SNAPSHOT
Created at: 2020-06-09 15:17
AOP ID and Title:
Graphical Representation
Status
| Author status | OECD status | OECD project | SAAOP status |
|---|---|---|---|
| Under development: Not open for comment. Do not cite | Under Development | 1.35 | Included in OECD Work Plan |
Abstract
The AOP describes the effects of inhibition of deiodinase 2 (DIO2) on anterior swim bladder inflation leading to reduced young of year survival and population trajectory decline. The inhibition of DIO2 is the molecular-initiating event (MIE), which results in decreased circulating concentrations of triiodothyronine (T3) in serum. Disruption of the thyroid hormone (TH) system is increasingly being recognized as an important MoA that can lead to adverse outcomes, especially during embryonic development. In fish, many different adverse effects during early development resulting from disruption of the TH endocrine system have been reported (e.g., effects on body and eye size, head-to-trunk angle, heartbeat, otolith formation, pigmentation index, swim bladder inflation, hatching time, somite formation, escape response and photoreceptor development). As in amphibians, the transition in fish between the different developmental phases, including maturation and inflation of the swim bladder, have been shown to be mediated by THs. Chemicals interfering with the conversion of T4 to T3 have the potential to inhibit anterior chamber inflation which may result in reduced auditory capacity and reduced swimming capacity of the fish, a relevant adverse outcome that can affect feeding behaviour and predator avoidance, resulting in lower survival probability and ultimately population trajectory decline (Czesny et al., 2005; Woolley and Qin, 2010).
Summary of the AOP
Events
Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)
| Sequence | Type | Event ID | Title | Short name |
|---|---|---|---|---|
| 1 | MIE | 1002 | Inhibition, Deiodinase 2 | Inhibition, Deiodinase 2 |
| 2 | KE | 1003 | Decreased, Triiodothyronine (T3) in serum | Decreased, Triiodothyronine (T3) in serum |
| 3 | KE | 1007 | Reduced, Anterior swim bladder inflation | Reduced, Anterior swim bladder inflation |
| 5 | KE | 1005 | Reduced, Swimming performance | Reduced, Swimming performance |
| 6 | KE | 1006 | Reduced, Young of year survival | Reduced, Young of year survival |
| 7 | AO | 360 | Decrease, Population trajectory | Decrease, Population trajectory |
Key Event Relationships
| Upstream Event | Relationship Type | Downstream Event | Evidence | Quantitative Understanding |
|---|---|---|---|---|
| Decreased, Triiodothyronine (T3) in serum | adjacent | Reduced, Anterior swim bladder inflation | ||
| Inhibition, Deiodinase 2 | adjacent | Decreased, Triiodothyronine (T3) in serum | ||
| Reduced, Anterior swim bladder inflation | adjacent | Reduced, Swimming performance | ||
| Reduced, Swimming performance | adjacent | Reduced, Young of year survival | ||
| Reduced, Young of year survival | adjacent | Decrease, Population trajectory | ||
Overall Assessment of the AOP
Overall, the weight of evidence for the sequence of key events laid out in the AOP is moderate to high. Nonetheless, the exact underlying mechanism of TH disruption leading to impaired swim bladder inflation is not understood. The current domain of applicability is larval life stages of zebrafish and fathead minnow pending future research in other fish species such as medaka.
Domain of Applicability
Life Stage Applicability| Life Stage | Evidence |
|---|---|
| Development |
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| zebrafish | Danio rerio | NCBI | |
| fathead minnow | Pimephales promelas | NCBI |
| Sex | Evidence |
|---|---|
| Unspecific |
The current AOP is only applicable to larval development, which is the period where the anterior swim bladder chamber inflates.
The AOP is currently mainly based on experimental evidence from studies on zebrafish and fathead minnow. A first logical step in expanding the applicability of the AOP network is to assess its relevance to other species that are frequently used in existing fish test guidelines, such as the Japanese rice fish (medaka), three-spined stickleback and rainbow trout.
Sex differences are typically not investigated in tests using early life stages of fish and it is currently unclear whether sex-related differences are important in this AOP. Zebrafish are undifferentiated gonochorists since both sexes initially develop an immature ovary (Maack and Segner, 2003). Immature ovary development progresses until approximately the onset of the third week. Later, in female fish immature ovaries continue to develop further, while male fish undergo transformation of ovaries into testes. Final transformation into testes varies among male individuals, however finishes usually around 6 weeks post fertilization. Since the anterior chamber inflates around 20 days post fertilization, when sex differentiation is still in its early stages, sex differences are expected to play a minor role in the current AOP.
Essentiality of the Key Events
Overall, the confidence in the supporting data for essentiality of KEs within the AOP is high since there is direct evidence from specifically designed experimental studies (knockdown and knockout studies) illustrating that the impact on downstream KEs corresponds to what is predicted by the AOP.
Weight of Evidence Summary
Overall, the weight of evidence for the biological plausibility of the KERs in the AOP is moderate since there is empirical support for an association between the sets of KEs and the KERs are plausible based on analogy to accepted biological relationships, but scientific understanding is not completely established. Especially for some of the upstream KERs biological plausibility is high.
Overall, the empirical support for the KERs in the AOP is moderate since dependent changes in sets of KEs following exposure to a small number of specific stressors has been demonstrated, but there are still some data gaps.
Quantitative Consideration
There is some level of quantitative understanding that can form the basis for development of a quantitative AOP. Quantitative relationships between reduced T4 and reduced T3, and between reduced T3 and reduced anterior chamber inflation were established. The latter is particularly critical for linking impaired swim bladder inflation to TH disruption.
References
Bagci, E., Heijlen, M., Vergauwen, L., Hagenaars, A., Houbrechts, A.M., Esguerra, C.V., Blust, R., Darras, V.M., Knapen, D., 2015. Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction. PLOS One 10, e0123285.
Brown, C.L., Doroshov, S.I., Nunez, J.M., Hadley, C., Vaneenennaam, J., Nishioka, R.S., Bern, H.A., 1988. MATERNAL TRIIODOTHYRONINE INJECTIONS CAUSE INCREASES IN SWIMBLADDER INFLATION AND SURVIVAL RATES IN LARVAL STRIPED BASS, MORONE-SAXATILIS. Journal of Experimental Zoology 248, 168-176.
Cavallin, J.E., Ankley, G.T., Blackwell, B.R., Blanksma, C.A., Fay, K.A., Jensen, K.M., Kahl, M.D., Knapen, D., Kosian, P.A., Poole, S.T., Randolph, E.C., Schroeder, A.L., Vergauwen, L., Villeneuve, D.L., 2017. Impaired swim bladder inflation in early life stage fathead minnows exposed to a deiodinase inhibitor, iopanoic acid. Environmental Toxicology and Chemistry 36, 2942-2952.
Chopra, K., Ishibashi, S., Amaya, E., 2019. Zebrafish duox mutations provide a model for human congenital hypothyroidism. Biology Open 8.
Czesny, S.J., Graeb, B.D.S., Dettmers, J.M., 2005. Ecological consequences of swim bladder noninflation for larval yellow perch. Transactions of the American Fisheries Society 134, 1011-1020.
Godfrey, A., Hooser, B., Abdelmoneim, A., Horzmann, K.A., Freemanc, J.L., Sepulveda, M.S., 2017. Thyroid disrupting effects of halogenated and next generation chemicals on the swim bladder development of zebrafish. Aquatic Toxicology 193, 228-235.
Hagenaars, A., Stinckens, E., Vergauwen, L., Bervoets, L., Knapen, D., 2014. PFOS affects posterior swim bladder chamber inflation and swimming performance of zebrafish larvae. Aquatic Toxicology 157, 225-235.
Heijlen, M., Houbrechts, A., Bagci, E., Van Herck, S., Kersseboom, S., Esguerra, C., Blust, R., Visser, T., Knapen, D., Darras, V., 2014. Knockdown of type 3 iodothyronine deiodinase severely perturbs both embryonic and early larval development in zebrafish. Endocrinology 155, 1547-1559.
Houbrechts, A.M., Delarue, J., Gabriels, I.J., Sourbron, J., Darras, V.M., 2016. Permanent Deiodinase Type 2 Deficiency Strongly Perturbs Zebrafish Development, Growth, and Fertility. Endocrinology 157, 3668-3681.
Jomaa, B., Hermsen, S.A.B., Kessels, M.Y., van den Berg, J.H.J., Peijnenburg, A.A.C.M., Aarts, J.M.M.J.G., Piersma, A.H., Rietjens, I.M.C.M., 2014. Developmental Toxicity of Thyroid-Active Compounds in a Zebrafish Embryotoxicity Test. Altex-Alternatives to Animal Experimentation 31, 303-317.
Knapen, D., Angrish, M.M., Fortin, M.C., Katsiadaki, I., Leonard, M., Margiotta-Casaluci, L., Munn, S., O'Brien, J.M., Pollesch, N., Smith, L.C., Zhang, X.W., Villeneuve, D.L., 2018. Adverse outcome pathway networks I: Development and applications. Environmental Toxicology and Chemistry 37, 1723-1733.
Knapen, D., Stinckens, E., Cavallin, J., Ankley, G., Holbech, H., Villeneuve, D., Vergauwen, L., Toward an AOP network-based tiered testing strategy for the assessment of thyroid hormone disruption. Environmental Science & Technology submitted.
