

1 **AOP DEVELOPERS' HANDBOOK: SUPPLEMENT TO THE GUIDANCE**
2 **DOCUMENT FOR DEVELOPING AND ASSESSING AOPs**

3
4 **FOREWORD**

5
6 This document is the AOP Developers' Handbook supplement to the Guidance Document for
7 developing and assessing Adverse Outcome Pathways (AOPs) [ENV/JM/MONO(2013)6,
8 Second Edition]. The Guidance Document provides a historical background for the AOP
9 development programme, and outlines the elements required to construct an AOP as well as the
10 principles of the AOP framework.

11 The AOP Developers' Handbook (previously "Users' Handbook") supplement was prepared
12 initially in June 2014 by a subgroup of the Extended Advisory Group on Molecular Screening
13 and Toxicogenomics (EAGMST). At that time it was acknowledged that the Handbook should
14 be revised as expert groups and member countries acquire experience in developing, assessing,
15 and applying AOPs. The present version of the AOP Developers' Handbook reflects the most
16 recent principles, practices, and recommendations pertaining to AOP development as
17 implemented and supported via Release 2.6 of the adverse outcome pathway Wiki (AOP-Wiki;
18 aopwiki.org)

20
21
22
23 Contributing Authors:

24 Daniel Villeneuve, Bette Meek, Barbara Viviani, Tanja Burgdorf, Carlie LaLone, Jason O'Brien,
25 Dries Knapen, Michelle Angrish, Rex FitzGerald, Shihori Tanabe

27	TABLE OF CONTENTS	
28		
29	FOREWORD.....	1
30	TABLE OF CONTENTS	2
31	ABOUT THIS DOCUMENT	4
32	INTRODUCTION TO AOPs	6
33	REVIEW AND ENDORSEMENT OF AOP-Wiki CONTENT.....	8
34	OBTAINING AUTHOR ACCESS TO THE AOP-Wiki	8
35	A NOTE ON AOP DESCRIPTIONS IN THE AOP-Wiki.....	8
36	CONTENT LICENSING	9
37	SECTION 1 – AOP DESCRIPTION	10
38	1A. AOP Identifier and Title.....	10
39	1B. Graphical Representation of the AOP	11
40	1C. Authors of the AOP	14
41	1D. Handbook Versioning and OECD Status	15
42	1E. Abstract	16
43	1F. AOP Development Strategy	16
44	1G. KE and KER Tables	177
45	1H. Network View	18
46	1I. Prototypical Stressors	18
47	1J. Life Stage/Taxonomic/and Sex Applicability	19
48	1K. Overall Assessment of the AOP	19
49	SECTION 2 – KE DESCRIPTIONS	20
50	2A. Event ID	20
51	2B. KE Title	20
52	2C. Short Name.....	20
53	2D. Level of Biological Organisation	20
54	2E. KE Components and Biological Context.....	20
55	2F. Other AOPs that use this KE	21
56	2G. KE Description.....	21
57	2H. How it is Measured or Detected.....	21
58	2I. Biological Domain of Applicability	22
59	2J. AO-Specific Content	24
60	2K. References	24
61	SECTION 3 – KER DESCRIPTIONS	24
62	3A. KER ID	25
63	3B. KER Title	26
64	3C. AOPs Referencing Relationship.....	26
65	3D. Biological Domain of Applicability	26
66	3E. KER Description	28
67	3F. Evidence Collection Strategy	29
68	3G. Evidence Supporting this KER	29
69	3H. Known Modulating Factors.....	32

70	3I. Quantitative Understanding.....	33
71	3J. References	366
72	SECTION 4 – OVERALL ASSESSMENT OF THE AOP.....	37
73	4A. Define the Biological Domain of Applicability of the AOP	37
74	4B. Assess the Essentiality of All KEs	37
75	4C. Evidence Assessment	39
76	4D. Known Modulating Factors.....	41
77	4E. Review the Quantitative Understanding for Each KER.....	41
78	4F. Considerations for Potential Applications of the AOP (optional).....	42
79	4G. References.....	42
80	REFERENCES	43
81	ANNEX 1: Guidance for Assessing Relative Level of Confidence in the Overall AOP.....	45
82	ANNEX 2: General guidance for characterizing the level of quantitative understanding of a KER as low, 83 moderate, or high.....	48
84		
85		

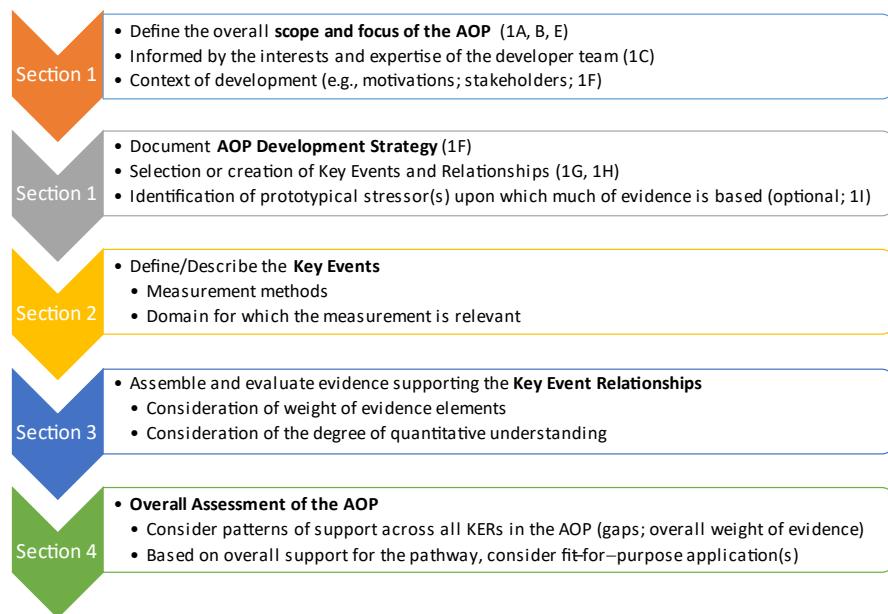
86 **AOP DEVELOPERS' HANDBOOK: SUPPLEMENT TO THE GUIDANCE**
87 **DOCUMENT FOR DEVELOPING AND ASSESSING ADVERSE OUTCOME**
88 **PATHWAYS (AOPs)**

89 **ABOUT THIS DOCUMENT**

90 This document, the OECD AOP Developers' Handbook, is a supplement to the Guidance
91 Document for developing and assessing Adverse Outcome Pathways (AOPs)
92 [ENV/JM/MONO(2013)6, Second Edition] (AOP guidance hereafter).

93 The AOP Guidance, originally published in 2013 and revised in 2017, provides an introduction
94 to the terminology and concepts of AOP development, including the identification and use of
95 relevant scientific data and resulting knowledge. The Guidance also briefly outlines some
96 potential applications of AOPs.

97 While the AOP Guidance document provides a
98 set of definitions and the conceptual
99 background behind AOP development, this
100 AOP Developers' Handbook is designed to
101 provide focused, in-depth, and practical
102 instructions concerning development and
103 review of AOP descriptions in the **AOP**
104 **knowledgebase (AOP-KB)**, generally
105 accessed via the **AOP-Wiki (aopwiki.org)**.
106 The AOP Developers' Handbook can be
107 thought of as being analogous to the
108 "instructions for authors" used in preparing a
109 journal article. However, rather than describing
110 the preparation of a technical manuscript, this
111 Handbook (organized into sections) details
112 how to develop, structure, and document an
113 AOP description in the AOP-Wiki. Each
114 section corresponds to "pages" in the AOP-
115 Wiki which are presented as standardized
116 template forms to be filled in during developer
117 AOP construction within the AOP-Wiki
118 environment. The guidance provided in each
119 section of this Handbook include descriptions
120 of documentation strategies for AOP development i.e. AOP component descriptions, and
121 organisation of that information into each section of the template Wiki AOP pages. This
122 Handbook also provides more explicit guidance on documentation of the information and the
123 factors considered during collection of the evidence relevant to the AOP and evaluating overall
124 weight of evidence (WoE) considerations that inform both the potential fit-for-purpose
125 applications of the AOP and its relevance to different life stages, sex, taxa, susceptible
126 populations etc.


AOP Knowledgebase (AOP-KB) refers to the accumulated machine-readable text and data organized and stored in a MySQL database in accordance with the current AOP Data Model and compiled in the AOP XML.

AOP-Wiki (aopwiki.org) is a web-based interface that provides read/write access to the AOP-KB and serves as the official and primary tool for entering new AOP information in accordance with OECD EAGMST guidance.

A variety of other tools have read access to the AOP-KB via the XML downloads and can make use of the information contained therein for a variety of purposes. At present, the AOP-Wiki is the only portal for entry of new information into the AOP-KB.

127 Although there is no one-size-fits-all approach to AOP development, the sections of the
128 handbook are organized according to a generalized workflow that applies to many AOP
129 development projects (Figure 1). As with the AOP Guidance itself, this Handbook is not intended
130 to provide a review or summary of the literature informing the AOP concept. It focuses on
131 practical aspects of AOP development and assessment and is intended to promote consistency
132 and ensure all AOP developers and contributors understand the approach for AOP development
133 and contribution within the AOP-Wiki. The template and practices outlined herein, to the extent
134 feasible, are intended to support efficient assembly of information pertinent to an AOP and its
135 components (the focus of Handbook Sections 1-3), as well as transparent documentation of

141 information considered during evaluation of evidence confidence and the overall assessment,
142 including WoE, of the AOP (the focus of Section 4) along with critical gaps and uncertainties
143 that are relevant to decisions regarding appropriate regulatory applications.
144

145
146
147 **Figure 1.** A generalized workflow for AOP development that has informed the organization of the
148 Developer's Handbook.
149

150 Developers are encouraged to consult **Annex 1** which outlines a set of guiding questions for
151 evaluating the evidence considered in the overall support for an AOP. Familiarity with these
152 questions before starting an AOP development project can guide the initial scoping including
153 expert solicitation and review of existing literature and/or the design of novel studies toward the
154 data that best inform and support AOPs. Review of the guiding questions and weight of evidence
155 considerations are intended to cue developers on the types of studies that are most influential in
156 providing support for regulatory applications. AOPs are generally best supported by studies that
157 consider multiple key events where comparisons of the concentration, time, or incidence of
158 biological effect in the sample population is not confounded by variations in experimental design.
159 Essentiality of any given key event along the pathway is best evaluated by examining the effects
160 of its prevention or modulation on all downstream events. Searching for or designing studies that
161 best address the guiding questions in **Annex 1** can be expected to lead to both efficient, and high
162 quality AOP development.
163

164 AOP descriptions developed as part of the OECD AOP Development Programme are peer-
165 reviewed according to procedures outlined by the OECD [[Guidance Document for the Scientific
166 Review of AOPs; ENV/CBC/MONO\(2021\)22](#)]. Because AOP descriptions within the AOP-
167 Wiki are viewed as living documents, they are expected to continue to evolve over time, as new
168 evidence may increase or decrease the overall confidence and certainty in an AOP or its
169 component(s). Consequently, AOPs that are reviewed and endorsed by the OECD will have
170 multiple versions, namely, a static pdf version created at the time of the review or endorsement
171 (termed a “snapshot”), and the current version in the AOP-Wiki, which can continue to change
172 over time. Reviews are performed on these static versions which are permanently stored in the
173 AOP-KB. In this way, users can distinguish content that has been peer-reviewed and endorsed
174 from that which may have been added or modified afterward. The time-stamped, static versions
175 corresponding to the endorsed version of the AOP are also published in the [OECD series on
176 Adverse Outcome Pathways](#).
177

178 INTRODUCTION TO ADVERSE OUTCOME PATHWAYS (AOPs)

179
180 An AOP describes a sequence of events commencing with initial interaction(s) of a stressor
181 with a biomolecule within an organism that causes a perturbation in its biology (i.e., molecular
182 initiating event, MIE), which can progress through a dependent series of intermediate key
183 events (KEs) and culminate in an adverse outcome (AO) considered relevant to risk assessment
184 or regulatory decision-making (Table 1). AOPs are composed of a causal sequence of upstream
185 to downstream KEs, representing a cascading series of measurable biological changes that can
186 be expected to occur if the perturbation is sufficiently severe (i.e., in terms of potency, duration,
187 frequency) to drive the pathway all the way to the AO. **Importantly, AOPs do not describe**
188 **every detail of the biology but instead focus on describing critical steps or check-points**
189 **along the path to adversity, which are both measurable and have potential predictive**
190 **value for regulatory application.** While the focus of AOP development is to capture and
191 organise what is known, the process of AOP development may also identify current knowledge
192 gaps which, if filled, could further improve predictive utility.

193
194 **Table 1:** Definitions of key terms and abbreviations used in this Handbook (see AOP guidance
195 for additional terminology relevant to the AOP framework and its application).

Molecular initiating event	MIE	A specialised type of key event that represents the initial point of chemical/stressor interaction at the molecular level within the organism that results in a perturbation that starts the AOP.
Key event	KE	A change in biological or physiological state that is both measurable and essential to the progression of a defined biological perturbation leading to a specific adverse outcome.
Key event relationship	KER	A scientifically-based relationship that connects one key event to another, defines a causal and predictive relationship between the upstream and downstream event, and thereby facilitates inference or extrapolation of the state of the downstream key event from the known, measured, or predicted state of the upstream key event.
Adverse Outcome	AO	A specialised type of key event that is generally accepted as being of regulatory significance on the basis of correspondence to an established protection goal or equivalence to an apical endpoint in an accepted regulatory guideline toxicity test.

197
198 KEs are measurable biological changes that are essential to the progression along an AOP.
199 Essentiality indicates that the KEs play a causal role in the pathway, such that if a given KE is
200 prevented or fails to occur, progression to subsequent KEs in the pathway will not occur. While
201 KEs are essential to progression along the AOP, they are not necessarily sufficient. The extent
202 of triggering of the pathway (influenced by intensity and duration of exposure to a stressor)
203 determines whether it will progress all the way to the AO. The conditions under which
204 progression can be expected are described as quantitatively as possible, in the KERs that link
205 an upstream to a downstream KE.

206
207 The suitability of a given AOP for application in different regulatory contexts is influenced by
208 (1) the confidence and precision with which the KEs can be measured, (2) the level of
209 confidence in the relationships between the KEs linked in an AOP (KERs) based on biological
210 plausibility and empirical support for the KERs; and (3) WoE for the overall hypothesised
211 pathway, taking into account additional considerations including any uncertainties and
212 inconsistencies. Therefore, overall assessment of AOPs is best supported by providing
213 thorough descriptions of the KEs [Section 2], relationships between those KEs [i.e., KERs,
214 Section 3], and by final consideration of the overall patterns of support including plausibility
215 and other direct and indirect empirical evidence of causal relationships across the key events
216 defined for the pathway that increase or decrease overall confidence in the AOP [Section 4].

217 The overall patterns of support, ultimately inform the suitability (i.e., fit-for-purpose) for
218 various types of applications. Consequently, both the Handbook and AOP-Wiki are structured
219 in a manner that include structured pages and prompts for AOP developers to provide relevant
220 types of supporting documentation.

221

222 *Principles of AOP Development and their Implications for AOP Description*

223

224 As a pragmatic convention, AOPs are conceptualised as a single sequence of events proceeding
225 from the MIE to the AO via a series of intermediate KEs (Villeneuve et al. 2014a). That is, they
226 describe how one particular molecular perturbation may cause one AO, not every possible AO
227 that perturbation may cause, nor every perturbation leading to a particular AO. MIEs, KEs, and
228 AOs may be shared by more than one AOP to form an AOP network. Consequently, KEs
229 should be constructed as discrete (modular) units without reference to a specific MIE, AO, or
230 other KEs. Likewise, it is important that KERs describing relationships between discrete pairs
231 of KEs are independent of other elements of the AOP. This facilitates generation of self-
232 contained KE and KER descriptions that can be linked to multiple other AOPs. Such an
233 approach both fosters consistency and increases efficiencies in the AOP development process,
234 by eliminating the need for AOP developers to completely re-describe biological measurements
235 (KEs) or evidence supporting the relationship between two KEs (KERs) that another developer
236 may have already detailed. Maintaining KE and KER descriptions as discrete units that avoid
237 reference to other elements of the AOP also facilitates the updating of KE and KER descriptions
238 as new methods for measuring KEs or new evidence supporting KERs are developed. Finally,
239 it facilitates the construction and conceptualisation of AOP networks.

