

AOP ID and Title:

AOP 499: Activation of MEK-ERK1/2 leads to deficits in learning and cognition via disrupted neurotransmitter release
Short Title: MEK-ERK1/2 activation leading to deficits in learning and cognition

Graphical Representation**Authors**Of the originating work:

Katherine von Stackelberg (Harvard Center for Risk Analysis, Boston, MA, USA.) (Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.)

Elizabeth Guzy (Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.)

Tian Chu (Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.)

Birgit Claus Henn (Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.) (Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.)

Of the content populated in the AOP-Wiki:

Travis Karschnik (General Dynamics Information Technology, Duluth, MN, USA.)

Status

Author status	OECD status	OECD project	SAAOP status
---------------	-------------	--------------	--------------

Under development: Not open for comment. Do not cite

Abstract

Metal mixture activation of ERK1/2 and JNK1/2 in astrocytes leads to increased Ca^{2+} release (Asit Rai and others 2010). Alterations to calcium, an essential nutrient which is required in multiple cellular and physiological functions, such as cell adhesion, signal transduction, and neurotransmission can be expected to have downstream effects in those functions (Antonio et al., 2002). Changes in neurotransmission can then lead to changes in learning and cognition (Neal and Guilarte 2010).

MEK-ERK1/2 is important in understanding uptake of metals into the brain and its relationship to deficits in learning and cognition from exposure to metals commonly detected at Superfund sites including lead, cadmium, manganese, and arsenic. Current risk assessment guidance dictates a largely chemical-by-chemical evaluation of exposures and risks, which fails to adequately address potential interactions with other chemicals, nonchemical stressors, and genetic factors. Cumulative risk assessment methods and approaches are evolving to meet regulatory needs, (MacDonell et al., 2013; Backhaus and Faust 2012; IPCS Workshop 2009) but significant challenges remain. As our understanding of complex exposures and interactions continues to grow, synthesis and integration across disciplines and studies focused on different aspects of the environmental fate–exposure–toxicology–health outcome continuum are required to assess the likelihood of adverse effects and to support cumulative risk assessment. Environmental exposures are virtually always to complex mixtures (Katherine von Stackelberg et al., 2015).

Background

An examination of neurodevelopmental disorders and subclinical effects using multi-domain global neurodevelopment assessments is warranted as they can have profound population level implications. In the context of neurotoxicity, neurodevelopmental pathways in the developing human brain are not fully understood (Schubert et al., 2015; Bal-Price et al., 2015) although there are a number of commonly observed phenomena which may take part in those pathways e.g. changes in intracellular calcium, ROS generation, apoptosis, and neurotransmitter disruption. This AOP highlights a specific set of response-response relationships using a subset of those commonly observed phenomena related to metals and metal mixture exposures leading to deficits in learning and cognition.

Summary of the AOP

Events

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Sequence	Type	Event ID	Title	Short name
MIE	2146		Activation of mitogen-activated protein kinase kinase, extracellular signal-regulated kinase 1/2	Activation of MEK, ERK1/2
KE	1339		Increase, intracellular calcium	Increase, intracellular calcium
KE	2151		Disruption, neurotransmitter release	Disruption, neurotransmitter release
AO	341		Impairment, Learning and memory	Impairment, Learning and memory

Key Event Relationships

Upstream Event	Relationship Type	Downstream Event	Evidence	Quantitative Understanding
Activation of mitogen-activated protein kinase kinase, extracellular signal-regulated kinase 1/2	adjacent	Increase, intracellular calcium	Not Specified	Not Specified
		Disruption,		

Upstream Event	Relationship Type	Downstream Event	Not Evidence Specified	Quantitative Understanding
Increase, intracellular calcium Upstream Event	adjacent	neurotransmitter release	Impairment, Learning and memory	Not Specified

Stressors

Name	Evidence
Lead	
Arsenic	
Cadmium	
Manganese	
Heavy metals (cadmium, lead, copper, iron, nickel)	

Overall Assessment of the AOP

1. Support for Biological Plausibility of KERs	Defining Question	High (Strong)	Moderate	Low (Weak)
	Is there a mechanistic relationship between KE _{up} and KE _{down} consistent with established biological knowledge?	Extensive understanding of the KER based on extensive previous documentation and broad acceptance.	KER is plausible based on analogy to accepted biological relationships, but scientific understanding is incomplete	Empirical support for association between KEs, but the structural or functional relationship between them is not understood.
Relationship 2942: Activation of MEK, ERK1/2 (2146) leads to Increase, intracellular calcium (1339)	Moderate Empirical evidence indicates a complex relationship between MEK, ERK1/2 activation and inhibition and Ca ²⁺ response including Ca ²⁺ feeding back into a ERK1/2 activation. This relationship appears to vary across species and cell type.			
Relationship 2954: Increase, intracellular calcium (1339) leads to Disruption, neurotransmitter release (2151)	Strong Intracellular calcium regulation is broadly known as being an important aspect of a number of processes in a variety of cells and is particularly critical in nerve cell terminals where it mediates transmitter release.			
Relationship 2955: Disruption, neurotransmitter release (2151) leads to Impairment, Learning and memory (341)	Strong The role of various neurotransmitters and receptors in cognitive function and memory formation are well studied.			

Domain of Applicability

Life Stage Applicability

Life Stage	Evidence
All life stages	High

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
Rattus norvegicus	Rattus norvegicus	Moderate	NCBI
Mus musculus	Mus musculus	Moderate	NCBI
Homo sapiens	Homo sapiens	Moderate	NCBI

Sex Applicability

Sex	Evidence

Unspecific **Sex** **Moderate Evidence****Life Stage**

Life stages applicable to this AOP encompass the full life cycle. Many of the key events are measured in pregnant females with the adverse outcome (impairment, learning and memory) measured at all life stages.

Taxonomic Applicability

Most evidence for this AOP is derived from rodents and humans where rodents were selected with their ability to model human responses.

Sex Applicability

This AOP is applicable to all sexes.

Essentiality of the Key Events

2. Essentiality of KEs	Defining question	High (Strong)	Moderate	Low (Weak)
	Are downstream KEs and/or the AO prevented if an upstream KE is blocked?	Direct evidence from specifically designed experimental studies illustrating essentiality for at least one of the important KEs	Indirect evidence that sufficient modification of an expected modulating factor attenuates or augments a KE	No or contradictory experimental evidence of the essentiality of any of the KEs.
MIE 2146: Activation of MEK, ERK1/2	Moderate			
	MEK, ERK1/2 activation is fundamental in delivering signals which regulate the cell cycle, proliferation, differentiation, adhesion, and more. Disruptions in this activation have wide reaching effects however, there is evidence that downstream KEs can also activate this KE.			
KE 1339: Increase, intracellular calcium	High			
	Calcium, as a primary intracellular messenger in neurons and regulator of cell responses to stress has been shown to directly affect neurotransmitter release with manipulation.			
KE 2151: Disruption, neurotransmitter release	High			
	Neurotransmitter receptor blocking experiments have shown to directly impair learning and memory tasks in rodents.			
AO 341: Impairment, Learning and memory	N/A			
AOP 499	High/Moderate			
	There is direct evidence contained KER 2955.			

Weight of Evidence Summary

3. Empirical Support for KERs	Defining Questions	High (Strong)	Moderate	Low (Weak)
	Does empirical evidence support that a change in KEup leads to an appropriate change in KEdown? Does KEup occur at lower doses and earlier time points than KE down and is the incidence of KEup > than that for KEdown? Inconsistencies?	if there is dependent change in both events following exposure to a wide range of specific stressors (extensive evidence for temporal, dose-response and incidence concordance) and no or few data gaps or conflicting data	if there is demonstrated dependent change in both events following exposure to a small number of specific stressors and some evidence inconsistent with the expected pattern that can be explained by factors such as experimental design, technical considerations, differences among laboratories, etc.	if there are limited or no studies reporting dependent change in both events following exposure to a specific stressor (i.e., endpoints never measured in the same study or not at all), and/or lacking evidence of temporal or dose-response concordance, or identification of significant inconsistencies in empirical support across taxa and species that don't align with the expected pattern for the hypothesized AOP

Relationship 2942: Activation of MEK, ERK1/2 (2146) leads to Increase, intracellular calcium (1339)	Moderate The evidence collection strategy for this AOP focused mainly on metal and metal mixture exposures, of which, there were many that showed dependent change in both these events following exposure.
Relationship 2954: Increase, intracellular calcium (1339) leads to Disruption, neurotransmitter release (2151)	Moderate The evidence collection strategy for this AOP focused mainly on metal and metal mixture exposures, of which, there were many that showed dependent change in both these events following exposure.
Relationship 2955: Disruption, neurotransmitter release (2151) leads to Impairment, Learning and memory (341)	Moderate The evidence collection strategy for this AOP focused mainly on metal and metal mixture exposures, of which, there were many that showed dependent change in both these events following exposure.

Considerations for Potential Applications of the AOP (optional)

Developmental neurotoxicity (DNT) is an adverse outcome of concern to multiple regulatory agencies. In vitro screening assays for MEK-ERK1/2 activation would not be recommended as a direct alternative or replacement to established DNT assays like OECD Test No. 426 (OECD 2007). However, detection of MEK-ERK1/2 activation in neuronal cell types may be used to prioritize chemicals with potential to elicit neurotoxicity and flag them for testing in orthogonal assays for evaluating DNT, including proposed alternative test methods (Bal-Price et al. 2018; Crofton et al 2022).

References

Antonio, M. Teresa, Noelia López, and M. Luisa Leret. "Pb and Cd poisoning during development alters cerebellar and striatal function in rats." *Toxicology* 176.1-2 (2002): 59-66.

Asit Rai and others, Characterization of Developmental Neurotoxicity of As, Cd, and Pb Mixture: Synergistic Action of Metal Mixture in Glial and Neuronal Functions, *Toxicological Sciences*, Volume 118, Issue 2, December 2010, Pages 586–601, <https://doi.org/10.1093/toxsci/kfq266>

Backhaus T, Faust M. Predictive environmental risk assessment of chemical mixtures: A conceptual framework. *Environmental Science & Technology*, 2012; 46(5):2564–2573.

Bal-Price A, Crofton KM, Sachana M, Shafer TJ, Behl M, Forsby A, Hargreaves A, Landesmann B, Lein PJ, Louisse J, Monnet-Tschudi F, Paini A, Rolaki A, Schrattenholz A, Sunol C, van Thriel C, Whelan M, Fritzsche E. Putative adverse outcome pathways relevant to neurotoxicity. *Critical Reviews in Toxicology*, 2015; 45(1):83–91.

Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritzsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH, Sachana M, Shafer TJ, Terron A, Monnet-Tschudi F, Viviani B, Waldmann T, Westerink RHS, Wilks MF, Witters H, Zurich MG, Leist M. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. *ALTEX*. 2018;35(3):306-352. doi: 10.14573/altex.1712081. Erratum in: *ALTEX*. 2019;36(3):506.

Crofton KM, Bassan A, Behl M, Chushak YG, Fritzsche E, Gearhart JM, Marty MS, Mumtaz M, Pavan M, Ruiz P, Sachana M, Selvam R, Shafer TJ, Stavitskaya L, Szabo DT, Szabo ST, Tice RR, Wilson D, Woolley D, Myatt GJ. Current status and future directions for a neurotoxicity hazard assessment framework that integrates *in silico* approaches. *Comput Toxicol*. 2022 May;22:100223. doi: 10.1016/j.comtox.2022.100223.

