This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Relationship: 2460
Title
Increase, ROS leads to Increase, LPO
Upstream event
Downstream event
Key Event Relationship Overview
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding | Point of Contact | Author Status | OECD Status |
|---|---|---|---|---|---|---|
| Oxidation and antagonism of reduced glutathione leading to mortality via acute renal failure | adjacent | High | Moderate | Carmel Mothersill (send email) | Open for citation & comment | |
| Glutathione conjugation leading to reproductive dysfunction via oxidative stress | adjacent | High | High | Leonardo Vieira (send email) | Under Development: Contributions and Comments Welcome | |
| Essential element imbalance leads to reproductive failure via oxidative stress | non-adjacent | Travis Karschnik (send email) | Under development: Not open for comment. Do not cite | |||
| Excessive reactive oxygen species production leading to mortality (3) | adjacent | You Song (send email) | Under development: Not open for comment. Do not cite |
Taxonomic Applicability
Sex Applicability
| Sex | Evidence |
|---|---|
| Unspecific | High |
Life Stage Applicability
| Term | Evidence |
|---|---|
| All life stages | High |
Key Event Relationship Description
Evidence Collection Strategy
This KER was identified as part of an Environmental Protection Agency effort to increase the impact of AOPs published in the peer-reviewed literature, but heretofore unrepresented in the AOP-Wiki, by facilitating their entry and update. The originating work for this AOP was da Silva, J., Goncalves, R. V., de Melo, F. C. S. A., Sarandy, M. M., & da Matta, S. L. P. (2021). Cadmium exposure and testis susceptibility: A systematic review in murine models. Biological Trace Element Research, 199(7), 2663-2676. This publication, and the work cited within, were used create and support this AOP and its respective KE and KER pages.
Evidence for the originating publication was assembled using Medline/PubMed and Scopus in September 2018. For all databases, the search filters were based on three complementary levels: (i) animals, (ii) testis, and (iii) cadmium and studies that didn't evaluate the Cd exposure in the testicular histomorphology of murine models were excluded.
Evidence Supporting this KER
Biological Plausibility
Biological plausibility of this KER lies in the fact that reactive species, in excess, react and change macromolecules such as proteins, nucleic acids and lipids. Membrane lipids are particularly susceptible to damage by free radicals, as they are composed by unsaturated fatty acids (Su et al. 2019). Hence, increase in ROS production beyond antioxidant system defense capability of cells enables free circulation of molecules such as O2·−, HO·, H2O2, which removes electrons from membrane lipids and then triggers lipid peroxidation (Auten and Davis 2009; Su et al. 2019).
Empirical Evidence
Analyses performed to support this relation show that KER3 is unchained by the three previously selected xenobiotics, as well as it takes place in a conserved way among species. Connection among the KEs is observed in both in vitro experimental models and in vivo systems, including fishes, birds and mammals.
In cultures of rat hepatocytes, progressive ROS increase during 4 hours of treatment, triggered by DEM (5 mM), is followed by a continuous growth in levels of thiobarbituric acid reactive substances (TBARS), lipid peroxidation markers (Tirmenstein et al. 2000). This chemical depletes GSH content, leading to an augmentation of ROS levels and, consequently, to lipid peroxidation. In an in vivo model, 52 μM of DEM intraperitoneally injected in male Balb/c mice for two weeks caused a significant decrease in the GSH, increase in GSSG, ROS generation and increase in lipid peroxidation in testicles (Kalia and Bansal 2008).
ATZ (46.4 µM) causes an increase of 48.97% of ROS and of 12.5% in MDA content in cultures of Sertoli-Germ cells from Wistar rats (25–28 days old), after, respectively, 3 and 24 h post-exposure. At a higher concentration (232 µM), these cells reach a maximum peak of ROS production after 6h of exposure, while MDA generation gets to the peak only after 24 h of treatment (Abarikwu, Pant, and Farombi 2012). In in vivo model, ATZ (38.5, 77 e 154 mg/Kg bw/day) led to a decrease in total antioxidant capacity (TAC) in a dose-dependent manner in male Sprague-Dawley rats of Specific Pathogen Free (SPF) ATZ-treated for 30 days. Which indirectly suggests increase in ROS levels – and increased malondialdehyde (MDA) content in 154 mg/Kg (Song et al. 2014).
In relation to Hg, it was found that male young Wistar rats exposed to an initial dose of 4.6 μg/Kg of this metal (with following doses of 0.07 μg/Kg/day) displayed an increase in ROS levels, followed by an elevation of MDA content in testicles and epididymis of these rats 60 days post-exposure (Rizzetti et al. 2017). Other assays still carried out with male rats showed that the heavy metal induces oxidative stress with a single subcutaneous dose of 5 mg/Kg, by a substantial diminishment of activity of the main testicle antioxidant enzymes: SOD, CAT and GPX. Consequently, blood hydroperoxide and testicle MDA levels rose in a relevant way (El-Desoky et al. 2013).
Furthermore, Hy-Line Brown laying hens fed with 4 experimental diets containing graded levels of Hg at 0.280, 3.325, 9.415, and 27.240 mg/Kg, respectively, for 10 weeks had GSH content significantly decreased in all Hg-treatment groups in ovaries, whilst SOD, CAT, GPX and glutathione reductase (GR) enzyme activities were significantly reduced, pointing to ROS accumulation. MDA content strongly increased in the 27.240-mg/Kg Hg group (Ma et al. 2018).
