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Abstract

Reactive oxygen species (ROS) are derived from oxygen molecules and can occur as free radicals (ex. superoxide, hydroxyl,
peroxyl) or non-radicals (ex. ozone, singlet oxygen).  ROS production occurs via a variety of normal cellular process; however, in
stress situations (ex. exposure to radiation, chemical or biological stressors) reactive oxygen species levels dramatically increase
and cause damage to cellular components.  In this Adverse Outcome Pathway (AOP) we focus on the Peroxisome proliferation-
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activated receptor (PPAR) response to increases in oxidative stress.  Changes in activation rate of Peroxisome proliferation-
activated receptors alter lipid metabolism, and decrease suppression of apoptosis.  In this AOP we focus on the apoptosis response
to cellular damage.  Pathways leading to apoptosis, or single cell death, have traditionally been studied as both independent and
simultaneous from pathways leading to necrosis, or tissue-wide cell death, with both overlap and distinct mechanisms (Elmore
2007). For the purposes of this AOP, we are characterizing cancer due to widespread cell-death, and recognize the complications
in separating the related apoptosis and necrosis pathways.

Background

This Adverse Outcome Pathway focuses on the key pathways in which an established molecular disruption, increased levels of
reactive oxygen species (ROS), leads to increased cancer.

Summary of the AOP

Events

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Sequence Type Event ID Title Short name

MIE 1115 Increased, Reactive oxygen species Increased, Reactive oxygen species

KE 233 Decreased, PPAR-gamma activation Decreased, PPAR-gamma activation

KE 1060 Alteration, lipid metabolism Alteration, lipid metabolism

KE 1513 General Apoptosis General Apoptosis

AO 885 Increase, Cancer Increase, Cancer

Key Event Relationships

Upstream Event Relationship
Type

Downstream Event Evidence Quantitative
Understanding

Increased, Reactive oxygen
species

adjacent
Decreased, PPAR-gamma
activation

High Low

Decreased, PPAR-gamma
activation

adjacent Alteration, lipid metabolism High Low

Alteration, lipid metabolism adjacent General Apoptosis High Low

General Apoptosis adjacent Increase, Cancer High Low

Overall Assessment of the AOP

1. Support for Biological Plausibility of Key Event Relationships: Is there a mechanistic relationship  between
KEup and KEdown consistent with established biological knowledge?

Key Event Relationship (KER) Evidence

Strong = Extensive understanding of the KER based
on extensive previous documentation and broad
acceptance.

Relationship 3092: Increased, Reactive oxygen
species leads to Decreased, PPAR-gamma activation

Strong support.  Increases in reactive oxygen
species (ROS) have been shown to cause a variety
of cellular responses including decreased
PPARgamma gene expression.  

Relationship 3093: Decreased, PPAR-gamma
activation leads to Alteration, lipid metabolism

Strong support. Decreased PPAR gene expression
have been shown to cause an alteration of lipid
metabolism.  PPAR-gamma acts as a nuclear
signaling element that controls the transcription of a
variety of genes involved in lipid catabolism and
energy production pathways.

Relationship 3094: Alteration, lipid metabolism leads Strong support. Alteration of lipid metabolism have
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Relationship 3094: Alteration, lipid metabolism leads
to General Apoptosis

Strong support. Alteration of lipid metabolism have
been shown to results in abnormal cell function and
activity, leading to apoptosis.  Alteration of lipid
metabolism leads to changes in cell lipid levels,
structural changes in membranes as lipids are key
components, and changes in signaling pathways
affecting gene and protein expression.  Loss of
plasma membrane integrity due to disruptions to lipid
metabolism results in cellular processes identifying
cells as damaged, which acts as a signal for
apoptosis.

Relationship 2977: General Apoptosis leads to
Increase, Cancer

Strong support.  The relationship between failure of
apoptosis pathways to initiate cell death pathways
and increases in cancer is broadly accepted and
consistently supported across taxa.

Overall Strong support.  Extensive understanding of the
relationships between events from empirical studies
from a variety of taxa.

Domain of Applicability

Life Stage Applicability

Life Stage Evidence

All life stages High

Taxonomic Applicability

Term Scientific Term Evidence Links

human Homo sapiens High NCBI

mouse Mus musculus High NCBI

rat Rattus norvegicus High NCBI

Sex Applicability

Sex Evidence

Unspecific High

Life Stage: The life stage applicable is all life stages. 

Sex: Applies to both males and females.

Taxonomic: Appears to be present broadly, with representative studies including mammals (humans, lab mice, lab rats), telost fish,
and invertebrates (cladocerans, mussels).

.

Essentiality of the Key Events

Support for the essentiality of the key events can be obtained from a wide diversity of taxonomic groups, with mammals (lab ice, lab
rats, human cell lines), telost fish, and invertebrates (cladocerans and mussels) particularly well-studied.

2. Essentiality of Key Events: Are downstream KEs and/or the AO prevented if an upstream KE is blocked?

Key Event (KE) Evidence

Strong = Direct evidence from specifically designed
experimental studies illustrating essentiality and
direct relationship between key events.

