AOP ID and Title:
Graphical Representation
Status
| Author status | OECD status | OECD project | SAAOP status |
|---|---|---|---|
| Under development: Not open for comment. Do not cite | Under Development | 1.90 | Included in OECD Work Plan |
Abstract
This AOP links 5α-reductase inhibition during fetal life with short anogenital distance (AGD) in male offspring. A short AGD around birth is a marker for feminization of male fetuses and is associated with male reproductive disorders, including reduced fertility in adulthood. Although a short AGD is not necessarily ‘adverse’ from a human health perspective, it is considered an ‘adverse outcome’ in OECD test guidelines; AGD measurements are mandatory in specific tests for developmental and reproductive toxicity in chemical risk assessment (TG 443, TG 421/422, TG 414).
5α-reductase is an enzyme responsible for the conversion of testosterone to DHT in target tissues. DHT is more potent agonist of the Androgen receptor (AR) than testosterone, so that DHT is necessary for proper masculinization of e.g. male external genitalia. Under normal physiological conditions, testosterone produced mainly by the testicles, is converted in peripheral tissues by 5α-reductase into DHT, which in turn binds AR and activates downstream target genes. AR signaling is necessary for masculinization of the developing fetus, including differentiation of the levator ani/bulbocavernosus (LABC) muscle complex in males. The LABC complex does not develop in the absence, or low levels of, androgen signaling, as in female fetuses.
The key events in this pathway is inhibition of 5α-reductase that converts testosterone into the more potent DHT in androgen sensitive target tissues. This includes developing perineal region, which, when DHT levels are low or absent, leads to inactivation of the AR and failure to properly masculinize the perineum/LABC complex.
Summary of the AOP
Events
Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)
| Sequence | Type | Event ID | Title | Short name |
|---|---|---|---|---|
| 1 | MIE | 1617 | 5α-reductase, inhibition | 5α-reductase, inhibition |
| 2 | KE | 1613 | Decrease, dihydrotestosterone (DHT) level | Decrease, DHT level |
| 3 | KE | 1614 | Decrease, androgen receptors (AR) activation | Decrease, AR activation |
| KE | 286 | Altered, Transcription of genes by AR | Altered, Transcription of genes by AR | |
| 5 | AO | 1688 | decrease, male anogenital distance | short male AGD |
Key Event Relationships
| Upstream Event | Relationship Type | Downstream Event | Evidence | Quantitative Understanding |
|---|---|---|---|---|
| 5α-reductase, inhibition | adjacent | Decrease, dihydrotestosterone (DHT) level | High | High |
| Decrease, dihydrotestosterone (DHT) level | adjacent | Decrease, androgen receptors (AR) activation | ||
Stressors
| Name | Evidence |
|---|---|
| Finasteride | High |
Finasteride
Finasteride is a type II 5alpha-reductase inhibitor that blocks conversion of testosterone to dihydrotestosterone (Clark et al 1990; Imperato-McGinley et al 1992). Intrauterine exposure in rats can result in shorter male AGD in male offspring (Bowman et al 2003; Christiansen et al 2009; Schwartz et al 2019)
References:
Bowman et al (2003), Toxicol Sci 74:393-406; doi: 10.1093/toxsci/kfg128
Christiansen et al (2009), Environ Health Perspect 117:1839-1846; doi: 10.1289/ehp.0900689
Clark et al (1990), Teratology 42:91-100; doi: 10.1002/tera.1420420111
Imperato-McGinley (1992), J Clin Endocrinol Metab 75:1022-1026; doi: 10.1210/jcem.75.4.1400866
Schwartz et al (2019), Toxicol Sci 169:303-311; doi: 10.1093/toxsci/kfz046
Overall Assessment of the AOP
Domain of Applicability
Life Stage Applicability| Life Stage | Evidence |
|---|---|
| Pregnancy | High |
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| human | Homo sapiens | Moderate | NCBI |
| rat | Rattus norvegicus | High | NCBI |
| mouse | Mus musculus | Moderate | NCBI |
| Sex | Evidence |
|---|---|
| Male | High |
References
- Schwartz CL, Christiansen S, Vinggaard AM, Axelstad M, Hass U and Svingen T (2019), Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Arch Toxicol 93: 253-272.