International Programme on Chemical Safety (IPCS), World Health Organization (WHO). Assessment of combined exposures to multiple chemicals. Report of a WHO/IPCS International Workshop, 2009.

Izquierdo, Ivan. Role of NMDA receptors in memory. *Trends in Pharmacological Sciences* 12.4 (1991): 128-129

Katherine von Stackelberg & Elizabeth Guzy & Tian Chu & Birgit Claus Henn, 2015. "Exposure to Mixtures of Metals and Neurodevelopmental Outcomes: A Multidisciplinary Review Using an Adverse Outcome Pathway Framework," *Risk Analysis*, John Wiley & Sons, vol. 35(6), pages 971-1016, June.

Lupușoru CE, Popa EG, Sandu RB, Buca BR, Mititelu-Tarțău L, Lupușoru RV, The influence of Bidens tripartita extracts on psychomotor abilities and cognitive functions in rats. *Farmacia*, 2017; 65(2): 284-288.

MacDonell MM, Haroun LA, Teuschler LK, Rice GE, Hertzberg RC, Butler JP, Chang Y-S, Clark SL, John AP, Perry CS, Garcia SS, Jacob JH, Scofield MA. 2013. Cumulative risk assessment toolbox: Methods and approaches for the practitioner. *Journal of Toxicology*, 2013; Article ID 310904, doi:10.1155/2013/310904.

Navarrete M, Perea G, Maglio L, Pastor J, de Sola RG, Araque A. Astrocyte calcium signal and gliotransmission in human brain tissue. *Cerebral Cortex*, 2013; 23:1240–1246.

Neal, A.P., Guilarte, T.R. Molecular Neurobiology of Lead (Pb2+): Effects on Synaptic Function. Mol Neurobiol 42, 151–160 (2010). <https://doi.org/10.1007/s12035-010-8146-0>

OECD (2007), *Test No. 426: Developmental Neurotoxicity Study*, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, <https://doi.org/10.1787/9789264067394-en>.

Schubert D, Martens GJM, Kolk SM. Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Molecular Psychiatry, 2013; 2014:1–15.

Appendix 1

List of MIEs in this AOP

[Event: 2146: Activation of mitogen-activated protein kinase kinase, extracellular signal-regulated kinase 1/2](#)

Short Name: Activation of MEK, ERK1/2

Key Event Component

Process	Object	Action
---------	--------	--------

kinase activity astrocyte increased

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:499 - Activation of MEK-ERK1/2 leads to deficits in learning and cognition via disrupted neurotransmitter release	MolecularInitiatingEvent
Aop:500 - Activation of MEK-ERK1/2 leads to deficits in learning and cognition via ROS and apoptosis	MolecularInitiatingEvent

Biological Context

Level of Biological Organization

Molecular

Cell term

Cell term

astrocyte

Organ term

Organ term

brain

Domain of Applicability

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
Rattus norvegicus	Rattus norvegicus	Moderate	NCBI
Mus musculus	Mus musculus	Moderate	NCBI
Homo sapiens	Homo sapiens	Moderate	NCBI

Life Stage Applicability

Life Stage Evidence

AtelStage **Moderate****Sex Applicability****Sex Evidence**

Mixed Moderate

Key Event Description

ERK1 and ERK2 are proteins of 43 and 41 kDa that are nearly 85% identical overall, with much greater identity in the core regions involved in binding substrates (Boulton et al., 1990; 1991). The two phosphoacceptor sites, tyrosine and threonine, which are phosphorylated to activate the kinases, are separated by a glutamate residue in both ERK1 and ERK2 to give the motif TEY in the activation loop (Payne et al., 1991). Both are ubiquitously expressed, although their relative abundance in tissues is variable. For example, in many immune cells ERK2 is the predominant species, while in several cells of neuroendocrine origin they may be equally expressed (Gray Pearson and others 2001). They are stimulated to some extent by a vast number of ligands and cellular perturbations, with some cell type specificity (Lewis et al., 1998). In fibroblasts (the cell type in which the generalizations about their behavior and functions have been developed) they are activated by serum, growth factors, cytokines, certain stresses, ligands for G protein-coupled receptors (GPCRs), and transforming agents, to name a few (Gray Pearson and others 2001). They are highly expressed in postmitotic neurons and other highly differentiated cells (Boulton et al., 1991). In these cells they are often involved in adaptive responses such as long-term potentiation (English and Sweatt 1996; Atkins et al., 1998; Rossi-Arnaud et al., 1997).

How it is Measured or Detected

Western blotting and immunoblotting.

References

Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD 1998 The MAPK cascade is required for mammalian associative learning. *Nat Neurosci* 1 :602 –609

Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD 1991 ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. *Cell* 65 :663 –675

Boulton TG, Yancopoulos GD, Gregory JS, Slaughter C, Moomaw C, Hsu J, Cobb MH 1990 An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. *Science* 249 :64 –67

English JD , Sweatt JD 1996 Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. *J Biol Chem* 271 :24329 –24332

Gray Pearson and others, Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions, *Endocrine Reviews*, Volume 22, Issue 2, 1 April 2001, Pages 153–183, <https://doi.org/10.1210/edrv.22.2.0428>

Lewis TS, Shapiro PS, Ahn NG 1998 Signal transduction through MAP kinase cascades. *Adv Cancer Res* 74 :49 –139

Payne DM, Rossomando AJ, Martino P, Erickson AK, Her J-H, Shananowitz J, Hunt DF, Weber MJ, Sturgill TW 1991 Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). *EMBO J* 10 :885 –892

Rossi-Arnaud C, Grant SG, Chapman PF, Lipp HP, Sturani E, Klein R 1997 A role for the Ras signalling pathway in synaptic transmission and long-term memory. *Nature* 390 :281 –286

List of Key Events in the AOP**Event: 1339: Increase, intracellular calcium****Short Name: Increase, intracellular calcium****Key Event Component**

Process	Object	Action
---------	--------	--------

calcium amount	calcium(2+)	increased
----------------	-------------	-----------

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:214 - Network of SSRIs (selective serotonin reuptake inhibitors)	KeyEvent
Aop:226 - SSRI (Selective serotonin reuptake inhibitor) to hypertension	KeyEvent
Aop:499 - Activation of MEK-ERK1/2 leads to deficits in learning and cognition via disrupted neurotransmitter release	KeyEvent
Aop:500 - Activation of MEK-ERK1/2 leads to deficits in learning and cognition via ROS and apoptosis	KeyEvent

Biological Context

Level of Biological Organization

Cellular

Cell term

Cell term

cell

Organ term

Organ term

brain

Domain of Applicability

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
Rattus norvegicus	Rattus norvegicus	Moderate	NCBI
Homo sapiens	Homo sapiens	Moderate	NCBI

Life Stage Applicability

Life Stage	Evidence
Adult, reproductively mature	Moderate
Birth to < 1 month	Moderate

Sex Applicability

Sex Evidence

Mixed Moderate

Key Event Description

Calcium is arguably the most versatile and important intracellular messenger in neurons (Berridge et al., 2000). Interestingly, although calcium may often promote neuronal death, it can also activate pathways that promote survival. For example, calcium can promote survival through a pathway involving activation of protein kinase B (PKB/Akt) by calcium/calmodulin-dependent protein kinase (Yano et al., 1998). Calcium is a prominent regulator of cellular responses to stress, activating transcription through the cyclic-AMP response element-binding protein (CREB), which can promote neuron survival in experimental models of developmental cell death (Hu et al., 1999). Calcium can also activate a rapid neuroprotective signalling pathway in which the calcium-activated actin-severing protein gelsolin induces actin depolymerization, resulting in suppression of calcium influx through membrane NMDA (N-methyl-d-aspartate) receptors and voltage-dependent calcium channels (Furukawa et al., 1997). This may occur through intermediary actin-binding proteins that interact with NMDA receptor and calcium channel proteins. Finally, signals such as calcium and secreted amyloid precursor protein- α (sAPP- α), which increase cyclic GMP production, can induce activation of potassium channels and the transcription factor NF- κ B, and thereby increase resistance of neurons to excitotoxic apoptosis (Furukawa et al., 1996).

How it is Measured or Detected

An increase in $[Ca^{2+}]_i$ was measured using Fluo3 AM as an indicator dye after the addition of metals (single or in mixture) to the culture wells following an optimized protocol (Arey et al., 2022). The fluorescent signals were read by fluorescence imaging plate reader Synergy HT (BioTek, Winooski, VT) (Rai and others 2010).

Briefly, Ca^{2+} levels in human astrocytes were monitored by fluorescence microscopy using the Ca^{2+} indicator fluo-4. Slices were incubated with fluo-4-AM (2–5 μ L of 2 mM dye were dropped over the tissue, attaining a final concentration of 2–10 μ M and 0.01% of pluronic) and Sulforhodamine 101 (100 μ M) for 30–60 min at room temperature (Navarrete and others 2013). In these conditions, most of the Fluo-4-loaded cells were astrocytes as indicated by their SR101 staining (Nimmerjahn et al., 2004; Dombeck et al., 2007; Kafitz et al., 2008; Takata and Hirase 2008), and confirmed in some cases by their electrophysiological properties. Astrocytes were imaged with an Olympus FV300 laser-scanning confocal microscope or a CCD camera (Retiga EX) attached to the Olympus BX50WI microscope (Navarrete and others 2013).

Diversity of endogenous Ca^{2+} activity in a mature hippocampal astrocyte *in situ*: Ca^{2+} signals in cell body and processes are different. (A) Cumulative Ca^{2+} activity recorded in an astrocyte over a 165 s period revealed by the calcium indicator Fluo4-AM. The visible boundaries of the astrocyte are shown in white. Note the different intensities of spatially-confined local activity in the astrocyte cell body (s), primary process (p1) stemming from the soma and secondary processes (p2) branching from a primary process. Intensity of the normalized cumulative activity is expressed in arbitrary units (a.u.) and shown in pseudocolour, from dark (lowest) to white (highest). (B) Frequency map of the Ca^{2+} activity in the astrocyte during the 165 s period as in A. Activity is measured in individual pixels, expressed in mHz and color-coded from black (never active) to dark red (frequently active). Most of the activity is within the white boundaries and the most frequently active pixels are in defined small regions (arrowheads) of the primary and secondary processes (30 mHz), whereas pixels of the soma are less active (~10 mHz) (Volterra et al., 2014).

Free intracellular calcium ions were measured using the fluorescent calcium indicator FLUO-3/AM (Molecular probes, Eugene, OR, USA). Cells (4×10^4 cells/cm 2) were seeded in 24-well plates for 24 h to reach 60%–70%, and then treated for 24 h with As(III) (0.5 and 1 mg/l), or coexposed to As(III) (1 mg/l) and F (2.5, 5, and 10 mg/l). After treatment, supernatant was collected and combined with trypsinized cells. Pelleted samples were resuspended in 500 μ L of FLUO-3/AM (4 μ mol/l) and incubated at 37 °C for 30 min. After centrifugation, cells were washed with HBSS (Hank's Buffered Salt Solution, Sigma), made up to 400 μ L with HBSS and analyzed by flow cytometry. The signal from FLUO-3/AM bound to Ca^{2+} was recorded using the Fl-1 channel (Rocha et al., 2011).