 

Moderate = Indirect evidence from experimental
studies inferring essentiality of relationship between
key events due to difficulty in directly measuring at
least one of key events.

MIE 1115: Increased, Reactive oxygen species Strong support. Increased Reactive oxygen species
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MIE 1115: Increased, Reactive oxygen species Strong support. Increased Reactive oxygen species
(ROS) levels are a primary cause of decreases in
PPARgamma gene expression.  Evidence is
available from studies of stressor exposure and
resulting changes in gene expression and
protein/enzyme levels.

KE 233: Decreased, PPAR-gamma activation Strong support. The PPARgamma gene family is
important in controlling rate of lipid metabolism. 
Evidence is available from studies of stressor
exposure and resulting changes in gene expression
and protein/enzyme levels.

KE 1060: Alteration, lipid metabolism Strong support.  Altered lipid metabolism,
particularly resulting loss of plasma membrane
integrity is a cause of apoptosis.  Evidence is
available from studies of stressor exposure and
resulting changes in gene expression and
protein/enzyme levels.

KE 1513: General Apoptosis Moderate support. Failure of apoptosis allows
cancer cells to proliferate.  Evidence is available from
studies of stressor exposure and resulting changes
in gene expression, protein/enzyme levels, and
histology.

AO 885: Increase, Cancer Strong support. Cancer proliferates due to a variety
of stressors and breakdown of multiple celluar
processes.  Evidence is available from studies of
stressor exposure and resulting changes in gene
expression, protein/enzyme levels, and histology.

Overall Moderate to strong support.  Direct evidence from
empirical studies for most key events, with more
inferential evidence rather than direct evidence for
apoptosis.

Weight of Evidence Summary

Path Support
Increased, Reactive oxygen species leads
to Decreased, PPAR-gamma activation

Biological plausibility is high. 
Representative studies have been done
with mammals (El Midaoui et al. 2006;
Blanquicett et al. 2010; Lu et al. 2018;
Jeong and Choi 2020) fish (Wang et al.
2022). 

Decreased, Decreased, PPAR-gamma
activation leads to Alteration, lipid
metabolism

Biological plausibility is high. 
Representative studies have been done
with mammals (Chamorro-Garcia et al.
2018; Jeong and Choi 2020); fish (Venezia
et al. 2021).  For review (Tickner et al.
2001; Berger and Moller 2002; Luquet et al.
2005; Den Broeder et al. 2015).

Alteration, lipid metabolism leads to General
Apoptosis

Biological plausibility is high. 
Representative studies have been done
with mammals (Cadet et al. 2010, Gao et al.
2020); invertebrates (Avio et al. 2015). For
review (Huang and Freter 2015).

General Apoptosis leads to Increase,
Cancer

Biological plausibility is high. 
Representative studies have been done
with mammals (Pavet et al. 2014; Jeong
and Choi 2020).  For review (Heinlein and
Chang 2004; Vihervaara and Sistonen
2014).

3. Empirical Support for Key Event Relationship: Does empirical evidence support that a  change in KEup
leads to an appropriate change in KEdown?

Key Event Relationship (KER) Evidence
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Strong =  Experimental evidence from exposure to
toxicant shows consistent change in both events
across taxa and study conditions.

Relationship 3092: Increased, Reactive oxygen
species leads to Decreased, PPAR-gamma
activation

Strong support. Increases in ROS leads to
decreases in PPAR gamma gene expression,
primarily by examining gene expression levels.

Relationship 3093: Decreased, PPAR-gamma
activation leads to Alteration, lipid metabolism

Strong support. Decreases in PPAR gamma
expression leads to alteration of lipid metabolism,
primarily by assessing lipid content and levels of
energy metabolites.

Relationship 3094: Alteration, lipid metabolism leads
to General Apoptosis

Strong support. Altered lipid metabolism leads to
apoptosis; problems with lipid metabolism lead to
abnormal cells, triggering apoptosis pathways.

Relationship 2977: General Apoptosis leads to
Increase, Cancer

Strong support. Mechanistic studies show that
failure for apoptosis to eliminate cancer cells allows
increases in cancer proliferation.

Overall Strong support. Exposure from empirical studies
shows consistent change in both events from a
variety of taxa.

For overview of the biological mechanisms involved in this AOP, see Liu et al. (2015) and Jeong and Choi (2020); their studies
analyzed ToxCast in vitro assays of mammalian acute toxicity data to identify correlations between toxicity pathways and chemical
stressors, providing support for the key event relationships represented here.
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Appendix 1

List of MIEs in this AOP

Event: 1115: Increased, Reactive oxygen species

Short Name: Increased, Reactive oxygen species

Key Event Component

Process Object Action

reactive oxygen species biosynthetic process reactive oxygen species increased

AOPs Including This Key Event

AOP ID and Name Event Type

Aop:186 - unknown MIE leading to renal failure and mortality KeyEvent

Aop:213 - Inhibition of fatty acid beta oxidation leading to nonalcoholic steatohepatitis (NASH) KeyEvent