240

241 An AOP network is defined as an assembly of two or more AOPs that share one or more KEs
242 (Knapen et al. 2018). Because the components of an AOP (KEs and KERs) are described in the
243 AOP-Wiki, in a modular fashion, AOP networks emerge from the description of individual
244 AOPs that share KEs. AOP networks capture broader knowledge concerning the range of
245 possible AOs which a perturbation may cause, or the variety of upstream KEs which can lead
246 to a given AO. AOP networks are also suited to address exposures to multiple stressors that
247 lead to the same AO or individual stressors that activate multiple MIEs (Knapen et al., 2015;
248 Villeneuve et al., 2014a, b; Knapen et al. 2018).

249

250 In describing the KEs and KERs of an AOP, the content of each information field of the KE or
251 KER description should be completed where possible and supported by citation of primary
252 literature and other relevant sources. Nevertheless, AOP descriptions reflect current knowledge
253 and will evolve as additional information becomes available, so AOP descriptions should be
254 regarded as “living documents” that reflect the state of knowledge at the time they were last
255 updated. It is expected that, as “living documents”, AOPs may have gaps that may be addressed
256 over time as the science progresses or as other researchers contribute. This also encourages
257 collaboration and contributions between experts in various areas of research and the regulatory
258 risk assessment community.

259

260 AOPs thus provide a relevant construct to promote collaboration and better coordinate and
261 tailor research to practical application, such as the development of KE-based testing strategies.
262 The AOP-Wiki facilitates this by providing a tool to organise and share the relevant data and
263 information. Consequently, it is recommended that descriptions are structured using
264 presentation of bullets or tables and organised into topical subsections rather than as extensive
265 narrative text.

266

267 In this Handbook, particular emphasis is placed on sections related to the description of the
268 MIE, KEs and AO in an AOP (Section 2), the assembly of available scientific evidence
269 supporting the KERs (Section 3) and the overall support for the AOP as a whole (Section 4)
270 and may additionally consider its potential application (Figure 1).

272 AOP descriptions should be supported with well documented and transparent citation of the
273 appropriate peer-reviewed literature and/or other relevant sources. Authors are encouraged to
274 provide references formatted according to the OECD Style Guide
275 (<https://www.oecd.org/about/publishing/OECD-Style-Guide-Third-Edition.pdf>).
276

277 **REVIEW AND ENDORSEMENT of AOP-WIKI CONTENT**

278 AOPs developed and evaluated according to the guidance in the Handbook may be submitted
279 for technical review via the OECD AOP Development Programme, submitted for potential
280 publication in a partner journal¹, or have a review managed by an approved third party
281 organization, provided the reviews are managed as described in the [Guidance Document for](#)
282 [the scientific review of Adverse Outcome Pathways](#). AOPs that are accepted after review and
283 revision according to the guidance are then eligible to be added to the OECD AOP
284 Development Workplan and considered for endorsement by the OECD Working Party on
285 Hazard Assessment (WPHA) and/or Working Group of the National Coordinators for the
286 Test Guidelines Program (WNT).

287 ¹ Link to [current listing of partner journals](#) that have signed a memorandum of
288 understanding (MOU) to review AOPs in the AOP-Wiki as per the guidance document:
289
290

291 **OBTAINING AUTHOR ACCESS TO THE AOP-Wiki**

292
293 **Read-access** to all contents of the AOP-KB is publicly available via the AOP-Wiki
294 (aopwiki.org) and e-AOP portal (<https://aopkb.oecd.org/>) without need to create a user profile,
295 login ID, or password.

296
297 **Commentor access:** A self-created user account, with a verified email address, grants the user
298 the ability to comment on all pages in the AOP-Wiki including AOPs, KEs, and KERs. Users
299 can create an account on the AOP-Wiki by clicking the “Register” button on the AOP-Wiki
300 home page.

301
302 **Author Access:** In order to create or edit AOPs, KEs, or KERs, the user must request author
303 access to the AOP-Wiki by following the instructions [here](#).
304
305

306 **A NOTE ON AOP DESCRIPTIONS IN THE AOP-Wiki**

307
308 AOP descriptions in the AOP-Wiki consist of both structured information and free text.
309

310 **Structured information** fields in the AOP-Wiki employ standardised ontologies or controlled
311 vocabularies available through look-up tables or by making selections from a drop-down list.
312 Structured information fields within the AOP-Wiki populate a back-end database and can be
313 exported in a machine-readable format (i.e., XML) that can be used in a variety of
314 computational analyses, and more complex querying, and searching of the AOP-KB. For
315 example, construction of AOP networks from the modular units of individual AOP descriptions
316 relies on these structured annotation fields.

317
318 **Free text** sections in the AOP-Wiki provide AOP developers with much greater descriptive
319 flexibility than structured information fields. While free text is searchable, it is not standardised
320 and machine-readable and is not part of the XML download, thus limiting its use from a
321 computational standpoint.

323 **CONTENT LICENSING**

324 By default, all content in the AOP-Wiki is licensed under a Creative Commons, Attribution,
325 Share Alike ([CC BY-SA](#)) license. This license stipulates the following:

- 326 • Users must not **restrict access** to the work using technical measures, or otherwise
327 attempt to impose limitations on the freedoms to use, study, apply, redistribute, or
328 distribute derivative works.
- 329 • Users must **give proper attribution to the author and retain the license notice**.
- 330 • Users must **release derivative works under identical license terms**.

331
332 Any reuse of AOP-Wiki content or derivative of AOP-Wiki content requires appropriate attribution
333 including a link to the license and indication of any changes made. AOPs are, however, represented
334 by pages within the AOP-Wiki that have page-specific accessibility properties. AOP page licensing
335 options (Table 2) are described below.

336
337 Key **Event** and Key Event **Relationship** pages in the AOP-Wiki are shared pages that any
338 author can edit. Consequently, at present, only a BY-SA license can be applied. Authors
339 wishing to protect unpublished content on an Event or Relationship page, are encouraged to
340 develop their content on an external pre-print server, and then cite the appropriate DOI on the
341 relevant Event or Relationship pages in the AOP-Wiki. To facilitate attribution, authors may
342 also want to “tag” content they have added to these shared pages with their name or initials.

343
344 **AOP Pages** have restricted author access in the AOP-Wiki. They can only be edited by authors
345 listed as contributors. Consequently, there is an option to directly protect content of an AOP
346 page, if desired. At the time an AOP page is first created in the AOP-Wiki (**and only at that**
347 **time**), authors have the option to override the default CC BY-SA license and instead select a
348 “©; Copyright, All Rights Reserved” license. A © license indicates that the author retains all
349 rights provided by copyright law, and prohibits others from reproducing, distributing, and/or
350 adapting any part of the work without the copyright holder’s permission. Conceptually, this
351 allows AOP-pages on the AOP-Wiki to function as a pre-print server. While the content under
352 development is visible to other authors and potential users, the content is restricted and
353 protected by law. This option is provided to encourage transparent AOP development on the
354 AOP-Wiki, while protecting the intellectual property of the authors and the effort they have put
355 into developing the AOP.

356
357 To ensure the ultimate accessibility and usability of information in the AOP-Wiki, All Rights
358 Reserved licenses in the AOP-Wiki automatically revert to CC BY-SA after 12 months from
359 the AOP page creation date, unless the authors take action to extend the All Rights Reserved
360 license, prior to its expiration. The All Rights Reserved License can be extended at any time,
361 prior to its expiration by clicking the “Edit” button on the AOP page and then clicking the
362 “Extend current All Rights Reserved License” button from the Editing page. An active All
363 Rights Reserved License can be extended multiple times. However, it is the authors
364 responsibility to monitor the All Rights Reserved expiration date and take action to extend the
365 term before the expiration date. The current expiration date for an All Rights Reserved License
366 can be found on the Editing page, in blue highlighted text positioned directly above the “Extend
367 current All Rights Reserved License” button.

368
369 Once the All Rights Reserved license expires, the AOP page defaults automatically to a CC BY
370 SA license. The authors can also switch to a CC BY-SA license at any time by clicking the
371 “Edit” button on the AOP page, then making a new license selection. Note, **any switch to a CC**
372 **BY-SA license is irreversible**. Once an AOP page defaults or is switched by the authors to a
373 CC BY-SA license, it cannot be changed back to an All Rights Reserved license.

374
375 In addition to the default CC BY-SA license, authors also have the option to select a CC BY-
376 SA License with an “Open for Adoption” tag. This option applies the same license terms as the
377 CC BY-SA license, however, it is used to signal that the original authors are no longer actively

378 developing the AOP and invite new authors to take over development. New authors wishing to
 379 take over development of the AOP can do so by contacting the AOP-Wiki gardening team at
 380 aopwiki@googlegroups.com. Note, an All Rights Reserved License cannot be applied to an
 381 AOP page that has been opened for adoption.

382
 383 **Table 2: AOP page License Options Overview¹**
 384

License Option	Terms	Implementation Notes
All Rights Reserved	Re-use of the content of the AOP page, in any form requires advanced, written permission from the authors.	Must be selected at the time the AOP page is first created. Expires after 12 months unless extended by the authors. Once an All Rights Reserved license expires or a different license type is selected, it is not possible to revert back to an All Rights Reserved license.
BY-SA	This license allows users to distribute, remix, adapt and build upon the material in any medium or format so long as attribution is given to the creator(s). The license allows for commercial use. However, if you remix, adapt, or build upon the material all derivative works must be licensed under identical terms.	This is the default license applied at the time of AOP page creation, unless an All Rights Reserved license was selected at that time. Authors can switch from All Rights Reserved (if applicable) to BY-SA at any time. However, it is not possible to revert back to All Rights reserved once a BY-SA selection has been made.
BY-SA Open for Adoption	This license allows users to distribute, remix, adapt and build upon the material in any medium or format so long as attribution is given to the creator(s). The license allows for commercial use. However, if you remix, adapt, or build upon the material all derivative works must be licensed under identical terms.	This option is available on the Editing Page, accessed by clicking the "Edit" button on the AOP page. This selection is used to signal that the original authors are no longer developing the page and invite other developers to take over. An All Rights Reserved license cannot be applied to an AOP page that was opened for adoption.

385 1 License options described apply to AOP pages in the AOP-Wiki. Key event and key event relationship pages are BY-SA only.
 386
 387

388 SECTION 1 – AOP DESCRIPTION

389 This section is for information on the AOP to be entered on the upper portion of an AOP page
 390 within the AOP-Wiki. Here the overall structure of the AOP is introduced, the motivation and
 391 strategy for its development described and the component KEs and KERs are listed.
 392

393 **1A. AOP Identifier and Title**

394 This subsection provides guidance for naming the AOP.
 395

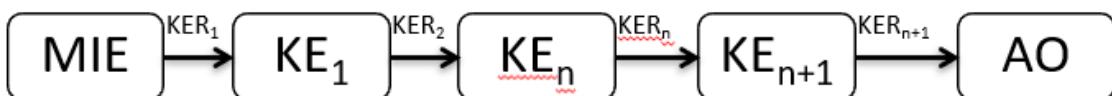
396 *397 **i. AOP Identifier***

398 Each AOP is automatically given a numerical AOP identifier by the AOP-Wiki when it is
 399 created (e.g., AOP: ####).

400 *401 **ii. (AOP) Title***

402 Each AOP should be given a descriptive title that takes the form "MIE leading to AO via
 403 distinctive KE". For example, "Aromatase inhibition [MIE] leading to reproductive dysfunction

[AO] via reduced vitellogenin production” or “Thyroperoxidase inhibition [MIE] leading to decreased cognitive function [AO] via decreased circulating thyroid hormone concentrations”. While each AOP is distinguished in the AOP-KB and AOP-Wiki by their AOP page ID numbers and unique URL, in a growing number of cases where AOPs linking the same MIE to the same AO are being entered into the AOP-Wiki, the “via distinctive KE” descriptor makes it easier to distinguish different AOPs within a network of closely related AOPs.


In cases where the MIE is unknown or undefined, the earliest known KE in the sequence (i.e., furthest upstream) should be used in lieu of the MIE and it should be made clear that the stated event is a KE and not the MIE.

iii. Short Name

A short name should also be provided that succinctly summarises the information from the title. This name should not exceed 90 characters.

1B. Graphical Representation of the AOP

A graphical summary of the AOP listing all the KEs in sequence, including the MIE (if known) and AO, and the pair-wise relationships (links or KERs) between those KEs should be provided. This is easily achieved using the standard box and arrow AOP diagram (Figure 2).

Figure 2. Generic AOP diagram, where boxes represent KEs and arrows represent KERs.

Development tip 1 – Graphical Representation: The graphical representation (AOP diagram) serves as a useful road-map to guide AOP development in the AOP-Wiki. For this reason, it is recommended that an AOP diagram be developed prior to creating an AOP description in the AOP-Wiki. Starting with the graphical summary provides a useful overview of the KE and KER pages that will need to be included. Ideally, development of a graphical overview of the AOP should be followed by a search of existing content to determine whether analogous AOPs and/or KEs or KERs already exist in the knowledgebase. This prevents duplicated effort and help to ensure that KEs and KERs are shared among AOPs, allowing for de facto creation of AOP networks. Once existing KE and KER pages relevant to the AOP have been identified, the developer then knows which pages in the AOP-KB will need to be edited or created de novo.

The graphical summary is prepared and uploaded by the user ([template is available](#)) and is often included as part of the proposal when AOP development projects are submitted to the OECD AOP development workplan.

The graphical representation, or AOP diagram, provides a useful and concise overview of the KEs that are included in the AOP, and the sequence in which they are linked together. This can aid both the process of development, as well as review and use of the AOP.

Development tip 2 – Number of KEs to include: Determining the number of KEs to include in an AOP and the specificity with which they are defined is one of the more challenging aspects of AOP development. In describing KEs within an AOP, it is important to recognise their distinction from “mechanism of action”. AOPs provide a description of a limited number of essential, measurable events (check-points or nodes of convergence of mechanistic pathways most relevant to informing application) leading to induction of the relevant toxicity endpoint. They do not necessarily provide a comprehensive molecular description of every aspect of the biology involved. With that in mind, the following “rules of thumb” can help guide the process of KE definition (Villeneuve et al. 2014a, b):

- Where possible and appropriate for application, try to include at least one KE at each major level of biological organisation (molecular, cellular, tissue, organ, individual).
- Where feasible/appropriate, focus on KEs that can be measured in a relatively routine manner over those that require highly specialised expertise, equipment, or supplies to measure. These will tend to be the KEs for which empirical evidence to support KERs is more likely to be available to support the WoE evaluation.
- Select a limited number of KEs that are measurable and for which evidence supports plausibility and potential predictive utility. Where relevant, more detailed description of the underlying biology involved can be incorporated into the descriptions of the biological plausibility linking two KEs (see section 3 – KER descriptions).

447
448

Development tip 3 – Branching of AOPs captured on a single AOP page

In principle, an individual AOP is defined as a single, non-branching sequence of KEs, linked by KERs that connect a single MIE to an AO (Villeneuve et al. 2014a). Consequently, most AOPs pages should define a single, non-branching, sequence of KEs linked by KERs. However, it is recognized that in some cases there may be exceptions for which representation of a simple AOP network on an AOP page is a more pragmatic unit of development and evaluation (see Leist et al. 2017 for examples and further explanation). In such cases, representation of a branched structure on an AOP page is acceptable, so long as the principles of modularity of the KEs and KERs and overall coherence to the framework is maintained.

For example, representation of branching on an AOP is acceptable when there are multiple KEs, causally linked to the MIE and AO that are occurring concurrently and acting in concert to drive the downstream effects. In such cases, the various KEs cannot be placed neatly into a single temporal sequence because they are effectively occurring simultaneously. Likewise it cannot be determined which of the concurrent KEs is most essential or critical, because there are multiple KEs contributing jointly such that it cannot be effectively determined whether one could cause the pathway to progress without the other. This is contrasted with cases where KEs act independently such that one event or the other, alone, would allow progression toward the outcome.

