This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Relationship: 3316

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Increase, Oxidative Stress leads to Altered Stress Response Signaling

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes.Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Deposition of energy leads to abnormal vascular remodeling adjacent High Low Vinita Chauhan (send email) Open for citation & comment WPHA/WNT Endorsed
Deposition of Energy Leading to Learning and Memory Impairment adjacent High Low Vinita Chauhan (send email) Open for citation & comment WPHA/WNT Endorsed

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
human Homo sapiens Low NCBI
mouse Mus musculus High NCBI
rat Rattus norvegicus High NCBI
Pig Pig Moderate NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Male High
Female Low
Unspecific Low

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
Juvenile High
Adult Moderate

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

Oxidative stress occurs when the production of free radicals exceeds the capacity of cellular antioxidant defenses (Cabrera & Chihuailaf, 2011). Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are both free radicals that can contribute to oxidative stress (Ping et al., 2020); however, ROS are more commonly studied than RNS (Nagane et al., 2021). ROS can mediate oxidative damage to biomacromolecules as they react with DNA, proteins and lipids, resulting in functional changes to these molecules (Ping et al., 2020). For example, ROS acting on lipids creates lipid peroxidation (Cabrera & Chihuailaf, 2011). 

Many signaling pathways control and maintain physiological balance within a living organism, and these can be impacted by oxidative stress. Excessive reactive oxygen and nitrogen species (RONS) during oxidative stress can modify biological molecules and directly cause DNA damage, which can lead to altered signal transduction pathways (Hughson, Helm & Durante, 2018; Lehtinen & Bonni, 2006; Nagane et al., 2021; Ping et al., 2020; Ramadan et al., 2021; Schmidt-Ullrich et al., 2000; Soloviev & Kizub, 2019; Wang, Boerma & Zhou, 2016; Venkatesulu et al., 2018; Zhang et al., 2016). Different cell types can express distinct cellular pathways that can have varied response to an increase in oxidative stress. For example, oxidative stress in endothelial cells has been shown to inhibit the insulin-like growth factor 1 receptor (IGF-1R) and phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathway and to activate the mitogen-activated protein kinase (MAPK) pathway, which can then have downstream detrimental effects (Ping et al., 2020). The MAPK family pathway is also activated in the central nervous system (CNS) in response to oxidative stress through calcium-induced phosphorylation of several kinases. These include phosphoinositide 3-kinase (PI3K), protein kinase A (PKA) and protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase II (CaMKII) (Lehtinen & Bonni, 2006; Li et al., 2013; Ramalingam & Kim, 2012).

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER. For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help

Overall weight of evidence: High 

Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

Many reviews describe the role of oxidative stress in altered signaling. The mechanisms through which oxidative stress can contribute to changes in various signaling pathways are well-described. For example, oxidative stress can directly alter signaling pathways through protein oxidation (Ping et al., 2020; Schmidt-Ullrich et al., 2000; Valerie et al., 2007). Oxidation of cysteine and methionine residues, which are particularly sensitive to oxidation, can cause conformational change, protein expansion, and degradation, leading to changes in the protein levels of signaling pathways (Ping et al., 2020). Furthermore, oxidation of key residues in signaling proteins can alter their function, resulting in altered signaling. For example, oxidation of methionine 281 and 282 in the Ca2+/calmodulin binding domain of Ca2+/calmodulin-dependent protein kinase II (CaMKII) leads to constitutive activation of its kinase activity and subsequent downstream alterations in signaling pathways (Li et al., 2013; Ping et al., 2020). Similarly, during oxidative stress, tyrosine phosphatases can be inhibited by oxidation of a catalytic cysteine residue, resulting in increased phosphorylation of proteins in various signaling pathways (Schmidt-Ullrich et al., 2000; Valerie et al., 2007). Particularly relevant to this are the MAPK pathways. For example, the extracellular signal-regulated kinase (ERK) pathway is activated by upstream tyrosine kinases and relies on tyrosine phosphatases for deactivation (Lehtinen & Bonni, 2006; Valerie et al., 2007). 