Aop:303 - Frustrated phagocytosis-induced lung cancer KeyEvent

Aop:383 - Inhibition of Angiotensin-converting enzyme 2 leading to liver fibrosis KeyEvent

Aop:382 - Angiotensin II type 1 receptor (AT1R) agonism leading to lung fibrosis KeyEvent

Aop:384 - Hyperactivation of ACE/Ang-II/AT1R axis leading to chronic kidney disease KeyEvent

Aop:396 - Deposition of ionizing energy leads to population decline via impaired meiosis KeyEvent

Aop:409 - Frustrated phagocytosis leads to malignant mesothelioma KeyEvent

Aop:413 - Oxidation and antagonism of reduced glutathione leading to mortality via acute renal failure KeyEvent

Aop:416 - Aryl hydrocarbon receptor activation leading to lung cancer through IL-6 toxicity pathway KeyEvent

Aop:418 - Aryl hydrocarbon receptor activation leading to impaired lung function through AHR-ARNT
toxicity pathway

KeyEvent

Aop:386 - Deposition of ionizing energy leading to population decline via inhibition of photosynthesis KeyEvent
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Aop:387 - Deposition of ionising energy leading to population decline via mitochondrial dysfunction KeyEvent

Aop:319 - Binding to ACE2 leading to lung fibrosis KeyEvent

Aop:451 - Interaction with lung resident cell membrane components leads to lung cancer KeyEvent

Aop:476 - Adverse Outcome Pathways diagram related to PBDEs associated male reproductive toxicity MolecularInitiatingEvent

Aop:492 - Glutathione conjugation leading to reproductive dysfunction via oxidative stress KeyEvent

Aop:497 - ERa inactivation alters mitochondrial functions and insulin signalling in skeletal muscle and
leads to insulin resistance and metabolic syndrome

KeyEvent

Aop:500 - Activation of MEK-ERK1/2 leads to deficits in learning and cognition via ROS and apoptosis KeyEvent

Aop:505 - Reactive Oxygen Species (ROS) formation leads to cancer via inflammation pathway MolecularInitiatingEvent

Aop:513 - Reactive Oxygen (ROS) formation leads to cancer via Peroxisome proliferation-activated
receptor (PPAR) pathway

MolecularInitiatingEvent

Aop:521 - Essential element imbalance leads to reproductive failure via oxidative stress KeyEvent

AOP ID and Name Event Type

Biological Context

Level of Biological Organization

Cellular

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links

Vertebrates Vertebrates High NCBI

Life Stage Applicability

Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

ROS is a normal constituent found in all organisms.

Key Event Description

Biological State: increased reactive oxygen species (ROS)

Biological compartment: an entire cell -- may be cytosolic, may also enter organelles.

Reactive oxygen species (ROS) are O2- derived molecules that can be both free radicals (e.g. superoxide, hydroxyl, peroxyl,
alcoxyl) and non-radicals (hypochlorous acid, ozone and singlet oxygen) (Bedard and Krause 2007; Ozcan and Ogun 2015). ROS
production occurs naturally in all kinds of tissues inside various cellular compartments, such as mitochondria and peroxisomes
(Drew and Leeuwenburgh 2002; Ozcan and Ogun 2015). Furthermore, these molecules have an important function in the
regulation of several biological processes – they might act as antimicrobial agents or triggers of animal gamete activation and
capacitation (Goud et al. 2008; Parrish 2010; Bisht et al. 2017). 
However, in environmental stress situations (exposure to radiation, chemicals, high temperatures) these molecules have its levels
drastically increased, and overly interact with macromolecules, namely nucleic acids, proteins, carbohydrates and lipids, causing
cell and tissue damage (Brieger et al. 2012; Ozcan and Ogun 2015). 

How it is Measured or Detected

Photocolorimetric assays (Sharma et al. 2017; Griendling et al. 2016) or through commercial kits purchased from specialized
companies.

Yuan, Yan, et al., (2013) described ROS monitoring by using H2-DCF-DA, a redox-sensitive fluorescent dye. Briefly, the harvested
cells were incubated with H2-DCF-DA (50 µmol/L final concentration) for 30 min in the dark at 37°C. After treatment, cells were

AOP513

7/21

https://aopwiki.org/aops/387
https://aopwiki.org/aops/319
https://aopwiki.org/aops/451
https://aopwiki.org/aops/476
https://aopwiki.org/aops/492
https://aopwiki.org/aops/497
https://aopwiki.org/aops/500
https://aopwiki.org/aops/505
https://aopwiki.org/aops/513
https://aopwiki.org/aops/521
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0


immediately washed twice, re-suspended in PBS, and analyzed on a BD-FACS Aria flow cytometry. ROS generation was based on
fluorescent intensity which was recorded by excitation at 504 nm and emission at 529 nm.

Lipid peroxidation (LPO) can be measured as an indicator of oxidative stress damage Yen, Cheng Chien, et al., (2013).