In cases where an additive (“and”) relationship must be assumed, representation of a simple AOP network on a single AOP page within the AOP-KB may be more practical from both a development and use stand-point than breaking those multiple highly related pathways into separate AOP descriptions. As long as KEs and associated KERs are each represented as separate modular pages in the AOP-KB (as described below), capturing such networks on single AOP pages does not create problems for modular AOP network building. Indeed, it can strengthen the overall AOP by capturing the evidence for pleiotropic effects of the same MIE that ultimately contribute to the same outcome.

Note, such branched AOP structures should only be included on a single AOP page when all the branches diverge from a common MIE (or MIEs in the case that two or more MIEs MUST occur to drive the pathway) and converge to a common AO (Figure 3A) and two or more of the KEs contributing causally to the AO occur concurrently such that it is experimentally intractable to isolate and identify which is playing the dominant causal role and all KEs have predictive value.

Branched structures should not be included on a single AOP page when they diverge to independent adverse outcomes (e.g., Figure 3B) and/or are operating largely independent of one another and can be experimentally resolved from one another in space or time. Following this logic, two or more MIEs may occur on an AOP page, when two or more MIEs MUST occur simultaneously in order for the pathway to be triggered (Figure 3C).

450
451 **Figure 3.** Illustration of general guidance regarding inclusion of simple AOP networks or
452 branched AOP structures (A) on a single AOP page. Branching representing independent
453 actions leading to more than AO should not be included in an AOP description (B). Branching
454 indicating multiple KEs (including MIEs) that MUST occur for the pathway to progress
455 downstream should be included in an AOP description. In case multiple MIEs are essential,
456 branching of MIEs are acceptable (C).

457

458

459 **1C. Authors of the AOP**

460 This section provides guidance on author identification.

461

462

*463 **Authors and Affiliations***

464 List the name and affiliation information of the individual(s)/organisation(s) that
465 created/developed the AOP. In the context of the OECD AOP Development Workplan, this
466 would typically be the individuals and organisation that submitted an AOP development
467 proposal to the EAGMST. Significant contributors to the AOP should also be listed. A
468 corresponding author with contact information may be provided here. This author does not need
469 an account on the AOP-Wiki and can be distinct from the point of contact below. The list of
470 authors will be included in any snapshot made from an AOP.

471

472

*473 **ii. Point of Contact***

474 Indicate the point of contact for the AOP-Wiki entry itself. This person is responsible for
475 managing the AOP entry in the AOP-Wiki and controls write access to the page by defining the
476 contributors as described below. Clicking on the name will allow any wiki user to correspond
477 with the point of contact via the email address associated with their user profile in the AOP-
478 Wiki. This person can be the same or vary from the corresponding author listed in the authors

477 section. In cases where the individuals are different, the corresponding author would be the
478 appropriate person to contact for scientific issues whereas the point of contact would be the
479 appropriate person to contact about technical issues with the AOP-Wiki entry itself.

480
481 Corresponding authors and the point of contact are encouraged to monitor comments on their
482 AOPs and develop or coordinate responses as appropriate. Selecting the “Watch” () option
483 on the AOP page will allow an e-mail alert to be sent whenever changes to the AOP page or
484 linked KE or KER pages are made.

485
486 ***iii. AOP-Wiki Contributors***

487 List user names of all authors contributing to or revising pages in the AOP-Wiki that are
488 linked to the AOP description. Identification of contributors in this section controls write
489 access to the AOP page. Only contributors listed here, with author rights in the AOP-Wiki,
490 can edit the AOP page.

491
492 ***iv. Coach(es)***

493 This field is used to identify coaches who supported the development of the AOP.

494 Coaches are experienced AOP developers that are familiar with the guidance document, AOP
495 development principles, and navigation within the AOP-Wiki. They assist AOP developers by
496 answering questions about the framework, the organization of information in the AOP-Wiki and
497 facilitate compliance with the guidance document and best practices. Upon acceptance of the
498 AOP development project under the OECD workplan, a coach will be assigned. AOP
499 developers without an OECD workplan – related project can request a coach from the SAAOP
500 (Society for the Advancement of AOPs) via aopwiki@googlegroups.com.

501 Identification of coaches in this section provides acknowledgement of the volunteer
502 contributions made by the coach(es) and professional recognition.

503
504 **1D. Handbook Versioning and OECD Status**

505
506 ***i. Handbook Version***

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

- As the AOP framework evolves and information fields, features, or functions are added or modified in the AOP-Wiki, the AOP Developers’ Handbook (this document) is updated to reflect the current state of the AOP-Wiki. In many cases, the AOP-Wiki and Handbook may undergo several updates over the duration of an AOP development project. Newly added AOPs are required to comply with the version of the Handbook that was current on the date the AOP was created, or newer. Where feasible, authors are encouraged to update their AOPs for consistency with the current Handbook version. However, this is not always possible or practical. Consequently, the “Handbook Version” column of the “Status” table is used to indicate the version of the Handbook that the authors used to guide their development.
- When a developer creates an AOP, the current version of the Handbook, on the date of creation, will be automatically populated into the “Handbook Version” column of the “Status” table, along with a link to that version of the Handbook. As newer versions are released, the authors have the option to switch to a newer Handbook version by selecting from a drop down menu on the Edit page. However, they cannot select versions that pre-date the creation date of their AOP. Both archived handbook versions and release notes summarizing the major changes can be found on the Developers’ Handbooks archive page (<https://aopwiki.org/handbooks>).

ii. OECD Status

For AOPs that are included in a project that has been accepted into the OECD AOP Development Workplan (see <http://www.oecd.org/chemicalsafety/testing/projects-adverse-outcome-pathways.htm>), the status with regard to progress through OECD review and endorsement processes is indicated. ‘OECD status’ tracks the level of review/endorsement of the AOP. This designation is managed and updated by the OECD. It cannot be changed

532 by the AOP author(s).
533

534 ***iii. OECD Project Number***

535 The OECD project number is assigned upon acceptance into the OECD AOP development
536 workplan and indicated along with the current OECD status of the AOP. This designation is
537 managed and updated by the OECD. It cannot be changed by the AOP author(s).

539 ***iv. Date Modified***

541 The date the AOP was last modified is automatically tracked by the AOP-Wiki. The date
542 modified field can be used to evaluate how actively the page is under development and how
543 recently the version within the AOP-Wiki has been updated compared to any snapshots that
544 were generated.

545 **546 1E. ABSTRACT**

547 In the abstract section, authors should provide a concise and informative summation of the
548 AOP under development. Abstracts should typically be 200-400 words in length (similar to an
549 abstract for a journal article). Suggested content for the abstract includes the following: (1) the
550 background/purpose for initiation of the AOP's development (if there was a specific intent);
551 (2) a brief description of the MIE, AO, and/or major KEs that define the pathway; (3) a short
552 summation of the overall WoE supporting the AOP and identification of major knowledge gaps
553 (if any); (4) a brief statement about how the AOP may be applied (optional). The aim is an
554 "executive summary" to capture the highlights of the AOP and its potential scientific and
555 regulatory relevance.

556 **1F. AOP Development Strategy**

557 This subsection describes key elements of "Why" (Context) and "How" (Strategy) the AOP
558 was developed. The content informs other developers, reviewers and users about the strategy
559 and focus for identification and assimilation of the relevant evidence base for KEs and KERs
560 in the AOP.

561 Context:

562 This subsection describes key elements of why the AOP was developed and for whom (e.g.,
563 funding sources; stakeholders; etc.).

564 Below are examples of the types of information to include:

- 565 • Key research question(s) or regulatory needs being addressed
- 566 • Scope and basis for the evidence gathering/literature search scope
 - 567 ○ e.g., focused on a specific taxonomic group?
 - 568 ○ adding new branches to an existing AOP?
 - 569 ○ development of an additional KE/KER?
- 570 • Acknowledgement of the source of funding (if applicable)
- 571 • The overall objective/envisioned use of the AOP that informed its development, e.g., to
 - 572 ○ document biology based on specialized expertise,
 - 573 ○ establish the relevance and utility of an assay,
 - 574 ○ develop an organizing construct in stressor specific (quantitative) hazard
 - 575 ○ characterization,
 - 576 ○ contribute to development of an integrated approach to testing and assessment,
 - 577 ○ etc.
 - 578 ○ indication of interesting biology encompassed by the AOP that is not necessarily
 - 579 ○ evident from the KE and KER descriptions;
 - 580 ○ as part of a network-guided approach to AOP development, noting other AOP(s)
 - 581 ○ developed as part of the effort
- 582 • Other information that may be useful to the AOP developer and/or user that facilitates
- 583 understanding of motivation/objective/scope for AOP development.

587

588 **Strategy**

589 This subsection describes *how* the AOP was developed to address the context indicated in the
590 background and acknowledgements above. Specifically, what was the strategy, focus and
591 workflow for identification and assembly of relevant evidence to meet the objective/envisaged
592 application? This information is critical to facilitate the reuse of components and expansion of
593 AOPs. Transparency of the rationale for identification and selection of supporting data also
594 contributes to confidence for regulatory application of AOPs and/or their components.

595

596 Developers should tailor the contents of this section to their particular AOP context and approach,
597 depending e.g., on the scope, nature of prior documentation of the pathway, the starting point for
598 development (e.g., the molecular initiating event or adverse outcome), complexity, and/or
599 envisaged application(s). For example, it may build on previously well-documented and accepted
600 pathways, with focus on particular aspects of uncertainty or particular components of the pathway.

601

602 Content may include:

- 603 • **Level of resolution / detail in terms of the KEs and KERs represented** in the pathway.
604 The goal is to identify notable milestones or checkpoints in the progression of and adverse
605 biological response that are both measurable and have predictive utility relevant to
606 regulatory application, rather than detailed elements of biology. It is important, then, to
607 specify the basis for selection of which KEs and KERs are explicitly, versus implicitly,
608 represented in the AOP.
- 609 • **Overall data search and identification strategy/ies**, including general strategies (i.e.,
610 workflow) for information search, retrieval, and screening (and possibly assessment).

612

613 Example content includes:

- 614 – reliance on prior knowledge and/or documentation of the pathway, e.g.,
 - 615 ○ expert knowledge
 - 616 ○ previously conducted stressor specific (systematic) reviews documenting key
617 events
 - 618 ○ previous AOP descriptions
- 619 – overview of data identification and search strategies, including initial and refined
620 approaches, e.g.,
 - 621 ○ search terms, search strings, etc. and databases searched, the time period of
622 searching, and returned results,
- 623 – novel data – describe the type(s) of experiments that were conducted, specialized
624 software and tools used for assimilation, screening and assessment of information
625 for relevance to the AOP,

626

627 The description in this section provides an *overview* of the search strategy relevant to inclusion of
628 the KEs and KERs in the AOP. Considerations for documentation of more detailed information on
629 search and assimilation strategies for individual KERs is presented in Section 3.

630

631

1G. KE and KER Tables

632 Tables listing each KE and KER are automatically created in the AOP-KB as KE pages to link to
633 the AOP are selected or created and as KERs are defined.

634

- 635 • **KE Table:** This table summarises all of the KEs of the AOP, including the MIE and AO.
636 This table is populated in the AOP-Wiki as KEs are added to the AOP. Each table entry
637 acts as a link to the individual KE description page. For guidance on completing the KE
638 descriptions see Section 2.
- 639 • **Relationship Table:** This table summarises all of the KERs of the AOP and is populated in
640 the AOP-Wiki as KERs are added to the AOP. Each table entry acts as a link to the
641 individual KER description page. For guidance on completing the KER descriptions see
642 Section 3.

642

643

1H. Network View

644

645

646

647

648

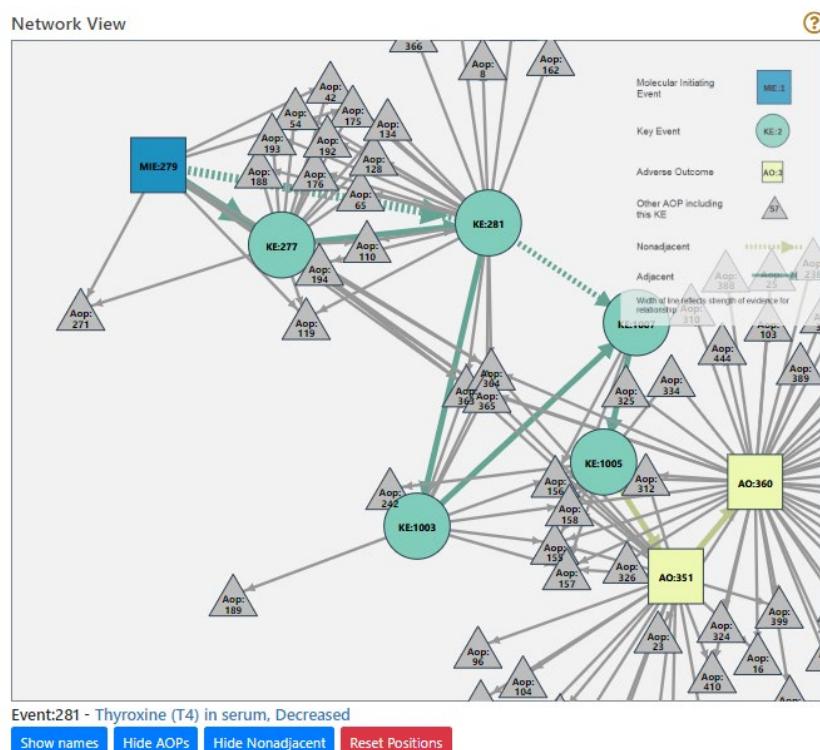
649

650

651

652

653


654

655

656

The AOP-Wiki automatically generates a network view of the AOP (Figure 4). This network graphic is based on the information provided in the MIE, KEs, AO, KERs and WoE summary tables. The width of the arrows (representing the KERs) is determined by its WoE confidence level, with thicker lines representing higher degrees of confidence. This network view also shows which KEs are shared with other AOPs. Visibility of non-adjacent relationships and/or other AOPs that share KEs with the AOP in question can be toggled on and off, as can the names of KEs. Users can customize the layout of network representation of the viewer. If logged in, that customized view is retained when returning to the AOP-Wiki.

With AOP-Wiki release 2.6 there is also an option to display the AOP in third party tools that allow for alternative visualization of the AOP in an AOP network context. These third party options can be accessed via the “Explore in a Third Party Tool” button.

657

658

Figure 4. Example of the default network view in the AOP-Wiki. Note the option to hide or show AOPs that share one or more of the same KEs, non-adjacent relationships, and event names.

662

663

11. Prototypical Stressor(s)

664

665

666

667

668

669

670

671

672

673

674

675

The Prototypical Stressor field is a structured data field that can be used to identify one or more “prototypical” stressors that act through this AOP. However, please recall that an AOP should not be stressor-specific. Prototypical stressors are stressors for which responses at multiple key events in addition to the MIE have been well documented. Experiments with the prototypical stressor(s) may have provided much of the empirical support for the AOP and/or quantitative understanding of the key event relationships. Thus, prototypical stressors identified may serve as useful “positive controls” for evaluating responses of other stressors that may act on this pathway and/or provide insights into the types of structures or properties that may be relevant to the stressor domain that is relevant to this AOP. The relative potency of various other stressors, compared to the prototypical stressor(s) may also be informative relative to quantitative understanding of the KERs and associated applications of the AOP.

676 Please note:

677 • This field is NOT intended to provide a comprehensive listing of all stressors known to
678 act through this AOP.

679 • It is NOT intended that AOPs will be searchable by prototypical stressor(s)

680 • Identification of a prototypical stressor does NOT indicate the AOP is stressor specific.

681 In the case of prototypical stressors that are chemicals, chemical names can be selected from
682 established chemical ontologies. However, non-chemical stressors such as radiation, genetic
683 or environmental factors, disease vectors or viruses, etc. may also be identified. Authors are
684 encouraged to utilize appropriate ontologies wherever possible.