Furthermore, oxidative stress can indirectly influence signaling pathways through oxidative DNA damage which can lead to mutations or changes in the gene expression of proteins in signaling pathways (Ping et al., 2020; Schmidt-Ullrich et al., 2000; Valerie et al., 2007). DNA damage surveillance proteins like ataxia telangiectasia mutated (ATM) kinase and ATM/Rad3-related (ATR) protein kinase phosphorylate over 700 proteins, leading to changes in downstream signaling (Nagane et al., 2021; Schmidt- Ullrich et al., 2000; Valerie et al., 2007). For example, ATM, activated by oxidative DNA damage, phosphorylates many proteins in the ERK, p38, and Jun N-terminal kinase (JNK) MAPK pathways, leading to various downstream effects (Nagane et al., 2021; Schmidt-Ullrich et al., 2000). 

The response of oxidative stress on signaling pathways has been studied extensively in various diseases. Herein presented are examples relevant to a few cell types related to impaired learning and memory.. Many other pathways are plausible but available research has highlighted these to be critical to disease. 

Endothelial cells: Endothelial cells can normally produce ROS. Antioxidant enzymes and the glutathione redox buffer control the redox state of vascular tissues. However, the dysregulation of signaling pathways can occur in the endothelium when oxidative stress is favored (Soloviev & Kizub, 2019). Oxidative stress can activate the acidic sphingomyelinase (ASMase)/ceramide pathway, the MAPK pathways, the p53/p21 pathway, and the signaling proteins p16 and p21, as well as inhibit the PI3K/Akt pathway (Hughson, Helm & Durante, 2018; Nagane et al., 2021; Ping et al., 2020; Ramadan et al., 2021; Soloviev & Kizub, 2019; Wang, Boerma & Zhou, 2016). 

Brain cells: oxidative stress can induce alterations to various pathways such as the PI3K/Akt pathway, cAMP response element- binding protein (CREB) pathway, the p53/p21 pathway, as well as the MAPK family pathways, including JNK, ERK and p38 (Lehtinen & Bonni, 2006; Ramalingam & Kim, 2012). 

Additionally, the electron transport chain in the mitochondria is an important source of ROS, which can damage mitochondria by inducing mutations in mitochondrial DNA. These mutations lead to mitochondrial dysfunction due to alterations in cellular respiration mechanisms that perpetuates oxidative stress and can then induce the release of signaling molecules related to apoptosis from the mitochondria. Pro-apoptotic markers (Bax, Bak and Bad) and anti-apoptotic markers (Bcl-2 and Bcl-xL) can regulate the caspase pathway that ultimately mediate apoptosis (Annunziato et al., 2003; Wang & Michaelis, 2010; Wu et al., 2019). 

The mechanisms of oxidative stress leading to altered signaling may be different for each pathway. For example, although both the PI3K/Akt and MAPK pathways can be regulated by insulin-like growth factor (IGF)-1, ROS results in selective inhibition of the IGF- 1R/PI3K/Akt pathway by inhibiting the IGF-1 receptor (IGF-1R) activation of IRS1 (Ping et al., 2020). Additionally, ROS-induced MAPK activation can be done through Ras-dependent signaling. Firstly, oxygen radicals mediate the phosphorylation of upstream epidermal growth factor receptors (EGFRs) on tyrosine residues, resulting in increased binding of growth factor receptor-bound protein 2 (Grb2) and subsequent activation of Ras signaling (Lehtinen & Bonni, 2006). Direct inhibition of MAPK phosphatases with hydroxyl radicals also activates this pathway (Li et al., 2013). In another mechanism, ROS competitively inhibit the Wnt/β-catenin pathway through the activation of forkhead box O (FoxO), which are involved in the antioxidant response and require binding of β- catenin for transcriptional activity (Tian et al., 2017). 