Liu, Y.W., Chan, W.K., 2002. Thyroid hormones are important for embryonic to larval transitory phase in zebrafish. Differentiation 70, 36-45.
Maack, G., Segner, H., 2003. Morphological development of the gonads in zebrafish. Journal of Fish Biology 62, 895-906.
Nelson, K., Schroeder, A., Ankley, G., Blackwell, B., Blanksma, C., Degitz, S., Flynn, K., Jensen, K., Johnson, R., Kahl, M., Knapen, D., Kosian, P., Milsk, R., Randolph, E., Saari, T., Stinckens, E., Vergauwen, L., Villeneuve, D., 2016. Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part I: Fathead minnow. Aquatic Toxicology 173, 192-203.
Power, D.M., Llewellyn, L., Faustino, M., Nowell, M.A., Bjornsson, B.T., Einarsdottir, I.E., Canario, A.V., Sweeney, G.E., 2001. Thyroid hormones in growth and development of fish. Comp Biochem Physiol C Toxicol Pharmacol 130, 447-459.
Robertson, G.N., McGee, C.A.S., Dumbarton, T.C., Croll, R.P., Smith, F.M., 2007. Development of the swimbladder and its innervation in the zebrafish, Danio rerio. Journal of Morphology 268, 967-985.
Stinckens, E., Vergauwen, L., Ankley, G.T., Blust, R., Darras, V.M., Villeneuve, D.L., Witters, H., Volz, D.C., Knapen, D., 2018. An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. Aquatic Toxicology 200, 1-12.
Stinckens, E., Vergauwen, L., Blackwell, B.R., Ankley, G.T., Villeneuve, D.L., Knapen, D., The effect of thyroperoxidase and deiodinase inhibition on anterior swim bladder inflation in the zebrafish. Environmental Science & Technology submitted.
Stinckens, E., Vergauwen, L., Schroeder, A., Maho, W., Blackwell, B., Witters, H., Blust, R., Ankley, G., Covaci, A., Villeneuve, D., Knapen, D., 2016. Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part II: Zebrafish. Aquatic Toxicology 173, 204-217.
Villeneuve, D., Angrish, M., Fortin, M., Katsiadaki, I., Leonard, M., Margiotta-Casaluci, L., Munn, S., O'Brien, J., Pollesch, N., Smith, L., Zhang, X., Knapen, D., 2018. Adverse Outcome Pathway Networks II: Network Analytics. Environ Toxicol Chem doi: 10.1002/etc.4124.
Villeneuve, D., Volz, D.C., Embry, M.R., Ankley, G.T., Belanger, S.E., Leonard, M., Schirmer, K., Tanguay, R., Truong, L., Wehmas, L., 2014. Investigating alternatives to the fish early-life stage test: a strategy for discovering and annotating adverse outcome pathways for early fish development. Environmental Toxicology and Chemistry 33, 158-169.
Walpita, C.N., Crawford, A.D., Janssens, E.D., Van der Geyten, S., Darras, V.M., 2009. Type 2 iodothyronine deiodinase is essential for thyroid hormone-dependent embryonic development and pigmentation in zebrafish. Endocrinology 150, 530-539.
Woolley, L.D., Qin, J.G., 2010. Swimbladder inflation and its implication to the culture of marine finfish larvae. Reviews in Aquaculture 2, 181-190.
Appendix 1
List of MIEs in this AOP
Event: 1002: Inhibition, Deiodinase 2
Short Name: Inhibition, Deiodinase 2
Key Event Component
| Process | Object | Action |
|---|---|---|
| catalytic activity | type II iodothyronine deiodinase | decreased |
AOPs Including This Key Event
| AOP ID and Name | Event Type |
|---|---|
| Aop:155 - Deiodinase 2 inhibition leading to reduced young of year survival via posterior swim bladder inflation | MolecularInitiatingEvent |
| Aop:156 - Deiodinase 2 inhibition leading to reduced young of year survival via anterior swim bladder inflation | MolecularInitiatingEvent |
| Aop:190 - Type II iodothyronine deiodinase (DIO2) inhibition leading to altered amphibian metamorphosis | MolecularInitiatingEvent |
Stressors
| Name |
|---|
| iopanoic acid |
| PERFLUOROOCTANOIC ACID |
Biological Context
| Level of Biological Organization |
|---|
| Molecular |
Evidence for Perturbation by Stressor
Overview for Molecular Initiating Event
Olker et al. (2019) identified 20 DIO2-specific inhibitors using a human recombinant DIO2 enzyme (e.g., tetramethrin, elzasonan). Another typical inhibitor of DIO2 (and DIO1 and 3) is iopanoic acid (IOP), which acts as a substrate of all three DIO isoforms (Renko et al., 2015). In fact, many compounds inhibit all three DIO isoforms. Olker et al. (2019) identified 93 compounds that inhibit DIOs 1, 2 and 3.
iopanoic acid
Stinckens et al. (2018)
PERFLUOROOCTANOIC ACID
Stinckens et al. (2018)
Domain of Applicability
| Life Stage | Evidence |
|---|---|
| All life stages | Moderate |
Deiodination by DIO enzymes is known to exist in a wide range of vertebrates and invertebrates. Reports of inibition of DIO2 activity are relatively scarce compared to DIO1. Studies reporting DIO2 inhibition have used human recombinant DIO2 enzyme (Olker et al., 2019), primary human astrocytes (Roberts et al., 2015), rat pituitary (Li et al., 2012), pig liver (Stinckens et al., 2018), Nile tilapia (Oreochromis niloticus) liver (Walpita et al., 2007). Evidence for zebrafish is indirect since DIO enzyme activity is usually not measured in chemical exposure experiments using zebrafish. Stinckens et al. (2018) showed that chemicals with DIO inhibitory potential in pig liver impaired swim bladder inflation in zebrafish, a thyroid hormone regulated process. Based on these results, DIO2 seemed to be more important than DIO1.
In mammals, DIO2 controls the intracellular concentration of T3. The cells that express DIO2 locally produce T3 that can more rapidly access the thyroid receptors in the nucleus than T3 from plasma (Bianco et al., 2002). For example, DIO2 is highly expressed in the mammalian brain. In teleosts, DIO2 has a markedly higher activity level compared to other vertebrates and it is expressed in liver (Orozco and Valverde, 2005). This could explain why DIO2 inhibition seems to be more important than DIO1 inhibition in determining the adverse outcome in zebrafish (Stinckens et al., 2018).
Deiodinase activity is important for all vertebrate life stages. Already during early embryonic development, deiodinase activity is needed to regulate thyroid hormone concentrations and coordinate developmental processes. DIO2 shows more marked changes in expression around the time of the embryo-larval and larval-to-juvenile transition periods during zebrafish development, highlighting its importance for early life stages (Vergauwen et al., 2018).
Key Event Description
Disruption of the thyroid hormone system is increasingly being recognized as an important toxicity pathway, as it can cause many adverse outcomes. Thyroid hormones do not only play an important role in the adult individual, but they are also critical during embryonic development. Thyroid hormones (THs) play an important role in a wide range of biological processes in vertebrates including growth, development, reproduction, cardiac function, thermoregulation, response to injury, tissue repair and homeostasis. Numerous chemicals are known to disturb thyroid function, for example by inhibiting thyroperoxidase (TPO) or deiodinase (DIO), upregulating excretion pathways or modifying gene expression. The two major thyroid hormones are triiodothyronine (T3) and thyroxine (T4), both iodinated derivatives of tyrosine. The synthesis of the thyroid hormones is a process that involves several steps. Thyroglobulin, the thyroid hormone precursor, is produced by the thyroid epithelial cells and transported to the lumen via exocytosis. Then thyroperoxidase (TPO) plays an essential role in the production of mainly T4. The prohormone T4 is then released in the circulation under the influence of thyroid stimulating hormone (TSH), in order to be transported to the various tissues, including the liver, the kidneys and the heart. Most TH actions depend on the binding of T3 to its nuclear receptors. Active and inactive THs are tightly regulated by enzymes called iodothyronine deiodinases (DIO). The activation occurs via outer ring deiodination (ORD), i.e. removing iodine from the outer, phenolic ring of T4 to form T3, while inactivation occurs via inner ring deiodination (IRD), i.e. removing iodine from the inner tyrosol ring of T4 or T3.
Three types of iodothyronine deiodinases (DIO1-3) have been described in vertebrates that activate or inactivate THs and are therefore important mediators of TH action. All deiodinases are integral membrane proteins of the thioredoxin superfamily that contain selenocysteine in their catalytic centre. Type I deiodinase is capable to convert T4 into T3, as well as to convert rT3 to the inactive thyroid hormone 3,3’ T2, through outer ring deiodination. rT3, rather than T4, is the preferred substrate for DIO1. furthermore, DIO1 has a very high Km (µM range, compared to nM range for DIO2) (Darras and Van Herck, 2012). Type II deiodinase (DIO2) is only capable of ORD activity with T4 as a preferred substrate (i.e., activation of T4 tot T3). DIO3 can inner ring deiodinate T4 and T3 to the inactive forms of THs, reverse T3, (rT3) and 3,3’-T2 respectively. DIO2 is a transmembrane protein anchored to the endoplasmic reticulum and the active site faces the perinuclear cytosol.