Fluo-4/AM was used as an intracellular free Ca^{2+} fluorescent probe to analyze $[Ca^{2+}]_i$ in Cd-exposed cerebral cortical neurons. In short, the harvested cells were incubated with Fluo-4/AM (5 μ mol/L final concentration) for 30 min at 37 °C in the dark, washed with PBS, and analyzed on a BD-FACS Aria flow cytometry. Intracellular $[Ca^{2+}]_i$ levels were represented by fluorescent intensity. Fluorescent intensity was recorded by excitation at 494 nm and emission at 516 nm. The data were analyzed by Cell Quest program (Becton Dickinson), and the mean fluorescence intensity was obtained by histogram statistics (Yuan et al., 2013).

References

Arey BJ Seethala R Ma Z Fura A Morin J Swartz J Vyas V Yang W Dickson JK JrFeyen JH A novel calcium-sensing receptor antagonist transiently stimulates parathyroid hormone secretion *in vivo* *Endocrinology* 2005 146 2015 2022

Asit Rai and others, Characterization of Developmental Neurotoxicity of As, Cd, and Pb Mixture: Synergistic Action of Metal Mixture in Glial and Neuronal Functions, *Toxicological Sciences*, Volume 118, Issue 2, December 2010, Pages 586–601, <https://doi.org/10.1093/toxsci/kfq266>

Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signaling. *Nature Rev. Mol. Cell Biol.* 1, 11–21 (2000).

Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW. Imaging large-scale neural activity with cellular resolution in awake, mobile mice, *Neuron*, 2007, vol. 56 (pg. 43-57)

Furukawa, K. et al. The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. *J. Neurosci.* 17, 8178–8186 (1997).

Furukawa, K., Barger, S. W., Blalock, E. M. & Mattson, M. P. Activation of K⁺ channels and suppression of neuronal activity by secreted β -amyloid-precursor protein. *Nature* 379, 74–78 (1996).

Hu, S. C., Chrivia, J. & Ghosh, A. Regulation of CBP-mediated transcription by neuronal calcium signaling. *Neuron* 22, 799–808 (1999).

Kafitz KW, Meier SD, Stephan J, Rose CR. Developmental profile and properties of sulforhodamine 101-labeled glial cells in acute brain slices of rat hippocampus, *J Neurosci Methods*, 2008, vol. 169 (pg. 84-92)

Marta Navarrete and others, Astrocyte Calcium Signal and Gliotransmission in Human Brain Tissue, *Cerebral Cortex*, Volume 23, Issue 5, May 2013, Pages 1240–1246, <https://doi.org/10.1093/cercor/bhs122>

Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex *in vivo*, *Nat Methods*, 2004, vol. 1 (pg. 31-37)

R.A. Rocha, J.V. Gimeno-Alcañiz, R. Martín-Ibañez, J.M. Canals, D. Vélez, V. Devesa, Arsenic and fluoride induce neural progenitor

cell apoptosis, Toxicology Letters, Volume 203, Issue 3, 2011, Pages 237-244, ISSN 0378-4274, <https://doi.org/10.1016/j.toxlet.2011.03.023>.

Takata N, Hirase H. Cortical layer 1 and layer 2/3 astrocytes exhibit distinct calcium dynamics in vivo., PLoS ONE, 2008, vol. 3 pg. e2525

Volterra, Andrea, Nicolas Liaudet, and Jaroslav Savtchouk. "Astrocyte Ca²⁺ signalling: an unexpected complexity." Nature Reviews Neuroscience 15.5 (2014): 327-335.

Yano, S., Tokumitsu, H. & Soderling, T. R. Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 396, 584–587 (1998).

Yuan Y, Jiang C-y, Xu H, Sun Y, Hu F-f, Bian J-c, et al. (2013) Cadmium-Induced Apoptosis in Primary Rat Cerebral Cortical Neurons Culture Is Mediated by a Calcium Signaling Pathway. PLoS ONE 8(5): e64330. <https://doi.org/10.1371/journal.pone.0064330>

[Event: 2151: Disruption, neurotransmitter release](#)

Short Name: Disruption, neurotransmitter release

Key Event Component

Process	Object	Action
----------------	---------------	---------------

signaling neurotransmitter decreased

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:499 - Activation of MEK-ERK1/2 leads to deficits in learning and cognition via disrupted neurotransmitter release	KeyEvent
Aop:471 - Various neuronal effects induced by elavl3, sox10, and mbp	KeyEvent

Biological Context

Level of Biological Organization

Molecular

Cell term

Cell term

neuron

Organ term

Organ term

brain

Domain of Applicability

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
Rattus norvegicus	Rattus norvegicus	Moderate	NCBI
Homo sapiens	Homo sapiens	Moderate	NCBI
Mus musculus	Mus musculus	Moderate	NCBI

Life Stage Applicability

Life Stage	Evidence
Birth to < 1 month	Moderate
Adult	Moderate

Sex Applicability

Sex	Evidence
Mixed	Moderate

Key Event Description

Any of various neurotransmitters or indicators of neurotransmission.

How it is Measured or Detected

Weighed brain tissues were homogenized in a Potter-Elvehjem type A homogenizer with a teflon pestle using cold acidified n-butanol. The biogenic amines were extracted and estimated according to the procedure of Sadavongvivad (1970). The recovery experiments were done simultaneously. Recoveries for different standards were 92 + 3% for dopamine (DA), 80+ 5% for norepinephrine (NE) and 90 + 5% for 5-hydroxytryptamine (5-HT). Fluorescence was measured in a Aminco SPF-500 spectrofluorometer (Chandra et al., 1981).

BDNF quantitative real-time PCR. Hippocampal neuronal cultures were exposed to normal bath solution or 1.0 or 2.0 μ M Pb2+ for 5 days, and subsequently RNA was harvested according to manufacturer's instructions (RNeasy; Qiagen), quantified by reading the absorbance at 260 nm, and converted to complementary DNA (cDNA) using 1 μ g RNA according to manufacturer's instructions (High Capacity Reverse Transcription Kit 4368814; Applied Biosystems). Quantitative real-time PCR (q-rtPCR) was performed in triplicate using TaqMan Gene Expression Assays (Applied Biosystems) with 50 ng cDNA using the following probes: Actin (Rat, Rn00667869_m1; Applied Biosystems) and BDNF exon I, exon II, exon IV, and exon IX (Applied Biosystems). Data were analyzed as previously described (Livak and Schmittgen, 2001), and results were expressed as fold change in gene expression relative to control (Stansfield and others 2012).

BDNF release via ELISA. Sandwich ELISAs were performed on DIV12 cell culture media using the BDNF Emax ImmunoAssay System kit (Promega, Madison, WI) according to the manufacturer's instructions. BDNF content was interpolated from standard curve runs for each plate (linear range of 7.8–500 pg/ml). BDNF protein content was divided by total protein for each sample to determine the number of picograms of peptide per microgram of total protein (Stansfield and others 2012).

In vivo microdialysis is a well-established method for monitoring the extracellular levels of neurotransmitters in the CNS. This technique has been used extensively in neuroscience for almost 30 years (Westerink 1995; Ungerstedt 1991; Robinson 1991; Benveniste 1989; Benveniste and Huttemeier 1990; Di Chiara 1990). Microdialysis allows online estimates of neurotransmitters in living animals and is a suitable method for monitoring the extracellular levels of neurotransmitters during local administration of pharmacological agents (Hammarlund-Udenaes 2000). Older alternative *in vivo* methods for the study of neurotransmitter release are the push–pull technique used in the brain, (Singewald and Philippu 1998) spinal cord, (Zachariou and Goldstein 1997) and intrathecal space (Yaksh and Tyce 1980).

References

Benveniste H, Huttemeier PC. Microdialysis: theory and application. Progr Neurobiol. 1990;35:195.

Benveniste H. Brain microdialysis. J Neurochem. 1989;52:1667.

Chandra, Satya V., et al. "Behavioral and neurochemical changes in rats simultaneously exposed to manganese and lead." Archives of Toxicology 49 (1981): 49-56.

Di Chiara G. In vivo brain dialysis of neurotransmitters. Trends Pharmacol Sci. 1990;11:116.

Hammarlund-Udenaes M. The use of microdialysis in CNS drug delivery studies: pharmacokinetic perspectives and results with analgesics and antiepileptics. Adv Drug Deliv Rev. 2000;45:283.

Kirstie H. Stansfield and others, Dysregulation of BDNF-TrkB Signaling in Developing Hippocampal Neurons by Pb2+: Implications for an Environmental Basis of Neurodevelopmental Disorders, Toxicological Sciences, Volume 127, Issue 1, May 2012, Pages 277–295, <https://doi.org/10.1093/toxsci/kfs090>

Robinson TJ. Microdialysis in the Neurosciences. Vol. 7. Elsevier; Amsterdam: 1991. Techniques in the behavioral and neural sciences.

Singewald N, Philippu A. Release of neurotransmitters in the locus coeruleus. Progr Neurobiol. 1998;56:237.

Ungerstedt U. Microdialysis: principles and applications for studies in animals and man. J Intern Med. 1991;230:365

Westerink BH. Brain microdialysis and its application for the study of animal behaviour. *Behav Brain Res.* 1995;70:103.

Yaksh TL, Tyce GM. Resting and K+-evoked release of serotonin and norepinephrine in vivo from the rat and cat spinal cord. *Brain Res.* 1980;192:133.

Zachariou V, Goldstein BD. Dynorphin-(1-8)inhibits the release of substance P-like immunoreactivity in the spinal cord of rats following a noxious mechanical stimulus. *Eur J Pharmacol.* 1997;323:159.

List of Adverse Outcomes in this AOP

[Event: 341: Impairment, Learning and memory](#)

Short Name: Impairment, Learning and memory

Key Event Component

Process	Object	Action
learning		decreased
memory		decreased

AOPs Including This Key Event

AOP ID and Name	Event Type
Aop:13 - Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities	AdverseOutcome
Aop:48 - Binding of agonists to ionotropic glutamate receptors in adult brain causes excitotoxicity that mediates neuronal cell death, contributing to learning and memory impairment.	AdverseOutcome
Aop:54 - Inhibition of Na+/I- symporter (NIS) leads to learning and memory impairment	AdverseOutcome
Aop:77 - Nicotinic acetylcholine receptor activation contributes to abnormal foraging and leads to colony death/failure 1	KeyEvent
Aop:78 - Nicotinic acetylcholine receptor activation contributes to abnormal role change within the worker bee caste leading to colony death/failure 1	KeyEvent
Aop:87 - Nicotinic acetylcholine receptor activation contributes to abnormal foraging and leads to colony loss/failure	KeyEvent
Aop:88 - Nicotinic acetylcholine receptor activation contributes to abnormal foraging and leads to colony loss/failure via abnormal role change within caste	KeyEvent
Aop:89 - Nicotinic acetylcholine receptor activation followed by desensitization contributes to abnormal foraging and directly leads to colony loss/failure	KeyEvent
Aop:90 - Nicotinic acetylcholine receptor activation contributes to abnormal roll change within the worker bee caste leading to colony loss/failure 2	KeyEvent
Aop:12 - Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development leads to neurodegeneration with impairment in learning and memory in aging	AdverseOutcome
Aop:99 - Histamine (H2) receptor antagonism leading to reduced survival	KeyEvent
Aop:17 - Binding of electrophilic chemicals to SH(thiol)-group of proteins and /or to seleno-proteins involved in protection against oxidative stress during brain development leads to impairment of learning and memory	AdverseOutcome
Aop:442 - Binding to voltage gate sodium channels during development leads to cognitive impairment	AdverseOutcome
Aop:475 - Binding of chemicals to ionotropic glutamate receptors leads to impairment of learning and memory via loss of drebrin from dendritic spines of neurons	AdverseOutcome
Aop:483 - Deposition of Energy Leading to Learning and Memory Impairment	AdverseOutcome
Aop:490 - Co-activation of IP3R and RyR leads to socio-economic burden through reduced IQ and non-cholinergic mechanisms	AdverseOutcome
Aop:499 - Activation of MEK-ERK1/2 leads to deficits in learning and cognition via disrupted neurotransmitter release	AdverseOutcome

Aop:500 - Activation of MEK-ERK1/2 leads to deficits in learning and cognition via ROS and apoptosis

AOP ID and Name

Adverse Outcome

Aop:520 - Retinoic acid receptor agonism during neurodevelopment leading to impaired learning and memory

Event Type

Adverse Outcome

Biological Context

Level of Biological Organization

Individual

Domain of Applicability

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
human	Homo sapiens	High	NCBI
rat	Rattus norvegicus	High	NCBI
fruit fly	Drosophila melanogaster	High	NCBI
zebrafish	Danio rerio	High	NCBI
gastropods	Physa heterostropha	High	NCBI
mouse	Mus musculus	High	NCBI

Life Stage Applicability

Life Stage	Evidence
During brain development	High
Adult, reproductively mature	High

Sex Applicability

Sex	Evidence
Mixed	High

Basic forms of learning behavior such as habituation have been found in many taxa from worms to humans (Alexander, 1990). More complex cognitive processes such as executive function likely reside only in higher mammalian species such as non-human primates and humans. Recently, larval zebrafish has also been suggested as a model for the study of learning and memory (Roberts et al., 2013).