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help
  • MAPK pathways can exhibit varied responses after exposure to oxidative stress. The expected response is an increase in the activity of the ERK, JNK, and p38 pathways as protein phosphatases, involved in the inactivation of MAPK pathways, are deactivated by oxidative stress (Valerie et al., 2007). Although some studies observe this (Azimzadeh et al., 2021; Sakata et al., 2015), others show a decrease (Fan et al., 2017) or varying changes (Azimzadeh et al., 2015) in the MAPK pathways. 

    The assays employed in studies to assess the KEs may lead to variations in the quantitative understanding of observations. 

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help

Modulating factor  

Details  

Effects on the KER  

References  

Drug 

Fenofibrate (PPARα activator, PPARα is a transcription factor that can activate antioxidant response) 

Treatment of mice with 100 mg/kg of body weight daily for 2 weeks before and 2 weeks after radiation restored SOD activity, returned the level of phosphorylated MAPK proteins and increased Nrf2 levels. 

Azimzadeh et al., 2021 

Drug 

L-carnitine (antioxidant) 

L-carnitine injections (100 mg/kg) following irradiation resulted in decreased DHE staining, indicating ROS, and increased p-p38/p38 and p-Nrf2/Nrf2. 

Fan et al., 2017 

Drug 

Bradykinin potentiating factor (BFP)  

(antioxidant) 

Treatment with BFP (1ug/g) after irradiation showed decreased AngII and aldosterone levels compared to irradiation alone.  

Hasan, Radwan & Galal, 2020 

Drug 

Sildenafil 

Sildenafil (5 uM) inhibits O2- production and attenuates intracellular peroxynitrite in BAECs after 10 Gy irradiation. As well, ASMase activity and ceramide generation was inhibited. 

Wortel et al., 2019 

Drug 

DPI  

(NOX-inhibitor) 

Inhibits O2-  production and intracellular H2O2 in BAECs after 10 Gy irradiation. 

Wortel et al., 2019 

Drug 

Edaravone (EDA) which acts as a free radical scavenger 

EDA treatment was able to reduce the levels of ROS and consequently decrease the expression levels of phosphorylated JNK, p38 and ERK1/2. 

Zhao et al., 2013 

Drug 

Melandrii Herba extract (antioxidant) 

The extract was able to reduce the H2O2-induced phosphorylation of ERK1/2, JNK1/2 and p38 in human neuroblastoma SH-SY5Y cells. 

Lee et al., 2017 

Drug 

N-acetyl-L-cysteine, or NAC (antioxidant) 

Attenuated the effects of H2O2 in BV-2 murine microglial cells as treatment with NAC reduced c-Jun and ERK1/2 phosphorylation. 

Deng et al., 2012 

Drug 

Gallocatechin gallate (GCG) or epigallocatechin-3-gallate (EGCG), both of which have antioxidant properties 

GCG and EGCG inhibits ROS accumulation in mouse hippocampal-derived HT22 cells and Wistar rats, respectively. This consequently reduced glutamate-induced phosphorylation of MAPKs (ERK and JNK) and returned p53 to control levels. 

Park et al., 2021; El-Missiry et al., 2018 

Drug  

Cornus officinalis (CC) and fermented CC (FCC), both of which have antioxidant properties 

Both CC and FCC were able to reduce intracellular ROS generation in H2O2-induced neurotoxicity in SH-SY5Y human neuroblastoma cells. This was accompanied with a decrease in ERK1/2, JNK and p38 phosphorylation. 

Tian et al., 2020 

Drug 

L-165041, a PPARδ agonist (PPARα is a transcription factor that can activate antioxidant response). 

10 Gy of 137Cs irradiation resulted in an increase in intracellular ROS and c-Jun, MEK1/2 and ERK1/2 phosphorylation in BV-2 cells, all of which were attenuated with L-165041 treatment. 