Appendix 1
List of MIEs in this AOP
Event: 1617: 5α-reductase, inhibition
Short Name: 5α-reductase, inhibition
AOPs Including This Key Event
| AOP ID and Name | Event Type |
|---|---|
| Aop:289 - Inhibition of 5α-reductase leading to impaired fecundity in female fish | MolecularInitiatingEvent |
| Aop:305 - 5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) offspring | MolecularInitiatingEvent |
Biological Context
| Level of Biological Organization |
|---|
| Molecular |
List of Key Events in the AOP
Event: 1613: Decrease, dihydrotestosterone (DHT) level
Short Name: Decrease, DHT level
AOPs Including This Key Event
Biological Context
| Level of Biological Organization |
|---|
| Cellular |
Key Event Description
Reduction in DHT synthesis leads to a reduction in DHT circulating levels. 12
How it is Measured or Detected
DHT levels in a sample can be measured by (High Performance) Liquid Chromatography. After sample fractionation, DHT can be identify by comparison with internal standards spectrum. Quantification of DHT levels can be performed using hormones measurements kits (ELISA), instrumental techniques (LC-MS) or liquid scintillation spectrometry (after radiolabeling).3
References
|
1 Miller Walter L. (1988) Molecular Biology of Steroid Hormone Synthesis. Endocrine Reviews, 9(3): 295-318.https://doi.org/10.1210/edrv-9-3-295
2 Miller W.L. and Auchus R.J. (2011) The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocrine Reviews, 32(1): 81-151.https://doi.org/10.1210/er.2010-0013
3 Shiraishi S., Lee P.W., Leung A., Goh V.H., Swerdloff R.S. and Wang C. (2008) Simultaneous measurement of serum testosterone and dihydrotestosterone by liquid chromatography-tandem mass spectrometry. Clinical chemistry, 54(11): 1855-63.https://doi.org/10.1373/clinchem.2008.103846 |
Event: 1614: Decrease, androgen receptors (AR) activation
Short Name: Decrease, AR activation
AOPs Including This Key Event
Biological Context
| Level of Biological Organization |
|---|
| Cellular |
Key Event Description
Androgen receptor activation is regulated by the binding of androgens. AR activity can be decreased by either a lack of steroidal ligands (testosterone, DHT) or the presence of antagonist compounds. 12
How it is Measured or Detected
Significance of AR signaling in fetal development can be studied through a conditional deletion of the androgen receptor using a Cre/loxP approach. The recommended animal model for reproductive study is the mouse.3
Also, epidemiological case-studies following mouse or humans expressing a complete androgen insensitivity allow to directly assess the effects of a lack of AR activation on the development.4
Enzyme immunoassay (ELISA) kits for in vitro quantitative measurement of AR activity are available. Androgen receptors activity can be measured using bioassay such as the (Anti-)Androgen Receptor CALUX reporter gene assay.5
References
|
|
1 Davey R.A and Grossmann M. (2016) Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clinical Biochemist Reviews, 37(1): 3-15. PCM4810760 2 Gao W., Bohl C.E. and Dalton J.T. (2005) Chemistry and Structural Biology of Androgen Receptor. Chemical Reviews 105(9): 3352-3370https://doi.org/10.1021/cr020456u 3 Kaftanovskaya E.M., Huang Z., Barbara A.M., De Gendt K., Verhoeven G., Ivan P. Gorlov, and Agoulnik A.I. (2012) Cryptorchidism in Mice with an Androgen Receptor Ablation in Gubernaculum Testis. Molecular Endocrinology, 26(4): 