Life stage applicability: This key event is applicable to various life stages such as during brain development and maturity (Hladik & Tapio, 2016).

Sex applicability: This key event is not sex specific (Cekanaviciute et al., 2018), although sex-dependent cognitive outcomes have been recently ; Parihar et al., 2020).

Evidence for perturbation by a prototypic stressor: Current literature provides ample evidence of impaired learning and memory being induced by ionizing radiation (Cekanaviciute et al., 2018; Hladik & Tapio, 2016).

Key Event Description

Learning can be defined as the process by which new information is acquired to establish knowledge by systematic study or by trial and error (Ono, 2009). Two types of learning are considered in neurobehavioral studies: a) associative learning and b) non-associative learning. Associative learning is based on making associations between different events. In associative learning, a subject learns the relationship among two different stimuli or between the stimulus and the subject's behaviour. On the other hand, non-associative learning can be defined as an alteration in the behavioural response that occurs over time in response to a single type of stimulus. Habituation and sensitization are some examples of non-associative learning.

The memory formation requires acquisition, retention and retrieval of information in the brain, which is characterised by the non-conscious recall of information (Ono, 2009). There are three main categories of memory, including sensory memory, short-term or working memory (up to a few hours) and long-term memory (up to several days or even much longer).

Learning and memory depend upon the coordinated action of different brain regions and neurotransmitter systems constituting functionally integrated neural networks (D'Hooge and DeDeyn, 2001). Among the many brain areas engaged in the acquisition of, or retrieval of, a learned event, the hippocampal-based memory systems have received the most study. For example, the

hippocampus has been shown to be critical for spatial-temporal memory, visio-spatial memory, verbal and narrative memory, and episodic and autobiographical memory (Burgess et al., 2000; Vorhees and Williams, 2014). However, there is substantial evidence that fundamental learning and memory functions are not mediated by the hippocampus alone but require a network that includes, in addition to the hippocampus, anterior thalamic nuclei, mammillary bodies cortex, cerebellum and basal ganglia (Aggleton and Brown, 1999; Doya, 2000; Mitchell et al., 2002; Toscano and Guilarte, 2005; Gilbert et al., 2006, 2016). Thus, damage to variety of brain structures can potentially lead to impairment of learning and memory. The main learning areas and pathways are similar in rodents and primates, including man (Eichenbaum, 2000; Stanton and Spear, 1990). While the prefrontal cortex and frontostriatal neuronal circuits have been identified as the primary sites of higher-order cognition in vertebrates, invertebrates utilize paired mushroom bodies, shown to contain ~300,000 neurons in honey bees (Menzel, 2012; Puig et al., 2014).

For the purposes of this KE (AO), impaired learning and memory is defined as an organism's inability to establish new associative or non-associative relationships, or sensory, short-term or long-term memories which can be measured using different behavioural tests described below.

How it is Measured or Detected

In laboratory animals: in rodents, a variety of tests of learning and memory have been used to probe the integrity of hippocampal function. These include tests of spatial learning like the radial arm maze (RAM), the Barnes maze, [Hebb-Williams maze](#), passive avoidance and Spontaneous alternation and most commonly, the Morris water maze (MWM). Test of novelty such as novel object recognition, and fear based context learning are also sensitive to hippocampal disruption. Finally, trace fear conditioning which incorporates a temporal component upon traditional amygdala-based fear learning engages the hippocampus. A brief description of these tasks follows.

- 1) RAM, Barnes, MWM, [Hebb-Williams maze](#) are examples of spatial tasks, animals are required to learn the location of a food reward (RAM); an escape hole to enter a preferred dark tunnel from a brightly lit open field area (Barnes maze), or a hidden platform submerged below the surface of the water in a large tank of water (MWM) (Vorhees and Williams, 2014). The [Hebb-Williams maze measures an animal's problem solving abilities by providing no spatial cues to find the target \(Pritchett & Mulder, 2004\)](#).
- 2) Novel Object recognition. This is a simpler task that can be used to probe recognition memory. Two objects are presented to animal in an open field on trial 1, and these are explored. On trial 2, one object is replaced with a novel object and time spent interacting with the novel object is taken evidence of memory retention – I have seen one of these objects before, but not this one (Cohen and Stackman, 2015).
- 3) Contextual Fear conditioning is a hippocampal based learning task in which animals are placed in a novel environment and allowed to explore for several minutes before delivery of an aversive stimulus, typically a mild foot shock. Upon reintroduction to this same environment in the future (typically 24-48 hours after original training), animals will limit their exploration, the context of this chamber being associated with an aversive event. The degree of suppression of activity after training is taken as evidence of retention, i.e., memory (Curzon et al., 2009).
- 4) Trace fear conditioning. Standard fear conditioning paradigms require animals to make an association between a neutral conditioning stimulus (CS, a light or a tone) and an aversive stimulus (US, a footshock). The unconditioned response (CR) that is elicited upon delivery of the footshock US is freezing behavior. With repetition of CS/US delivery, the previously neutral stimulus comes to elicit the freezing response. This type of learning is dependent on the amygdala, a brain region associated with, but distinct from the hippocampus. Introducing a brief delay between presentation of the neutral CS and the aversive US, a trace period, requires the engagement of the amygdala and the hippocampus (Shors et al., 2001).

[5\) Operant Responding. Performance on operant responding reflects the cortex' ability to organize processes \(Rabin et al., 2002\)](#).

In humans: A variety of standardized learning and memory tests have been developed for human neuropsychological testing, including children (Rohlman et al., 2008). These include episodic autobiographical memory, perceptual motor tests, short and long term memory tests, working memory tasks, word pair recognition memory; object location recognition memory. Some have been incorporated in general tests of intelligence (IQ) such as the Wechsler Adult Intelligence Scale (WAIS) and the Wechsler. Modifications have been made and norms developed for incorporating of tests of learning and memory in children. Examples of some of these tests include:

- 1) Rey Osterieth Complex Figure test (RCFT) which probes a variety of functions including as visuospatial abilities, memory, attention, planning, and working memory (Shin et al., 2006).
- 2) Children's Auditory Verbal Learning Test (CAVLT) is a free recall of presented word lists that yields measures of Immediate Memory Span, Level of Learning, Immediate Recall, Delayed Recall, Recognition Accuracy, and Total Intrusions. (Lezak 1994; Talley, 1986).
- 3) Continuous Visual Memory Test (CVMT) measures visual learning and memory. It is a free recall of presented pictures/objects rather than words but that yields similar measures of Immediate Memory Span, Level of Learning, Immediate Recall, Delayed Recall, Recognition Accuracy, and Total Intrusions. (Lezak, 1984; 1994).
- 4) Story Recall from Wechsler Memory Scale (WMS) Logical Memory Test Battery, a standardized neuropsychological test designed to measure memory functions (Lezak, 1994; Talley, 1986).

5) Autobiographical memory (AM) is the recollection of specific personal events in a multifaceted higher order cognitive process. It includes episodic memory- remembering of past events specific in time and place, in contrast to semantic autobiographical memory is the recollection of personal facts, traits, and general knowledge. Episodic AM is associated with greater activation of the hippocampus and a later and more gradual developmental trajectory. Absence of episodic memory in early life (infantile amnesia) is thought to reflect immature hippocampal function (Herold et al., 2015; Fivush, 2011).

6) Staged Autobiographical Memory Task. In this version of the AM test, children participate in a staged event involving a tour of the hospital, perform a series of tasks (counting footprints in the hall, identifying objects in wall display, buy lunch, watched a video). It is designed to contain unique event happenings, place, time, visual/sensory/perceptual details. Four to five months later, interviews are conducted using Children's Autobiographical Interview and scored according to standardized scheme (Willoughby et al., 2014).

7) **Attentional set-shifting (ATSET) task. Measures the ability to relearn cues over various schedules of reinforcement (Heisler et al., 2015).**

8. Comprehensive developmental inventory for infants and toddlers (CDIIT). The CDIIT was designed and standardized in 1996, and it measures the global, cognitive, language, motor, gross motor, fine motor, social, self-help and behavioral developmental status of children from 3 to 71 months old (Wang et al., 1998).

In Honey Bees: For over 50 years an assay for evaluating olfactory conditioning of the proboscis extension reflex (PER) has been used as a reliable method for evaluating appetitive learning and memory in honey bees (Guirfa and Sandoz, 2012; LaLone et al., 2017). These experiments pair a conditioned stimulus (e.g., an odor) with an unconditioned stimulus (e.g., sucrose) provided immediately afterward, which elicits the proboscis extension (Menzel, 2012). After conditioning, the odor alone will lead to the conditioned PER. This methodology has aided in the elucidation of five types of olfactory memory phases in honey bee, which include early short-term memory, late short-term memory, mid-term memory, early long-term memory, and late long-term memory (Guirfa and Sandoz, 2012). These phases are dependent on the type of conditioned stimulus, the intensity of the unconditioned stimulus, the number of conditioning trials, and the time between trials. Where formation of short-term memory occurs minutes after conditioning and decays within minutes, memory consolidation or stabilization of a memory trace after initial acquisition leads to mid-term memory, which lasts 1 d and is characterized by activity of the cAMP-dependent PKA (Guirfa and Sandoz, 2012). Multiple conditioning trials increase the duration of the memory after learning and coincide with increased Ca²⁺-calmodulin-dependent PKC activity (Guirfa and Sandoz, 2012). Early long-term memory, where a conditioned response can be evoked days to weeks after conditioning requires translation of existing mRNA, whereas late long-term memory requires de novo gene transcription and can last for weeks (Guirfa and Sandoz, 2012)."