Schnegg et al., 2012 

Drug 

Fucoxanthin (antioxidant) 

Fucoxanthin was able to inhibit the LPS-induced increase in intracellular ROS and phosphorylation of JNK, ERK and p38. 

Zhao et al., 2017 

Media 

Mesenchymal stem-cell conditioned medium (MSC-CM) 

MSC-CM was able to inhibit the X-ray-induced increase in ROS and MDA levels and decrease in SOD and GSH levels, resulting in activation of PI3/Akt. 

Huang et al., 2021 

Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help
Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help
Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

ROS can upregulate protein kinase C, which stimulates the production of ceramide from sphingomyelinase. Ceramide activates NADPH oxidase, which can then produce more ROS (Soloviev & Kizub, 2019). Another feedback loop exists between the Nrf2/HO-1 signaling pathway and oxidative stress. The Nrf2/HO-1 signaling pathway is involved in negative feedback of oxidative stress, activating transcription of anti-oxidative enzymes to regulate cellular ROS and maintain a redox balance (Tahimic & Globus, 2017; Tian et al., 2017). Lastly, the MAPK pathway also exhibits a feedback loop. ERK can regulate ROS levels indirectly through p22phox, which increases ROS and upregulates antioxidants by Nrf2 activation. JNK activation can lead to FoxO activation, thereby resulting in antioxidant production (Arfin et al., 2021; Essers et al., 2004). 

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

Based on the prioritized studies presented here, the evidence of taxonomic applicability is low for humans despite there being strong plausibility as the evidence only includes in vitro human cell-derived models. The taxonomic applicability for mice and rats is considered high as there is much available data using in vivo rodent models that demonstrate the concordance of the relationship. The taxonomic applicability was determined to be moderate for pigs as only one in vivo study provided meaningful support to the relationship. In terms of sex applicability, all in vivo studies that indicated the sex of the animals used male animals, therefore, the evidence for males is high and females is considered to be low for this KER. The majority of studies used adolescent animals, with a few using adult animals. Preadolescent animals were not used to support the KER; however, the relationship in preadolescent animals is still plausible. 

References

List of the literature that was cited for this KER description. More help

Annunziato, L. (2003), "Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions", Toxicology Letters, Vol. 139/2–3, https://doi.org/10.1016/S0378-4274(02)00427-7. 

Arfin, S. et al. (2021), “Oxidative Stress in Cancer Cell Metabolism”, Antioxidants 2021, Vol. 10/5, MDPI, Basel, https://doi.org/10.3390/ANTIOX10050642 

Azimzadeh, O. et al. (2021), "Activation of pparα by fenofibrate attenuates the effect of local heart high dose irradiation on the mouse cardiac proteome", Biomedicines, Vol. 9/12, MDPI, Basel, https://doi.org/10.3390/biomedicines9121845 

Azimzadeh, O. et al. (2017), "Proteome analysis of irradiated endothelial cells reveals persistent alteration in protein degradation and the RhoGDI and NO signalling pathways", International Journal of Radiation Biology, Vol. 93/9, Informa, London, https://doi.org/10.1080/09553002.2017.1339332 

Azimzadeh, O. et al. (2015), "Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction", Journal of Proteome Research, Vol. 14/2, American Chemical Society, Washington, https://doi.org/10.1021/pr501141b 

Boyce, B. F. and L. Xing. (2007), "The RANKL/RANK/OPG pathway", Current Osteoporosis Reports, Vol. 5/3, https://doi.org/10.1007/s11914-007-0024-y 

Cabrera, M. P. and R. H. Chihuailaf. (2011), "Antioxidants and the Integrity of Ocular Tissues", Veterinary Medicine International, Vol. 2011, Hindawi, London, https://doi.org/10.4061/2011/905153 

Carvour, M. et al. (2008), "Chronic Low-Dose Oxidative Stress Induces Caspase-3-Dependent PKCδ Proteolytic Activation and Apoptosis in a Cell Culture Model of Dopaminergic Neurodegeneration", Annals of the New York Academy of Sciences, Vol. 1139/1, https://doi.org/10.1196/annals.1432.020. 