How it is Measured or Detected
At this time, there are no approved OECD or EPA guideline protocols for measurement of DIO inhibition. Deiodination is the major pathway regulating T3 bioavailability in mammalian tissues. In vitro assays can be used to examine inhibition of deiodinase 2 (DIO2) activity upon exposure to thyroid disrupting compounds.
Several methods for deiodinase activity measurements are available. A first in vitro assay measures deiodinase activities by quantifying the radioactive iodine release from iodine-labelled substrates, depending on the preferred substrates of the isoforms of deiodinases (Forhead et al., 2006; Pavelka, 2010; Houbrechts et al., 2016; Stinckens et al., 2018). Each of these assays requires a source of deiodinase which can be obtained for example using unexposed pig liver tissue (available from slaughterhouses) or rat liver tissue. Olker et al. (2019) on the other hand used an adenovirus expression system to produce the DIO2 enzyme and developed an assay for nonradioactive measurement of iodide released using the Sandell-Kolthoff method in a 96-well plate format. This assay was then used to screen the ToxCast Phase 1 chemical library. The specific synthesis of DIO2 through the adenovirus expression system provides an important advantage over other methods where activity of the different deiodinase isoforms needs to be distinguished in other ways, such as based on differences in enzyme kinetics.
References
Bianco, A.C., Salvatore, D., Gereben, B., Berry, M.J., Larsen, P.R., 2002. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocrine Reviews 23, 38-89.
Darras, V.M., Van Herck, S.L.J., 2012. Iodothyronine deiodinase structure and function: from ascidians to humans. Journal of Endocrinology 215, 189-206.
Forhead, A.J., Curtis, K., Kaptein, E., Visser, T.J., Fowden, A.L., 2006. Developmental control of iodothyronine deiodinases by cortisol in the ovine fetus and placenta near term. Endocrinology 147, 5988-5994.
Houbrechts, A.M., Delarue, J., Gabriels, I.J., Sourbron, J., Darras, V.M., 2016. Permanent Deiodinase Type 2 Deficiency Strongly Perturbs Zebrafish Development, Growth, and Fertility. Endocrinology 157, 3668-3681.
Li, N.N., Jiang, Y.Q., Shan, Z.Y., Teng, W.P., 2012. Prolonged high iodine intake is associated with inhibition of type 2 deiodinase activity in pituitary and elevation of serum thyrotropin levels. British Journal of Nutrition 107, 674-682.
Olker, J.H., Korte, J.J., Denny, J.S., Hartig, P.C., Cardon, M.C., Knutsen, C.N., Kent, P.M., Christensen, J.P., Degitz, S.J., Hornung, M.W., 2019. Screening the ToxCast Phase 1, Phase 2, and e1k Chemical Libraries for Inhibitors of Iodothyronine Deiodinases. Toxicological Sciences 168, 430-442.
Orozco, A., Valverde, R.C., 2005. Thyroid hormone deiodination in fish. Thyroid 15, 799-813.
Pavelka, S., 2010. Radiometric enzyme assays: development of methods for extremely sensitive determination of types 1, 2 and 3 iodothyronine deiodinase enzyme activities. Journal of Radioanalytical and Nuclear Chemistry 286, 861-865.
Renko, K., Schache, S., Hoefig, C.S., Welsink, T., Schwiebert, C., Braun, D., Becker, N.P., Kohrle, J., Schomburg, L., 2015. An Improved Nonradioactive Screening Method Identifies Genistein and Xanthohumol as Potent Inhibitors of Iodothyronine Deiodinases. Thyroid 25, 962-968.
Roberts, S.C., Bianco, A.C., Stapleton, H.M., 2015. Disruption of Type 2 Iodothyronine Deiodinase Activity in Cultured Human Glial Cells by Polybrominated Diphenyl Ethers. Chemical Research in Toxicology 28, 1265-1274.
Stinckens, E., Vergauwen, L., Ankley, G.T., Blust, R., Darras, V.M., Villeneuve, D.L., Witters, H., Volz, D.C., Knapen, D., 2018. An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. Aquatic Toxicology 200, 1-12.
Vergauwen, L., Cavallin, J.E., Ankley, G.T., Bars, C., Gabriels, I.J., Michiels, E.D.G., Fitzpatrick, K.R., Periz-Stanacev, J., Randolph, E.C., Robinson, S.L., Saari, T.W., Schroeder, A.L., Stinckens, E., Swintek, J., Van Cruchten, S.J., Verbueken, E., Villeneuve, D.L., Knapen, D., 2018. Gene transcription ontogeny of hypothalamic-pituitary-thyroid axis development in early-life stage fathead minnow and zebrafish. General and Comparative Endocrinology 266, 87-100.
Walpita, C.N., Grommen, S.V., Darras, V.M., Van der Geyten, S., 2007. The influence of stress on thyroid hormone production and peripheral deiodination in the Nile tilapia (Oreochromis niloticus). Gen Comp Endocrinol 150, 18-25.
List of Key Events in the AOP
Event: 1003: Decreased, Triiodothyronine (T3) in serum
Short Name: Decreased, Triiodothyronine (T3) in serum
Key Event Component
| Process | Object | Action |
|---|---|---|
| abnormal circulating hormone level | decreased |
AOPs Including This Key Event
Biological Context
| Level of Biological Organization |
|---|
| Tissue |
Organ term
| Organ term |
|---|
| serum |
Domain of Applicability
| Life Stage | Evidence |
|---|---|
| All life stages |
| Sex | Evidence |
|---|---|
| Unspecific |
The overall evidence supporting taxonomic applicability is strong. With few exceptions vertebrate species have circulating T3 and T4 that are bound to transport proteins in blood. Clear species differences exist in transport proteins (Yamauchi and Isihara, 2009). Specifically, the majority of supporting data for TH decreases in serum come from rat studies, and the predominant iodothyronine binding protein in rat serum is transthyretin (TT4). TT4 demonstrates a reduced binding affinity for T4 when compared with thyroxine binding globulin (TBG), the predominant serum binding protein for T4 in humans. This difference in serum binding protein affinity for THs is thought to modulate serum half-life for T4; the half-life of T4 in rats is 12-24 hr, wherease the half-life in humans is 5-9 days (Capen, 1997). While these species differences impact hormone half-life, possibly regulatory feedback mechanisms, and quantitative dose-response relationships, measurement of serum THs is still regarded as a measurable key event causatively linked to downstream adverse outcomes.
THs are evolutionarily conserved molecules present in all vertebrate species (Hulbert, 2000; Yen, 2001). Moreover, their crucial role in amphibian and larbean metamorphoses is well established (Manzon and Youson, 1997; Yaoita and Brown, 1990). Their existence and importance has been also described in many differrent animal and plant kingdoms (Eales, 1997; Heyland and Moroz, 2005), while their role as environmental messenger via exogenous routes in echinoderms confirms the hypothesis that these molecules are widely distributed among the living organisms (Heyland and Hodin, 2004). However, the role of TH in the different species may differ depending on the expression or function of specific proteins (e.g receptors or enzymes) that are related to TH function, and therefore extrapolation between species should be done with cautious.
Key Event Description
There are two biological active thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), and a few inactive iodothyronines (rT3, 3,5-T2), which are all derived from the modification of tyrosine molecules (Hulbert, 2000). However, the plasma concentrations of the other iodothyronines are significantly lower than those of T3 and T4. The different iodothyronines are formed by the sequential outer or inner ring monodeiodination of T4 by the deiodinating enzymes, Dio1, Dio2, and Dio3 (Gereben et al., 2008). Deiodinase structure is considered to be unique, as THs are the only molecules in the body that incorporate iodide.
The circulatory system serves as the major transport and delivery system for THs from synthesis in the gland to delivery to tissues. The majority of THs in the blood are bound to transport proteins (Bartalena and Robbins, 1993). In humans, the major transport proteins are TBG (thyroxine binding globulin), TTR (transthyretin) and albumin. The percent bound to these proteins in adult humans is about 75, 15 and 10 percent, respectively (Schussler 2000). Unbound (free) hormones are approximately 0.03 and 0.3 percent for T4 and T3, respectively. In serum, it is the free form of the hormone that is active.
There are major species differences in the predominant binding proteins and their affinities for THs (see section below on Taxonomic applicability). However, there is broad agreement that changes in serum concentrations of THs is diagnostic of thyroid disease or chemical-induced disruption of thyroid homeostasis (Zoeller et al., 2007).
It is notable that the changes measured in the TH concentration reflect mainly the changes in the serum transport proteins rather than changes in the thyroid status. These thyroid-binding proteins serve as hormonal store which ensure their even and constant distribution in the different tissues, while they protect the most sensitive ones in the case of severe changes in thyroid availability, like in thyroidectomies (Obregon et al., 1981). Until recently, it was believed that all of the effects of TH were mediated by the binding of T3 to the thyroid nuclear receptors (TRa and TRb), a notion which is now questionable due to the increasing evidence that support the non-genomic action of TH (Davis et al., 2010, Moeller et al., 2006). Many non-nuclear TH binding sites have been identified to date and they usually lead to rapid cellular response in TH-effects (Bassett et al., 2003), but the specific pathways that are activated in this regard need to be elucidated.