Regulatory Significance of the AO

A prime example of impairments in learning and memory as the adverse outcome for regulatory action is developmental lead exposure and IQ function in children (Bellinger, 2012). Most methods are well established in the published literature and many have been engaged to evaluate the effects of developmental thyroid disruption. The US EPA and OECD Developmental Neurotoxicity (DNT) Guidelines (OCSPP 870.6300 or OECD TG 426) as well as OECD TG 443 (OECD, 2018) both require testing of learning and memory (USEPA, 1998; OECD, 2007) advising to use the following tests passive avoidance, delayed-matching-to-position for the adult rat and for the infant rat, olfactory conditioning, Morris water maze, Biel or Cincinnati maze, radial arm maze, T-maze, and acquisition and retention of schedule-controlled behaviour. These DNT Guidelines have been deemed valid to identify developmental neurotoxicity and adverse neurodevelopmental outcomes (Makris et al., 2009).

Also, in the frame of the OECD GD 43 (2008) on reproductive toxicity, learning and memory testing may have potential to be applied in the context of developmental neurotoxicity studies. However, many of the learning and memory tasks used in guideline studies may not readily detect subtle impairments in cognitive function associated with modest degrees of developmental thyroid disruption (Gilbert et al., 2012).

References

Aggleton JP, Brown MW. (1999) Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. *Behav Brain Sci.* 22: 425-489.

Alexander RD (1990) Epigenetic rules and Darwinian algorithms: The adaptive study of learning and development. *Ethology and Sociobiology* 11:241-303.

Bellinger DC (2012) A strategy for comparing the contributions of environmental chemicals and other risk factors to neurodevelopment of children. *Environ Health Perspect* 120:501-507.

Burgess N (2002) The hippocampus, space, and viewpoints in episodic memory. *Q J Exp Psychol A* 55:1057-1080. Cohen, SJ and Stackman, RW. (2015). Assessing rodent hippocampal involvement in the novel object recognition task. A review. *Behav. Brain Res.* 285: 105-1176.

Cekanaviciute, E., S. Rosi and S. Costes. (2018), "Central Nervous System Responses to Simulated Galactic Cosmic Rays", *International Journal of Molecular Sciences*, Vol. 19/11, Multidisciplinary Digital Publishing Institute (MDPI) AG, Basel, <https://doi.org/10.3390/ijms19113669>.

Cohen, SJ and Stackman, RW. (2015). Assessing rodent hippocampal involvement in the novel object recognition task. A review.

Behav. Brain Res. 285: 105-1176.

Curzon P, Rustay NR, Brownman KE. Cued and Contextual Fear Conditioning for Rodents. In: Buccafusco JJ, editor. Methods of Behavior Analysis in Neuroscience. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009.

D'Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. *Brain Res Brain Res Rev* 36:60-90.

Doya K. (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. *Curr Opin Neurobiol.* 10: 732-739.

Eichenbaum H (2000) A cortical-hippocampal system for declarative memory. *Nat Rev Neurosci* 1:41-50.

Fivush R. The development of autobiographical memory. *Annu Rev Psychol.* 2011;62:559-82.

Gilbert ME, Sanchez-Huerta K, Wood C (2016) Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Male Rats. *Endocrinology* 157:774-787.

Gilbert ME, Rovet J, Chen Z, Koibuchi N. (2012) Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences. *Neurotoxicology* 33: 842-52.

Gilbert ME, Sui L (2006) Dose-dependent reductions in spatial learning and synaptic function in the dentate gyrus of adult rats following developmental thyroid hormone insufficiency. *Brain Res* 1069:10-22.

Guirfa, M., Sandoz, J.C., 2012. Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. *Learn. Mem.* 19 (2), 54–66.

Herold, C, Lässer, MM, Schmid, LA, Seidl, U, Kong, L, Fellhauer, I, Thomann, PA, Essig, M and Schröder, J. (2015). Neuropsychology, Autobiographical Memory, and Hippocampal Volume in "Younger" and "Older" Patients with Chronic Schizophrenia. *Front. Psychiatry*, 6: 53.

Hladik, D. and S. Tapio. (2016), "Effects of ionizing radiation on the mammalian brain", *Mutation Research/Reviews in Mutation Research*, Vol. 770, Elsevier B. b., Amsterdam, <https://doi.org/10.1016/j.mrrev.2016.08.003>.

Heisler, J. M. et al. (2015), "The Attentional Set Shifting Task: A Measure of Cognitive Flexibility in Mice", *Journal of Visualized Experiments*, 96, JoVe, Cambridge, <https://doi.org/10.3791/51944>. Heisler, J. M. et al. (2015), "The Attentional Set Shifting Task: A Measure of Cognitive Flexibility in Mice", *Journal of Visualized Experiments*, 96, JoVe, Cambridge, <https://doi.org/10.3791/51944>.

LaLone, C.A., Villeneuve, D.L., Wu-Smart, J., Milsk, R.Y., Sappington, K., Garber, K.V., Housenger, J. and Ankley, G.T., 2017. Weight of evidence evaluation of a network of adverse outcome pathways linking activation of the nicotinic acetylcholine receptor in honey bees to colony death. *STOTEN*. 584-585, 751-775.

Lezak MD (1984) Neuropsychological assessment in behavioral toxicology--developing techniques and interpretative issues. *Scand J Work Environ Health* 10 Suppl 1:25-29.

Lezak MD (1994) Domains of behavior from a neuropsychological perspective: the whole story. *Nebr Symp Motiv* 41:23-55.

Makris SL, Raffaele K, Allen S, Bowers WJ, Hass U, Alleva E, Calamandrei G, Sheets L, Amcoff P, Delrue N, Crofton KM.(2009) A retrospective performance assessment of the developmental neurotoxicity study in support of OECD test guideline 426. *Environ Health Perspect.* Jan;117(1):17-25.

Menzel, R., 2012. The honeybee as a model for understanding the basis of cognition. *Nat. Rev. Neurosci.* 13 (11), 758–768.

Mitchell AS, Dalrymple-Alford JC, Christie MA. (2002) Spatial working memory and the brainstem cholinergic innervation to the anterior thalamus. *J Neurosci.* 22: 1922-1928.

OECD. 2007. OECD guidelines for the testing of chemicals/ section 4: Health effects. Test no. 426: Developmental neurotoxicity study. www.Oecd.Org/dataoecd/20/52/37622194.Pdf [accessed may 21, 2012].

OECD (2008) Nr 43 GUIDANCE DOCUMENT ON MAMMALIAN REPRODUCTIVE TOXICITY TESTING AND ASSESSMENT. ENV/JM/MONO(2008)16

Ono T. (2009) Learning and Memory. Encyclopedia of neuroscience. M D. Binder, N. Hirokawa and U. Windhorst (Eds). Springer-Verlag GmbH Berlin Heidelberg. pp 2129-2137.

Parihar, V. K. et al. (2020), "Sex-Specific Cognitive Deficits Following Space Radiation Exposure", *Frontiers in Behavioral Neuroscience*, Vol. 14, <https://doi.org/10.3389/fnbeh.2020.535885>.

Pritchett, K. and G. Mulder. (2004), "Hebb-Williams mazes.", *Contemporary topics in laboratory animal science*, Vol. 43/5, <http://www.ncbi.nlm.nih.gov/pubmed/15461441>.

Puig, M.V., Antzoulatos, E.G., Miller, E.K., 2014. Prefrontal dopamine in associative learning and memory. *Neuroscience* 282, 217–229.

Rabin, B. M. et al. (2002), "Effects of Exposure to 56Fe Particles or Protons on Fixed-ratio Operant Responding in Rats", Journal of Radiation Research, Vol. 43/S, <https://doi.org/10.1269/jrr.43.S225>.

Roberts AC, Bill BR, Glanzman DL. (2013) Learning and memory in zebrafish larvae. Front Neural Circuits 7: 126.

Rohrman DS, Lucchini R, Anger WK, Bellinger DC, van Thriel C. (2008) Neurobehavioral testing in human risk assessment. Neurotoxicology. 29: 556-567.

Shin, MS, Park, SY, Park, SR, Oeol, SH and Kwon, JS. (2006). Clinical and empirical applications of the Rey-Osterrieth complex figure test. Nature Protocols, 1: 892-899.

Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372-376.

Stanton ME, Spear LP (1990) Workshop on the qualitative and quantitative comparability of human and animal developmental neurotoxicity, Work Group I report: comparability of measures of developmental neurotoxicity in humans and laboratory animals. Neurotoxicol Teratol 12:261-267.

Talley, JL. (1986). Memory in learning disabled children: Digit span and eh Rey Auditory verbal learning test. Archives of Clinical Neuropsychology, Elsevier.

T.M. Wang, C.W. Su, H.F. Liao, L.Y. Lin, K.S. Chou, S.H. Lin The standardization of the comprehensive developmental inventory for infants and toddlers Psychol. Test., 45 (1998), pp. 19-46

Toscano CD, Guilarte TR. (2005) Lead neurotoxicity: From exposure to molecular effects. Brain Res Rev. 49: 529-554.

U.S.EPA. 1998. Health effects guidelines OPPTS 870.6300 developmental neurotoxicity study. EPA Document 712-C-98-239. Office of Prevention Pesticides and Toxic Substances.

Vorhees CV, Williams MT (2014) Assessing spatial learning and memory in rodents. ILAR J 55:310-332.

Willoughby KA, McAndrews MP, Rovet JF. Accuracy of episodic autobiographical memory in children with early thyroid hormone deficiency using a staged event. Dev Cogn Neurosci. 2014 Jul;9:1-11.

Appendix 2

List of Key Event Relationships in the AOP

List of Adjacent Key Event Relationships

[Relationship: 2942: Activation of MEK, ERK1/2 leads to Increase, intracellular calcium](#)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
Activation of MEK-ERK1/2 leads to deficits in learning and cognition via disrupted neurotransmitter release	adjacent	Not Specified	Not Specified
Activation of MEK-ERK1/2 leads to deficits in learning and cognition via ROS and apoptosis	adjacent	Not Specified	Not Specified

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
Rattus norvegicus	Rattus norvegicus	Moderate	NCBI
Mus musculus	Mus musculus	Moderate	NCBI

Life Stage Applicability

Life Stage	Evidence
Birth to < 1 month	Moderate

1 to 3 months Pregnancy	Life Stage	Moderate	Evidence

Sex Applicability

Sex	Evidence
Female	Moderate
Mixed	Moderate

Key Event Relationship Description

Astrocytes are networked together by a series of gap junctions permitting to propagate Ca^{2+} waves through the linked network (Lobsiger and Cleveland 2007), and Ca^{2+} -mediated intercellular communication is a mechanism by which astrocytes communicate with each other and modulate the activity of adjacent cells (Verderio et al., 2001). Metal mixture (MM) induced alteration in astrocyte morphology may influence $[Ca^{2+}]_i$ (Barres et al., 1989); in contrast, an increase in $[Ca^{2+}]_i$ may also play a key role in altering astrocyte cytoskeleton, affecting the glia-neuron interaction (Shelton et al., 2000).

Inhibition of GFAP immunoreactivity by MM in developing brain appears to be caused by astrocyte apoptosis. In primary cultures of astrocytes, our data show that MM synergistically induced apoptosis (Rai and others 2010). This was manifested by the activation of MEK/ERK, followed by the activation of JNK pathways, which then enhanced intracellular Ca^{2+} levels and subsequently ROS generation.