685

686

687 **1J. Life Stage/Taxonomic/and Sex Applicability**
688 See Section 4 on Overall Assessment of the AOP

689

690 **1K. Overall Assessment of the AOP**
691 See Section 4

692

693

Development tip 4 – Sharing of KEs:

- **Use existing KEs when possible** - when adding KEs to an AOP it is strongly recommended to use KEs that already exist in the AOP-Wiki as much as possible. When adding a new KE in the AOP-Wiki, the system will identify events using related terms to aid in reviewing whether suitable KEs already exist.
- **Existing KE requires modification** - If an existing KE requires modification to make it suitable, changes to the content on that page should be coordinated with the point(s) of contact for other AOPs sharing the KE to ensure that the original meaning is not altered.
- **AOP-KB Etiquette** – When using an existing KE, it is the responsibility of the person making changes to ensure that KEs used in multiple AOPs are not altered in such a way as to diminish the applicability of that KE for the existing AOPs. Please be courteous to your fellow AOP developers.
- **Creating new KEs** - If no suitable KEs are available in the AOP-Wiki, or if the revisions needed to make an existing KE description suitable for the AOP under-development would make it unsuitable for use in AOPs it is already linked to, then a new KE should be created.

695

2A. Event ID

696 When a KE is created, an ID number is automatically assigned to it (Event: ###). This number
 697 is used for tracking the KE in the AOP-KB and corresponds with a unique URL of the form
 698 <https://aopwiki.org/events/##>.

700

2B. KE Title

701 The KE title should describe a discrete biological change that can be measured. It should
 702 generally define the biological object or process being measured and whether it is increased,
 703 decreased, or otherwise definably altered relative to a control state. For example “enzyme
 704 activity, decreased”, “hormone concentration, increased”, or “growth rate, decreased”, where
 705 the specific enzyme or hormone being measured is defined.

706

2C. Short Name

707 The KE short name should be a reasonable abbreviation of the KE title and is used in labelling
 708 this object throughout the AOP-Wiki. The short name should be less than 80 characters in
 709 length.

710

2D. Level of Biological Organisation

711 Structured terms, selected from a drop-down menu, are used to identify the level of biological
 712 organisation for each KE (e.g. molecular, cellular, organ). Note that KEs should be defined
 713 within a particular level of biological organisation. Only KERs should be used to transition
 714 from one level of organisation to another. Selection of the level of biological organisation
 715 defines which structured terms will be available to select when defining the Event Components
 716 (below).

717

2E. KE Components and Biological Context

718

719 Because one of the aims of the AOP-Wiki is to facilitate generation of AOP networks through
 720 the use of shared KE and KER elements, authors are strongly encouraged to define their KEs
 721 using a set of structured ontology terms (Event Components); in the absence of structured
 722 terms, the same KE could have a variety of titles. In order to make synonymous KEs more
 723 machine-readable, they should be defined by one or more “event components” consisting of a
 724 **biological process, object, and action** with each term originating from one of 22 biological
 725

729 ontologies (Ives, et al., 2017). **Biological process** describes dynamics of the underlying
730 biological system (e.g., receptor signalling). The biological **object** is the subject of the
731 perturbation (e.g., a specific biological receptor that is activated or inhibited). **Action** represents
732 the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’
733 in the case of a receptor that is inhibited to indicate a decrease in the signalling by that receptor).
734

Development tip 5– How specifically should my KE be defined: The following are some general recommendations and “rules of thumb” concerning how specifically to define a KE (see also Villeneuve et al. 2014a, b):

- Define the KE with enough specificity that it is clear what to measure to determine the state of the KE. For example “histological changes” is too broad; “oocyte atresia” or “hyperplasia” would be better.
- KEs should refer to/focus on a single measurable event within a specific biological level of organisation, rather than compounding events together. For example, it would be better to define a KE as “enzyme activity, increased” (if that can be measured), rather than “transcription and translation leading to enzyme activity, increased”.

The biological context of the KE (e.g., the tissue type/taxa/life stage/sex etc.) should only be restricted (e.g., “enzyme activity in liver, decreased” or “hormone concentration in females, increased”) to the extent that function changes with context. If the function is equivalent in both sexes, do not restrict the context by sex. If the function is equivalent in all cell types, do not restrict to a specific cell type.

735

736 **2F. Other AOPs that use this KE**

737 All of the AOPs that are linked to this KE will automatically be listed in this subsection. This
738 table can be particularly useful for identifying AOP networks which include the KE.

739

740 **2G. KE Description**

741 A description of the biological state being observed or measured, the biological compartment
742 in which it is measured, and its general role in the biology should be provided. For example,
743 the biological state being measured could be the activity of an enzyme, the expression of a gene
744 or abundance of an mRNA transcript, the concentration of a hormone or protein, neuronal
745 activity, heart rate, etc. The biological compartment may be a particular cell type, tissue, organ,
746 fluid (e.g., plasma, cerebrospinal fluid), etc. The “role in the biology” could describe the
747 reaction that an enzyme catalyses and the role of that reaction within a given metabolic
748 pathway; the protein that a gene or mRNA transcript codes for and the function of that protein;
749 the function of a hormone in a given target tissue, physiological function of an organ, etc. Care
750 should be taken to avoid reference to other KEs, KERs or AOPs. Only describe this KE as a
751 single isolated measurable event/state. This will ensure that the KE is modular and can be used
752 in other AOPs, thereby facilitating construction of AOP networks. Additionally, avoid the use
753 of semi-quantitative terms that suggest an undefined threshold (e.g., insufficient, inadequate,
754 sustained). Quantitative understanding of the magnitude or duration of change in the KE
755 required to impact a downstream event should be defined in the KER (see Section 3G), not in
756 the KE description or title.

757

758 **2H. How it is Measured or Detected**

759 One of the primary considerations in evaluating AOPs is reliability and relevance of the
760 methods used to measure the KEs. The aim of this section of the KE description is not to
761 provide detailed protocols, but rather to capture, in a sentence or two, per method, the type(s)
762 of measurements that can be employed to evaluate the KE and the relative level of scientific
763 confidence in those measurements. These can range from citation of specific validated test
764 guidelines, to citation of specific methods published in the peer reviewed literature, to outlines
765 of a general protocol or approach (e.g., a protein may be measured by ELISA).

766

767 Key considerations regarding scientific confidence in the measurement approach include

768 whether the assay is fit for purpose, whether it provides a direct or indirect measure of the
769 biological state in question, evidence that it is reproducible, and the extent to which it is
770 accepted in the scientific and/or regulatory community. Information can be obtained from the
771 [OECD Test Guidelines website](#) and the EURL ECVAM Database Service on Alternative
772 Methods to Animal Experimentation ([DB-ALM](#)).

773

774 **2I. Biological Domain of Applicability**

775 The biological domain(s) of applicability of the KE in terms of sex, life-stage, taxa, and other
776 aspects of biological context are defined in this section. In essence, the taxa/life-stage/sex
777 applicability is defined based on the species or groups of organisms for which the
778 measurements represented by the KEs can be made based on direct evidence from the literature
779 (i.e., empirical domain of applicability) or based on one or more lines of scientific reasoning
780 (i.e., biologically plausible domain of applicability) [see Development tip 6]. Defining the
781 taxonomic, life stage and sex relevance of each KE helps to bound the domain of applicability
782 of the AOP as a whole and provides an understanding of how broadly data represented by a KE
783 measurement may be applied.

784

Development tip 6 – Domain of applicability: When defining domain of applicability, it is useful to
think about it in two ways

Empirical domain of applicability: Species, sexes, life stages, for which there is already
demonstrable evidence that the measurement can be made (KEs), the relationship applies (KERS)
or the AOP in its entirety is relevant (AOPs).

Biologically plausible domain of applicability: The broad range of species, sexes, life stages for
which the measurement (KE), relationship (KER), or AOP is likely to apply based on scientific
reasoning (i.e., molecular conservation of targets/pathways; phylogenetic relatedness; similarity
in life history; analogy).

Authors are encouraged to present both, and to clearly distinguish between the two based on the
“evidence calls” made in the structured table and/or the explanatory text provided in the free text
field.

785 As a general guide, whether defining the domain of applicability empirically or based on
786 biological plausibility, there are two primary considerations for a KE:

787

1. **Structure:** Is there evidence that the biological object being measured/observed is
788 present/conserved in the taxa/sex/life-stage of interest? Here biological object may
789 refer to a protein, a cell type, an organ, etc.
2. **Function:** Is there evidence that the function of that biological object and the process
790 being measured via the KE are conserved and relevant in the taxa/sex/life-stage of
791 interest. Does it play the same role?

792 For example, if the KE involves binding to the estrogen receptor, but invertebrates lack a
793 functional homolog of the estrogen receptor, one could reasonably conclude that the AOP is
794 not relevant to invertebrates on the basis of a lack of conserved structure. Evidence supporting
795 this biologically plausible taxonomic domain of applicability could be collected from
796 bioinformatics approaches and existing toxicity data across species to support this broad
797 extrapolation to all invertebrates. Depending on the evidence supporting the taxonomic domain
798 of applicability, the specific (common or Latin) species name or taxonomic group (e.g., class,
799 order, family) may be reported with the appropriate NCBI taxonomy ID in the “Taxonomic
800 Applicability” table of the AOP-Wiki. Likewise, if the KE involves a measurement in ovarian
801 tissue, its applicability domain in terms of sex would be restricted to females. Such information
802 would be captured in the “Sex Applicability” table of the AOP-Wiki using predefined terms
803 like: male, female, mixed, asexual, hermaphrodite, or unspecific. If a KE involved altered
804 organogenesis (e.g., heart formation), the KE would only be relevant to the life-stage during
805 which the heart is actually formed, not adult life stages in which organ development has already
806

810 completed. Life-stage can be described in the “Life Stage” table of the AOP-Wiki by selecting
811 from structured ontology terms. If an applicable life-stage term cannot be found, new terms
812 may be added on request by the AOP-Wiki administrators.

813
814 Biological domain of applicability is defined in the AOP-KB using a combination of structured
815 fields and free text. Selection of structured terms to describe the applicability domain can aid
816 AOP network construction as well as facilitating other types of computational processing and
817 searching of information captured in the AOP-KB.

818
819 When the developer selects structured ontology terms to help define the domain of applicability
820 of the KE, there is also an option to make evidence calls related to applicability of the specific
821 KE for that category term. These calls should be based on expert knowledge of the biology and
822 the extent of supporting evidence. Recommendations for these calls are:

823

- 824 • Low: With the understanding that by definition a KE must be measurable in the
825 species/taxonomic group/lifestage/sex defined, no such measurements have been
826 reported or shown experimentally *in vitro* or *in vivo* to date; however, there are one or
827 more scientifically-based lines of evidence suggesting that measurement could
828 plausibly be made (e.g., *in silico* or bioinformatic evidence of protein or pathway
829 conservation).
- 830 • Moderate: The measurement associated with the KE can plausibly be made for the
831 species/taxonomic group/lifestage/sex, and there is at least some supporting *in vitro*
832 or *in vivo* experimental evidence, although though it may not involve direct
833 measurement of the KE.
- 834 • High: The measurement associated with the KE has been made repeatedly *in vitro* or
835 *in vivo* and/or with multiple orthogonal methods for the species/taxonomic
836 group/lifestage/sex.

837

i. Taxonomic Applicability

838 Latin or common names of a species or broader taxonomic grouping (e.g., class, order,
839 family) can be selected from an ontology. In many cases, individual species identified in
840 these structured fields will be those for which the evidence used in constructing the AOP
841 was strongest in relation to this KE.

842

ii. Life Stage Applicability

843 The structured ontology terms for life-stage are more comprehensive than those for taxa, but
844 may still require further description/development and explanation in the free text section.

845

iii. Sex Applicability

846 The authors must select from one of the following: Male, female, mixed, asexual, third
847 gender, hermaphrodite, or unspecific.

848

iv. Evidence for Biological Domain of Applicability

849 This free text section should be used to elaborate on the scientific basis for the indicated domains
850 of applicability and the WoE calls (if provided). While structured terms may be selected to
851 define the taxonomic, life stage and sex applicability (see structured applicability terms, above)
852 of the KE, the structured terms may not adequately reflect or capture the overall biological
853 applicability domain (particularly with regard to taxa). Likewise, the structured terms do not
854 provide an explanation or rationale for the selection. The free-text section on evidence for
855 taxonomic, life stage, and sex applicability can be used to elaborate on why the specific
856 structured terms were selected, and provide supporting evidence, references and background
857 information. This information should also indicate the type of data used as evidence (e.g., *in
858 silico*, *in vitro*, *in vivo*).

865

866 2J. AO-Specific Content

867 An AO is a specialised KE that represents an adverse outcome of regulatory significance,
868 (“apical endpoint”). For KEs that are designated as an AO, one additional field of information
869 (regulatory significance of the AO) should be completed, to the extent feasible. If the KE is
870 being described is not an AO, simply indicate “not an AO” in this section.

871

872 *Regulatory Significance of the AO*

873 A key criterion for defining an AO is its relevance for regulatory decision-making (i.e., it
874 corresponds to an accepted protection goal or common apical endpoint in an established
875 regulatory guideline study). For example, in humans this may constitute increased risk of
876 disease-related pathology in a particular organ or organ system in an individual or in either
877 the entire or a specified subset of the population. In wildlife, this will most often be an
878 outcome of demographic significance, e.g., population sustainability. In addition to
879 describing the biological state associated with the AO, how it can be measured, and its
880 taxonomic, life stage, and sex applicability, it is useful to describe regulatory examples using
881 this AO.

882

883

884 2K. References

885 List of the literature that was cited for this KE description. References should either be
886 numbered [#], and cited by number, or cited in (Author, Year) style at locations on the Event
887 page corresponding to the statement(s) they support. Ideally, the list of references, should
888 conform, with the OECD Style Guide (<https://www.oecd.org/about/publishing/OECD-Style-Guide-Third-Edition.pdf>) (OECD, 2015).

889

890

891

892

893

894

895

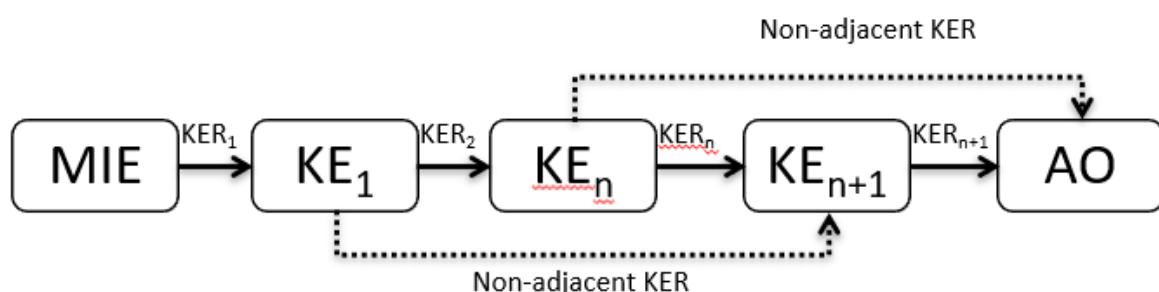
896 SECTION 3 – KER DESCRIPTIONS

897

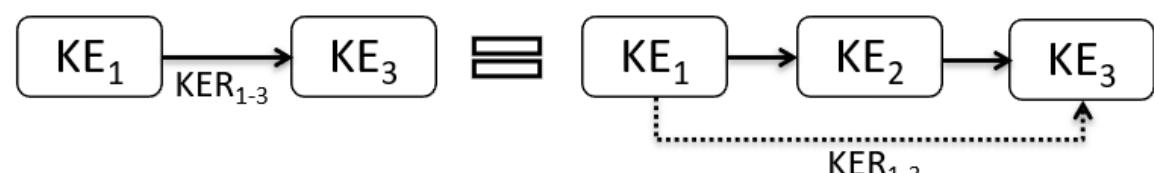
898 The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and
899 precision with which they facilitate extrapolation of data measured at low levels of biological
900 organisation to predicted outcomes at higher levels of organisation and the extent to which they
901 can link biological effect measurements to their specific causes. Within the AOP framework, the
902 predictive relationships that facilitate extrapolation are represented by the KERs. Consequently,
903 the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying
904 series of KERs it encompasses. Evidence related to determination of confidence in the supporting
905 data for the KER as part of the AOP is included here. The confidence in the overall AOP pathway
906 is considered in Section 4, taking into account the KER specific evidence and patterns of support
907 across all levels of biological organization in the AOP.