Chattopadhyay, Sukumar, et al. (2002) assayed the generation of free radicals within the cells and their extracellular release in the
medium by addition of yellow NBT salt solution (Park et al., 1968). Extracellular release of ROS converted NBT to a purple colored
formazan. The cells were incubated with 100 ml of 1 mg/ml NBT solution for 1 h at 37 °C and the product formed was assayed at
550 nm in an Anthos 2001 plate reader. The observations of the ‘cell-free system’ were confirmed by cytological examination of
parallel set of explants stained with chromogenic reactions for NO and ROS.
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List of Key Events in the AOP

Event: 233: Decreased, PPAR-gamma activation

Short Name: Decreased, PPAR-gamma activation

Key Event Component

Process Object Action

peroxisome proliferator activated receptor signaling pathway peroxisome proliferator-activated receptor gamma decreased
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Process Object Action
AOPs Including This Key Event

AOP ID and Name Event Type

Aop:36 - Peroxisomal Fatty Acid Beta-Oxidation Inhibition Leading to Steatosis MolecularInitiatingEvent

Aop:513 - Reactive Oxygen (ROS) formation leads to cancer via Peroxisome proliferation-activated
receptor (PPAR) pathway

KeyEvent

Biological Context

Level of Biological Organization

Molecular

Cell term

Cell term

hepatocyte

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links

human Homo sapiens Not Specified NCBI

mouse Mus musculus Not Specified NCBI

rat Rattus norvegicus Not Specified NCBI

Life Stage Applicability

Life Stage Evidence

All life stages Not Specified

Sex Applicability

Sex Evidence

Unspecific Not Specified

Life Stage: All life stages. 

Sex: Applies to both males and females.

Taxonomic: Appears to be present broadly, with representative studies in mammals.

Key Event Description

The Peroxisome Proliferator-Activated Receptors (PPAR) family of genes involved in regulation of lipid metabolism and energy
pathways (Desvergne and Wahli 1999, Hihi et al. 2002, Ahmed et al. 2007).  Fatty acids stimulate the expression of PPAR genes,
which initiate a variety of cellular responses focused on lipid metabolism, but also inflammation and apoptosis pathways. 
Decreases in PPAR-gamma expression are associated with disruption of adipocyte differentiation and glucose homeostasis.

How it is Measured or Detected

Peroxisome proliferation-activated receptors are investigated by changes in gene expression and protein levels.  X-ray
crystallography can be used to determine molecular structure.  Effects of PPAR gamma on expression of downstream genes can be
investigating using metabolomics and RT-qPCR approaches. 
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Internal Medicine 262: 184-198.
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Event: 1060: Alteration, lipid metabolism

Short Name: Alteration, lipid metabolism

Key Event Component

Process Object Action

lipid metabolic process abnormal

AOPs Including This Key Event

AOP ID and Name Event
Type

Aop:166 - PPARalpha activation leading to pancreatic acinar tumors in the rat and mouse KeyEvent

Aop:513 - Reactive Oxygen (ROS) formation leads to cancer via Peroxisome proliferation-activated receptor (PPAR)
pathway

KeyEvent

Biological Context

Level of Biological Organization

Cellular

Cell term

Cell term

eukaryotic cell

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links

human Homo sapiens Not Specified NCBI

mouse Mus musculus Not Specified NCBI

rat Rattus norvegicus Not Specified NCBI

Life Stage Applicability

Life Stage Evidence

All life stages Not Specified

Sex Applicability

Sex Evidence

Unspecific Not Specified

Life Stage: All life stages. 

Sex: Applies to both males and females.

Taxonomic: Appears to be present broadly, with representative studies in mammals.
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Key Event Description

Lipids are important molecules for efficient energy storage, in addition to roles as signaling molecules and basic building blocks in
organisms.  In addition to energy release, lipid metabolism affects the amount of stored fat.  Alteration of lipid metabolism reflects a
disruption of normal function, as evidenced by changes in gene expression, enzyme levels, break-down products, or fat content. 
Peroxisome proliferation-activated receptors pathways (and associated genes and proteins) are commonly monitored for
downstream effects on lipid metabolism (Luquet et al. 2005; Den Broeder et al. 2015; Chamorro-Garcia et al. 2018; Venezia et al.
2021).

How it is Measured or Detected

Changes in lipid metabolism can be detected by examining organism fat content, or by examination of organs (ex. stomach, liver,
intestines) for break-down products (ex. proteins) or changes in gene expression.
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Event: 1513: General Apoptosis

Short Name: General Apoptosis

AOPs Including This Key Event

AOP ID and Name Event
Type

Aop:260 - CYP2E1 activation and formation of protein adducts leading to neurodegeneration KeyEvent

Aop:505 - Reactive Oxygen Species (ROS) formation leads to cancer via inflammation pathway KeyEvent

Aop:513 - Reactive Oxygen (ROS) formation leads to cancer via Peroxisome proliferation-activated receptor (PPAR)
pathway

KeyEvent

Biological Context

Level of Biological Organization

Cellular

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens High NCBI

Rattus norvegicus Rattus norvegicus High NCBI

Mus musculus Mus musculus High NCBI

Life Stage Applicability

Life Stage Evidence

All life stages High
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Sex Applicability

Sex Evidence

Unspecific High

Taxonomic: appears to be present broadly among multicellular organisms.