The production of THs in the thyroid gland and the circulation levels in the bloodstream are self-controlled by an efficiently regulated feedback mechanism across the Hypothalamus-Pituitary-Thyroid (HPT) axis. One of the most unique characteristics of TH is their ability to regulate their own concentration, not only in the plasma level, but also in the individual cell level, to maintain their homeostasis. This is succeed by the efficient regulatory mechanism of the thyroid hormone axis which consists of the following: (1) the hypothalamic secretion of the thyrotropin-releasing hormone (TRH), (2) the thyroid-stimulating hormone (TSH) secretion from the anterior pituitary, (3) hormonal transport by the plasma binding proteins, (4) cellular uptake mechanisms in the cell level, (5) intracellular control of TH concentration by the deiodinating mechanism (6) transcriptional function of the nuclear thyroid hormone receptor and (7) in the fetus, the transplacental passage of T4 and T3 (Cheng et al., 2010).
In regards to the brain, the TH concentration involves also an additional level of regulation, namely the hormonal transport through the Blood Brain Barrier (BBB) (Williams, 2008). The TRH and the TSH are actually regulating the production of pro-hormone T4 and in a lesser extent of T3, which is the biologically active TH. The rest of the required amount of T3 is produced by outer ring deiodination of T4 by the deiodinating enzymes D1 and D2 (Bianco et al., 2006), a process which takes place mainly in liver and kidneys but also in other target organs such as in the brain, the anterior pituitary, brown adipose tissue, thyroid and skeletal muscle (Gereben et al., 2008; Larsen, 2009). Both hormones exert their action in almost all tissues of mammals and they are acting intracellularly, and thus the uptake of T3 and T4 by the target cells is a crucial step of the overall pathway. The trans-membrane transport of TH is performed mainly through transporters that differ depending on the cell type (Hennemann et al., 2001; Friesema et al., 2005; Visser et al., 2008). Many transporter proteins have been identified up to date but the monocarboxylate transporters (Mct8, Mct10) and the anion-transporting polypeptide (OATP1c1) show the highest degree of affinity towards TH (Jansen et al., 2005).
T3 and T4 have significant effects on normal development, neural differentiation, growth rate and metabolism (Yen, 2001; Brent, 2012; Williams, 2008), with the most prominent ones to occur during the fetal development and early childhood. The clinical features of hypothyroidism and hyperthyroidism emphasize the pleiotropic effects of these hormones on many different pathways and target organs. The thyroidal actions though are not only restricted to mammals, as their high significance has been identified also for other vertebrates, with the most well-studied to be the amphibian metamorphosis (Furlow and Neff, 2006). The importance of the thyroid-regulated pathways becomes more apparent in iodine deficient areas of the world, where a higher rate of cretinism and growth retardation has been observed and linked to decreased TH levels (Gilbert et al., 2012). Another very common cause of severe hypothyroidism in human is the congenital hypothyroidism, but the manifestation of these effects is only detectable in the lack of adequate treatment and is mainly related to neurological impairment and growth retardation (Glinoer, 2001), emphasizing the role of TH in neurodevelopment in all above cases. In adults, the thyroid-related effects are mainly linked to metabolic activities, such as deficiencies in oxygen consumption, and in the metabolism of the vitamin, proteins, lipids and carbohydrates, but these defects are subtle and reversible (Oetting and Yen, 2007). Blood tests to detect the amount of thyroid hormone (T4) and thyroid stimulating hormone (TSH) are routinely done for newborn babies for the diagnosis of congenital hypothyroidism at the earliest stage possible.
How it is Measured or Detected
T3 and T4 can be measured as free (unbound) or total (bound + unbound). Free hormone are considered more direct indicators of T4 and T3 activities in the body. The majority of T3 and T4 measurements are made using either RIA or ELISA kits. In animal studies, total T3 and T4 are typically measured as the concentrations of free hormone are very low and difficult to detect. Historically, the most widely used method in toxicology is RIA. The method is routinely used in rodent endocrine and toxicity studies. The ELISA method has become more routine in rodent studies. The ELISA method is a commonly used as a human clinical test method. Least common is analytical determination of iodothyronines (T3, T4, rT3, T2) and their conjugates, though methods employing HLPC and mass spectrometry (DeVito et al., 1999; Miller et al., 2009).
Any of these measurements should be evaluated for fit-for-purpose, relationship to the actual endpoint of interest, repeatability, and reproducibility. All three of the methods summarized above would be fit-for-purpose, depending on the number of samples to be evaluated and the associated costs of each method. Both RIA and ELISA measure THs by a an indirect methodology, whereas analytical determination is the most direct measurement available. All of these methods, particularly RIA, are repeatable and reproducible.
References
- Bartalena L, Robbins J.Thyroid hormone transport proteins.Clin Lab Med. 1993 Sep;13(3):583-98.
- Bassett JH, Harvey CB, Williams GR. (2003). Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Mol Cell Endocrinol. 213:1-11.
- Bianco AC, Kim BW. (2006). Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest. 116: 2571–2579.
- Brent GA. (2012). Mechanisms of thyroid hormone action. J Clin Invest. 122: 3035-3043.
- Cheng SY, Leonard JL, Davis PJ. (2010).Molecular aspects of thyroid hormone actions. Endocr Rev. 31:139–170.
- Davis PJ, Zhou M, Davis FB, Lansing L, Mousa SA, Lin HY. (2010). Mini-review: Cell surface receptor for thyroid hormone and nongenomic regulation of ion fluxes in excitable cells. Physiol Behav. 99:237–239.
- DeVito M, Biegel L, Brouwer A, Brown S, Brucker-Davis F, Cheek AO, Christensen R, Colborn T, Cooke P, Crissman J, Crofton K, Doerge D, Gray E, Hauser P, Hurley P, Kohn M, Lazar J, McMaster S, McClain M, McConnell E, *Meier C, Miller R, Tietge J, Tyl R. (1999). Screening methods for thyroid hormone disruptors. Environ Health Perspect. 107:407-415.
- Eales JG. (1997). Iodine metabolism and thyroid related functions in organisms lacking thyroid follicles: Are thyroid hormones also vitamins? Proc Soc Exp Biol Med. 214:302-317.
- Friesema EC, Jansen J, Milici C, Visser TJ. (2005). Thyroid hormone transporters. Vitam Horm. 70: 137–167.
- Furlow JD, Neff ES. (2006). A developmental switch induced by thyroid hormone: Xenopus laevis metamorphosis. Trends Endocrinol Metab. 17:40–47.
- Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeöld A, Bianco AC. (2008). Cellular and molecular basis of deiodinase-regulated thyroid hormone signalling. Endocr Rev. 29:898–938.
- Gilbert ME, Rovet J, Chen Z, Koibuchi N. (2012).Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxicology. 33: 842-852.
- Glinoer D. (2001).Potential consequences of maternal hypothyroidism on the offspring: evidence and implications. Horm Res. 55:109-114.
- Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ. (2001). Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev. 22:451-476.
- Heyland A, Hodin J. (2004). Heterochronic developmental shift caused by thyroid hormone in larval sand dollars and its implications for phenotypic plasticity and the evolution of non-feeding development. Evolution. 58: 524-538.
- Heyland A, Moroz LL. (2005). Cross-kingdom hormonal signaling: an insight from thyroid hormone functions in marine larvae. J Exp Biol. 208:4355-4361.
- Hulbert A J. (2000). Thyroid hormones and their effects: A new perspective. Biol Rev. 75: 519-631.
- Jansen J, Friesema EC, Milici C, Visser TJ. (2005). Thyroid hormone transporters in health and disease. Thyroid. 15: 757-768.
- Larsen PR. (2009).Type 2 iodothyronine deiodinase in human skeletal muscle: new insights into its physiological role and regulation. J Clin Endocrinol Metab. 94:1893-1895.
- Manzon RG, Youson JH. (1997). The effects of exogenous thyroxine (T4) or triiodothyronine (T3), in the presence and absence of potassium perchlorate, on the incidence of metamorphosis and on serum T4 and T3 concentrations in larval sea lampreys (Petromyzon marinus L.). Gen Comp Endocrinol. 106:211-220.
- Miller MD, Crofton KM, Rice DC, Zoeller RT. (2009).Thyroid-disrupting chemicals: interpreting upstream biomarkers of adverse outcomes. Environ Health Perspect. 117:1033-1041.
- Moeller LC, Dumitrescu AM, Seo H, Refetoff S. (2006). Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor β through the phosphatidylinositol 3-kinase pathway. NRS. 4:1-4.
- Obregon MJ, Mallol J, Escobar del Rey F, Morreale de Escobar G. (1981). Presence of l-thyroxine and 3,5,3-triiodo-l-thyronine in tissues from thyroidectomised rats. Endocrinology 109:908-913.
- Oetting A, Yen PM. (2007). New insights into thyroid hormone action. Best Pract Res Clin Endocrinol Metab. 21:193–208.
- Schussler, G.C. (2000). The thyroxine-binding proteins. Thyroid 10:141–149.
- Visser WE, Friesema EC, Jansen J, Visser TJ. (2008). Thyroid hormone transport in and out of cells. Trends Endocrinol Metab. 19:50-56.
- Williams GR. (2008). Neurodevelopmental and neurophysiological actions of thyroid hormone. J Neuroendocrinol. 20:784–794.
- Yamauchi K1, Ishihara A. Evolutionary changes to transthyretin: developmentally regulated and tissue-specific gene expression.FEBS J. 2009 Oct;276(19):5357-66.
- Yaoita Y, Brown DD. (1990). A correlation of thyroid hormone receptor gene expression with amphibian metamorphosis. Genes Dev. 4:1917-1924.