Evidence Supporting this KER

Empirical Evidence

We treated the astrocytes with a metal-mixture (MM) of arsenic, cadmium, and lead and observed that the MM triggered $[Ca^{2+}]_i$ release (Rai and others 2010). The $[Ca^{2+}]_i$ release reached its peak after 30 min of MM treatment. Similarly, MM triggered ROS generation, and the ROS generation reached its peak after 1 h of MM treatment. To investigate whether the $[Ca^{2+}]_i$ release was ROS, ERK1/2, or JNK1/2 –dependent, we incubated the MM-treated astrocytes with an antioxidant (a-tocopherol, 200 μ g/ml), PD98059 (10IM), or SP600125 (10IM). a-Tocopherol itself was nontoxic. We observed that PD98059 (10IM) or SP600125 (10IM) suppressed $[Ca^{2+}]_i$ release, but a-tocopherol (200 μ g/ml) did not. This suggested that $[Ca^{2+}]_i$ release in MM-treated astrocytes was ERK1/2 and JNK1/2 dependent (Rai and others 2010).

Yael and Breitbart (2015) demonstrated for the first time that mouse sperm ERK1/2 is activated upon ZP addition, and that ERK1/2 mediates the elevation of intracellular Ca^{2+} in the sperm cell prior to the occurrence of the acrosome reaction. The fact that the acrosome reaction, induced by the Ca^{2+} -ionophore A23187, was not inhibited by U0126 suggests that ERK1/2 mediates the acrosome reaction by activating Ca^{2+} transport into the cell. Direct determination of intracellular $[Ca^{2+}]$ revealed that Ca^{2+} influx induced by EGF or ZP was completely blocked by U0126. Thus, it has been established that the increase in ERK1/2 phosphorylation/activation in response to ZP or by activation of the EGF receptor (EGFR) by EGF, is a key event for intracellular Ca^{2+} elevation and the subsequent occurrence of the acrosome reaction (Jaldety et al., 2015).

To examine the relationship between Ca^{2+} and Erk1/2 signaling, Levin and Borodinsky (2022) inhibited Mek1/2 with PD0325901 and found that this prevents the injury-induced increase in Ca^{2+} activity in cells lateral to the axial musculature across the entire 800 μ m-wide region measured. This suggests that injury-induced Erk1/2 activation recruits Ca^{2+} activity to promote regeneration of the larval tail. Consistent with recruitment of Ca^{2+} activity across a wide region of tail, activated Erk1/2 is also present in at least the posterior 800 μ m of stump (Levin et al., 2022). However, unlike Ca^{2+} activity, Erk1/2 signaling at 20 mpa is activated in a gradient. This could mean that even the lowest level of Erk1/2 signal measured in 800 μ m of amputated tail is sufficient to induce the Ca^{2+} response, or that a signal is propagated anteriorly from the cells adjacent to the amputation where injury induces high Erk1/2 activation (Levin et al., 2022).

Quantitative Understanding of the Linkage

Time-scale

Exposures were conducted for 2 min, 5 min, 10 min, 30 min, 1 h, 2 h, and 24 h. The $[Ca^{2+}]_i$ release reached its peak after 30 min of MM treatment (Rai and others 2010).

Known Feedforward/Feedback loops influencing this KER

The activity of many protein kinases is modulated by Ca^{2+} and/or Ca^{2+} /calmodulin either directly (PKC, CaM kinase II) or indirectly (PKA via stimulation of adenylyl cyclase and phosphodiesterase by Ca^{2+} /calmodulin) (Kern et al., 1995). Therefore, the effects of Ca^{2+} and protein kinases on cytoskeletal proteins and neurite initiation are likely to be mediated, at least in part, by changes in protein phosphorylation (Kern et al., 1995).

References

Asit Rai and others. Characterization of Developmental Neurotoxicity of As, Cd, and Pb Mixture: Synergistic Action of Metal Mixture in Glial and Neuronal Functions, Toxicological Sciences, Volume 118, Issue 2, December 2010, Pages 586–601, <https://doi.org/10.1093/toxsci/kfq266>

Barres, B. A., L. L. Chun, and Corey. "Calcium current in cortical astrocytes: induction by cAMP and neurotransmitters and permissive effect of serum factors." *Journal of Neuroscience* 9.9 (1989): 3169-3175.

Jaldety, Yael, and Haim Breitbart. "ERK1/2 mediates sperm acrosome reaction through elevation of intracellular calcium concentration." *Zygote* 23.5 (2015): 652-661.

Kern, Marcey, and Gerald Audesirk. "Inorganic lead may inhibit neurite development in cultured rat hippocampal neurons through hyperphosphorylation." *Toxicology and applied pharmacology* 134.1 (1995): 111-123.

Levin, Jacqueline B., and Laura N. Borodinsky. "Injury-induced Erk1/2 signaling tissue-specifically interacts with Ca²⁺ activity and is necessary for regeneration of spinal cord and skeletal muscle." *Cell calcium* 102 (2022): 102540.

Lobsiger, C. S., and Cleveland, D. W. (2007). Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. *Nat. Neuro-sci.* 10, 1355–1360.

Shelton, Marilee K., and Ken D. McCarthy. "Hippocampal astrocytes exhibit Ca²⁺-elevating muscarinic cholinergic and histaminergic receptors in situ." *Journal of neurochemistry* 74.2 (2000): 555-563.

Verderio, Claudia, and Michela Matteoli. "ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN- γ ." *The Journal of Immunology* 166.10 (2001): 6383-6391.

[Relationship: 2954: Increase, intracellular calcium leads to Disruption, neurotransmitter release](#)

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
Activation of MEK-ERK1/2 leads to deficits in learning and cognition via disrupted neurotransmitter release	adjacent	Not Specified	Not Specified

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
Rattus norvegicus	Rattus norvegicus	Moderate	NCBI
Homo sapiens	Homo sapiens	Moderate	NCBI
Mus musculus	Mus musculus	Moderate	NCBI

Life Stage Applicability

Life Stage	Evidence
Adult	Moderate

Sex Applicability

Sex	Evidence
Female	Moderate
Mixed	Moderate

Key Event Relationship Description

While intracellular Ca regulation is an important aspect of a number of processes in a variety of cells, it is particularly critical in nerve cell terminals where Ca mediates transmitter release (Augustine et al., 1987). Many synaptic connections during brain development involve calcium signaling, which directs structural as well as functional adaptation in neurons (Lohmann 2009; Michaelson and Lohmann 2010) and astrocytes (Navarette et al., 2013) to establish synaptic selectivity in the developing brain (Katherine von Stackelberg 2015). While astrocytes have long been known to support neuronal signaling, there is increasing evidence that astrocytes detect synaptic activity and engage in reciprocal signaling with neurons, again based on variations in intracellular Ca²⁺ (Volterra et al., 2014; Barkera and Ullian 2008).

Evidence Supporting this KER

Biological Plausibility

Lead (1-30 μ M) was also observed to induce a concentration-dependent release of dopamine from striatal synaptosomes under conditions of spontaneous release (Minnema et al., 1986). Similar lead induced neurotransmitter release has been demonstrated for acetylcholine at the neuromuscular junction, as reflected by increase miniature-end-plate potentials (Cooper and Manalis 1983), and in cortical synaptosomes (Suszkiw et al., 1984). Although the mechanisms by which lead induces transmitter release are unresolved, the increased release may result from an increase in intrasynaptosomal free calcium which has been shown to increase release (Katz 1969).

Empirical Evidence

Lead could act to increase spontaneous transmitter release by increasing the intraneuronal ionized Ca concentration (Kolton and Yarri 1982). One means by which the intraneuronal free Ca could be elevated is by inhibition of Ca extrusion; specifically, inhibition of the Mg²⁺-dependent Ca-ATPase (Minnema et al., 1988). The extrusion of Ca by Ca-ATPase at the plasma membrane is the dominant means by which the intraneuronal Ca concentration is maintained during "resting" conditions (Snelling and Nicholls 1985). Although Pb has been reported to be a weak inhibitor of this enzyme (Thompson and Nechay 1981), the Pb-induced increase in ⁴⁵Ca efflux observed in the current study (Minnema et al., 1988) would not be expected if Ca-ATPase inhibition is the mechanism by which Pb increases transmitter release. The similar concentration/release effects and temporal relationships between transmitter release and ⁴⁵Ca efflux suggest that Pb may displace bound Ca from intraneuronal Ca sources (Minnema et al., 1988). The slight temporal differences in onset and peak effects (i.e., the effect of Pb on transmitter release precedes its effect on ⁴⁵Ca efflux) are consistent with the view that Pb increases the intraneuronal ionized Ca concentration, which would first interact at the intraneuronal site mediating transmitter release, and subsequently this Ca would be extruded from the nerve ending (Minnema et al., 1988).

We next investigated the consequences of astrocyte Ca^{2+} signal on human neurons. In hippocampal slices, local application of ATP evoked astrocyte Ca^{2+} elevations that propagated as a wave throughout the Stratum radiatum reaching the Stratum pyramidale, and then evoking Ca^{2+} elevations in pyramidal neurons after a conspicuous delay from the initial astrocyte Ca^{2+} elevations, suggesting that astrocyte Ca^{2+} stimulates the release of gliotransmitters that acting on transmitter receptors affect the intracellular Ca^{2+} levels in human neurons (Navarette et al., 2013).

Local application of ATP, which elevated Ca^{2+} levels in astrocytes, also increased the frequency of slow inward currents (SIC) in both hippocampal and cortical neurons. While SIC frequency was insensitive to TTX ($n = 3$ neurons), SICs were abolished by 50 μ M AP5, indicating that they were independent of action potential-evoked neurotransmitter release and that they were mediated by NMDARs. Therefore, in agreement with compelling evidence obtained in rodents (Parri et al., 2001; Fellin, Tommaso, et al. 2004; Gertrudis and Araque 2005; Navarrete et al., 2008; Shigetomi, Eiji, et al. 2008; Bardoni, Rita, et al., 2010; Sasaki, Takuya, et al. 2011), Ca^{2+} elevations in human astrocytes stimulate the release of glutamate that activates NMDARs in neurons, indicating the existence of gliotransmission and astrocyte-to-neuron communication in human brain tissue (Navarette et al., 2013).

Uncertainties and Inconsistencies

Synaptotagmin I (Syt) is a Ca^{2+} -sensing protein found in neurotransmitter vesicles and is responsible for promoting vesicular fusion in the presence of Ca^{2+} signaling (Chicka et al., 2008). Pb²⁺ bound Syt with 1000-fold higher affinity than Ca^{2+} , which may prevent detection of Ca^{2+} signaling essential to neurotransmission (Bouton et al., 2001). Although Pb²⁺ exposure did not affect Syt protein expression in cultured hippocampal neurons (Neal et al., 2010), it is possible that Pb²⁺ may interfere with the Ca^{2+} -sensing ability of Syt in neurons, thus masking the cellular signal for Ca^{2+} -dependent vesicular release (Neal and Guilarte 2010).

Pb²⁺ interactions with Syt may be related to the ability of Pb²⁺ to mimic Ca^{2+} (Neal and Guilarte 2010). Pb²⁺ has an ionic radius of 1.2 Å, which is similar to the ionic radius of Ca^{2+} (0.99 Å) (Chao et al., 1984; Garza et al., 2006). The positive charges and high electronegativity (2.33 on the Pauling scale) of Pb²⁺ may allow it to interact with the same residues on Ca^{2+} binding sites that interact with Ca^{2+} ions (Garza et al., 2006). Pb²⁺ has been shown to interact with several neuronal intracellular Ca^{2+} -binding proteins in addition to Syt (described above), such as the Ca^{2+} -binding protein calmodulin (CaM) (Chao et al., 1984; Habermann et al., 1983; Kern et al., 2000), the CaM/ Ca^{2+} -dependent phosphatase calcineurin (Kern and Audesirk 2000), CaMKII (Toscano et al., 2005), and protein kinase C (Simons 1993; Sun et al., 1999; Toscano and Schanne 2000; Long et al., 1994), suggesting that Ca^{2+} mimicry may be a common characteristic of Pb²⁺ toxicity (Bressler et al., 1999; Marchetti 2003; Richardt et al., 1986). Thus, the ability of Pb²⁺ to mimic Ca^{2+} may interfere with normal synaptic signaling events (Neal and Guilarte 2010).