Key Event Description

Apoptosis is the programmed cell death in general. This process is well regulated with a sequence of events before cell
fragmentation occurs. Changes in the nucleus of a cell are the first step in apoptosis. Before that, other factors such as stress,
inflammation, cell damage can induce expression or activation of signal proteins which will activate the pathway for apoptosis.
Examples of proteins which are involved in apoptosis are the proteins p53, Bcl-2, JNK, and several caspases. When the first step is
taken in the apoptosis process the cell will end in membrane-bounded apoptotic bodies. These bodies are cleared by macrophages
or other cells where the degradation process starts within heteorphagosomes.

How it is Measured or Detected

There are several possibilities to measure and detect apoptosis, some common techniques are:

The detection of Lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT)
substances which are released from cells which undergo apoptosis.
An older but effective technique it the annexin V – affinity assay. The principle of this assay is the high affinity binding between
annexin V and phosphatidylserine. In a vital cell there is a membrane lipid asymmetry where phosphatidylserine molecules
are facing the cytosol. During apoptosis the membrane lipid asymmetry is lost, and the phosphatidylserine molecules are
expressed in the outer membrane. When annexin-V is present in combination with Ca2+ it binds with high affinity to
phosphatidylserine. With a hapten label at the annexin-V this process can be detected.
Another technique is the detection of cleaved caspase-3, which could be done with western blot or enzyme-linked
immunosorbent assays.
Cytochrome c is also a protein which is released in an early stage of apoptosis. Detection of cytochrome c can be done with
metal nanoclusters which have a fluorescent probe in addition to western blot assay.
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List of Adverse Outcomes in this AOP

Event: 885: Increase, Cancer

Short Name: Increase, Cancer

Key Event Component

Process Object Action

Neoplasms increased
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AOPs Including This Key Event

AOP ID and Name Event Type

Aop:141 - Alkylation of DNA leading to cancer 2 AdverseOutcome

Aop:139 - Alkylation of DNA leading to cancer 1 AdverseOutcome

Aop:505 - Reactive Oxygen Species (ROS) formation leads to cancer via inflammation pathway AdverseOutcome

Aop:513 - Reactive Oxygen (ROS) formation leads to cancer via Peroxisome proliferation-activated receptor
(PPAR) pathway

AdverseOutcome

Biological Context

Level of Biological Organization

Tissue

Domain of Applicability

Taxonomic Applicability

Term Scientific Term Evidence Links

Homo sapiens Homo sapiens High NCBI

Mus musculus Mus musculus High NCBI

Rattus norvegicus Rattus norvegicus High NCBI

Life Stage Applicability

Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

Life Stage: All life stages.  Older individuals are more likely to manifest this key event (adults > juveniles > embryos).

Sex: Applies to both males and females.

Taxonomic: Appears to be present broadly, with representative studies including mammals (humans, lab mice, lab rats), teleost fish, and
invertebrates (cladocerans, mussels).

Key Event Description

Cancer is a general key event for related diseases each exhibiting uncontrolled proliferation of abnormal cells (for review see
Hanahan and Weinberg 2011).  A cancer often is initially associated with a specific organ, with malignant tumors developing ability
to metastasize, or travel to other areas of the body.  Most cancers develop from genetic mutations in normal cells, although a
minority of cancers are hereditary.   Exposure to chemical stressors, radiation, tobacco smoke, or viruses can increase the
likelihood that cancer will develop.

Cancer cells proliferate due to capabilities summarized by Hanahan and Weinberg (2011):

1. Sustained proliferation signaling – by deregulating normal cell signals, cancer cells can sustain chronic proliferation.
2. Evading growth suppressors – by evading activities of tumor suppressor genes, cancer cells continue to proliferate.
3. Activating invasion and metastasis – by altering shape and attachment to cells in the extracellular matrix, cancer cells gain

ability to move to other locations.
4. Enabling replicative immortality – by disabling senescence pathways, cancer cells have extended lifespans.
5. Inducing angiogenesis – by enabling neovasculature, cancer cells receive nutrients and oxygen and get rid of waste products.
6. Resisting cell death – by evading apotosis and necrosis defense pathways, cancer cells avoid elimination.

How it is Measured or Detected

Most carcinogenicity studies are conducted with rodents (see OECD 2018; Zhou et al. 2023 for methods) or in-vitro with
mammalian cell lines (see OECD 2023 for methods).  Cancer is usually detected by biopsy or histopathological examination of

AOP513

13/21

https://aopwiki.org/aops/141
https://aopwiki.org/aops/139
https://aopwiki.org/aops/505
https://aopwiki.org/aops/513
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116


tissue.  Gene expression levels can also be assessed, as increased transcription of known genes have been associated with
specific cancers (ex. Tumor Necrosis Factor (Pavet et al. 2014); Heat Shock Factors (Vihervaara and Sistonen 2014; Androgen
Receptor (Heinlein and Chang 2004)).