Chen, L. et al. (2009), "Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway", The International Journal of Biochemistry & Cell Biology, Vol. 41/6, Elsevier, Amsterdam, https://doi.org/10.1016/j.biocel.2008.10.029. 

Crossthwaite, A. J., S. Hasan and R. J. Williams. (2002), "Hydrogen peroxide-mediated phosphorylation of ERK1/2, Akt/PKB and JNK in cortical neurones: dependence on Ca2+ and PI3-kinase", Journal of Neurochemistry, Vol. 80/1, John Wiley & Sons, Hoboken, https://doi.org/10.1046/j.0022-3042.2001.00637.x. 

Deng, Z. et al. (2012), "Radiation-Induced c-Jun Activation Depends on MEK1-ERK1/2 Signaling Pathway in Microglial Cells", (I. Ulasov, Ed.) PLoS ONE, Vol. 7/5, https://doi.org/10.1371/journal.pone.0036739. 

El-Missiry, M. A. et al. (2018), "Neuroprotective effect of epigallocatechin-3-gallate (EGCG) on radiation-induced damage and apoptosis in the rat hippocampus", International Journal of Radiation Biology, Vol. 94/9, https://doi.org/10.1080/09553002.2018.1492755. 

Fan, Z. et al. (2017), "L-carnitine preserves cardiac function by activating p38 MAPK/Nrf2 signalling in hearts exposed to irradiation", European Journal of Pharmacology, Vol. 804, Elsevier, Amsterdam, https://doi.org/10.1016/j.ejphar.2017.04.003 

Hasan, H. F., R. R. Radwan and S. M. Galal. (2020), "Bradykinin‐potentiating factor isolated from Leiurus quinquestriatus scorpion venom alleviates cardiomyopathy in irradiated rats via remodelling of the RAAS pathway", Clinical and Experimental Pharmacology and Physiology, Vol. 47/2, Wiley, https://doi.org/10.1111/1440-1681.13202 

Hladik, D. et al. (2020), "CREB Signaling Mediates Dose-Dependent Radiation Response in the Murine Hippocampus Two Years after Total Body Exposure", Journal of Proteome Research, Vol. 19/1, https://doi.org/10.1021/acs.jproteome.9b00552. 

Huang, Y. et al. (2021), "Mesenchymal Stem Cell-Conditioned Medium Protects Hippocampal Neurons From Radiation Damage by Suppressing Oxidative Stress and Apoptosis", Dose-Response, Vol. 19/1, https://doi.org/10.1177/1559325820984944. 

Hughson, R. L., A. Helm and M. Durante. (2018), "Heart in space: Effect of the extraterrestrial environment on the cardiovascular system", Nature Reviews Cardiology, Vol. 15/3, Nature, https://doi.org/10.1038/nrcardio.2017.157 

Kenchegowda, D. et al. (2018), "Selective Insulin-like Growth Factor Resistance Associated with Heart Hemorrhages and Poor Prognosis in a Novel Preclinical Model of the Hematopoietic Acute Radiation Syndrome", Radiation Research, Vol. 190/2, BioOne, https://doi.org/10.1667/RR14993.1 

Kozbenko, T. et al. (2022), “Deploying elements of scoping review methods for adverse outcome pathway development: a space travel case example”, International Journal of Radiation Biology, Vol. 98/12. https://doi.org/10.1080/09553002.2022.2110306 

Lee, K., A. Lee and I. Choi. (2017), "Melandrii Herba Extract Attenuates H2O2-Induced Neurotoxicity in Human Neuroblastoma SH- SY5Y Cells and Scopolamine-Induced Memory Impairment in Mice", Molecules, Vol. 22/10, MDPI, Basel, https://doi.org/10.3390/molecules22101646. 