908

909 Describing the KERs in an AOP involves assembling and organising the types of information
910 and evidence that defines the scientific basis for inferring the probable change in, or state of, a
911 downstream KE from the known or measured state of an upstream KE. Before describing a KER,
912 developers should carefully consider the following:


913

914 KERs are always described in the form of a directed relationship (one-way arrow) linking an
915 upstream “causing” event to a downstream “responding” event. The pair of KEs linked via a
916 KER may either be adjacent to one another in the sequence of KEs that define a given AOP, or
917 non-adjacent (Figure 5). Regardless of adjacency, one event is always positioned upstream of
918 the other. By convention (and for clarity), KERs linking adjacent KEs in an AOP are represented
919 using solid arrows, while KERs that link KEs that are not adjacent to one another in sequence


920 are linked via dashed arrows (e.g., Figure 5). This is a graphical convention only which has no
921 bearing on the type of content to include in the KER description.

922
923 A KER description must be created for each adjacent upstream-downstream pair of KEs in the
924 pathway. Graphically speaking, there should always be at least one solid arrow path connecting
925 each KE in the pathway into a sequence. There should be no KEs that are unconnected or are
926 only connected via a non-adjacent path (represented as a dashed arrow) only.

927
928 Inclusion and description of non-adjacent KERs within an AOP can be particularly useful for
929 assembling evidence supporting the AOP and in the consideration of the overall support across
930 the entire AOP (section 4). For example, some KE measurements may be fairly difficult to make,
931 such that they are rarely made in routine studies. While there may be sufficient data or plausibility
932 to establish an intermediate KE as part of the AOP, much of the available WoE may ignore or
933 “leap over” that particular KE. Including KER descriptions for non-adjacent KE pairs allows the
934 WoE for these relationships to be readily described and linked to other AOPs without
935 compromising the principle of modularity with regard to the KER descriptions. With this in
936 mind, the upstream-downstream pair of KEs linked via a KER may be adjacent in one AOP and
937 non-adjacent in another (Figure 6).

939
940
941 **Figure 5.** Generic AOP diagram illustrating the graphical convention for depicting KERs linking
942 adjacent (solid arrow) versus non-adjacent (dashed arrow) upstream-downstream KE pairs
943 within an AOP. Regardless of adjacency, each KER represents a predictive relationship between
944 a pair of KEs and can be supported by WoE.

946
947
948 **Figure 6.** Graphical depiction of the modular functionality of KERs connecting KE1 to KE3.
949 The content of KER1-3 is identical despite the fact that the KE1 and KE3 are adjacent in one
950 AOP and non-adjacent in the other.

951
952 Overall, the subsections of the KER descriptions are intended to aid the user in collecting relevant
953 information that will support evaluation of the level of confidence in each KER, which in turn
954 contributes to the assessment of the WoE of the AOP overall (section 4).

955 956 3A. Relationship ID

957 When a KER is created, an ID number is automatically assigned to it (Relationship: ###). This
958 number is used for tracking the KER in the AOP-KB and corresponds with a unique URL of the
959 form <https://aopwiki.org/relationships/##>.

961

962 **3B. KER Title**

963 All KER titles take the form “upstream KE leads to downstream KE”. KER titles are generated
 964 automatically by selecting an upstream KE and downstream KE to link in the AOP-Wiki (Figure
 965 7).

966

Add Relationship to AOP

Upstream event	Event:1619 Increase, DNMT inhibition
Downstream event	Event:1619 Increase, DNMT inhibition
Adjacency	adjacent
Evidence	
Quantitative understanding	

967

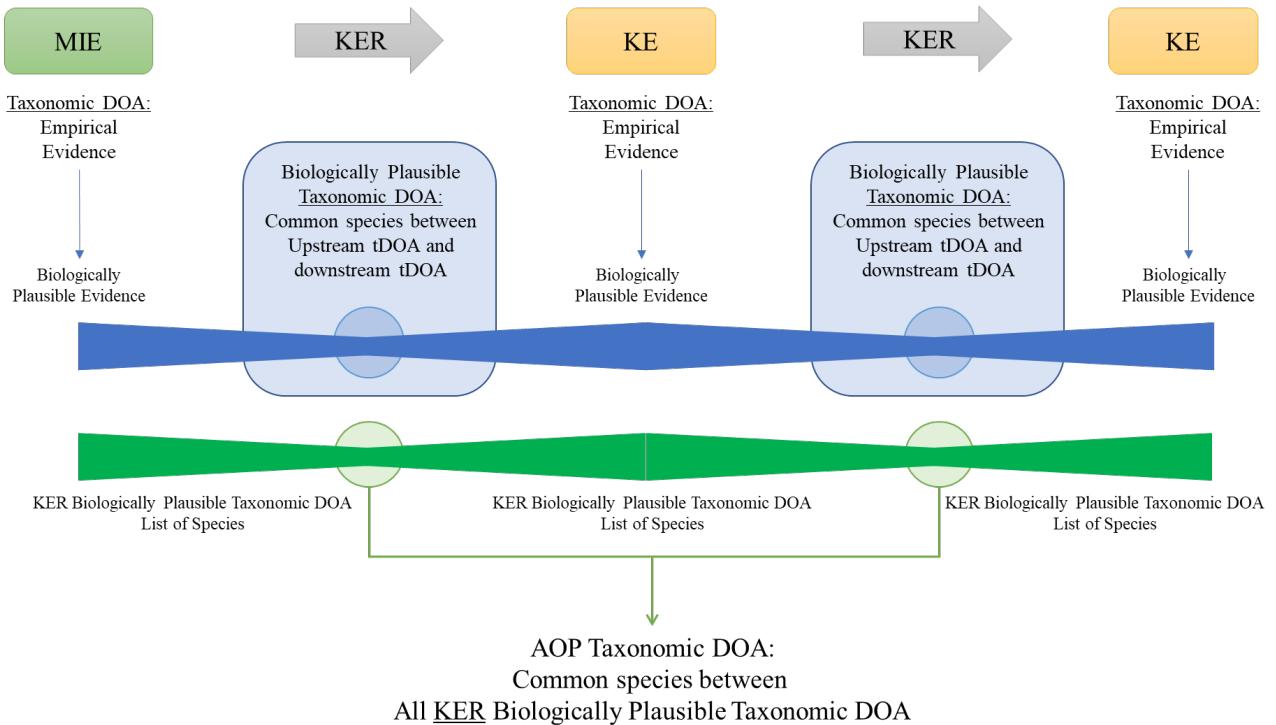
968

969 **Figure 7.** Add Relationship dialog from AOP-Wiki. Note, user will select KEs from a drop-
 970 down menu of options, therefore the KER title is created automatically. This also means that
 971 the KEs must be created before a KER can be defined.

972

973 **3C. AOPs Referencing Relationship**

974 All of the AOPs that are linked to this KER will automatically be listed in this subsection.


975

976 **3D. Biological Domain of Applicability**

977 Developers have the option to select one or more structured terms that help to define the biological
 978 applicability domain of the KER. As a rule, the biological domain of applicability of a KER can
 979 never be broader than the more restrictive of the two KEs it links together. For example, if the
 980 upstream KE is relevant to all vertebrates but the downstream KE is relevant only to sexually
 981 mature, egg-laying female vertebrates, the KER would be relevant to sexually mature egg-laying
 982 female vertebrates. This concept applies whether considering the empirical domain of
 983 applicability, or the biologically plausible domain of applicability and once again authors should
 984 clearly indicate both.

985

986 Thus, the biological applicability domains of the two KEs being linked is a strong determinant
 987 of the biological domain of applicability of a KER (Figure 8).

990 Figure 8. Example for determining the taxonomic domain of applicability (tDOA) considering
991 both the empirical evidence and biologically plausible evidence and combining upstream KE
992 and downstream KE tDOA to determine KER tDOA. Further, considering the KER tDOAs
993 across the AOP the most restrictive tDOA across all KERs defines the tDOA for the AOP. The
994 blue horizontal line considers each KE to define the biologically plausible tDOA of the KER,
995 whereas the green horizontal line considers each KER to define the biologically plausible tDOA
996 for the entire AOP. Figure modified from Jensen et al. 2022.

997
998 However, in some cases, the biological applicability domain of the KER may be even more
999 restrictive. This is because in addition to structural and functional conservation, the KER also
1000 considers the conservation of a biological relationship between two KEs. The three
1001 considerations that generally guide definition of the biological domain of applicability are thus:
1002

1. **Structure:** Is there evidence that the biological object(s) being measured/observed in the context of the two KEs being linked present/conserved in the taxa/sex/life-stage of interest?
2. **Function:** Is there evidence that the functions of those biological objects and the processes being measured in the two KEs are conserved and relevant in the taxa/sex/life-stage of interest? Does the object/process play the same role in both KEs?
3. **Regulation:** Is there evidence that the regulation of the KE_{downstream} by KE_{upstream} is conserved and relevant in the taxa/sex/life-stage of interest?

1015 Selection of structured terms to describe the biological domain of applicability can aid AOP
1016 network construction as well as facilitating other types of computational processing and
1017 searching of information captured in the AOP-Wiki.

1018 Upon selection of structured biological applicability domain terms, developers have the option
1019 to classify the extent of the supporting evidence for the terms they have selected:

- **Low** the relationship is biologically plausible, but has not been shown experimentally *in vitro* or *in vivo* in this species/taxonomic group/lifestage/sex; evidence may be computationally derived by models or other available tools for evaluating structural and functional conservation (e.g., *in silico* or bioinformatic evidence of protein or pathway conservation).
- **Moderate** the relationship is biologically plausible, and there is some limited supporting *in vitro* and/or *in vivo* experimental evidence in the species/taxonomic group/lifestage/sex of interest; computationally derived data to support the biologically plausible domain of applicability could be included as evidence toward structural conservation and used for extrapolation.
- **High** the relationship is biologically plausible, and there is considerable supporting evidence in the species/taxonomic group/lifestage/sex, including evidence of temporal, dose-response, and/or incidence concordance between the two KEs for the group in question.

i. Taxonomic Applicability

Authors can indicate the relevant taxa for this KER in this subsection. The process is similar to that described for KEs (Section 2).

ii. Life Stage Applicability

Authors can indicate the relevant life stage for this KER in this subsection. The process is similar to that described for KEs (Section 2).

iii. Sex Applicability

Authors can indicate the relevant sex for this KER in this subsection. The process is similar to that described for KEs (Section 2).

iv. Evidence Supporting the Biological Domain of Applicability

As for the KEs, there is also a free-text section of the KER description that the developer can use to explain his/her rationale for the structured terms selected with regard to taxonomic, life stage, or sex applicability, or provide a more exact description of the applicability domain than may be feasible using standardised terms. Developers are also encouraged to distinguish the empirical domain of applicability from the more expansive biologically plausible domain of applicability (see *Development tip 5*). Here developers can indicate what type(s) of evidence were used to support the domain of applicability (e.g., *in silico*, *in vitro*, *in vivo*) and cite the methods if relevant.

3E. KER Description

Provide a brief, descriptive summation of the KER. While the title itself is fairly descriptive, this section can provide details that are not inherent in the description of the KEs themselves (see Section 2, recommendations regarding number of KEs to include). For example, if the upstream KE was antagonism of a specific receptor, the description could stipulate that “persistent antagonism of the receptor for a period of days” will trigger the downstream KE. Shorter term antagonism of the same receptor (i.e., same upstream KE) may trigger a different downstream KE, and thus would be described in a different KER. This description section can be viewed as providing the increased specificity in the nature of upstream perturbation (KEupstream) that leads to a particular downstream perturbation (KEdownstream), while allowing the KE descriptions to remain generalised so they can be linked to different AOPs. The description is also intended to provide a concise overview for readers who may want a brief summation, without needing to read through the detailed support for the relationship (covered below). Care should be taken to avoid reference to other KEs that are not part of this KER, other KERs or other AOPs. This will ensure that the KER is modular and can be used by other AOPs.

1075

1076 **3F. Evidence Collection Strategy**

1077 Include a description of the approach for identification and assembly of the evidence base for the
1078 KER. For the literature searches and surveys, include, for example:

1079

1080 i. Sources and dates of information consulted including expert knowledge, databases searched and
1081 associated search terms/strings,
1082 ii. Study screening criteria and methodology (e.g., inclusion/exclusion criteria, specialized software
1083 tools, number of reviewers); any constraints on the search.
1084 iii. Study quality assessment considerations including links to existing resources (e.g., existing tools
1085 applied)
1086 iv. Data extraction strategy, specialized software tools and/or data management strategy, and
1087 iv. Links to any repositories/databases of relevant references

1088 Tabular summaries and links to relevant supporting documentation are encouraged, wherever
1089 possible.

1090

1091 Alternatives to literature search-based approaches include, but are not limited to, novel
1092 experimentation, application of biologically-based models, identification of sources of
1093 canonical knowledge, etc.

1094

1095 **3G. Evidence Supporting this KER**

1096 Assembly and description of the scientific evidence supporting KERs in an AOP is an important
1097 step in the AOP development process that sets the stage for overall assessment of the AOP
1098 relevant to regulatory application (Section 4). To do this, biological plausibility, empirical
1099 support, and the current quantitative understanding of the KER are evaluated with regard to the
1100 predictive relationships/associations between defined pairs of KEs as a basis for considering
1101 WoE (Section 4). In addition, uncertainties and inconsistencies are considered.

1102

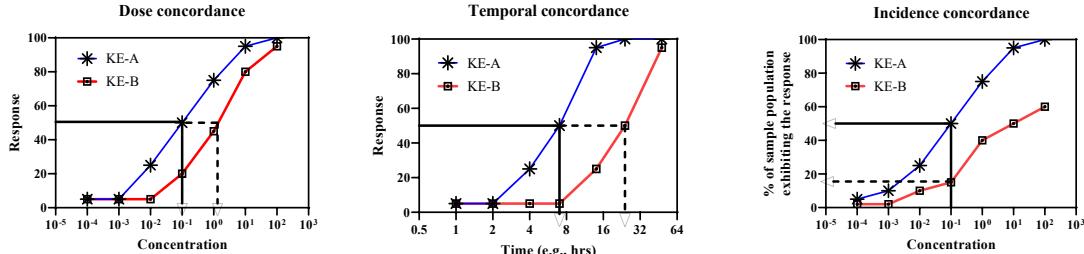
1103 *i. Biological Plausibility*

1104 Define, in free text, the biological rationale for a connection between KEupstream and
1105 KEdownstream. What are the structural or functional relationships between the KEs (see
1106 Annex 1)? For example, there is a functional relationship between an enzyme's activity and
1107 the product of a reaction it catalyses.

1108

1109 Contextual citation of supporting references should be included. However, it is recognised that
1110 there may be cases where the biological relationship between two KEs is very well established,
1111 to the extent that it is widely accepted and consistently supported by so much literature that it
1112 is unnecessary and impractical to cite the relevant primary literature (i.e., canonical
1113 knowledge). Citation of review articles or other secondary sources, like text books, may be
1114 reasonable in such cases. The primary intent is to provide scientifically credible support for
1115 the structural and/or functional relationship between the pair of KEs if one is known.

1116


1117 In general, the structural and/or functional relationship supporting biological plausibility is
1118 based on understanding of "normal" biological function, rather than response to a specific
1119 stressor. The description of biological plausibility can also incorporate additional mechanistic
1120 detail that helps inform the relationship between KEs, but is not practical/pragmatic to
1121 represent as separate KEs due to the difficulty or relative infrequency with which it is likely
1122 to be measured. For example, in the case of G protein coupled receptor activation
1123 (KEupstream) leading to increased activity of a specific enzyme (KEdownstream), there may
1124 be numerous mechanistic steps between these KEs (e.g., alterations in signal transduction
1125 pathways, transcriptional regulation, post-translational modifications, etc.). These underlying
1126 details, if known, can be captured in the description of biological plausibility (if desired) rather
1127 than represented as independent KEs. The KER descriptions are the appropriate place
1128 for "embedding" this type of biological detail without compromising the reusability of the KE

descriptions within the AOP-Wiki. However, it should be kept in mind that added detail should only be included to the extent that it enhances the predictive utility of the AOP for regulatory application. Detail may be particularly useful in considering the differences across taxonomic groups or species that may dictate the broad utility of the AOP (i.e., the taxonomic domain of applicability). In part, the AOP is intended to filter through much of the mechanistic detail to focus on what important causal events for the adverse outcome have predictive value for regulatory application. Thus, efforts should be made to keep the descriptions focused and concise.

ii. Empirical Evidence

In this section authors are encouraged to cite specific evidence relevant to assessment of changes in the upstream KE (KE_{Upstream}) leading to, or being associated with, a predictable subsequent change in the downstream KE (KE_{Downstream}).