Regulatory Significance of the AO

Cancer is a critical endpoint in human health risk assessment.   It is embedded in regulatory frameworks for human health
protection in many countries (see OSHA 2023 for examples of US regulations and European Parliament 2022 for examples of
regulations in Europe).
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Appendix 2

List of Key Event Relationships in the AOP

List of Adjacent Key Event Relationships

Relationship: 3092: Increased, Reactive oxygen species leads to Decreased, PPAR-gamma activation

AOPs Referencing Relationship

AOP Name Adjacency Weight of
Evidence

Quantitative
Understanding

Reactive Oxygen (ROS) formation leads to cancer via Peroxisome proliferation-
activated receptor (PPAR) pathway

adjacent High Low

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links

human Homo sapiens High NCBI

rat Rattus norvegicus High NCBI

mouse Mus musculus High NCBI

Life Stage Applicability

AOP513

14/21

https://www.oecd.org/env/test-no-451-carcinogenicity-studies-9789264071186-en.htm
https://doi.org/10.1787/9789264264861-en.htm
https://www.osha.gov/carcinogens/standards
https://aopwiki.org/relationships/3092
https://aopwiki.org/aops/513
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090


Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

Life Stage: The life stage applicable to this key event relationship is all life stages.

Sex: This key event relationship applies to both males and females.

Taxonomic: This key event relationship appears to be present broadly, with representative studies including mammals (humans, lab
mice, lab rats) and teleost fish.

Key Event Relationship Description

Oxidative stress occurs due to the accumulation of reactive oxygen species (ROS).    ROS can damage DNA, lipids, and proteins
(Shields et al. 2021).  Superoxide dismutase is an enzyme in a common cellular defense pathway, in which superoxide dismutase
converts superoxide radicals to hydrogen peroxide.  When cellular defense mechanisms are unable to mitigate ROS formation from
mitochondrial respiration and stressors (biological, chemical, radiation), one established pathway that is disrupted involves
Peroxisome proliferation-activated receptors.

Evidence Supporting this KER

Biological Plausibility

The biological plausibility linking decreases in Peroxisome proliferation-activated receptors to reactive oxygen species (ROS) is
strong.  Reactive oxygen species (ROS) are produced by many normal cellular processes (ex. cellular respiration, mitochondrial
electron transport, specialized enzyme reactions) and occur in multiple chemical forms (ex. superoxide anion, hydroxyl radical,
hydrogen peroxide).  Antioxidant enzymes play a major role in reducing reactive oxygen species (ROS) levels in cells (Ray et al.
2012) to prevent cellular damage to lipids, proteins, and DNA (Juan et al. 2021).   This Key Event Relationship focuses on the
disruption of Peroxisome proliferation-activated receptors gene expression due to increases in Reactive oxygen species (ROS)
level.

Empirical Evidence
Species Duration Dose Increased

ROS?
Decreased
PPAR?

Summary Citation

Lab rats
(Rattus
norvegicus)

4 weeks Diet exposure
of 10% D-
glucose, with
1000 mg/kg
feed alpha-
lipoic acid
supplement
evaluated to
mitigate D-
glucose
effects

Yes Yes

 

Male rats
showed
increased
superoxide
levels in
glucose
treatment but
not glucose
plus alpha-
lipoic acid
treatment,
and
corresponding
patterns
in PPAR-
gamma gene
expression in
the
treatments.

El Midaoui
et al. (2006)

Human
(Homo
sapiens)
and cow
(Bos taurus)

72 hours In vitro
exposure of 1-
1000 uM
hydrogen
peroxide

Assumed Yes Human
umbilical vein
endothelial
cells and
bovine aortic
endothelial
cells showed
increased
dose-
dependent

Blanquicett
et al. (2010)
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cytotoxicity
when was
assumed to
correlated
with higher
reactive
oxygen
species
(ROS) levels,
PPARgamma
gene
expression
levels showed
corresponding
decreases.

Lab mice
(Mus
musculus)

5 weeks Diet exposure
of 100, 1000
ug/L of 0.5, 50
um
polystyrene
microplastics

Assumed Yes Study
selected
stressor(s)
known to
elevate
reactive
oxygen
species
(ROS) levels. 
Male mice
showed
decreased
gene
expression of
Peroxisome
proliferation-
activated
receptor
(PPAR-
gamma) in
blood.

Lu et al.
(2018)

Zebrafish
(Danio rerio)

4 weeks Diet exposure
of
rosiglitazone,
mitigation with
N-
acetylcysteine,
L-carnitine,
cold and heat
stress, fish
with PPAR-
gamma
mutations

Yes Yes Male and
female fish
had increased
ROS levels
and
corresponding
decreases in
PPAR-gamma
expression
levels

Wang et al.
(2022)

1 Assumed: study selected stressor(s) known to elevate reactive oxygen species (ROS) levels, endpoints verified increased
oxidative stress and disrupted pathway.
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signalling.  Cellular Signalling 24:981-990.

