroidogenesis accounts for 15% of the circulating level of estrogen.

In women, the ovarian granulosa cells are important sites of estrogen formation for local use within the ovary as well as
for endocrine signalling to the target tissues (e.g. uterus, skin, breast, brain, bone). In case of postmenopausal female,
ovarian aromatase expression is stopped, but estrogen level is maintained in the plasma by the increased aromatase
expression in other tissues (adipose and skin). Research had shown elevated circulating estradiol may persist at
sufficient levels to cause postmenopausal uterine bleeding, endometrial hyperplasia, and even cancer.

Evidence Supporting this KER

Stegeret al., had shown the age related changes in steroid productions in the ovaries of rat model. In this work
researchers had shown the elevated serum estrone and estradiol level in the rats (mid-aged) (Steger and Peluso, 1982).

Biological Plausibility

Estrogens in humans are classified as estrone (E1) and estradiol (E2). E2 is synthesized majorly in ovaries and testes by
aromatization of testosterone. Small amounts of estrogens are produced in the adrenal glands and some peripheral
tissues (e.g. skin, fat tissues). E2 and E1 are interchangeable, and both can be deactivated via hydroxylation. E2 has
1.25 to 5 times higher biological potency of E1. E2 circulates at 1.5 to 4 times more concentration of E1 in
premenopausal women. E2 levels in men and postmenopausal women are much lower than in nonpregnant women. E2
levels in premenopausal women fluctuate during the menstrual cycle. An E2 level is lowest during the early follicular
phase, thenrise gradually until 2 to 3 days before ovulation. In the ovulatory phase E2 levels again declined.

Empirical Evidence

Compound class Species | Study type Dose KER findings Reference

Estrogens mean
concentrations
were higherin the
females compared
to males. Estradiol

Il Assay of (258 = 46 pg/mi). (Judd et al
Circulating estrogen || (lguana | y tein |- Estrone (205 £ 1976 v
iguana) plasma protein 147 pg/ml) - In )
Females.
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Estradiol, 79 + 42
pglml, Estrone, 37
+ 2 pglml - In Male

1.5t0 2.0 ug of
Assay of estriol (1.8 ug - in

Circulating estrogen Al lasma protein | - average) per 100 (215 BT
9 9 Plasma [ Plésmap geip Szego, 1946)
fractions ml. of original
plasma.

A 100-pL High circulating
estrogen (E2)
concentration (E2
pellet (0.36 mg/
60-day release)
simulating
premenopause

Ovariectomized | cell
athymic mice suspension
(BALB/c nu/nu, | (4 x106
4-5 wk old) MCF-7
cells)

(Truan et al.,

Circulating estrogen || Mice 2010)

Uncertainties and Inconsistencies
Leung et al., had shown estradiol-17B (I mg) administration in the female rat for 3 days decrease the ovarian androgen

levels (13 £ 2 pg/mg) compared to the control (34 = 7 pg/mg). Results of the study suggest estrogen levels controlled
by the negative feedback loop of testosterone production (Leung et al., 1978).

Quantitative Understanding of the Linkage

Estrone concentrations in human
Males: 10-60 pg/mL, Females: Premenopausal: 17-200 pg/mL, Postmenopausal: 7-40 pg/mL
Estradiol concentrations in human

Males: 10-40 pg/mL, Females: Premenopausal: 15-350 pg/mL, Postmenopausal: <10 pg/mL (Cummings et al., 1998;
Elmlinger et al., 2002)

Response-response relationship

Leung et al., had shown estradiol-17p (I mg) administration in the female rat for 3 days decrease the ovarian androgen
levels (13 £ 2 pg/mg) compared to the control (34 + 7 pg/mg) (Leung et al., 1978).

Time-scale

Elevation of the circulating estrogen can be observed in days
Known modulating factors

Estrogen levels changes due to the following reasons.