Hence, it can be deduced that, as in other adjacent relations evaluated, there is also evidence here that upstream KE is initially required in order to downstream KE take place, which reaffirms time concordance. Besides this, data enhance dose and incidence concordances for this KER.
Uncertainties and Inconsistencies
Known modulating factors
| Modulating Factor (MF) | MF Specification | Effect(s) on the KER | Reference(s) |
|---|---|---|---|
| antioxidant | vitamin E | prevents lipid peroxidation | Auten and Davis 2009 |
| antioxidant | vitamin C | prevents lipid peroxidation | Auten and Davis 2009 |
Quantitative Understanding of the Linkage
Mechanisms involving lipid peroxidation, such as that one caused by ROS accumulation in cells, have been investigated for decades (Tirmenstein et al. 2000; Yin, Xu, and Porter 2011; Su et al. 2019). For this reason, there is much experimental data about response-response relationships or a growth of upstream KE in relation to downstream KE.
Response-response Relationship
This mechanism can be better understood through a process chain that consists of initiation, propagation and termination, as discussed by (Yin, Xu, and Porter 2011). In their review, these authors summarized a series of chemical reactions that develop during all this self-oxidation process and represent them in a schematic manner, as displayed in figure below.

Furthermore, although phospholipid oxidizability is lower, once their rate of diffusion in membranes is slower, the kinetics for this kind of reaction shown in figure follows the same law of velocity (steady-state rate) of homogeneous systems (equation below) (Yin, Xu, and Porter 2011). Oxygen consumption of the equation represents the rate of steady state, while rate of radical generation is defined by Ri, the constant of propagation rate is expressed as kp and the termination rate constant for the reaction is called kt.
-d[O] / dt = kp / (2kt)1/2. [L-H] . Ri1/2
Time-scale
For instance, empirical evidences show that rat hepatocytes begin ROS production after the first 30 minutes of DEM exposition (5 mM), growing linearly for all the remaining time, whereas the increase in products of lipid peroxidation (TBARS) starts only from the first hour of exposure (Tirmenstein et al. 2000).
Known Feedforward/Feedback loops influencing this KER
Domain of Applicability
Considering the empirical domain of the evidence, the increased, reactive oxygen species leading to increased, lipid peroxidation is known to occur in fish and mammals, but, based on scientific reasoning, the biologically plausible domain of applicability can be eukaryotic organisms in general. It can be measured at any stage of life and in both male and female species.
References
Su, Lian-Jiu, Jia-Hao Zhang, Hernando Gomez, Raghavan Murugan, Xing Hong, Dongxue Xu, Fan Jiang, and Zhi-Yong Peng. 2019. “Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis.” Oxidative Medicine and Cellular Longevity 2019 (October): 5080843.
Auten, Richard L., and Jonathan M. Davis. 2009. “Oxygen Toxicity and Reactive Oxygen Species: The Devil Is in the Details.” Pediatric Research 66 (2): 121–27.
Tirmenstein, M. A., F. A. Nicholls-Grzemski, J. G. Zhang, and M. W. Fariss. 2000. “Glutathione Depletion and the Production of Reactive Oxygen Species in Isolated Hepatocyte Suspensions.” Chemico-Biological Interactions 127 (3): 201–17.
Kalia, Sumiti, and M. P. Bansal. 2008. “Diethyl Maleate-Induced Oxidative Stress Leads to Testicular Germ Cell Apoptosis Involving Bax and Bcl-2.” Journal of Biochemical and Molecular Toxicology 22 (6): 371–81.
Abarikwu, S. O., E. O. Farombi, and A. B. Pant. 2011. “Biflavanone-Kolaviron Protects Human Dopaminergic SH-SY5Y Cells against Atrazine Induced Toxic Insult.” Toxicology in Vitro: An International Journal Published in Association with BIBRA 25 (4): 848–58.
Rizzetti, Danize Aparecida, Caroline Silveira Martinez, Alyne Goulart Escobar, Taiz Martins da Silva, José Antonio Uranga-Ocio, Franck Maciel Peçanha, Dalton Valentim Vassallo, Marta Miguel Castro, and Giulia Alessandra Wiggers. 2017. “Egg White-Derived Peptides Prevent Male Reproductive Dysfunction Induced by Mercury in Rats.” Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 100 (February): 253–64.
El-Desoky, Gaber E., Samir A. Bashandy, Ibrahim M. Alhazza, Zeid A. Al-Othman, Mourad A. M. Aboul-Soud, and Kareem Yusuf. 2013. “Improvement of Mercuric Chloride-Induced Testis Injuries and Sperm Quality Deteriorations by Spirulina Platensis in Rats.” PloS One 8 (3): e59177.
Ma, Yan, Mingkun Zhu, Liping Miao, Xiaoyun Zhang, Xinyang Dong, and Xiaoting Zou. 2018. “Mercuric Chloride Induced Ovarian Oxidative Stress by Suppressing Nrf2-Keap1 Signal Pathway and Its Downstream Genes in Laying Hens.” Biological Trace Element Research 185 (1): 185–96.
Yin, Huiyong, Libin Xu, and Ned A. Porter. 2011. “Free Radical Lipid Peroxidation: Mechanisms and Analysis.” Chemical Reviews 111 (10): 5944–72.
Auten, Richard L., and Jonathan M. Davis. 2009. “Oxygen Toxicity and Reactive Oxygen Species: The Devil Is in the Details.” Pediatric Research 66 (2): 121–27.