- Yen PM. (2001). Physiological and molecular basis of thyroid hormone action. Physiol Rev. 81:1097-1142.
- Zoeller RT, Tan SW, Tyl RW. General background on the hypothalamic-pituitary-thyroid (HPT) axis. Crit Rev Toxicol. 2007 Jan-Feb;37(1-2):11-53
Event: 1007: Reduced, Anterior swim bladder inflation
Short Name: Reduced, Anterior swim bladder inflation
Key Event Component
| Process | Object | Action |
|---|---|---|
| swim bladder inflation | anterior chamber swim bladder | decreased |
AOPs Including This Key Event
Biological Context
| Level of Biological Organization |
|---|
| Organ |
Organ term
| Organ term |
|---|
| swim bladder |
Domain of Applicability
The evidence for impaired inflation of the anterior chamber of the swim bladder currently comes from work on zebrafish and fathead minnow.
Key Event Description
The swim bladder of bony fish is evolutionary homologous to the lung (Zheng et al., 2011). The teleost swim bladder is a gas-filled structure that consists of two chambers, the posterior and anterior chamber. In zebrafish, the posterior chamber inflates around 96 h post fertilization (hpf) which is 2 days post hatch, and the anterior chamber inflates around 21 dpf. In fathead minnow, the posterior and anterior chamber inflate around 6 and 14 dpf respectively. Inflation of the anterior swim bladder chamber is part of the larval-to-juvenile transition in fish, together with the development of adult fins and fin rays, ossification of the axial skeleton, formation of an adult pigmentation pattern, scale formation, maturation and remodeling of organs including the lateral line, nervous system, gut and kidneys (McMenamin and Parichy, 2013).
The anterior chamber is formed by evagination from the cranial end of the posterior chamber (Robertson et al., 2007). Dumbarton et al. (2010) showed that the anterior chamber of zebrafish has particularly closely packed and highly organized bundles of muscle fibres, suggesting that contraction of these muscles would reduce swim bladder volume. While it had previously been suggested that the posterior chamber had a more important role as a hydrostatic organ, this implies high importance of the anterior chamber for buoyancy. The anterior chamber has an additional role in hearing (Bang et al., 2002). Weberian ossicles (the Weberian apparatus) connect the anterior chamber to the inner ear resulting in an amplification of sound waves. Reduced inflation of the anterior chamber may manifest itself as either a complete failure to inflate the chamber or reduced size of the chamber. Reduced size is often associated with a deviating morphology.
How it is Measured or Detected
In several fish species, inflation of the anterior chamber can be observed using a stereomicroscope because the larvae are still transparent during the larval stage. This is for example true for zebrafish and fathead minnow. Anterior chamber size can then be measured based on photographs with a calibrator.
References
- Bang, P.I., Yelick, P.C., Malicko, J.J., Sewell, W.F. 2002. High-throughput behavioral screening method for detecting auditory response defects in zebrafish. Journal of Neuroscience Methods. 118, 177-187.
- Dumbarton, T.C., Stoyek, M., Croll, R.P., Smith, F.M., 2010. Adrenergic control of swimbladder deflation in the zebrafish (Danio rerio). J. Exp. Biol. 213,2536–2546, http://dx.doi.org/10.1242/jeb.039792.
- Roberston, G.N., McGee, C.A.S., Dumbarton, T.C., Croll, R.P., Smith, F.M., 2007. Development of the swim bladder and its innervation in the zebrafish, Danio rerio. J. Morphol. 268, 967–985, http://dx.doi.org/10.1002/jmor.
- McMenamin, S.K., Parichy, D.M., 2013. Metamorphosis in Teleosts. Animal Metamorphosis 103, 127-165.
- Zheng, W., Wang, Z., Collins, J.E., Andrews, R.M., Stemple, D., Gong, Z. 2011. Comparative transcriptome analyses indicate molecular homology of zebrafish swim bladder and mammalian lung. PLoS One 6, http://dx.doi.org/10.1371/
Event: 1005: Reduced, Swimming performance
Short Name: Reduced, Swimming performance
Key Event Component
| Process | Object | Action |
|---|---|---|
| aquatic locomotion | decreased |
AOPs Including This Key Event
Biological Context
| Level of Biological Organization |
|---|
| Individual |
Domain of Applicability
| Life Stage | Evidence |
|---|---|
| All life stages |
| Sex | Evidence |
|---|---|
| Mixed |
Importance of swimming performance for natural behaviour is generally applicable to fish.
Key Event Description
Adequate swimming performance in fish is essential for behaviour such as foraging, predator avoidance and reproduction.
How it is Measured or Detected
For fish larvae, automated observation and tracking systems are commercially available and increasingly used for measuring swimming performance including distance travelled, duration of movements, swimming speed, etc. This kind of measurements is often included in publications describing effects of chemicals in zebrafish larvae (Hagenaars et al., 2014; Stinckens et al., 2016; Vergauwen et al., 2015).
For juvenile and adult fish, measurements of swim performance vary. However, in some circumstances, a swim tunnel has been used to measure various data (Fu et al., 2013).
References
Fu C, Cao ZD, Fu SJ. 2013. The effects of caudal fin loss and regeneration on the swimming performance of three cyprinid fish species with different swimming capactities. The Journal of Experimental Biology 216:3164-3174. doi:10.1242/jeb.084244
Hagenaars, A., Stinckens, E., Vergauwen, L., Bervoets, L., Knapen, D., 2014. PFOSaffects posterior swim bladder chamber inflation and swimming performanceof zebrafish larvae. Aquat. Toxicol. 157, 225–235.
Stinckens, E., Vergauwen, L., Schroeder, A.L., Maho, W., Blackwell, B., Witter, H.,Blust, R., Ankley, G.T., Covaci, A., Villenueve, D.L., Knapen, D., 2016. Disruption of thyroid hormone balance after 2-mercaptobenzothiazole exposure causes swim bladder inflation impairment—part II: zebrafish. Aquat. Toxicol. 173:204-17.
Vergauwen, Lucia; Nørgaard Schmidt, Stine; Maho, Walid; Stickens, Evelyn; Hagenaars, An; Blust, Ronny; Mayer, Philipp; Covaci, Adrian; Knapen, Dries. 2014. A high throughput passive dosing format for the Fish Embryo Acute Toxicity test. Chemosphere. 139: 9-17.
Event: 1006: Reduced, Young of year survival
Short Name: Reduced, Young of year survival
Key Event Component
| Process | Object | Action |
|---|---|---|
| survival | decreased |
AOPs Including This Key Event
Biological Context
| Level of Biological Organization |
|---|
| Individual |
Domain of Applicability
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| zebrafish | Danio rerio | NCBI |
Survival is important for all species.
Key Event Description
Young of year refers to young animals (usually fish) produced in one reproductive year, which have not yet reached one year of age. Small fish, hatched from eggs spawned in the current year, are considered young of year.
Young of year survival directly impacts population structure, growth and fitness. Maintenance of sustainable fish and wildlife populations is an accepted regulatory goal upon which risk assessments and risk management decisions are based.
How it is Measured or Detected
Young of year survival can be measured:
- in the lab by recording survival during prolonged exposure experiments
- in dedicated mesocosms, or in drainable ponds
- in the field, for example by determining age structure after one capture, or by capture-tag-recapture efforts
List of Adverse Outcomes in this AOP
Event: 360: Decrease, Population trajectory
Short Name: Decrease, Population trajectory
Key Event Component
| Process | Object | Action |
|---|---|---|
| population growth rate | decreased |
AOPs Including This Key Event
Biological Context
| Level of Biological Organization |
|---|
| Population |
Domain of Applicability
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| all species | all species | NCBI |
| Life Stage | Evidence |
|---|---|
| All life stages | Not Specified |
| Sex | Evidence |
|---|---|
| Unspecific | Not Specified |
Consideration of population size and changes in population size over time is potentially relevant to all living organisms.
Key Event Description
Maintenance of sustainable fish and wildlife populations (i.e., adequate to ensure long-term delivery of valued ecosystem services) is an accepted regulatory goal upon which risk assessments and risk management decisions are based.
How it is Measured or Detected
Population trajectories, either hypothetical or site specific, can be estimated via population modeling based on measurements of vital rates or reasonable surrogates measured in laboratory studies. As an example, Miller and Ankley 2004 used measures of cumulative fecundity from laboratory studies with repeat spawning fish species to predict population-level consequences of continuous exposure.
Regulatory Significance of the AO
Maintenance of sustainable fish and wildlife populations (i.e., adequate to ensure long-term delivery of valued ecosystem services) is a widely accepted regulatory goal upon which risk assessments and risk management decisions are based.
References
- Miller DH, Ankley GT. 2004. Modeling impacts on populations: fathead minnow (Pimephales promelas) exposure to the endocrine disruptor 17ß-trenbolone as a case study. Ecotoxicology and Environmental Safety 59: 1-9.
Appendix 2
List of Key Event Relationships in the AOP
List of Adjacent Key Event Relationships
Relationship: 1035: Decreased, Triiodothyronine (T3) in serum leads to Reduced, Anterior swim bladder inflation
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Deiodinase 2 inhibition leading to reduced young of year survival via anterior swim bladder inflation | adjacent | ||
| Deiodinase 1 inhibition leading to reduced young of year survival via anterior swim bladder inflation | adjacent | ||
| Thyroperoxidase inhibition leading to reduced young of year survival via anterior swim bladder inflation | adjacent |
Evidence Supporting Applicability of this Relationship
| Life Stage | Evidence |
|---|---|
| Juvenile | High |
| Sex | Evidence |
|---|---|
| Unspecific | High |
This KER is probably not sex-dependent since both females and males rely on THs for regulation of vital processes. Additionally, zebrafish are undifferentiated gonochorists, and gonad differentiation starts only around 23-25 dpf (Uchida et al., 2002), after the time point of anterior chamber inflation (around 21 dpf).