High androgen levels caused by tumors
Androgen therapy

Elevations in estrogen due to aromatization
Obesity with increased tissue production of E1
Decreased estrogen clearance in liver disease
Estrogen producing tumors

Estrogen ingestion

Known Feedforward/Feedback loops influencing this KER

Not specified
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List of Non Adjacent Key Event Relationships

Relationship: 2585: Increased, circulating estrogen levels leads to Hyperplasia, ovarian epithelium

AOPs Referencing Relationship

Weight of Quantitative

AOP N Adj
—_ Jacency  evidence  Understanding

Hypothalamus estrogen receptors activity suppression leading to ovarian cancer non-

via ovarian epithelial cell hyperplasia adjacent High helpegiee

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links

human Homo sapiens High NCBI
rat Rattus norvegicus High NCBI
mice  Mus sp. High NCBI

Life Stage Applicability

Life Stage Evidence

Adult, reproductively mature High
Sex Applicability
Sex Evidence

Female High

Increase in circulating estrogen level causing increase in the ovarian stromal cells observed in adult female (human) also
in rabbit and rodents.

Key Event Relationship Description

Hyperplasia of the ovarian epithelial cells characterized by aggregates of tubular like structures or cleft lines. In the
mammalian ovary tissue presence of germ cells surrounded by the somatic cells is known as follicles. During the
oestrous cycle early stage follicles either go through atresia or ovaluation to produce mature egg for fertilization. With
the age ovaries run out of follicles and female undergo menopause. Repetitive rupture and repair of the epithelium
tissue of the ovarian cells causes genetic aberrations causing the abnormal growth of these cells ultimately leads
towards hyperplasia (Bajwa et al., 2016).

Yamagata et al., studied that the increased estrogen were reflected in such target tissues proliferation, hyperplasia,
atypical hyperplasia of the endometrium were observed in patients with ovarian tumors (Yamagata et al., 1989). Goad
et al., had shown that unopposed estrogen drives the endometrial hyperplasia leads towards the progression of
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endometrial cancer in the uterine epithelium (Goad et al., 2018). During the menstrual cycle, epithelium tissue of the
ovary proliferate under the influence of higher estrogenic level, and the increased mitotic activity is likely to enhance
the risk of the mutation in the cells (Harvey A. Risch, 1998b).

Evidence Supporting this KER

Nash et al, had shown 50% increase in the growth rate of the epithelial ovarian cancer cell line (PEO4) with the
treatment of 17B-estradiol in vitro cell culture study (Nash et al., 1989).

Meissner et al., had shown the endometrial hyperplasias and cancers by excessive estrogenic stimulation in the female
rabbit (Meissner et al., 1957).

Biological Plausibility

There are many kinds of ovarian tumors that are related with the estrogen or androgen levels. Granulosa cell tumor and
thecoma are well-known estrogen-producing tumors. Metastatic ovarian tumors often have androgen-producing stroma
and that mucinous cystadenoma produces estrogens. Many other ovarian tumors also can produce sexual hormones in
their stroma (Tanaka et al., 2004).

Empirical Evidence

Compound class || Species || Study type | Dose KER findings Reference
Increase in Atypical
Estrogen women | In vivo concentration | hyperplasia of the (EIMELLEE G
) al., 1989)
of estrogen endometrium
' Increase in . Endometrial cancer (Goad et al.
Estrogen women | In Vitro concentration || by endometrial 2018)

of estrogen hyperplasia

Uncertainties and Inconsistencies

Ho et al., had shown that steroid hormones, primarily estrogens and progesterone, are implicated in ovarian
carcinogenesis and estrogens favor neoplastic transformation of the ovarian surface epithelium (Ho, 2003).

Quantitative Understanding of the Linkage

Not specified

Response-response relationship

Vuong et al., had shown estrogen replacement therapy in the primary culture of the mouse ovarian surface epithelium
cells increases the risk of ovarian cancer. Study had demonstrated that exogenous estradiol accelerates the onset of

ovarian cancer in mouse models via the ESR1 pathway to result in the down-regulation of a tumour suppressor gene
(Vuong et al., 2017).

Time-scale

Observed in months to years

Known modulating factors

Not specified

Known Feedforward/Feedback loops influencing this KER

Not specified
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Relationship: 1093: Hyperplasia, ovarian epithelium leads to Promotion, ovarian adenomas

AOPs Referencing Relationship

Weight of Quantitative

AOP N Adj
ame Jacency Evidence Understanding

Antiestrogen activity leading to ovarian adenomas and granular cell tumors in the non-

mouse adjacent High

Hypothalamus estrogen receptors activity suppression leading to ovarian cancer non-
via ovarian epithelial cell hyperplasia adjacent

High Not Specified

Relationship: 2829: Promotion, ovarian adenomas leads to Promotion, Ovarian Cancer