In particular, it is useful to cite direct evidence showing that stressors that perturb KE_{Upstream} also perturb KE_{Downstream}. Because this section of the KER description cites evidence from specific studies, it is also helpful to provide as much detail as possible about the toxicological and biological context in which the measurements were made. While the KER itself is not intended to be stressor-specific, this information addresses whether supporting data on quantitative patterns of relationships between key events is consistent with what's expected, if the KER is operative. Expected patterns are that the upstream KE is impacted at doses/concentrations of the stressor that are equal to or lower than those that impact the downstream KE (dose concordance; Figure 9), that at any given dose of stressor, the upstream is impacted earlier in the time-course of exposure than the downstream event (temporal concordance; Figure 9), and likewise for any given dose and duration of exposure to the stressor, the upstream event is observed in an equal to or greater proportion of the sample population than the downstream event (incidence concordance; Figure 9). Deviations from these expected patterns may be due to factors such as experimental design, the relative sensitivity of methods for measuring KEs, and other factors; experimental details that could influence apparent concordance or lack thereof, should therefore be considered when assembling and presenting evidence.

Figure 9. Examples of dose concordance, temporal concordance, and incidence concordance. Note that dose concordance and temporal concordance are comparing the relative dose or time at which a defined level of response is observed for KE_A compared to KE_B. Incidence concordance compared the fraction of the population impacted at the same dose and time point for KE_A versus KE_B.

The consideration of empirical support in the form of bulleted lists or tables that include a short description of the nature of the observed empirical support along with the corresponding reference(s) is preferred as a basis to consider whether available data consistently supports expected patterns. An example is provided below (Table 3). However, authors are free to modify the format to best suit their approach to support the consideration of weight of evidence for the pathway. To the extent possible, entries in the table should be based on benchmark

1177 doses to facilitate comparative assessment of effect , thus normalizing for groupsizes and dose
 1178 spacing.

1179
 1180 Table 3. Example of an empirical evidence table assembled for a KER¹.

Species, life-stage, sex tested	Stressor(s)	Upstream Effect (Y/N)	Downstream Effect (Y/N)	Effect on Upstream Event (descriptive)	Effect on Downstream Event (descriptive)	Citation
Adult, female, rainbow trout	Gemfibrozil	Y	Y	Benchmark dose (BMD) 15 µg/L	BMD 45 µg/L	Smith et al. 1978
Adult, F, Sprague Dawley rat	Low fat diet	Y	N	Significant decrease at 100 mg/kg/day, after 3 days	No effect at concentrations up to 2 g/kg/d, fed up to 10 days	Zonk 2018
Juvenile, M, mouse	Clofibric acid	N	Y	BMD 45 mg/kg/d, measured 5 d post-injection	BMD 5 mg/kg/d, measured 5 d post-injection	Doe et al. 2012
Larval zebrafish	UV radiation @ UV index = 90	Y	Y	Significant decrease in 80% of sampled population after 48 h	Significant increase in 22% of sampled population after 96 h	Lee et al. 1994

1181 ¹Entries in this table are for illustrative purposes only. They do not refer to results from real
 1182 studies. Any resemblance to existing scientific results or authors is coincidental.

1183
 1184 *a. Dose Concordance*

1185 In the case of dose-response concordance, the aim is not to consider dose-dependence of a
 1186 single KE in the pair, but rather to assess the extent of the evidence that KE upstream is
 1187 generally impacted at doses (or stressor severities) equal to or less than those at which KE
 1188 downstream is impacted (data row 2 of Table 3 shows an example of dose concordance;
 1189 row 3 does not follow the expected pattern for dose concordance).

1190
 1191 *b. Temporal Concordance*

1192 In the case of temporal concordance, it is desirable to assemble evidence relevant to
 1193 assessing whether effects on KE upstream are observed earlier in a time-course than effects
 1194 on the downstream KE (data row 3 of Table 3 shows an example of temporal concordance,
 1195 as well as dose concordance).

1196
 1197 *c. Incidence Concordance*

1198 In the case of incidence concordance, evidence should be assembled that addresses whether,
 1199 at an equivalent dose or stressor severity, KEupstream occurs more frequently than
 1200 Kedownstream (data row 4 of Table 3 shows an example of incidence concordance, as well
 1201 as temporal concordance).

1202
 1203 *d. Other Evidence (optional)*

1204 Although evidence that demonstrates dose, temporal or incidence concordance is preferred,
 1205 other evidence that empirically supports the relations that a sufficient change in KEupstream
 1206 will lead to a change in KEdownstream, but do not fall into the above three categories, can

1207 be cited in this subsection.

1208

1209 *iii. Uncertainties and Inconsistencies*

1210 In addition to outlining the evidence supporting a particular linkage, it is also important to
1211 identify inconsistencies or uncertainties in the relationship. This could include, for example,
1212 empirical evidence showing changes in KEupstream that did not elicit alterations in
1213 KEdownstream. It could also include descriptions of gaps in biological understanding that
1214 lend to uncertainties in understanding of the exact nature of the structural or functional
1215 relationship between the two KEs. Additionally, while there are expected patterns of
1216 concordance that support a causal linkage between the KEs in the pair, it is also helpful to
1217 identify experimental details that may explain apparent deviations from the expected patterns
1218 of concordance. An example of this would be a case where methods for measuring the
1219 upstream KE are relatively insensitive compared to those for measuring the downstream KE,
1220 leading to the appearance of dose-response or incidence discordance that is simply an artefact
1221 of the measurement techniques employed. In this regard, when assembling information from
1222 multiple disparate studies, it is important to capture variables that directly influence how well
1223 concordance can be assessed (i.e., information regarding the doses tested in various
1224 experiments and the time-points at which various KE measurements were made).
1225 Identification of uncertainties and inconsistencies contributes to evaluation of the overall WoE
1226 supporting the AOPs that contain a given KER (see Section 4), and to the identification of
1227 research gaps that warrant investigation.

1228 Given that AOPs are intended to support regulatory applications, AOP developers should
1229 focus on those inconsistencies or gaps that would have a direct bearing or impact on the
1230 confidence in the KER and its use as part of an AOP for inference or extrapolation in a
1231 regulatory setting. Uncertainties that would have little impact on regulatory application do not
1232 need to be described. In general, this section details evidence that may raise questions
1233 regarding the overall validity and predictive utility of the KER (including consideration of
1234 both biological plausibility and empirical support). It also contributes, along with other
1235 elements, to the overall evaluation of the WoE for the KER (see, Section 4).

1236

1237 **3H. Known Modulating Factors**

1238 This section presents information regarding modulating factors/variables known to alter
1239 quantitative aspects of the response-response function that describes the relationship between the
1240 two KEs (for example, an iodine deficient diet causes a significant increase in the sensitivity of
1241 the downstream event to changes in the upstream event [alters the slope of the relationship]; a
1242 particular genotype doubles the sensitivity of KEdownstream to changes in KEupstream).
1243 Information on these known modulating factors should be listed in this subsection, along with
1244 relevant information regarding the manner in which the modulating factor alters the relationship
1245 (if known). Note: this section should focus on those modulating factors for which solid evidence
1246 supported by relevant data and literature are available. It should NOT list all possible/plausible
1247 modulating factors. In this regard, it is useful to bear in mind that many risk assessments
1248 conducted through conventional apical guideline testing-based approaches generally consider
1249 few if any modulating factors.

1250 It is recommended that information regarding known modulating factors be captured in a tabular
1251 format (Table 4), providing the following information about each:

- 1252 • What it is – the modulating factor for which there is solid evidence that it
1253 influences this KER.
- 1254 • Details of the modulating factor – specify which features (classes or subsets?) of
1255 this modulating factor are relevant for this KER.
- 1256 • Describe the known effect(s) of the modulating factor on the KER.
 - 1257 i. E.g., increases magnitude of effect on downstream KE by two-fold
 - 1258 ii. E.g., reduces the probability of effect on the downstream event by 40%
 - 1259 iii. E.g., delays onset of the downstream event by 12-18 h

- iv. E.g., increases sensitivity to the upstream event by a factor of four
- Reference(s) – provide one or more references that provide supporting scientific evidence that establishes the effect of the modulating factor on the KER.

Table 4. Recommended tabular format for capturing information regarding known modulating factors¹.

Modulating Factors	MF details	Effects on the KER	References
Age	>55 years old (human)	Sensitivity of downstream event to change in upstream event increased by factor of 4	Smith et al. 1978
Genotype	BRCA1 truncation mutation in nucleotides 2401-4109)	Probability of downstream event increased by 40%	Zonk 2018
Diet	Iodine deficient	Delays onset of downstream effect by 5-10 d	Doe et al. 2012
Disease state	Type 2 diabetes	Increases risk of downstream event by 10 fold	Lee et al. 1994
Previous exposure	Within 3 years of Covid 19 infection	Magnitude of effect on downstream event increased 2-fold Delay	Walla Walla and Grant, 2022

¹ Entries in this table are for illustrative purposes only. They do not refer to results from real studies. Any resemblance to existing scientific results or authors is coincidental.

3I. Quantitative Understanding

The quantitative understanding section of the KER description is intended to capture information that helps to define how much change in the upstream KE, and/or for how long, is needed to elicit a detectable and defined change in the downstream KE. While empirical support (see previous section F Evidence Supporting this KER) addresses whether data on the relationship between the two KEs are consistent with the patterns that are expected if the upstream event is causing the downstream event, the quantitative understanding section helps to define the precision with which the state of the downstream KE can be predicted from knowledge of the state of the upstream KE. The higher the confidence in empirical support for a KER, the greater the likelihood that the response-response relationship can be quantified. These quantitative relationships may be defined in terms of correlations, response-response relationships, dose-dependent transitions or points of departure (i.e., a threshold of change in KEupstream needed to elicit a change in KEdownstream), etc. They may take the form of simple mathematical equations or sophisticated biologically-based computational models that consider other modulating factors such as compensatory responses, or interactions with other biological or environmental variables. Regardless of form, the idea is to briefly describe what is known regarding the quantitative relationship between the KEs and cite appropriate literature that defines those relationships and/or provides support for them.

1292 Data that confer quantitative understanding of a KER are not necessarily independent of those
1293 addressing other weight of evidence considerations. Rather, the quantitative understanding
1294 section collects additional detail about the nature of the quantitative relationship generally from
1295 the same studies used to establish empirical support. These further details are intended to
1296 support quantitative prediction of the probability or magnitude of change in KEdownstream
1297 based on a known state of KEupstream. For transparency, the toxicological and biological
1298 context in which the quantitative relationships were defined should be indicated within the
1299 description. The ultimate goal is to identify quantitative relationships that generalise across the
1300 entire applicability domain of the two KEs being linked via the KER.

1301
1302 Based on recommendations from workshops held in September 2015 (Wittwehr et al. 2016)
1303 and April 2017 (LaLone et al. 2017), description of the quantitative understanding of the KER
1304 has been organised into subsections in order to more consistently capture information useful
1305 for both quantitative AOP and AOP network applications. As with other areas of the AOP
1306 descriptions, authors are encouraged to complete the subsections to the extent feasible, but it is
1307 recognized that supporting information may not be adequate to address all.

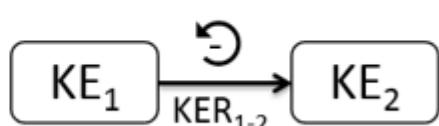
1308
1309 *i. Response-response relationship*

1310 This subsection should be used to define sources of data that define the response-response
1311 relationships between the KEs. A response-response relationship is a mathematical
1312 function that describes the magnitude, probability, or severity of change in the
1313 downstream KE (B) as a function of the measured (or predicted) state of the
1314 upstream KE (A). Information regarding the general form of the relationship (e.g., linear,
1315 exponential, sigmoidal, threshold, etc.) should be captured if possible. If there are specific
1316 mathematical functions or computational models relevant to the KER in question that have
1317 been defined, those should also be cited and/or described where possible, along with
1318 information concerning the approximate range of certainty with which the state of the
1319 KEdownstream can be predicted based on the measured state of the KEupstream (i.e., can
1320 it be predicted within a factor of two, or within three orders of magnitude?). For example, a
1321 regression equation may reasonably describe the response-response relationship between
1322 the two KERs, but that relationship may have only been validated/tested in a single species
1323 under steady state exposure conditions. It is important to note such uncertainties.

1324
1325 *ii. Time-scale*

1326 This sub-section should be used to provide information regarding the approximate time-
1327 scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects
1328 on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). This
1329 can be useful information both in terms of modelling the KER, as well as for analysing the
1330 critical or dominant paths through an AOP network (e.g., identification of an AO that could
1331 kill an organism in a matter of hours will generally be of higher priority than other potential
1332 AOs that take weeks or months to develop). Identification of time-scale can also aid the
1333 assessment of temporal concordance. For example, for a KER that operates on a time-scale
1334 of days, measurement of both KEs after just hours of exposure in a short-term experiment
1335 could lead to incorrect conclusions regarding dose-response or temporal concordance if the
1336 time-scale of the upstream to downstream transition was not considered.

1337
1338
1339 *iii. Known Feedback loops influencing this KER*


1340 KERs are depicted in a manner that suggests that the upstream event is independent of the
1341 downstream event. However, in biological systems, feedback relationships are common.
1342 This subsection should define whether there are known positive or negative feedback loops
1343 involved and what is understood about their time-course and homeostatic limits. In some
1344 cases where feedback processes are measurable and causally linked to the outcome, they
1345 may be represented as KEs (see development tip 5). However, in most cases these features
1346 are expected to predominantly influence the shape of the response-response and time-

1347 course, behaviours between selected KEs (i.e., the KER). For example, if a feedback loop
1348 acts as an auto-regulatory loop designed to maintain a homeostatic range of concentrations
1349 between some upper and lower limit, the feedback loop will directly shape the response-
1350 response relationship between the KEs. It is recommended that an annotation indicating a
1351 positive or negative feedback loop (Figure 10) in a KER be added to the graphical
1352 representation, and that details be provided in this subsection of the KER description.

A.

B.

1353
1354
1355
1356 **Figure 10.** Recommended graphical annotation to indicate that a known (A) positive feedback
1357 (i.e., feedforward) or (B) negative feedback loop is involved in the transition from one KE to the
1358 next in the AOP. Note, this is an optional annotation. See Development tip 7 for more
1359 information on describing positive and negative feedback processes using the AOP framework.
1360

Development tip 7 – Capturing information on positive or negative feedback loops.

Ways to capture/represent known positive or negative feedback loops have emerged as a frequently asked question in relation to use of the AOP framework. Thus, a few general guidelines are provided here.

- In cases where feedback loops play a direct causal role in the progression of a biological perturbation leading to an AO, they can be included as KEs as long as they are measurable. For example, for an AOP in which a negative feedback process results in decreased hormone signalling that leads to the AO, a measurable event indicative of or involved in the activation of the negative feedback could be included as a KE.
- In cases where a feedback loop may act as a key compensatory or adaptive mechanism that dictates how severely the KEupstream needs to be impacted in order of affect the KEdownstream, but does not play a direct causal role in the AOP (other than defining the relevant point of departure), the feedback should not be included as a separate KE. Rather it should be detailed as part of the quantitative understanding section of the KER description. In the user supplied graphical representation, a forward or backward looping symbol could be added above the arrow linking the two KEs to indicate that a known positive or negative feedback loop is involved in the transition (Figure 10B).
- In cases where two measurable KEs in an AOP are part of a positive feedback loop, it can be challenging to define which should be upstream and which downstream, as they are amplifying or altering one another in a cycle. A two headed arrow is undesirable as it can incorrectly suggest that the AOP is reversible. However, in practice an AOP with a positive feedback loop could be accurately represented as two different AOPs in the AOP-Wiki, in which the KEs involved in the positive feedback are presented in either order. This effectively creates a bi-directional arrow when the AOP network is assembled. Rather than creating two nearly identical AOP pages with the KE order reversed for each, the current recommendation is to select either order for the KEs and connect them with a unidirectional arrow, but add a forward looping symbol above the arrow in the user-supplied graphical representation to indicate that a known feedforward loop is involved. (Figure 10A).