Key Event Relationship Description
Thyroid hormones are known to be involved in development, especially in metamorphosis in amphibians and in embryonic-to-larval transition and larval-to-juvenile transition in fish. Inflation of the anterior swim bladder chamber is part of the larval-to-juvenile transition in fish, together with the development of adult fins and fin rays, ossification of the axial skeleton, formation of an adult pigmentation pattern, scale formation, maturation and remodeling of organs including the lateral line, nervous system, gut and kidneys.
Evidence Supporting this KER
Biological PlausibilityThyroid hormones are known to be involved in development, especially in metamorphosis in amphibians and in embryonic-to-larval transition (Liu and Chan, 2002) and larval-to-juvenile transition (Brown et al., 1997) in fish. Inflation of the anterior swim bladder chamber is part of the larval-to-juvenile transition in fish, together with the development of adult fins and fin rays, ossification of the axial skeleton, formation of an adult pigmentation pattern, scale formation, maturation and remodeling of organs including the lateral line, nervous system, gut and kidneys (Brown, 1997; Liu and Chan, 2002; McMenamin and Parichy, 2013).
Empirical Evidence- In a study in which embryo-larval fathead minnows (Pimephales promelas) were exposed to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole (MBT), T3 concentrations measured at 14dpf were reduced at the same concentration (1 mg/L) that significantly reduced anterior swim bladder inflation at the same time-point (Nelson et al. 2016).
- Maternal injection of T3, resulting in increased T3 concentrations in the eggs of striped bass (Morone saxatilis) lead to significant increases in both swim bladder inflation and survival (Brown et al., 1988).
- In the study of Cavallin et al. (2017) fathead minnow larvae were exposed to IOP, a model iodothyronine deiodinase inhibitor that is assumed to inhibit all three deiodinase enzymes (DIO1,2,3). The authors observed pronounced decreases of whole body T3 concentrations and increases of whole body T4 concentrations, together with impaired inflation of the anterior swim bladder chamber. More specifically, inflation was delayed and the size of the swim bladder chamber was reduced until the end of the exposure experiment. Since exposure was started after inflation of the posterior chamber, this study shows that DIO inhibition can directly affect anterior chamber inflation.
- In the study of Stinckens et al. (submitted) a strong correlation between reduced T3 levels and reduced anterior chamber inflation was observed in zebrafish exposed to iopanoic acid, a deiodinase inhibitor, as well as methimazole and propylthiouracil, both thyroperoxidase inhibitors, from fertilization until the age of 32 days. Anterior chamber inflation was delayed and a number of larvae did not manage to inflate the anterior chamber by the end of the 32 day exposure period. Additionally, exposed fish that had inflated the swim bladder had reduced anterior chamber sizes.
- The mechanism underlying the link between reduced T3 and reduced anterior chamber inflation remains unclear, but several hypotheses exist (Stinckens et al., submitted). For example, altered gas distribution between chambers could be the result of impaired development of smooth muscle fibers, delayed and/or impaired evagination of the anterior chamber, impaired anterior budding through altered Wnt and hedgehog signalling, etc.
- Increased T3 levels also seem to result in reduced swim bladder inflation. For example, Li et al. (2011) reported impairment of swim bladder inflation in Chinese rare minnows (Gobiocypris rarus) exposed to exogenous T3.
References
- Brown, C. L., Doroshov, S. I., Nunez, J. M., Hadley, C., Vaneenennaam, J., Nishioka, R. S. and Bern, H. A. (1988), Maternal triiodothyronine injections cause increases in swimbladder inflation and survival rates in larval striped bass, Morone saxatilis. J. Exp. Zool., 248: 168–176. doi: 10.1002/jez.1402480207
- Brown, D.D., 1997. The role of thyroid hormone in zebrafish and axolotl development. Proceedings of the National Academy of Sciences of the United States of America 94, 13011-13016.
- Cavallin, J.E., Ankley, G.T., Blackwell, B.R., Blanksma, C.A., Fay, K.A., Jensen, K.M., Kahl, M.D., Knapen, D., Kosian, P.A., Poole, S.T., Randolph, E.C., Schroeder, A.L., Vergauwen, L., Villeneuve, D.L., 2017. Impaired swim bladder inflation in early life stage fathead minnows exposed to a deiodinase inhibitor, iopanoic acid. Environmental Toxicology and Chemistry 36, 2942-2952.
- Li W, Zha J, Yang L, Li Z, Wang Z. Regulation of thyroid hormone related genes mRNA expression by exogenous T₃ in larvae and adult Chinese rare minnow (Gobiocypris rarus). Environ Toxicol Pharmacol. 2011 Jan;31(1):189-97. doi: 10.1016/j.etap.2010.10.007.
- Liu, Y.W., Chan, W.K., 2002. Thyroid hormones are important for embryonic to larval transitory phase in zebrafish. Differentiation 70, 36-45.
- McMenamin, S.K., Parichy, D.M., 2013. Metamorphosis in Teleosts. Animal Metamorphosis 103, 127-165.
- Nelson KR, Schroeder AL, Ankley GT, Blackwell BR, Blanksma C, Degitz SJ, Flynn KM, Jensen KM, Johnson RD, Kahl MD, Knapen D, Kosian PA, Milsk RY, Randolph EC,Saari T, Stinckens E, Vergauwen L, Villeneuve DL. Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part I: Fathead minnow. Aquat Toxicol. 2016 Apr;173:192-203. doi: 10.1016/j.aquatox.2015.12.024.
- Stinckens, E., Vergauwen, L., Blackwell, B.R., Ankley, G.T., Villeneuve, D.L., Knapen, D., The effect of thyroperoxidase and deiodinase inhibition on anterior swim bladder inflation in the zebrafish. Environmental Science & Technology submitted.
- Uchida, D., Yamashita, M., Kitano, T., Iguchi, T., 2002. Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. Journal of Experimental Biology 205, 711-718.
Relationship: 1026: Inhibition, Deiodinase 2 leads to Decreased, Triiodothyronine (T3) in serum
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Deiodinase 2 inhibition leading to reduced young of year survival via posterior swim bladder inflation | adjacent | ||
| Deiodinase 2 inhibition leading to reduced young of year survival via anterior swim bladder inflation | adjacent |
Evidence Supporting Applicability of this Relationship
Mol et al. (1998) concluded that deiodinases in teleosts were more similar to mammalian deiodinases than had been generally accepted, based on the similarities in susceptibility to inhibition and the agreement of the Km values.
There appear to be differences among vertebrate classes relative to the role of the different deiodinase isoforms in regulating thyroid hormone levels. Maia et al. (2005) determined that in a normal physiological situation in humans the contribution of DIO2 to plasma T3 levels is twice that of DIO1. A DIO2 knockout (KO) mouse however showed a very mild gross phenotype with only mild growth retardation in males (Schneider et al., 2001). It seemed that by blocking the negative feedback system, DIO2 KO resulted in increased levels of T4 and TSH and in normal rather than decreased T3 levels compared to WT. Potential differences in the role of the deiodinase isoforms in the negative feedback system and the final consequences for TH levels across vertebrates is currently not entirely clear. These differences make it difficult to exactly evaluate the importance of DIO2 in regulating serum/tissue T3 levels across vertebrates.
Key Event Relationship Description
Iodothyronine deiodinase or DIO is a peroxidase enzyme that is involved in the activation or deactivition of thyroid hormones. Currently, three types of iodothyronine deiodinases (DIO1-3) have been described in vertebrates that locally activate or inactivate THs and are therefore important mediators of TH action. All deiodinases are integral membrane proteins of the thioredoxin superfamily that contain the amino acid selenocysteine in their catalytic centre. DIO1 and DIO2 are capable of converting T4 into the more biologically active T3. DIO3 on the other hand converts T4 and T3 to the inactive forms of THs. The inhibition of DIO 1 and 2 enzymes results in decreased serum T3 levels and decreased T3 levels at the site of action.
Evidence Supporting this KER
Inhibition of DIO2 activity is widely accepted to directly decrease T3 levels, since the conversion of T4 to T3 is inhibited. The importance of DIO2 inhibition in altering serum T3 levels depends on the relative role of different deiodinases in regulating serum versus tissue T3 levels and in negative feedback within the HPT axis. Both aspects appear to vary among vertebrate taxa.
Biological PlausibilityInhibition of DIO2 activity is widely accepted to directly decrease T3 levels, since the conversion of T4 to T3 is inhibited.
Empirical Evidence- Houbrechts et al. (2016) developed a Dio2 knockout and confirmed both the absence of the full length Dio2 protein in the liver and the dramatical decrease of T4 activating enzyme activity in liver, brain and eyes. Finally, they found decreased levels of T3 in liver, brain and eyes.
- Winata et al. (2009, 2010) reported reduced pigmentation, otic vesicle length and head-trunk angle in DIO1+2 and DIO2 knockdown fish. These effects were rescued after T3 supplementation but not by T4 supplementation, confirming that decreased T3 levels were at the basis of the observed effects.