Another hypothesis regarding the disruption of neurotransmission is that Pb²⁺ may interfere with Ca^{2+} signals by inhibiting Ca^{2+} channels (Xiao et al., 2006; Braga et al., 1999; ³⁵). Neurotransmission relies on the influx of Ca^{2+} from P/Q-, N-, and to some extent R-type voltage-gated Ca^{2+} channels (VGCCs) (Xu et al., 2007). Pb²⁺ has been shown to inhibit VGCCs in recombinant systems with high affinity (Peng et al., 2002). Furthermore, removal of extracellular Ca^{2+} resulted in identical effects on IPSC frequency as Pb²⁺ exposure, suggesting that the Pb²⁺-induced inhibition of IPSC frequency is via reduction of Ca^{2+} influx through VGCCs (Xiao et al., 2006). Inhibition of presynaptic VGCCs may prevent the necessary rise in internal Ca^{2+} required for fast, Ca^{2+} -dependent vesicular release, thus interfering with neurotransmission (Neal and Guilarte 2010).

Cadmium may block the influx of Ca^{2+} through membrane channels into the nerve terminal following the action potential, these decrease in calcium influx caused by Cd would be associated with an altered transmitter release (Antonio et al., 1999).

Quantitative Understanding of the Linkage

Time-scale

Calcium efflux and induced spontaneous transmitter release occur on a seconds to minutes time-scale (Minnema et al., 1988).

Known Feedforward/Feedback loops influencing this KER

It has been clear for quite some time that influx of calcium at the synapse mediates synaptic plasticity in adult as well as developing neurons (Malenka et al., 1988). Despite this long-standing appreciation of the importance of calcium signaling for synaptic plasticity, it is virtually unknown what the properties of calcium transients are that determine whether a synapse becomes potentiated or depressed (Malenka and Bear 2004). Some models suggest that moderate increases in calcium may activate primarily phosphatases (e.g., calcineurin and protein phosphatase-1) that in turn facilitate synaptic depression (Mansuy and Sheng 2006). In contrast, the activation of kinases (e.g., calcium/calmodulin-dependent protein kinase II, CaMKII) by high-amplitude calcium transients may favor potentiation (Lisman et al., 2002). This is in fact an interesting parallel to the regulation of attractive vs. repulsive axon guidance by calcium: larger calcium transients can activate CaMKII and induce turns toward the side of calcium elevation, whereas smaller calcium increases activate the phosphatases calcineurin and phosphatase-1 and trigger repulsive turns (Wen et al., 2004; Zheng and Poo 2007).

References

Augustine, George J., Milton P. Charlton, and Stephen J. Smith. "Calcium action in synaptic transmitter release." *Annual review of neuroscience* 10.1 (1987): 633-693.

Bardoni, Rita, et al. "Glutamate-mediated astrocyte-to-neuron signalling in the rat dorsal horn." *The Journal of physiology* 588.5 (2010): 831-846.

Barker AJ, Ullian EM. New roles for astrocytes in developing synaptic circuits. *Communicative & Integrative Biology*, 2008; 1(2):207–211.

Bouton CMS, Frelin LP, Forde CE, Godwin HA, Pevsner J (2001) Synaptotagmin i is a molecular target for lead. *J Neurochem* 76:1724–1735

Braga MFM, Pereira EFR, Albuquerque EX (1999) Nanomolar concentrations of lead inhibit glutamatergic and GABAergic transmission in hippocampal neurons. *Brain Res* 826:22–34

Bressler J, Kim KA, Chakraborti T, Goldstein G (1999) Molecular mechanisms of lead neurotoxicity. *Neurochem Res* 24:595–600

Chao SH, Suzuki Y, Zysk JR, Cheung WY (1984) Activation of calmodulin by various metal cations as a function of ionic radius. *Mol Pharmacol* 26:75–82

Chicka MC, Hui E, Lui H, Chapman ER (2008) Synaptotagmin arrests the snare complex before triggering fast, efficient membrane fusion in response to Ca^{2+} . *Nat Struct Mol Biol* 15:827–835

Cooper, G., and Manalis, R. (1983). Influence of heavy metals on synaptic transmission: A review. *Neurotoxicology* 4, 69-84.

Fellin, Tommaso, et al. "Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors." *Neuron* 43.5 (2004): 729-743.

Garza A, Vega R, Soto E (2006) Cellular mechanisms of lead neurotoxicity. *Med Sci Monit* 12:RA57–RA65

Habermann E, Crowell K, Janicki P (1983) Lead and other metals can substitute for Ca^{2+} in calmodulin. *Arch Toxicol* 54:61–70

Katherine von Stackelberg & Elizabeth Guzy & Tian Chu & Birgit Claus Henn, 2015. Exposure to Mixtures of Metals and Neurodevelopmental Outcomes: A Multidisciplinary Review Using an Adverse Outcome Pathway Framework, Risk Analysis, John Wiley & Sons, vol. 35(6), pages 971-1016, June.

Katz, B. (1969). *The Release of Neural Transmitter Substances*. Thomas, Springfield, Ill.

Kern M, Audesirk G (2000) Stimulatory and inhibitory effects of inorganic lead on calcineurin. *Toxicology* 150:171–178

Kern M, Wisniewski M, Cabell L, Audesirk G (2000) Inorganic lead and calcium interact positively in activation of calmodulin. *Neurotoxicology* 3:353–363

Kolton, L., and Yarri, Y. (1982). Sites of action of lead on spontaneous transmitter release from motor nerve terminals. *Isr. J. Med. Sci.* 18, 165-17

Lisman, J., Schulman, H., & Cline, H. (2002). The molecular basis of CaMKII function in synaptic and behavioural memory. *Nature*

Reviews. Neuroscience, 3, 175–190.

Lohmann C. Calcium signaling and the development of specific neuronal connections. *Progress in Brain Research*, 2009; 175:443–452.

Lohmann, Christian. "Calcium signaling and the development of specific neuronal connections." *Progress in brain research* 175 (2009): 443-452.

Long GJ, Rosen JF, Schanne FAX (1994) Lead activation of protein kinase C from rat brain. *J Biol Chem* 269:834–837

M.T. Antonio, I. Corpas, M.L. Leret Neurochemical changes in newborn rat's brain after gestational cadmium and lead exposure *Toxicol. Lett.*, 104 (1999), pp. 1-9

Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: an embarrassment of riches. *Neuron*, 44, 5–21.

Malenka, R. C., Kauer, J. A., Zucker, R. S., & Nicoll, R. A. (1988). Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. *Science*, 242, 81–84.

Mansuy, I. M., & Shenolikar, S. (2006). Protein serine/threonine phosphatases in neuronal plasticity and disorders of learning and memory. *Trends in Neurosciences*, 29, 679–686.

Marchetti C (2003) Molecular targets of lead in brain neurotoxicity. *Neurotox Res* 5:221–236

Michaelson K, Lohmann C. Calcium dynamics at developing synapses: Mechanisms and functions. *European Journal of Neuroscience*, 2010; 32:218–223.

Minnema, Daniel J., I. A. Michaelson, and G. P. Cooper. "Calcium efflux and neurotransmitter release from rat hippocampal synaptosomes exposed to lead." *Toxicology and applied pharmacology* 92.3 (1988): 351-357.

Minnema, Daniel J., Robert D. Greenland, and I. Arthur Michaelson. "Effect of in vitro inorganic lead on dopamine release from superfused rat striatal synaptosomes." *Toxicology and applied pharmacology* 84.2 (1986): 400-411.

Navarette M, Perea G, Maglio L, Pastor J, de Sola RG, Araque A. Astrocyte calcium signal and gliotransmission in human brain tissue. *Cerebral Cortex*, 2013; 23:1240–1246.

Navarrete, Marta, and Alfonso Araque. "Endocannabinoids mediate neuron-astrocyte communication." *Neuron* 57.6 (2008): 883-893.

Neal AP, Stansfield KH, Worley PF, Thompson RE, Guilarte TR (2010) Lead exposure during synaptogenesis alters vesicular proteins and impairs vesicular release: potential role of NMDA receptor-dependent BDNF signaling. *Toxicol Sci* 116:249–263

Neal, A.P., Guilarte, T.R. Molecular Neurobiology of Lead (Pb²⁺): Effects on Synaptic Function. *Mol Neurobiol* 42, 151–160 (2010). <https://doi.org/10.1007/s12035-010-8146-0>

Parri, H. Rheinallt, Timothy M. Gould, and Vincenzo Crunelli. "Spontaneous astrocytic Ca²⁺ oscillations in situ drive NMDAR-mediated neuronal excitation." *Nature neuroscience* 4.8 (2001): 803-812.

Peng S, Hajela RK, Atchison WD (2002) Characteristics of block by Pb²⁺ of function of human neuronal L-, N-, and R-type Ca²⁺ channels transiently expressed in human embryonic kidney 293 cells. *Mol Pharmacol* 62:1418–1430

Perea, Gertrudis, and Alfonso Araque. "Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes." *Journal of Neuroscience* 25.9 (2005): 2192-2203.

Richardt G, Federolf G, Habermann E (1986) Affinity of heavy metal ions to intracellular Ca²⁺-binding proteins. *Biochem Pharmacol* 35:1331–1335

Sasaki, Takuya, et al. "Locally synchronized astrocytes." *Cerebral cortex* 21.8 (2011): 1889-1900.

Shigetomi, Eiji, et al. "Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons." *Journal of Neuroscience* 28.26 (2008): 6659-6663.

Simons TJB (1993) Lead-calcium interactions in cellular lead toxicity. *Neurotoxicology* 14:77–86

Snelling, R., and Nicholls, D. (1985). Calcium efflux and cycling across the synaptosomal plasma membrane. *Biochem. J.* 226,225-23 1

Sun X, Tian X, Tomsig JL, Suszkiw JB (1999) Analysis of differential effects of Pb²⁺ on protein kinase C isozymes. *Toxicol Appl Pharmacol* 156:40–45

Suszkiw et al., (1984) Effects of Pb²⁺ and Cd²⁺ on acetylcholine release and Ca²⁺ movements in synaptosomes subcellular fractions from rat brain and torpedo electric organ. *Brain Res.* 323, 3 1-46.

Thompson, J., and Nechay, B. (1981). Inhibition by metals of canine renal calcium, magnesium-activated adenosinetriphosphatase. *J. Toxicol. Environ. Health* 7, 901-908

Toscano CD, O'Callaghan JP, Guilarte TR (2005) Calcium/calmodulin-dependent protein kinase II activity and expression are altered in the hippocampus of Pb2+-exposed rats. *Brain Res* 1044:51–58

Toscano CD, Schanne FAX (2000) Lead-induced activation of protein kinase C in rat brain cortical synaptosomes. *Ann NY Acad Sci* 919:307–311

Volterra A, Liaudet N, Savtchouk I. Astrocyte Ca²⁺ signalling: An unexpected complexity. *Nature Reviews Neuroscience*, 2014; 15:327–335,

Wen, Z., Guirland, C., Ming, G. L., & Zheng, J. Q. (2004). A CaMKII/calcineurin switch controls the direction of Ca(2+)-dependent growth cone guidance. *Neuron*, 43, 835–846.