AOPs Referencing Relationship

Weight of Quantitative

AOP N Adj
OP Name djacency o dence Understanding

Hypothalamus estrogen receptors activity suppression leading to ovarian cancer non-

via ovarian epithelial cell hyperplasia adjacent Eledeies Lo

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability
Term Scientific Term Evidence Links
human Homo sapiens  High NCBI
mice Mus sp. High NCBI
Life Stage Applicability
Life Stage Evidence

Adult High
Sex Applicability
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Sex Evidence

Female High

Observed in adult female (human) also in rodents.
Key Event Relationship Description

Ovarian tumors are abnormal mass of tissues grows on or in the ovaries of the aged females. Ovarian adenomas / cystadenomas
are very common and benign type of tumors, which are found in epithelial tissues of the ovaries. Aimost 60% of the ovarian tumors
are due to the epithelial neoplasm (abnormal growth of tissue) of the ovary (Limaiem et al. 2022). Ovarian adenomas are classified
into different categories such as serous cystadenoma, mucinous cystadenoma, endometrioid cystadenoma, clear cell cystadenoma
and seromucinous systadenoma. Reports have shown that ovarian serous cystadenoma can turn progress to serous carcinoma
(Cheng et al. 2004). Frequent mutations of two genes (BRAF and KRAS) are identified as the cause of the serous carcinoma.

Evidence Supporting this KER

Nishida et al., had reported the development of adenoma malignum of the uterine cervix associated with the mucinous carcinoma in
a female patient (Nishida et al. 1991).

Goedhals et al., had reported development of ovarian mucinous carcinoma arising from the mucinous cystadenoma of the ovary in
a 68 yr old female patient (Goedhals et al. 2008).

Smith et al., had shown with the help of immunohistochemistry the development of sebaceous adenoma arising within a benign
ovarian mature cystic teratoma in a 52 yr old female patient (Smith et al. 2011).

Biological Plausibility

Cheng et al., had reported the sub-classification of Ovarian adenomas / cystadenoma based on the cell types such as serous
cystadenoma, mucinous cystadenoma and endometrioid cystadenoma (Cheng et al. 2004). Possible molecular genetic alteration
associated with the high grade serous and endometrioid cystadenoma are mutation in TP53 gene and dysfunction of BRCA1 and/or
BRCA 2 gene. Whereas, low grade serous carcinoma or borderline serous cystadenoma occurred via activation of the RAS-RAF
signaling pathway and frequent mutations in BRAF or KRAS genes. Mucinous cystadenoma is originated in germ cells and often
related with mutation in KRES gene (Beroukhim et al. 2021). Only 2-4% of the ovarian tumors are accounted for the endometrioid
cystadenoma (Tsukahara et al. 1982). Endometrioid cystadenoma is related to the mutations in CTNNB1 and PTEN gene (Bell
2005, Sanseverino et al. 2005, Wei et al. 2012).

Empirical Evidence

Compound class || Species | Study type Dose KER findings Reference

Increase in
Estrogen women | /n vivo concentration
of estrogen

Atypical hyperplasia | (Yamagata et al.
of the endometrium 1989)

Increase in Endometrial cancer
Estrogen women | In Vitro concentration || by endometrial | (Goad et al. 2018)
of estrogen hyperplasia

Uncertainties and Inconsistencies

Balat et al., had reported the detection of unthreatened late pregnancy with a large mucinous cyst adenoma of the ovary in a
female patient (Balat et al. 2002). Vidhale et al., had reported the detection of serous cystadenoma in the ovary, which is benign in
nature (Vidhale et al. 2022). Mittal, et al., had reported the detection of benign type of mucinous cystadenoma in the ovary (Mittal
et al. 2008).

Quantitative Understanding of the Linkage

Not enough data is available
Response-response relationship

Horn et al., had evaluated the 74 cases of borderline ovarian tumors and shown that majority of the cases are belongs to the
serous borderline ovarian tumors (60.8%), followed by the mucinous borderline ovarian tumors (25.7%). Adenoma in the borderline
ovarian tumors was found in 86.5% cases. The report had suggested that the association of papillary tubal hyperplasia and
salpingoliths with the borderline ovarian tumors (Horn et al. 2017).

Time-scale

Observed in months to years
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Known modulating factors
Modulating Factor (MF) MF Specification Effect(s) on the KER Reference(s)

Not know

Known Feedforward/Feedback loops influencing this KER

Not known
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