- In the study of Cavallin et al. (2017) fathead minnow larvae were exposed to IOP, a model iodothyronine deiodinase inhibitor that is assumed to inhibit all three deiodinase enzymes (DIO1,2,3). Transcriptional analysis showed that especially DIO2, but also DIO3 mRNA levels (in some treatments), were increased in 10 to 21 day old larvae exposed to IOP as of the age of 6 days. This suggests that IOP effectively inhibited DIO2 and DIO3 in the larvae and that mRNA levels increased as a compensatory response. The authors also observed pronounced decreases of whole body T3 concentrations and increases of whole body T4 concentrations.
- Stinckens et al. (submitted) showed that IOP reduced T3 levels in zebrafish in 21 and 32 day old larvae that had been exposed starting from fertilization.
Uncertainties and Inconsistencies
In DIO2 knockout mice it seemed that the negative feedback system was blocked resulting in increased levels of T4 and TSH and in normal rather than decreased T3 levels compared to WT.
In the study of Cavallin et al. (2017) fathead minnow embryos were exposed to IOP, a model iodothyronine deiodinase inhibitor that is assumed to inhibit all three deiodinase enzymes (DIO1,2,3). The authors observed increased whole body T3 concentrations in 4 and 6 day old embryos, while they observed decreased T3 concentrations in 10 to 21 day old larvae exposed to IOP as of the age of 6 days. One possible explanation for the elevated T3 concentrations may be the potential impact of IOP exposure on DIO3. DIO3 is an inactivating enzyme that removes iodine from the inner ring of both T4 and T3, resulting in reverse T3 (rT3) and 3,5-diiodo-L-thyronine (T2), respectively (Bianco and Kim, 2006). Maternal sources of thyroid hormones are known to include both T4 and T3 (Power et al., 2001; Walpita et al., 2007). Consequently, reduced conversion of maternal T3 to inactive forms may be one plausible explanation for the increase. Another explanation may result from the role of deiodinases in the negative feedback system of the HPT axis. Inibition of deiodinase (unclear which isoforms) may block the negative feedback system and result in increased release of T4. Increased levels of T4 were indeed observed by Cavallin et al. (2017).
Quantitative Understanding of the Linkage
Known Feedforward/Feedback loops influencing this KERThyroid hormone levels are regulated via negative feedback, influencing this KER. Additionally, deiodinases regulate the activity of thryoid hormones, not only in serum and target organs, but also in the thryoid gland. Deiodinases themselves are known to be involved in the negative feedback system that results in increased TSH levels when the levels of T4 (and also T3) in serum are low (Schneider et al., 2001), resulting in an even more complicated impact on this KER. Increased TSH levels then stimulate increased T4 release from the thyroid gland, resulting in a compensatory increase of serum T4 levels. In DIO2 knockout mice it seemed that the negative feedback system was blocked resulting in increased levels of T4 and TSH and in normal rather than decreased T3 levels compared to WT. By inhibiting DIO1 using a PTU exposure, Schneider et al. (2001) showed that DIO2 played a role in the increased TSH levels in response to T3 or T4 injection.
References
Bianco, A.C., Kim, B.W., 2006. Deiodinases: implications of the local control of thyroid hormone action. Journal of Clinical Investigation 116, 2571-2579.
Cavallin, J.E., Ankley, G.T., Blackwell, B.R., Blanksma, C.A., Fay, K.A., Jensen, K.M., Kahl, M.D., Knapen, D., Kosian, P.A., Poole, S.T., Randolph, E.C., Schroeder, A.L., Vergauwen, L., Villeneuve, D.L., 2017. Impaired swim bladder inflation in early life stage fathead minnows exposed to a deiodinase inhibitor, iopanoic acid. Environmental Toxicology and Chemistry 36, 2942-2952.
Houbrechts, A.M., Delarue, J., Gabriels, I.J., Sourbron, J., Darras, V.M., 2016. Permanent Deiodinase Type 2 Deficiency Strongly Perturbs Zebrafish Development, Growth, and Fertility. Endocrinology 157, 3668-3681.
Maia, A.L., Kim, B.W., Huang, S.A., Harney, J.W., Larsen, P.R., 2005. Type 2 iodothyronine deiodinase is the major source of plasma T-3 in euthyroid humans. Journal of Clinical Investigation 115, 2524-2533.
Mol, K.A., Van der Geyten, S., Burel, C., Kuhn, E.R., Boujard, T., Darras, V.M., 1998. Comparative study of iodothyronine outer ring and inner ring deiodinase activities in five teleostean fishes. Fish Physiology and Biochemistry 18, 253-266.
Power, D.M., Llewellyn, L., Faustino, M., Nowell, M.A., Bjornsson, B.T., Einarsdottir, I.E., Canario, A.V., Sweeney, G.E., 2001. Thyroid hormones in growth and development of fish. Comp Biochem Physiol C Toxicol Pharmacol 130, 447-459.
Schneider, M.J., Fiering, S.N., Pallud, S.E., Parlow, A.F., St Germain, D.L., Galton, V.A., 2001. Targeted disruption of the type 2 selenodeiodinase gene (D102) results in a phenotype of pituitary resistance to T-4. Molecular Endocrinology 15, 2137-2148.
Stinckens, E., Vergauwen, L., Blackwell, B.R., Ankley, G.T., Villeneuve, D.L., Knapen, D., The effect of thyroperoxidase and deiodinase inhibition on anterior swim bladder inflation in the zebrafish. Environmental Science & Technology submitted.
Walpita, C.N., Van der Geyten, S., Rurangwa, E., Darras, V.M., 2007. The effect of 3,5,3'-triiodothyronine supplementation on zebrafish (Danio rerio) embryonic development and expression of iodothyronine deiodinases and thyroid hormone receptors. Gen Comp Endocrinol 152, 206-214.
Winata, C.L., Korzh, S., Kondrychyn, I., Korzh, V., Gong, Z. 2010. The role of vasulature and blood circulation in zebrafish swim bladder development. Dev. Biol. 10:3.
Winata, C.L., Korzh, S., Kondrychyn, I., Zheng, W., Korzh, V., Gong, Z. 2009. Development of zebrafish swimbladder: the requirement of Hedgehog signaling in specification and organization of the three tissue layers. Dev. Biol.331, 222–236, http://dx.doi.org/10.1016/j.ydbio.2009.04.035.
Relationship: 1034: Reduced, Anterior swim bladder inflation leads to Reduced, Swimming performance
AOPs Referencing Relationship
Evidence Supporting Applicability of this Relationship
Importance of swimming performance for natural behaviour is generally applicable to fish.
Key Event Relationship Description
Effects on swim bladder inflation can alter swimming performance and buoyancy of fish, which is essential for predator avoidance, energy sparing, migration, reproduction and feeding behaviour, resulting in lower young-of-year survival.
Evidence Supporting this KER
The weight of evidence supporting a direct linkage between these two KEs, i.e. reduced anterior swim bladder inflation and reduced swimming performance, is weak.
Biological PlausibilityThe anterior chamber of the swim bladder has a function in regulating the buoyancy of fish, by altering the volume of the swim bladder (Roberston et al., 2007). Fish rely on the lipid and gas content in their body to regulate their position within the water column, with the latter being more efficient at increasing body buoyancy. Therefore, fish with functional swim bladders have no problem supporting their body (Brix 2002), while it is highly likely that impaired inflation severely impacts swimming performance. Fish with no functional swim bladder can survive, but are severely disadvantaged., making the likelihood of surviving smaller.
Several studies in zebrafish and fathead minnow showed that a smaller AC was associated with a larger posterior chamber (Nelson et al., 2016; Stinckens et al., 2016; Cavallin et al., 2017, Stinckens et al., submitted) suggesting a possible compensatory mechanism. As shown by Stoyek et al. (2011) however, the AC volume is highly dynamic under normal conditions due to a series of regular corrugations running along the chamber wall, and is in fact the main driver for adjusting buoyancy while the basic PC volume remains largely invariable. Therefore, it is plausible to assume that functionality of the swim bladder is affected when AC inflation is incomplete, even when the PC appears to fully compensate the gas volume of the swim bladder.
Empirical Evidence- After exposure to 2-mercaptobenzothiazole, a TPO inhibitor, from 0 to 32 days post fertilization (dpf) in zebrafish, the swimming activity of fish was impacted starting at 26 dpf if the inflation of the anterior chamber of the swim bladder was impaired or had no normal structure/size (Stinckens et al., 2016).
- Methimazole (MMI) and propylthiouracil (PTU), two thyroperoxidase inhibitors, and iopanoic acid (IOP), a deiodinase inhibitor, each reduced both anterior chamber (AC) inflation and swimming distance in zebrafish exposed from fertlization until the age of 32 days (Stinckens et al., submitted). The current dataset provides evidence for a specific, direct link between AC inflation and reduced swimming performance. First, after 21 d of exposure to 111 mg/L PTU around 30% of ACs were not inflated and swimming distance was reduced, while by 32 dpf all larvae had inflated ACs and the effect on swimming distance had disappeared. The most direct way to assess the role of AC inflation in swimming performance, however, is to compare larvae with and without inflated AC at the same time point and within the same experimental treatment. Both in the PTU exposure at 21 dpf and in the IOP exposure at 21 and 32 dpf, swimming distance was clearly reduced in larvae lacking an inflated AC, while the swimming distance of larvae with inflated AC was equal to that of controls.