1361
1362 **iv. Classification of quantitative understanding**

1363 To aid in overall assessment of the AOP and whether it is fit-for-purpose for various applications,
1364 developers are also asked to classify the extent of quantitative understanding of the KER as low,
1365 moderate, or high, taking into account the extent of data and resulting confidence in empirical

1366 support, but also the extent to which quantitative impact of relevant modulating factors is
1367 understood. General guidance for classification of the level of quantitative understanding of a
1368 KER as low, moderate, or high (Annex 2) is based on several key considerations:

- 1369 • The accuracy and precision with which a change in KEdownstream can be predicted based
1370 on KEupstream.
- 1371 • The precision with which uncertainty in the prediction of KEdownstream can be quantified.
- 1372 • The extent to which known modulating factors or feedback mechanisms are accounted for.
- 1373 • The extent to which the relationships described can be reliably generalised across the
1374 biological applicability domain of the KER.

1375

1376 **3J. References**

1377 List of the literature that was cited for this KER description using the appropriate format. Ideally,
1378 the list of references, should conform, with the OECD Style Guide
1379 (<https://www.oecd.org/about/publishing/OECD-Style-Guide-Third-Edition.pdf>) (OECD, 2015).

1383 SECTION 4 – OVERALL ASSESSMENT OF THE AOP

1384
1385 This section addresses the relevant biological domain of applicability of the AOP as a whole
1386 (i.e., in terms of taxa, sex, life stage, etc.) and WoE for the overall AOP. Both are critical for
1387 determining the AOP's fit-for-purpose for various applications. This overall assessment is
1388 captured on the lower portion of the AOP pages within the AOP-Wiki. **The goal of the overall**
1389 **assessment is not to reproduce or reiterate all the content assembled as part of sections 1-**
1390 **3, but rather to provide a high level synthesis and overview of the relative confidence in the**
1391 **AOP and any significant gaps or weaknesses**. While description and evaluation of modular
1392 components facilitate development through sharing, regulatory applications, such as integrated
1393 approaches to testing and assessment and stressor specific mode of action, require integrated,
1394 pathway-level, analyses. Assimilation and assessment of the extent to which experimental data
1395 support expected patterns across all the KERs for the AOP informs relative confidence relevant
1396 to consideration of its suitability for specific regulatory applications. For example, the confidence
1397 required for prioritizing testing is normally less than that for screening assessment or full
1398 assessment to inform risk management.

1399
1400 Determination of confidence in the overall AOP is based on the biological plausibility, empirical
1401 support, and extent of quantitative understanding for the KERs (Section 3) and the evidence
1402 supporting essentiality of the KEs.

1403 Assessment of the AOP is organised into a number of steps. Guiding questions that inform
1404 evaluation at each step are included in Annex 1. The questions are designed to facilitate
1405 assignment of categories of high, moderate, or low confidence for each consideration. While it
1406 is not necessary to repeat lengthy text that appears elsewhere in the AOP description (or related
1407 KE and KER descriptions), a brief explanation or rationale for the selection of high, moderate,
1408 or low confidence should be made, based on the guiding questions detailed below.

1411 4A. Define the Biological Domain of Applicability of the AOP

1412 The relevant biological domain(s) of applicability in terms of sex, life-stage, taxa, and other
1413 aspects of biological context are defined in this section. Biological domain of applicability is
1414 informed by the “Description” and “Biological Domain of Applicability” sections of each KE
1415 and KER description (see sections 2G and 3E for details). In essence the taxa/life-stage/sex
1416 applicability is defined based on the groups of organisms for which the measurements
1417 represented by the KEs are relevant and the structural, functional, and regulatory relationships
1418 represented by the KERs are operative.

1419
1420 The relevant biological domain of applicability, including the biologically plausible domain of
1421 applicability of the AOP as a whole will nearly always be defined based on the most narrowly
1422 restricted of its KEs and KERs. For example, if most of the KEs apply to either sex, but one is
1423 relevant to females only, the biological domain of applicability of the AOP as a whole would be
1424 limited to females. While much of the detail defining the domain of applicability may be found
1425 in the individual KE and KER descriptions, the rationale for defining the relevant biological
1426 domain of applicability of the overall AOP should be briefly summarised on the AOP page.

1427 4B. Assess the Essentiality of All KEs

1428
1429 An important aspect of assessing an AOP is evaluating the essentiality of its KEs. This normally
1430 entails assessment of the impact of manipulation of a given KE (e.g., experimentally blocking
1431 or exacerbating the event) on the downstream sequence of KEs defined for the AOP.
1432 Consequently, evidence supporting essentiality is collated on the AOP page, rather than on the
1433 independent KE pages that are as stand-alone modular units that do not reference other KEs in
1434 the sequence. That said, such evidence can also be captured through the description of adjacent
1435 and non-adjacent KERs.

1436
1437

1438 The nature of experimental evidence that is relevant to assessing essentiality relates to the impact
1439 on downstream KEs and the AO if upstream KEs are prevented or modified. This includes:

- 1440 • Direct evidence: directly measured experimental support that blocking or preventing a
1441 KE prevents or impacts downstream KEs in the pathway in the expected fashion.
1442 Depending on the nature of the KE, could also be evidence that overexpression of the
1443 object of the KE prevents or impacts the downstream KEs in a manner consistent with
1444 its causal, and essential, role in the pathway.
- 1445 • Indirect evidence: evidence that modulation or attenuation in the magnitude of impact
1446 on a specific KE (increased effect or decreased effect) is associated with corresponding
1447 changes (increases or decreases) in the magnitude or frequency of one or more
1448 downstream KEs.

1449
1450 When evaluating the overall support for essentiality of the KEs, authors may want to summarize
1451 their evaluation of relative levels of support in a tabular format (e.g., Table 5). The objective is
1452 to summarise briefly investigations in which the essentiality of KEs has been experimentally
1453 explored either directly or indirectly. In some cases, the impact of blocking or modifying an early
1454 KE on all downstream KEs in the pathway has been determined; in other cases, the impact only
1455 on a single adjacent or non-adjacent downstream KE has been measured.

1456
1457 When assembling support for essentiality of the KEs, it is not necessary to repeat lengthy text on
1458 the design or results of relevant investigations that may appear in other parts of the AOP
1459 description (e.g., as biological plausibility or empirical support for a KER). Rather, the entries
1460 should briefly address the extent of the supporting and contradictory data through a short
1461 description of the nature of the direct or indirect evidence addressing essentiality, along with
1462 relevant references. The objective is to provide an overview of the extent and nature of
1463 supporting and inconsistent data on essentiality of the KEs in a format that will facilitate a “call”
1464 on the overall degree of support for essentiality across the AOP. Some examples of brief
1465 narratives addressing support for essentiality are included here. The specific nature of these
1466 narratives necessarily vary, depending on the nature of key events in the AOP. See
1467 https://aopwiki.org/info_pages/2/info_linked_pages/6 for additional examples:

1468
1469 For direct evidence:

- 1470 • Knock-out of KE1 or early KEs leads to blockage of all downstream KEs
- 1471 • Overexpression or underexpression of KE1 leads to effect on all downstream KEs
- 1472 • One or more downstream KEs is blocked or reversed by inhibiting (or allowing recovery
1473 of) upstream KEs
- 1474 • Overexpression or underexpression in repair enzyme for early KEs leads to decreased or
1475 increased incidence of downstream KEs
- 1476 • Antagonism or agonism of upstream KE leads to expected pattern of effects on
1477 downstream KEs

1478
1479 For indirect evidence:

- 1480 • Impact of a known modulating factor for early KEs leads to expected pattern of effects
1481 on later KEs

1482
1483 **Table 5:** Example of a Table Format for summarizing the relative evidence supporting the

1484 Essentiality of KEs in the pathway.

1485

Event	Direct Evidence	Indirect Evidence	No experimental evidence	Contradictory experimental evidence
MIE	****	**		
KE1	*	****		
KE2			****	
KE3.....	**			*
KEn				

1486

1487

1488 *Uncertainties or Inconsistencies:*

1489 In addition to outlining the evidence supporting essentiality, it is also important to identify
1490 inconsistencies or uncertainties. This could include, for example, evidence in specific studies
1491 that did not support that blockage or attenuation of an early KE impacted later KEs in the AOP.
1492 Discordance with the results of other studies should be considered based on evaluation of the
1493 adequacy of study design, taking into account, for example, the sensitivity of the detection of
1494 impact. It could also include, for example, gaps in knowledge concerning the essentiality of the
1495 MIE or particular KEs where there are data on essentiality only for one or a few. To the extent
1496 possible, inconsistencies and uncertainties should focus on data gaps important for potential
1497 envisaged regulatory applications as a basis for indicating priorities for further research.

1498

1499 Based on the assembled evidence on essentiality for the KEs, confidence in the supporting data
1500 on essentiality is considered for the entire AOP, including KERs and KEs. This is commonly
1501 based on the extent of direct and/or indirect evidence for one, several or all of the KEs.

1502

1503 Confidence in the supporting data for essentiality of KEs within the AOP is considered:

- 1504 • **High** if there is direct evidence from specifically designed experimental studies
1505 illustrating prevention or corresponding impact on downstream KEs and/or the AO if
1506 upstream KEs are blocked or modified [e.g., via stop exposure/reversibility studies,
1507 antagonism, knock out models, etc.];
- 1508 • **Moderate** if there is indirect evidence that modification of one or more upstream KEs is
1509 associated with a corresponding (increase or decrease) in the magnitude or frequency of
1510 downstream KEs [e.g., augmentation of proliferative response (KEupstream) leading to
1511 increase in tumour formation (KEdownstream or AO)];
- 1512 • **Low** if there is no or contradictory experimental evidence that blocking or
1513 modulating/attenuating any of the KEs influences the KEs downstream or AO (Annex
1514 1).

1515

1516 **4C. Evidence Assessment.**

1517 The biological plausibility, empirical support, and quantitative understanding from each KER in an
1518 AOP are assessed together:

1519

1520 *i. Review the Biological Plausibility of Each KER*

1521 Biological plausibility of each of the KERs in the AOP is the most influential consideration in
1522 assessing WoE or degree of confidence in an overall hypothesised AOP for potential
1523 regulatory application (Meek et al., 2014; 2014a). The defining question for biological
1524 plausibility (Annex 1) is: Is there a mechanistic (i.e., structural or functional) relationship
1525 between KEupstream and KEdownstream consistent with established biological knowledge?
1526 Confidence in the WoE for the biological plausibility of the KERs would be considered:

1527

1528

1529

- 1527 • **High** if it is well understood based on extensive previous documentation and has an
1528 established mechanistic basis and broad acceptance (canonical knowledge; e.g.,
1529 increased follicle stimulating hormone signalling leading to increased estrogen

1530 synthesis, increased incidence of alkylated DNA leading to increased incidence of
1531 mutations)

- 1532 • **Moderate** if the KER is plausible based on analogy to accepted biological
1533 relationships but scientific understanding is not completely established
- 1534 • **Low** if there is empirical support for a statistical association between KEs but
1535 structural or functional relationship between them is not understood.

1536

1537 *ii. Review the Empirical Support for Each KER*

1538 Empirical support entails consideration of experimental data in terms of the associations
1539 between KEs – namely dose-response concordance and temporal relationships between and
1540 across multiple KEs. It is examined most often in studies of dose-response/incidence and
1541 temporal relationships for stressors that impact the pathway at multiple levels of biological
1542 organization. These patterns are most evident when considered across all KERs of the AOP
1543 with experimental protocols optimally designed to address incidence and severity of key
1544 events in the AOP at multiple or all levels of biological organization. While less influential
1545 than biological plausibility and essentiality (Meek et al., 2014; 2014a), empirical support
1546 contributes to the assessment of confidence in an AOP for regulatory application.

1547

1548 It is important to recognise that empirical support relates to the “concordance” of dose
1549 response, temporal and incidence relationships for KERs; the defining question is not whether
1550 or not there is a dose response relationship for a specific KE but rather, whether there is
1551 expected concordance with the dose-response relationships for KERs – i.e., between KEs
1552 (Figure 9).

1553

1554 The defining questions for empirical support (Annex 1) are: Does KEupstream occur at lower
1555 doses and earlier time points than KEdownstream; is the incidence or frequency of
1556 KEupstream greater than that for KEdownstream for the same dose of tested stressor?
1557 Inconsistencies in empirical support across taxa, species and stressors that don’t align with the
1558 expected pattern for the hypothesised AOP as described in Section 3 should be identified and
1559 their basis considered.

1560

1561 Empirical support for each of the KERs would be considered:

1562

- 1563 • **High** if there is dependent change in both events following exposure to a wide range
1564 of specific stressors (extensive evidence for temporal, dose-response and incidence
1565 concordance) and no or few data gaps or conflicting data’
- 1566 • **Moderate** if there is demonstrated dependent change in both events following
1567 exposure to a small number of specific stressors and some evidence inconsistent with
1568 the expected pattern that can be explained by factors such as experimental design,
1569 technical considerations, differences among laboratories, etc.;
- 1570 • **Low** if there are limited or no studies reporting dependent change in both events
1571 following exposure to a specific stressor (i.e., endpoints never measured in the same
1572 study or not at all), and/or lacking evidence of temporal or dose-response concordance,
1573 or identification of significant inconsistencies in empirical support across taxa and
1574 species that don’t align with the expected pattern for the hypothesised AOP.

1575

1576 Although developers should evaluate the support for each KER, most critically for the Overall
1577 Assessment of the AOP is to consider the overall level of support across all of the KERs. It
1578 may not be uncommon that the degree of supporting evidence for some KERs in the pathway
1579 are quite limited. However, when there is strong plausibility for the pathway as a whole, and
1580 there are well supported non-adjacent relationships that bridge across some of the weaker
1581 intermediate KERs, the support for the pathway as a whole may still be quite strong. While
1582 evidence assembly may be done in a highly modular fashion, the Overall Assessment of the
1583 AOP should once again step back and evaluate the evidence supporting the pathway as a
1584 whole. It is that more integrated and wholistic view that really informs application.

1585
1586 Tables summarising the relevant experimental data for tested stressors across all the KEs may
1587 be helpful in considering the extent of empirical support and to the extent possible should be
1588 based on benchmark doses. For example, benchmark doses (BMDs) for specified similar
1589 increases in each of the KEs are entered in the cells of the table. If the hypothesised linkages
1590 in the AOP are supported by empirical data, there is a pattern of increasing BMDs from the
1591 top lefthand corner to the bottom right hand corner for each of the tested stressors. Presentation
1592 in this manner readily identifies any exceptions to the expected patterns that are considered as
1593 inconsistencies and diminish from the overall weight of empirical support (see Table 6).
1594

1595 **Table 6.** Generic example of a concordance table for evaluating overall empirical support for
1596 an AOP.

Benchmark Dose (mg/kg/d)	KE 1	KE 2	KE 3	KE 5	KE 6	KE 7
0.01	----	----	----	----	----	----
0.05	+++	++	---	++	----	----
0.1		+	+++	+++	----	----
0.5					++	----
1.0					+	++++

1598 a. Benchmark dose at which a specified level of change in the KE relative to controls was inferred, based on the empirical
1599 results. (Note, where concentrations tested are inadequate to determine a BMD, LOEC or NOEC could also be considered,
1600 but concentrations tested in different studies must be taken into account).