 

Relationship: 3093: Decreased, PPAR-gamma activation leads to Alteration, lipid metabolism

AOPs Referencing Relationship

AOP Name Adjacency Weight of
Evidence

Quantitative
Understanding

Reactive Oxygen (ROS) formation leads to cancer via Peroxisome proliferation-
activated receptor (PPAR) pathway

adjacent High Low

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links

human Homo sapiens High NCBI

mouse Mus musculus High NCBI

Life Stage Applicability

Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

Life Stage: The life stage applicable to this key event relationship is all life stages.

Sex: This key event relationship applies to both males and females.

Taxonomic: This key event relationship appears to be present broadly, with representative studies including mammals (humans, lab
mice, lab rats) and teleost fish.

Key Event Relationship Description

Expression of Peroxisome proliferator-activated receptors (PPAR) family genes are closely related to different aspects of lipid
metabolism, and resulting organism fat content.  PPAR-alpha, PPAR-gamma, and PPAR-delta families of genes are most often
discussed when considering lipid metabolism.  PPAR-alpha family genes are linked to regulation of lipid metabolism, lipoprotein
synthesis, and metabolism processes, while PPAR-gamma family genes are linked to the proliferation of adipose cells, and PPAR-
delta family genes are linked to changes in metabolic response due to environmental change.  In this Key Event Relationship, we
focus on the effects of decreased expression of PPAR-gamma family genes, with altered lipid metabolism.

Evidence Supporting this KER

Biological Plausibility

The biological plausibility linking decreases in Peroxisome proliferation-activated receptors to lipid metabolism is strong.  Disruption
of cellular processors via stressors have been shown to decrease PPAR-gamma gene expression, with corresponding decreases in
lipid metabolism and/or increases in fat content of organisms. 

Empirical Evidence

For review see Berger et al. (2002), Luquet et al. (2005), Den Broder et al. (2015).  Experiments cited here have been conducted
with lab mammals and with fish.

Species Duration Dose Decreased
PPAR?

Alteration
lipid
metabolism?

Summary Citation

Human
(Homo
sapiens)

2 hours –
16 weeks

In vitro
exposure of
10e-10M to

Yes Yes In human and
mouse cells,
as well as lab

Chamorro-
Garcia et
al. (2018)
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and lab
mice (Mus
musculus)

10e-5M
dibutyltin and
tributyltin and
500 nm
rosiglitazone
and diet
exposure of
50, 500 nM
dibutyltin and
50 nM
tributyltin.

mice,
increased
activation of
PPAR-gamma
gene
expression
was correlated
with increases
in glucose
levels and
increased
weight gain.

Zebrafish
(Danio
rerio)

3 days Aquatic
exposure of
 10 µM
Rosiglitazone,
T0070907,
GW6471,
GW590735,
GSK3787, or
GW501516.

Yes Yes Embryos
exposed to
PPAR
antagonist
compounds
had decreased
PPAR-gamma
gene
expression
correlated with
decreased
lipid
accumulations,
embryos
exposed to
PPAR agonist
compounds
had increased
PPAR-gamma
gene
expression
correlated with
increased lipid
accumulations.

Venezia et
al. (2021)

Lab mice
(Mus
musculus)

5 weeks Diet exposure
of 100, 1000
ug/L of 0.5, 50
um
polystyrene
microplastics

Yes Yes Male mice
showed
decreased
gene
expression of
Peroxisome
proliferation-
activated
receptor
(PPAR-
gamma)
correlated with
decreased
glucose levels
and fat
content.

Lu et al.
(2018)
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Relationship: 3094: Alteration, lipid metabolism leads to General Apoptosis

AOPs Referencing Relationship

AOP Name Adjacency Weight of
Evidence

Quantitative
Understanding

Reactive Oxygen (ROS) formation leads to cancer via Peroxisome proliferation-
activated receptor (PPAR) pathway

adjacent High Low

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links

human Homo sapiens High NCBI

rat Rattus norvegicus High NCBI

Life Stage Applicability

Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

Life Stage: The life stage applicable to this key event relationship is all life stages.

Sex: This key event relationship applies to both males and females.

Taxonomic: This key event relationship appears to be present broadly, with representative studies on mammals (humans, lab mice,
lab rats).

Key Event Relationship Description

Alteration of lipid metabolism leads to changes in cell lipid levels, structural changes in membranes (lipids are key components),
and changes in signaling pathways affecting gene and protein expression (Huang and Freter, 2015).  Loss of plasma membrane
integrity due to disruptions to lipid metabolism results in cellular processes identifying cells as damaged, triggering apoptosis
pathways.  Oxidation of fatty acids can lead to increases of reactive oxygen species (ROS), creating an additional stress disrupting
the cellular environment.  As lipids represent a diverse class of molecules, and the basic building blocks for many biologically
important compounds, disruption of lipid function will eventually lead to damaged cells and cell death via apoptosis.

Evidence Supporting this KER

Biological Plausibility

The biological plausibility linking alterations in lipid metabolism to apoptosis is moderate.  Disruption of lipid metabolism via stressors has been
shown to lead to apoptosis, particularly through resulting loss of plasma membrane integrity.