Xiao C, Gu Y, Zhou CY, Wang L, Zhang MM, Ruan DY (2006) Pb2+ impairs GABAergic synaptic transmission in rat hippocampal slices: a possible involvement of presynaptic calcium channels. *Brain Res* 1088:93–100

Xu J, He L, Wu LG (2007) Role of Ca²⁺ channels in short-term synaptic plasticity. *Curr Opin Neurobiol* 17:352–35

Zheng, J. Q., & Poo, M. M. (2007). Calcium signaling in neuronal motility. *Annual Review of Cell and Developmental Biology*, 23, 375–404.

Relationship: 2955: Disruption, neurotransmitter release leads to Impairment, Learning and memory

AOPs Referencing Relationship

AOP Name	Adjacency	Weight of Evidence	Quantitative Understanding
Activation of MEK-ERK1/2 leads to deficits in learning and cognition via disrupted neurotransmitter release	adjacent	Not Specified	Not Specified

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term	Scientific Term	Evidence	Links
Rattus norvegicus	Rattus norvegicus	Moderate	NCBI
Mus musculus	Mus musculus	Moderate	NCBI

Life Stage Applicability

Life Stage	Evidence
All life stages	High

Sex Applicability

Sex	Evidence
Unspecific	High

Key Event Relationship Description

Neurotransmitters and their receptors are essential for brain functioning, learning, and memory. Catecholamines, including dopamine and norepinephrine, are the main neurotransmitters that mediate a variety of central nervous system (CNS) functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation, determined by recent molecular genetic approaches in mice (Handra et al., 2019).

Evidence Supporting this KER

Biological Plausibility

The N-methyl-D-aspartate receptor (NMDAR) plays an essential role in hippocampus-mediated learning and memory, based on studies showing that intra-ventricular administration of an NMDAR antagonist (aminophosphonovaleric acid (APV)) in rats resulted in spatial learning impairments similar to those encountered with hippocampal lesions (Morris et al., 1982; Morris et al., 1986).

Memory acquisition is considered to involve both short-term changes in electrical properties and long-term structural alterations in synapses. Short-term changes may include LTP and LTD whereas long-term morphological alterations may involve synaptogenesis and neuropil growth (Burns and Augustine 1995; Edwards 1995). Since BDNF significantly modulates both forms of synaptic changes and the expression is upregulated during memory acquisition, as described above, it may play a role in learning and

memory (Lo DC 1995; Thoenen 1995; McAllister et al., 1999).

Cortical acetylcholine release increases (1) during acquisition but not during recall of a rewarded operant behavior (Orsetti et al., 1996), (2) during acquisition of operant tasks when demands on attentional processing are high (Muir et al., 1996), (3) during conditioned taste aversion (Miranda et al., 2003), and (4) during performance of visual attentional tasks (Himmelheber et al., 2001). It has been also related to attentional effort (Himmelheber et al., 2001). Furthermore, in the hippocampus, ACh release increases during the performance of a learned spatial memory task (Ragozzino et al., 1996; Stancampiano R, et al., 1999) and the increase is positively correlated to performance improvement during task learning (Fadda et al., 2000), showing that cholinergic neurons are modified functionally during learning and become progressively more active. Also, the initial use of a place strategy coincided with an immediate increase in hippocampus ACh release (Chang and Gold 2003). Furthermore, as rewarded spontaneous alternation testing progressed, a switch to a repetitive response strategy accompanied an increase in striatum ACh release (Pych JC et al., 2005).

The release of acetylcholine in different brain areas appears to be involved in processes of attention (Marrosu et al., 1995), detection of novelty or saliency (Baxter et al., 1999), and during the consolidation of different types of long-term memory (Power 2004; McIntyre et al., 2003; Hasselmo 1999).

Empirical Evidence

Miranda 2007 reviews many studies which demonstrate the activation of neurotransmitters such as glutamate, noradrenaline, and dopamine in several types of learning and during several stages of memory formation. The results of innumerable studies indicate that during memory formation different regions of the brain act in coordinated fashion through different neurotransmission systems (Miranda 2007).

Targeted knockout of the NMDAR in the hippocampus impairs spatial learning (Neal and Guilarte 2010), lending further support to the role of the NMDAR in hippocampus-mediated learning processes.

A neurotransmitter system that has been previously linked with the cognitive functions is the glutamate NMDA receptor system (May Simera and Levin 2003; Li et al., 2013). In 1991, Izquierdo, with the help of NMDA receptor antagonists (which impaired spatial working memory), concluded that if repeatedly stimulated, this system can regulate cognition (Izquierdo 1991). What is more, it was observed that blocking the NMDA receptor induces a resembling degree of memory impairment as the excision of the hippocampus (Lupușoru et al., 2017).

Learning-induced increases of ACh in the hippocampus and cortex have two important characteristics that strongly suggest that these increases are involved in memory consolidation (Power et al., 2003). First, the ACh increases induced during acquisition persist for at least 15 min after the end of the task (Orsetti et al., 1996; Ragozzino et al., 1996; Kopf et al., 2001; Miranda and Bermúdez-Rattoni 1999; Toumane et al., 1988). It is well established that during this posttraining period memory consolidation is strongly influenced by endogenous hormones and is highly susceptible to disruption and modulation by pharmacological interventions (McGaugh and Izquierdo 2000; McGaugh 2000). Furthermore, the persistence of the ACh levels in the hippocampus and cortex is correlated with the duration of these structures' involvement in memory consolidation (Power et al., 2003).

References

A. Toumane, T. Durkin, A. Marighetto, D. Galey, R. Jaffard Differential hippocampal and cortical cholinergic activation during the acquisition, retention, reversal and extinction of a spatial discrimination in an 8-arm radial maze by mice Behavioural Brain Research, 30 (1988), pp. 225-234

Ann E. Power, Almira Vazdarjanova, James L. McGaugh, Muscarinic cholinergic influences in memory consolidation, *Neurobiology of Learning and Memory*, Volume 80, Issue 3, 2003, Pages 178-193, ISSN 1074-7427

Baxter MG, et al. Impairments in conditioned stimulus processing and conditioned responding after combined selective removal of hippocampal and neocortical cholinergic input. *Behav Neurosci*. 1999;113:486.

Burns ME, Augustine GJ. Synaptic structure and function: dynamic organization yields architectural precision. *Cell* 1995; 83: 187–94.

Chang Q, Gold PE. Switching memory systems during learning: changes in patterns of brain acetylcholine release in the hippocampus and striatum in rats. *J Neurosci*. 2003;23:3001.

Dalley JW, et al. Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. *J Neurosci*. 2001;21:4908.

Edwards FA. Anatomy and electrophysiology of fast central synapses lead to a structural model for long-term potentiation. *Physiological Reviews* 1995; 75: 759–87.

Fadda F, Cocco S, Stancampiano R. A physiological method to selectively decrease brain serotonin release. *Brain Res Brain Res Protoc*. 2000;5:219.

Handra, Claudia, et al. "The connection between different neurotransmitters involved in cognitive processes." *Farmacía* 67.2 (2019): 193-201.

Hasselmo ME. Neuromodulation: acetylcholine and memory consolidation. *Trends Cogn Sci.* 1999;3:351.

Himmelheber AM, Sarter M, Bruno JP. Increases in cortical acetylcholine release during sustained attention performance in rats. *Brain Res Cogn Brain Res.* 2000;9:313.

Izquierdo, Ivan. "Role of NMDA receptors in memory." *Trends in Pharmacological Sciences* 12.4 (1991): 128-129.

J.L. McGaugh Memory—a century of consolidation *Science*, 287 (2000), pp. 248-251

J.L. McGaugh, I. Izquierdo The contribution of pharmacology to research on the mechanisms of memory formation *Trends in Pharmacological Sciences*, 21 (2000), pp. 208-210

Li S, Nai Q, Lipina TV, Roder JC, Liu F, α 7nAchR/NMDAR coupling affects NMDAR function and object recognition. *Mol Brain*, 2013, 6: 1-10.

Lo DC. Neurotrophic factors and synaptic plasticity. *Neuron* 1995; 15: 979–81.

Lupușoru CE, Popa EG, Sandu RB, Buca BR, Mititelu-Tartău L, Lupușoru RV, The influence of Bidens tripartita extracts on psychomotor abilities and cognitive functions in rats. *Farmacía*, 2017; 65(2): 284-288.

M.I. Miranda, F. Bermúdez-Rattoni Reversible inactivation of the nucleus basalis magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories *Proceedings of the National Academy of Sciences of the United States of America*, 96 (1999), pp. 6478-6482

Marrosu F, et al. Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep–wake cycle in freely moving cats. *Brain Res.* 1995;671:329.

May-Simera H, Levin ED, NMDA systems in the amygdala and piriform cortex and nicotinic effects on memory function. *Cogn Brain Res.*, 2003; 17:475-483

McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. *Annual Review of Neuroscience* 1999; 22: 295–318

McIntyre CK, Marriott LK, Gold PE. Cooperation between memory systems: acetylcholine release in the amygdala correlates positively with performance on a hippocampus-dependent task. *Behav Neurosci.* 2003;117:320.

Miranda MI, et al. Role of cholinergic system on the construction of memories: taste memory encoding. *Neurobiol Learn Mem.* 2003;80:211.

Miranda MI. Changes in Neurotransmitter Extracellular Levels during Memory Formation. In: Bermúdez-Rattoni F, editor. *Neural Plasticity and Memory: From Genes to Brain Imaging*. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. Chapter 7.

Morris RG, Garrud P, Rawlins JN, O'Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. *Nature* 297:681–683

Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. *Nature* 319:774–776

Muir JL, Everitt BJ, Robbins TW. The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task. *Cereb Cortex*. 1996;6:470.

Neal AP, Guilarte TR. Molecular neurobiology of lead (Pb2+): Effects on synaptic function. *Molecular Neurobiology*, 2010; 42:151–160.

Orsetti M, Casamenti F, Pepeu G. Enhanced acetylcholine release in the hippocampus and cortex during acquisition of an operant behavior. *Brain Res.* 1996;724:89.

Power AE. Muscarinic cholinergic contribution to memory consolidation: with attention to involvement of the basolateral amygdala. *Curr Med Chem.* 2004;11:987.

Pych JC, et al. Acetylcholine release in hippocampus and striatum during testing on a rewarded spontaneous alternation task. *Neurobiol Learn Mem.* 2005;84:93.

Ragozzino ME, Unick KE, Gold PE. Hippocampal acetylcholine release during memory testing in rats: augmentation by glucose. *Proc Natl Acad Sci USA.* 1996;93:4693.

S. Kopf, M. Buchholzer, M. Hilgert, K. Loffelholz, J. Klein Glucose plus choline improves passive avoidance behavior and increases hippocampal acetylcholine release in mice *Neuroscience*, 103 (2001), pp. 365-371

Stancampiano R, et al. Serotonin and acetylcholine release response in the rat hippocampus during a spatial memory task. *Neuroscience*. 1999;89:1135.

Thoenen H. Neurotrophins and neuronal plasticity. Science 1995; 270: 593–8.