Lehtinen, M. and A. Bonni. (2006), "Modeling Oxidative Stress in the Central Nervous System", Current Molecular Medicine, Vol. 6/8, https://doi.org/10.2174/156652406779010786. 

Li, J. et al. (2013), "Oxidative Stress and Neurodegenerative Disorders", International Journal of Molecular Sciences, Vol. 14/12, https://doi.org/10.3390/ijms141224438. 

Limoli, C. L. et al. (2004), "Radiation Response of Neural Precursor Cells: Linking Cellular Sensitivity to Cell Cycle Checkpoints, Apoptosis and Oxidative Stress", Radiation Research, Vol. 161/1, https://doi.org/10.1667/RR3112. 

Essers, M. A. et al. (2004), “FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK”. The EMBO journal, Vol. 23/24, EMBO, https://doi.org/10.1038/sj.emboj.7600476 

Nagane, M. et al. (2021), "DNA damage response in vascular endothelial senescence: Implication for radiation-induced cardiovascular diseases", Journal of Radiation Research, Vol. 62/4, Oxford University Press, Oxford, https://doi.org/10.1093/jrr/rrab032 

Park, H. et al. (2016), "GDF15 contributes to radiation-induced senescence through the ROS-mediated p16 pathway in human endothelial cells", Oncotarget, Vol. 7/9, https://doi.org/10.18632/oncotarget.7457 

Park, D. H. et al. (2021), "Neuroprotective Effect of Gallocatechin Gallate on Glutamate-Induced Oxidative Stress in Hippocampal HT22 Cells", Molecules, Vol. 26/5, MDPI, Basel, https://doi.org/10.3390/molecules26051387. 

Ping, Z. et al. (2020), "Oxidative Stress in Radiation-Induced Cardiotoxicity", Oxidative Medicine and Cellular Longevity, Vol. 2020, Hindawi, London, https://doi.org/10.1155/2020/3579143 

Ramadan, R. et al. (2021), "The role of connexin proteins and their channels in radiation-induced atherosclerosis", Cellular and Molecular Life Sciences, Vol. 78, Nature, https://doi.org/10.1007/s00018-020-03716-3 

Ramalingam, M. and S.-J. Kim. (2012), "Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases", Journal of Neural Transmission, Vol. 119/8, Springer Nature, Berlin, https://doi.org/10.1007/s00702-011-0758-7. 

Ruffels, J., M. Griffin and J. M. Dickenson. (2004), "Activation of ERK1/2, JNK and PKB by hydrogen peroxide in human SH-SY5Y neuroblastoma cells: role of ERK1/2 in H2O2-induced cell death", European Journal of Pharmacology, Vol. 483/2–3, Elsevier, Amsterdam https://doi.org/10.1016/j.ejphar.2003.10.032. 

Sakata, K. et al. (2015), "Roles of ROS and PKC-βII in ionizing radiation-induced eNOS activation in human vascular endothelial cells", Vascular Pharmacology, Vol. 70, Elsevier, Amsterdam, https://doi.org/10.1016/j.vph.2015.03.016 

Schmidt-Ullrich, R. K. et al. (2000), "Signal transduction and cellular radiation responses.", Radiation research, Vol. 153/3, BioOne,https://doi.org/10.1667/00337587(2000)153[0245:stacrr]2.0.co;2 

Schnegg, C. I. et al. (2012), "PPARδ prevents radiation-induced proinflammatory responses in microglia via transrepression of NF- κB and inhibition of the PKCα/MEK1/2/ERK1/2/AP-1 pathway", Free Radical Biology and Medicine, Vol. 52/9, https://doi.org/10.1016/j.freeradbiomed.2012.02.032. 

Soloviev, A. I. and I. V. Kizub. (2019), "Mechanisms of vascular dysfunction evoked by ionizing radiation and possible targets for its pharmacological correction", Biochemical Pharmacology, Vol. 159, Elsevier, Amsterdam, https://doi.org/10.1016/j.bcp.2018.11.019 

Suman, S. et al. (2013), "Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production", Aging, Vol. 5/8, https://doi.org/10.18632/aging.100587. 