- It has also been reported that larvae that fail to inflate their swim bladder use additional energy to maintain buoyancy (Lindsey et al., 2010, Goodsell et al. 1996), possibly contributing to reduced swimming activity. Furthermore, Chatain (1994) associated larvae with non-inflated swim bladders with numerous complications, such as spinal deformities and lordosis and reduced growth rates, adding to the impact on swimming behaviour.
- An increasing incidence of swim bladder non-inflation has also been reported in Atlantic salmon (Poppe et al. 1997). Affected fish had severely altered balance and buoyancy, observed through a specific swimming behaviour, as the affected fish were swimming upside down in an almost vertical position (Poppe et al. 1997).
After exposure to 100 mg/L MMI, 95% of the zebrafish larvae failed to inflate their AC at 32 dpf and swimming distance was reduced (Stinckens et al., submitted). On the other hand, there was no effect of impaired AC inflation on swimming distance in the MMI exposure of 50 mg/L. Also, inflated but smaller ACs did not result in a decreased swimming performance in the present study. A similar result, where non-inflated ACs did not consistently lead to reduced swimming performance, was previously found after exposure to MBT (Stinckens et al., 2016). In summary, the precise relationship between these two KEs is not easy to determine and may be different for different chemicals. Swimming capacity can be affected via other processes which may or may not depend on the HPT axis, such as decreased cardiorespiratory function, energy metabolism and growth.
As Robertson et al., (2007) reported, the swim bladder only starts regulating buoyancy actively from 32 dpf onward in zebrafish, possibly explaining the lack of effect on swimming capacity in some cases.
The anterior chamber is also important for producing and transducing sound through the Weberian Apparatus (Popper, 1974; Lechner and Ladich, 2008). It is highly plausible that impaired inflation or size of the anterior swim bladder could lead to a reduction in young-of-year survival as hearing loss would affect their ability to respond to their surrounding environment, thus impacting ecological relevant endpoints such as predator avoidance or prey seeking (Wisenden et al., 2008; Fay, 2009).
References
Brix O (2002) The physiology of living in water. In: Hart PJ, Reynolds J (eds) Handbook of Fish Biology and Fisheries, Vol. 1, pp. 70–96. Blackwell Publishing, Malden, USA.
Cavallin, J.E., Ankley, G.T., Blackwell, B.R., Blanksma, C.A., Fay, K.A., Jensen, K.M., Kahl, M.D., Knapen, D., Kosian, P.A., Poole, S.T., Randolph, E.C., Schroeder, A.L., Vergauwen, L., Villeneuve, D.L., 2017. Impaired swim bladder inflation in early life stage fathead minnows exposed to a deiodinase inhibitor, iopanoic acid. Environmental Toxicology and Chemistry 36, 2942-2952.
Chatain, B., 1994. Abnormal swimbladder development and lordosis in sea bass (Dicentrarchus labrax) and sea bream (Sparus auratus). Aquaculture 119:371–379.
Czesny, S.J., Graeb, B.D.S., Dettmersn, J.M., 2005. Ecological consequences of swimbladder noninflation for larval yellow perch. Trans. Am. Fish. Soc. 134,1011–1020, http://dx.doi.org/10.1577/T04-016.1.
Fay, R., 2009. Soundscapes and the sense of hearing of fishes. Integrative Zool. 4,26–32.
Goodsell, D.S., Morris, G.M., Olsen, A.J. 1996. Automated docking of fleixble ligands. Applications of Autodock. J. Mol. Recogonition, 9:1-5.
Kurata, M., Ishibashi, Y., Takii, K., Kumai, H., Miyashita, S., Sawada, Y., 2014.Influence of initial swimbladder inflation failure on survival of Pacific bluefintuna, Thuunus orientalis (Temminck and Schlegl) larvae. Aquacult. Res. 45,882–892.
Lechner, W., Ladich, F., 2008. Size matters: diversity in swimbladders andWeberian ossicles affects hearing in catfishes. J. Exp. Biol. 211, 1681–1689.
Lindsey, B.W., Smith, F.M., Croll, R.P., 2010. From inflation to flotation: contributionof the swimbladder to whole-body density and swimming depth duringdevelopment of the zebrafish (Danio rerio). Zebrafish 7, 85–96, http://dx.doi.org/10.1089/zeb.2009.0616.
Nelson, K., Schroeder, A., Ankley, G., Blackwell, B., Blanksma, C., Degitz, S., Flynn, K., Jensen, K., Johnson, R., Kahl, M., Knapen, D., Kosian, P., Milsk, R., Randolph, E., Saari, T., Stinckens, E., Vergauwen, L., Villeneuve, D., 2016. Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part I: Fathead minnow. Aquatic Toxicology 173, 192-203.
Poppe, T.T., Hellberg, H., Griffiths, D., Mendal, H. 1977. Swim bladder abnormality in farmed Atlantic salmon, Salmo salar. Diseases of aquatic organisms 30:73-76.
Roberston, G.N., McGee, C.A.S., Dumbarton, T.C., Croll, R.P., Smith, F.M., 2007.Development of the swim bladder and its innervation in the zebrafish, Danio rerio. J. Morphol. 268, 967–985, http://dx.doi.org/10.1002/jmor.
Stinckens, E., Vergauwen, L., Blackwell, B.R., Ankley, G.T., Villeneuve, D.L., Knapen, D., The effect of thyroperoxidase and deiodinase inhibition on anterior swim bladder inflation in the zebrafish. Environmental Science & Technology submitted.
Stinckens, E., Vergauwen, L., Schroeder, A.L., Maho, W., Blackwell, B., Witter, H.,Blust, R., Ankley, G.T., Covaci, A., Villenueve, D.L., Knapen, D., 2016. Disruption of thyroid hormone balance after 2-mercaptobenzothiazole exposure causes swim bladder inflation impairment—part II: zebrafish. Aquat. Toxicol. 173:204-17.
Stoyek, M.R., Smith, F.M., Croll, R.P., 2011. Effects of altered ambient pressure on the volume and distribution of gas within the swimbladder of the adult zebrafish, Danio rerio. Journal of Experimental Biology 214, 2962-2972.
Wisenden, B.D., Pogatschnik, J., Gibson, D., Bonacci, L., Schumacher, A., Willet, A.,2008. Sound the alarm: learned association of predation risk with novelauditory stimuli by fathead minnows (Pimephales promelas) and glowlighttetras (Hemigrammus erythrozonus) after single simultaneous pairings withconspecific chemical alarm cues. Environ. Biol. Fish 81, 141–147.
Woolley, L.D., Qin, J.G., 2010. Swimbladder inflation and its implication to theculture of marine finfish larvae. Rev. Aquac. 2, 181–190, http://dx.doi.org/10.1111/j.1753-5131.2010.01035.x.
Relationship: 1029: Reduced, Swimming performance leads to Reduced, Young of year survival
AOPs Referencing Relationship
Evidence Supporting Applicability of this Relationship
| Life Stage | Evidence |
|---|---|
| All life stages |
| Sex | Evidence |
|---|---|
| Unspecific |
Importance of swimming performance on young of year survival is generally applicable to fish.
Evidence Supporting this KER
Biological PlausibilityReduced swimming performance is likely to affect essential endpoints such as predator avoidance, feeding behaviour and reproduction. These parameters are biologicaly plausible to affect young-of-year survival, especially in a non-laboratory environment where food is scarce and predators are abundant.
Empirical EvidenceAll zebrafish larvae that failed to inflate the posterior chamber after exposure to 2 mg/L iopanoic acid (IOP), died by the age of 9 dpf (Stinckens et al., unpublished). Since larvae from the same group that were able to inflate the posterior chamber survived, it is plausible to assume that the cause of death was the inability to swim and find food due to the failure to inflate the posterior swim bladder chamber.
Quantitative Understanding of the Linkage
Time-scaleReduced swimming performance is not expected to immediately lead to mortality. Depending on the extent of the reduction in swimming performance and depending on the cause of death (e.g., starvation due to the inability to find food, being caught by a predator) the lag time may vary.
As an example, Stinckens et al. (unpublished) found that zebrafish larvae that failed to inflate the swim bladder at 5 dpf and did not manage to inflate it during the days afterwards died by the age of 9 dpf. Since zebrafish initiate exogenous feeding around day 5 when the yolk is almost completely depleted, there was a lag period of around 4 days after which reduced feeding resulted in mortality. Obviously, in a laboratory setup there is no increased risk of being caught by a predator.
All zebrafish larvae that failed to inflate the posterior chamber after exposure to 2 mg/L iopanoic acid (IOP), died by the age of 9 dpf (Stinckens et al., unpublished). Since larvae from the same group that were able to inflate the posterior chamber survived, it is plausible to assume that the cause of death was the inability to swim and find food due to the failure to inflate the posterior swim bladder chamber.
Relationship: 1030: Reduced, Young of year survival leads to Decrease, Population trajectory
AOPs Referencing Relationship
Evidence Supporting Applicability of this Relationship
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| all species | all species | NCBI |
Key Event Relationship Description
If young of year survival is reduced, ultimately the population trajectory will decrease.
Evidence Supporting this KER
Biological PlausibilityIt is widely accepted that if young of year survival is reduced, the population trajectory will eventually decrease.