1601 **4D. Known Modulating Factors**

1602 The evidence supporting the influence of various modulating factors is assembled within the
1603 individual KERs. As part of the Overall Assessment of the AOP, authors should list the known
1604 modulating factors that have been identified, briefly note their expected influence on the
1605 outcome, and list the specific KER(s) involved. This can be captured in a simple table (e.g.,
1606 Table 7). Additional details or notes can be supplied as free text below the table.

1607 **Table 7.** Example of suggested tabular format for identifying critical information concerning
1608 known modulating factors that may be expected to influence the AOP.

Modulating Factor	Influence on Outcome	KER(s) Involved

1612 **4E. Review the Quantitative Understanding of the KERs**

1613 The extent of quantitative understanding of the KERs in an AOP is critical with regard to
1614 potential regulatory application. For some applications (e.g., dose- response analysis in an in-
1615 depth risk assessment), quantitative characterization of downstream KERs may be essential,
1616 while for others quantitative understanding of upstream KERs may be most important (e.g.,
1617 QSAR modelling for category formation for testing). Because evidence that contributes to
1618 quantitative understanding of the KER is generally not mutually exclusive with the empirical
1619 support for the KER (i.e., expected patterns of quantitative relationships), evidence that
1620 contributes to quantitative understanding will generally be considered to some extent as part of
1621 the evaluation of the WoE supporting the KER (see Section 3.E. and Annex 1, footnote b).
1622 However, specific attention is also given to how precisely and accurately one can potentially
1623 predict an impact on KEdownstream based on some measurement of KEupstream. This is
1624 captured in the form of quantitative understanding calls for each KER, i.e. as low, moderate, or
1625 high (Annex 2). As noted in section 3, general guidance for characterising the level of
1626 quantitative understanding of a KER is based on several key considerations:
1627

1629 • The extent to which a change in KEdownstream can be precisely predicted based on
1630 KEupstream.

1631 • The precision with which uncertainty in the prediction of KEdownstream can be
1632 quantified.

1633 • The extent to which known modulating factors or feedback mechanisms are accounted
1634 for.

1635 • The extent to which the relationships described can be reliably generalized across the
1636 applicability domain of the KER.

1637 As with the other parts of the overall assessment of the AOP, it is not necessary to repeat all
1638 the details provided in the KER descriptions. The overall evaluation of the quantitative
1639 understanding should briefly explain the rationale for the assigned level of quantitative
1640 understanding of each KER. It should then consider the overall pattern of quantitative
1641 understanding across all KERs to indicate how precisely outcomes along the entire pathway
1642 may be predicted for a given exposure scenario. If certain parts of the pathway can be predicted
1643 with quantitative precision, while others cannot, the potential implications for application may
1644 be discussed.

1645 **4F. Considerations for Potential Applications of the AOP (optional)**

1646 The Overall Assessment of the AOP is intended to help inform decisions about an AOP's fit-for-
1647 purpose for different types of applications. Consequently, at their discretion, following their
1648 assessment of the AOP, the developers may want to discuss the type(s) of application(s) they feel
1649 the AOP would be suited for, based on their evaluation. This may include, for example, possible
1650 utility for test guideline development or refinement, development of integrated testing and
1651 assessment approaches, development of (Q)SARs / or chemical profilers to facilitate the grouping
1652 of chemicals for subsequent read-across, screening-level hazard assessments or even risk
1653 assessment. This section can consider whether the AOP assembled can support the intended
1654 application that was outlined previously in the "AOP Development Strategy" section. It may also be
1655 that new potential applications or limitations which become apparent when developing the AOP and
1656 assessing the evidence could also be noted in this section.

1657 It is further recognized, that developers may not be aware of all the potential applications for any
1658 given AOP. Consequently, users of the AOP-Wiki are encouraged to leave comments on the
1659 discussion pages, or via the [AOP Forum](#) if they identify suitable applications for a given AOP.
1660 Listing these applications can aid others in using the AOP.

1661 **4G. References**

1662 References cited elsewhere on the AOP page should be listed here. This is not a compilation of
1663 all references cited on the linked KE and KER pages. Ideally, the list of references, should
1664 conform with the OECD Style Guide (<https://www.oecd.org/about/publishing/OECD-Style-Guide-Third-Edition.pdf>) (OECD, 2015).

1671 **REFERENCES**

1672

1673 Becker RA, Ankley GT, Edwards SW, Kennedy SW, Linkov I, Meek B, Sachana M, Segner H,
1674 Van Der Burg B, Villeneuve DL, Watanabe H, Barton-Maclaren TS. (2015). Increasing scientific
1675 confidence in adverse outcome pathways: application of tailored Bradford-Hill considerations for
1676 evaluating weight of evidence. *Regul Toxicol Pharmacol* 72: 514-537.

1677

1678 Collier ZA, Gust KA, Gonzalez-Morales B, Gong P, Wilbanks MS, Linkov I, Perkins EJ. (2016). A
1679 weight of evidence assessment approach for adverse outcome pathways. *Regul Toxicol Pharmacol*
1680 75: 46-57.

1681

1682 Jensen, MA, Blatz, D J, LaLone, CA. (2022) Defining the Biologically Plausible Taxonomic
1683 Domain of Applicability of an Adverse Outcome Pathway: A Case Study Linking Nicotinic
1684 Acetylcholine Receptor Activation to Colony Death. *Environmental Toxicology and Chemistry*.
1685 42:71-87

1686

1687 Knapen, D., Vergauwen, L., Villeneuve, D.L. and Ankley GT. (2015) The potential of AOP
1688 networks for reproductive and developmental toxicity assay development. *Reprod Toxicol*. 56: 52-
1689 55.

1690

1691 Knapen D, Angrish MM, Fortin MC, Katsiadaki I, Leonard M, Margiotta-Casaluci L, Munn S,
1692 O'Brien JM, Pollesch N, Smith LC, Zhang X, Villeneuve DL. Adverse outcome pathway networks
1693 I: Development and applications. *Environ Toxicol Chem*. 2018 Jun;37(6):1723-1733. doi:
1694 10.1002/etc.4125. Epub 2018 May 7. PMID: 29488651; PMCID: PMC6004608.

1695

1696 Krewski D, Acosta D Jr., Andersen M, Anderson H, Bailar J.C. 3rd, Boekelheide K, Brent R,
1697 Charnley G, Cheung VG, Green S Jr, Kelsey KT, Kerkvliet NI, Li AA, McCray L, Meyer O,
1698 Patterson RD, Pennie W, Scala RA, Solomon GM, Stephens M, Yager J, Zeise L. (2010). Toxicity
1699 testing in the 21st century: a vision and strategy. *J Toxicol Environ Health B Crit Rev*. 13: 51-138.

1700

1701 LaLone CA, Ankley GT, Belanger SE, Embry MR, Hodges G, Knapen D, Munn S, Perkins EJ,
1702 Rudd MA, Villeneuve DL, Whelan M, Willett C, Zhang X, Hecker M. (2017.) Advancing the
1703 adverse outcome pathway framework – an international horizon scanning approach. *Environ
1704 Toxicol Chem*. 36: 1411-1421.

1705

1706 Leist M, Ghallab A, Graepel R, Marchan R, Hassan R, Bennekou SH, Limonciel A, Vinken M,
1707 Schildknecht S, Waldmann T, Danen E, van Ravenzwaay B, Kamp H, Gardner I, Godoy P, Bois
1708 FY, Braeuning A, Reif R, Oesch F, Drasdo D, Höhme S, Schwarz M, Hartung T, Braunbeck T,
1709 Beltman J, Vrielink H, Sanz F, Forsby A, Gadaleta D, Fisher C, Kelm J, Fluri D, Ecker G, Zdražil
1710 B, Terron A, Jennings P, van der Burg B, Dooley S, Meijer AH, Willighagen E, Martens M, Evelo
1711 C, Mombelli E, Tabouret O, Mantovani A, Hardy B, Koch B, Escher S, van Thriel C, Cadenas C,
1712 Kroese D, van de Water B, Hengstler JG. (2017) Adverse outcome pathways: opportunities,
1713 limitations, and open questions. *Regulat. Toxicol.* DOI: 10.1007/s00204-017-2045-3

1714

1715 Meek ME, Klaunig JE. (2010). Proposed mode of action of benzene induced leukemia: interpreting
1716 available data and identifying critical data gaps for risk assessment. *Chem. Biol. Interact.* 184: 279-
1717 285.

1718

1719 Meek ME, Boobis AR, Cote I, Dellarco V, Fotakis G, Munn S, Seed J, Vickers C. (2014a). New
1720 developments in the evolution and application of the WHO/IPCS framework on mode of
1721 action/species concordance analysis. *J Appl Toxicol*. 34: 1-18.

1722

1723 Meek ME, Palermo CM, Bachman AN, North, CM, Lewis RJ. (2014b). Mode of Action Human
1724 Relevance (MOA/HR) Framework – Evolution of the Bradford Hill Considerations and
1725 Comparative Analysis of Weight of Evidence. *J Appl Toxicol*. 34: 595-606.

1726
1727 OECD (2015), OECD Style Guide third edition, OECD Publishing, Paris.
1728 <https://www.oecd.org/about/publishing/OECD-Style-Guide-Third-Edition.pdf>
1729
1730 Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann
1731 B, Lettieri T, Munn S, Nepelska M, Ottlinger MA, Vergauwen L, Whelan M. (2014a) Adverse
1732 outcome pathway (AOP) development I: strategies and principles. *Toxicol Sci.* 142: 312-320.
1733
1734 Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann
1735 B, Lettieri T, Munn S, Nepelska M, Ottlinger MA, Vergauwen L, Whelan M. (2014b) Adverse
1736 outcome pathway development II: best practices. *Toxicol Sci.* 142: 321-330.
1737
1738 Wittwehr C, Aladjov H, Ankley G, Byrne HJ, de Knecht J, Heinzle E, Klambauer G, Landesmann
1739 B, Luijten M, MacKay C, Maxwell G, Meek ME, Paini A, Perkins E, Sobanski T, Villeneuve D,
1740 Waters KM, Whelan M. (2017) How Adverse Outcome Pathways can aid the development and use
1741 of computational prediction models for regulatory toxicology. *Toxicol Sci.* 155: 326-336.
1742
1743

4 ANNEX 1: Guidance for Assessing Relative Level of Confidence in the Overall AOP

5 Examples of complete tables for selected AOPs are available:

AOP	Assessment Summary File
https://aopwiki.org/aops/15	https://aopwiki.org/system/dragonfly/production/2017/05/19/7s1ibrunwt_RevisedAssessmentSummaryAop_15.pdf
https://aopwiki.org/aops/23	https://aopwiki.org/system/dragonfly/production/2017/03/20/3usvv7naq8_Annex1_for_AOP_23_AR_reproductive_dys_2017_03_20.pdf
https://aopwiki.org/aops/38	https://aopwiki.org/aops/38#evidence
https://aopwiki.org/aops/42	https://aopwiki.org/system/dragonfly/production/2017/03/24/6u60jhkjp8_TPO_AOP_Summary_Tables.pdf

1. Support for Biological Plausibility of KERs ¹	Defining Question	High ^{2,3}	Moderate	Low
	Is there a mechanistic (i.e., structural or functional) relationship between KEup and KEdown consistent with established biological knowledge?	Extensive understanding based on extensive previous documentation and broad acceptance -Established mechanistic basis	The KER is plausible based on analogy to accepted biological relationships but scientific understanding is not completely established.	There is empirical support for a statistical association between KEs (See 3.), but the structural or functional relationship between them is not understood.
⁴ MIE => KE1: (copy and paste the KER description into this cell)	Biological Plausibility of the MIE => KE1 is xxx. Rationale:			
KE1 => KE2: (copy and paste the KER description into this cell)	Biological Plausibility of KE1 => KE2 is xxx Rationale:			
KE2 => KE3 (copy and paste the KER description into this cell)	Biological Plausibility of KE2 => KE3 is xxx. Rationale:			

1 Rank ordered Bradford Hill considerations adapted from Meek et al. (2014b)

2 The guidance for “high”, “moderate” and “low” draws on limited current experience. Additional delineation of the nature of relevant evidence in these broadly defined categories requires more experience with larger numbers of documented AOPs.

3 “Direct evidence” implies specifically designed experiments to consider the relevant element. “Indirect evidence” may overlap with other elements.

4 To the extent possible, each of the relevant Bradford Hill considerations is addressed for each of the KERs (biological plausibility and empirical support) and KEs (essentiality) and separate rationales provided.

2. Support for Essentiality of KEs ⁵	Defining Question	High	Moderate	Low
	What is the impact on downstream KEs and/or the AO if an upstream KE is modified or prevented?	Direct evidence from specifically designed experimental studies illustrating prevention or impact on downstream KEs and/or the AO if upstream KEs are blocked or modified	Indirect evidence that modification of one or more upstream KEs is associated with a corresponding (increase or decrease) in the magnitude or frequency of downstream KEs	No or contradictory experimental evidence of the essentiality of any of the KEs.
AOP	Rationale for Essentiality of KEs in the AOP is xxx:			

⁵While the extent of the supporting data on the essentiality of each of the KEs is addressed separately (Table 3), delineation of the degree of confidence is based on consideration of evidence for all of the KEs within the AOP and therefore, only one rationale is required. This call is normally based on the extent of the available evidence for a range of KEs in the AOP.

3. Empirical Support for KERs	Defining Questions	High	Moderate	Low
		Does KEup occur at lower doses and earlier time points than KE down and at the same dose of stressor, is the incidence of KEup > than that for KEdown? ^{6,7} .	Multiple studies showing dependent change in both events following exposure to a wide range of specific stressors. (Extensive evidence for temporal, dose-response and incidence concordance) and no or few critical data gaps or conflicting data	Demonstrated dependent change in both events following exposure to a small number of specific stressors and some evidence inconsistent with expected pattern that can be explained by factors such as experimental design, technical considerations, differences among laboratories, etc.
MIE => KE1: (copy and paste the KER description into this cell)b	Empirical Support of the MIE => KE1 is xxx. Rationale:			
KE1 => KE2: (copy and paste the KER description into this cell)	Empirical Support of the KE1 => KE2 is xxx. Rationale:			
KE2 => KE3 (copy and paste the KER description into this cell)	Empirical Support of the KE2 => KE3 is xxx. Rationale:			

b In many cases, evidence that contributes to quantitative understanding (Section 4 of a KER description) will also provide empirical support for the relationship. Consequently, relevant information from the “Quantitative Understanding” section of the KER description should be considered as part of the overall weight of evidence

⁶This is normally considered on the basis of tabular presentation of available data on temporal and dose-response aspects, in a template that documents the extent of support. See, for example, Table 4.

⁷Note that this relates to concordance of dose response, temporal and incidence relationships for KERs rather than the KEs; the defining question is not whether or not there is a dose response relationship for the KE but whether there is concordance with that for earlier and later KEs. This is normally demonstrated in studies with different types of stressors.

1772
1773
1774
1775
1776

ANNEX 2: General guidance for characterizing the level of quantitative understanding of a KER as low, moderate, or high.

Extent of Quantitative Understanding	Characteristics
High	<p>Change in KEdownstream can be precisely predicted based on a relevant measure of KEupstream.</p> <p>Uncertainty in the quantitative prediction can be precisely estimated from the variability in the relevant measure of KEupstream.</p> <p>Known modulating factors and feedback/feedforward mechanisms are accounted for in the quantitative description.</p> <p>There is evidence that the quantitative relationship between the KEs generalizes across the relevant applicability domain of the KER.</p>
Moderate	<p>Change in KEdownstream can be precisely predicted based on a relevant measure of KEupstream.</p> <p>Uncertainty in the quantitative prediction is influenced by factors other than the variability in the relevant measure of KEupstream.</p> <p>Quantitative description does not account for all known modulating factors and/or known feedback/feedforward mechanisms.</p> <p>The quantitative relationship has only been demonstrated for a subset of the overall applicability domain of the KER (e.g., based on a single species).</p>
Low	<p>Only a qualitative or semi-quantitative prediction of the change in KEdownstream can be determined from a measure of KEupstream.</p> <p>Known modulating factors and/or known feedback/feedforward mechanisms are not accounted for.</p> <p>The quantitative relationship has only been demonstrated for a narrow subset of the overall applicability domain of the KER (e.g., based on a single species).</p>

1777
1778