Sun, Y. et al. (2013), "Treatment of hydrogen molecule abates oxidative stress and alleviates bone loss induced by modeled microgravity in rats", Osteoporosis International, Vol. 24/3, Nature, https://doi.org/10.1007/s00198-012-2028-4 

Tahimic, C. G. T. and R. K. Globus. (2017), “Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight”, International Journal of Molecular Sciences, Vol. 18/10, MDPI, Basel, https://doi.org/10.3390/IJMS18102153 

Tian, Y. et al. (2017), "The impact of oxidative stress on the bone system in response to the space special environment", International Journal of Molecular Sciences, Vol. 18/10, MDPI, Basel, https://doi.org/10.3390/ijms18102132 

Tian, W. et al. (2019), "Neuroprotective Effects of Cornus officinalis on Stress-Induced Hippocampal Deficits in Rats and H2O2- Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells", Antioxidants, Vol. 9/1, MDPI, Basel, https://doi.org/10.3390/antiox9010027. 

Tian, R. et al. (2020), "miR-137 prevents inflammatory response, oxidative stress, neuronal injury and cognitive impairment via blockade of Src-mediated MAPK signaling pathway in ischemic stroke", Aging, Vol. 12/11, https://doi.org/10.18632/aging.103301. 

Valerie, K. et al. (2007), "Radiation-induced cell signaling: inside-out and outside-in", Molecular Cancer Therapeutics, Vol. 6/3, American Association for Cancer Research, https://doi.org/10.1158/1535-7163.MCT-06-0596 

Venkatesulu, B. P. et al. (2018), “Radiation-Induced Endothelial Vascular Injury: A Review of Possible Mechanisms”, JACC: Basic to translational science, Vol. 3/4, Elsevier, Amsterdam, https://doi.org/10.1016/j.jacbts.2018.01.014. 

Wang. (2010), "Selective neuronal vulnerability to oxidative stress in the brain", Frontiers in Aging Neuroscience, https://doi.org/10.3389/fnagi.2010.00012. 

Wang, Y., M. Boerma and D. Zhou. (2016), "Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases", Radiation Research, Vol. 186/2, BioOne, https://doi.org/10.1667/RR14445.1 

Wortel, R. C. et al. (2019), "Sildenafil Protects Endothelial Cells From Radiation-Induced Oxidative Stress", The Journal of Sexual Medicine, Vol. 16/11, Elsevier, Amsterdam, https://doi.org/10.1016/j.jsxm.2019.08.015 

Wu, Y., M. Chen and J. Jiang. (2019), "Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling", Mitochondrion, Vol. 49, https://doi.org/10.1016/j.mito.2019.07.003. 

Xu, B. et al. (2019), "Oxidation Stress-Mediated MAPK Signaling Pathway Activation Induces Neuronal Loss in the CA1 and CA3 Regions of the Hippocampus of Mice Following Chronic Cold Exposure", Brain Sciences, Vol. 9/10, MDPI, Basel, https://doi.org/10.3390/brainsci9100273. 

Zhao, Z.-Y. et al. (2013), "Edaravone Protects HT22 Neurons from H 2 O 2 -induced Apoptosis by Inhibiting the MAPK Signaling Pathway", CNS Neuroscience & Therapeutics, Vol. 19/3, John Wiley & Sons, Hoboken, https://doi.org/10.1111/cns.12044. 

Zhao, D. et al. (2017), "Anti-Neuroinflammatory Effects of Fucoxanthin via Inhibition of Akt/NF-κB and MAPKs/AP-1 Pathways and Activation of PKA/CREB Pathway in Lipopolysaccharide-Activated BV-2 Microglial Cells", Neurochemical Research, Vol. 42/2, Springer Nature, Berlin, https://doi.org/10.1007/s11064-016-2123-6