Empirical Evidence

See Huang and Freter (2015) for review of the relationship between lipid metabolism and apoptosis.

Species Duration Dose Alteration
lipid
metabolism?

General
Apoptosis?

Summary Citation

Lab rats (Rattus
norvegicus)

4 hours Injection exposure
of
methamphetamine.

Yes Yes In rats,
methamphetamine
exposure induced
expression genes

Cadet
et al.
(2010)
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that control lipid
metabolism and
apoptosis.

Human (Homo
sapiens)

48 hours In vitro exposure of
 50-300 uM CPI-
613.

Yes Yes Human pancreatic
cells exposed to
PPAR antagonist
compounds
repressed lipid
metabolism and
triggered
apoptosis.

Gao et
al.
(2020)

Mussel (Mytilus
galloprovincialis)

7 days Aquatic exposure
of 0.5, 5, 50 ug/L
of <100, 100-1000
um polyethylene
and polystyrene
microplastics

Yes Yes Mussels showed
altered gene
expression of
genes associated
with lipid
metabolism and
apoptosis.

Avio et
al.
(2015)
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Relationship: 2977: General Apoptosis leads to Increase, Cancer

AOPs Referencing Relationship

AOP Name Adjacency Weight of
Evidence

Quantitative
Understanding

Reactive Oxygen Species (ROS) formation leads to cancer via inflammation
pathway

adjacent High Low

Reactive Oxygen (ROS) formation leads to cancer via Peroxisome proliferation-
activated receptor (PPAR) pathway

adjacent High Low

Evidence Supporting Applicability of this Relationship

Taxonomic Applicability

Term Scientific Term Evidence Links

human Homo sapiens High NCBI

mouse Mus musculus High NCBI

rat Rattus norvegicus High NCBI

Life Stage Applicability

Life Stage Evidence

All life stages High

Sex Applicability

Sex Evidence

Unspecific High

Life Stage: The life stage applicable to this key event relationship is all life stages. 
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Sex: This key event relationship applies to both males and females.

Taxonomic: This key event relationship appears to be present broadly, with representative studies focused in mammals (humans,
lab mice, lab rats).

Key Event Relationship Description

Cancer is a general key event for related diseases each exhibiting uncontrolled proliferation of abnormal cells (for review see
Hanahan and Weinberg 2011).  A cancer often is initially associated with a specific organ, with malignant tumors developing ability
to metastasize, or travel to other areas of the body.  Most cancers develop from genetic mutations in normal cells; in this key event
relationship we are focusing on disruption of apoptosis and necrosis pathways, leading to cancer.   Exposure to chemical stressors,
radiation, tobacco smoke, or viruses can increase the likelihood that cancer will develop.  Pathways leading to apoptosis, or single
cell death, have traditionally been studied as both independent and simultaneous from pathways leading to necrosis, or tissue-wide
cell death, with both overlap and distinct mechanisms (Elmore 2007). For the purposes of this key event relationship, we are
characterizing cancer due to widespread cell-death.

Cancer cells proliferate due to capabilities summarized by Hanahan and Weinberg (2011):

1. Sustained proliferation signaling – by deregulating normal cell signals, cancer cells can sustain chronic proliferation.
2. Evading growth suppressors – by evading activities of tumor suppressor genes, cancer cells continue to proliferate.
3. Activating invasion and metastasis – by altering shape and attachment to cells in the extracellular matrix, cancer cells gain

ability to move to other locations.
4. Enabling replicative immortality – by disabling senescence pathways, cancer cells have extended lifespans.
5. Inducing angiogenesis – by enabling neovasculature, cancer cells receive nutrients and oxygen and get rid of waste products.
6. Resisting cell death – by evading apotosis and necrosis defense pathways, cancer cells avoid elimination.

Evidence Supporting this KER

Biological Plausibility

The biological plausibility linking cancer to avoidance of apoptosis is strong.  Apoptosis is a series of related pathways that eliminate
abnormal cells.  Cancer cells proliferate due to evasion of cellular defenses (apoptosis pathways) and tissue-level defenses
(necrosis pathways).   Specific modifications to cancer cells that enable proliferation rather than elimination are listed under the Key
Event Relationship Description. For review see:

1. Heinlein and Chang (2004): Role of androgen receptor in apoptosis, loss of androgen pathway function resulting in increases in
mammalian prostate cancer.

2. Hanahan and Weinberg (2011): Biological capabilities gained by cancer cell to enable proliferation of tumor cells and evasion of
normal regulating mechanisms of apoptosis and necrosis pathways in mammals.

3. Pavet et al. (2014): Role of tumor necrosis factor-related apoptosis-inducing ligandin to induce apoptosis in mammalian cells and
reduce incidence of cancer.

4. Vihervaara and Sistonen (2014): Role of increased rate of transcription of heat shock factor 1 in mammalian cancer cells
enhancing survival and metastasis, as well as evasion of cellular defenses.

Empirical Evidence

References cited by Jeong and Choi (2020) are review articles and gene expression studies.  Empirical studies linking apoptosis to
cancer were not provided.
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