598-607.https://doi.org/10.1210/me.2011-1283 4 Hutson J.M. (1985) A biphasic model for the hormonal control of testicular descent. Lancet, 24;2(8452): 419-21http://dx.doi.org/10.1016/S0140-6736(85)92739-4 5 van der Burg B., Winter R., Man HY., Vangenechten C., Berckmans P., Weimer M., Witters M. and van der Linden S. (2010) Optimization and prevalidation of the in vitro AR CALUX method to test androgenic and antiandrogenic activity of compounds. Reproductive Toxicology, 30(1):18-24 https://doi.org/0.1016/j.reprotox.2010.04.012 |
Event: 286: Altered, Transcription of genes by AR
Short Name: Altered, Transcription of genes by AR
Key Event Component
| Process | Object | Action |
|---|---|---|
| regulation of gene expression | androgen receptor | decreased |
AOPs Including This Key Event
Stressors
| Name |
|---|
| Bicalutamide |
| Cyproterone acetate |
| Epoxiconazole |
| Flutamide |
| Flusilazole |
| Prochloraz |
| Propiconazole |
| Stressor:286 Tebuconazole |
| Triticonazole |
| Vinclozalin |
Biological Context
| Level of Biological Organization |
|---|
| Cellular |
Cell term
| Cell term |
|---|
| eukaryotic cell |
Evidence for Perturbation by Stressor
Bicalutamide
Using analysis of androgen-regulated gene expression in the LNCaP prostate cancer cell line (Ngan et al. 2009).
Cyproterone acetate
Using analysis of androgen-regulated gene expression in the LNCaP prostate cancer cell line (Ngan et al. 2009) and using the AR-CALUX reporter assay in antagonism mode, cyproterone acetate showed an IC50 of 7.1 nM (Sonneveld et al. 2005).
Epoxiconazole
Using transiently AR-transfected CHO cells, epoxiconazole showed a LOEC of 1.6 mM and an IC50 of 10 mM (Kjærstad et al. 2010).
Flutamide
Analysis of androgen-regulated gene expression in the LNCaP prostate cancer cell line (Ngan et al. 2009) and using the AR-CALUX reporter assay in antagonism mode, flutamide showed an IC50 of 1.3 uM (Sonneveld et al. 2005).
Flusilazole
Using hAR-EcoScreen Assay, triticonazole showed a LOEC for antagonisms of 0.8 mM and an IC50 of 2.8 (±0.1) mM (Draskau et al. 2019)
Prochloraz
Using gene expression analysis of the androgen-regulated genes ornithine decarboxylase, prostatic binding protein C3 as well as insulin-like growth factor I. Gene expression levels were reduced in ventral prostates of male Wistar pups at postnatal day 16 following in utero and lactational exposure from maternal perinatal dosing with prochloraz (50 and 150 mg/kg/day) from gestational day 7 to postnatal day 16 (Laier et al. 2006). Also, using transiently AR-transfected CHO cells, prochloraz showed a LOEC of 6.3 mM and an IC50 of 13 mM (Kjærstad et al. 2010).
Propiconazole
Using transiently AR-transfected CHO cells, propiconazole showed a LOEC of 12.5 mM and an IC50 of 18 mM (Kjærstad et al. 2010).
Stressor:286 Tebuconazole
Using transiently AR-transfected CHO cells, tebuconazole showed a LOEC of 3.1 mM and an IC50 of 8.1 mM (Kjærstad et al. 2010).
Triticonazole
Using hAR-EcoScreen Assay, triticonazole showed a LOEC for antagonisms of 0.2 mM and an IC50 of 0.3 (±0.01) mM (Draskau et al. 2019).
Vinclozalin
Using the AR-CALUX reporter assay in antagonism mode, vinclozolin showed an IC50of 1.0 uM (Sonneveld et al. 2005).
Domain of Applicability
Taxonomic Applicability| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| human | Homo sapiens | High | NCBI |
| rat | Rattus norvegicus | High | NCBI |
| mouse | Mus musculus | High | NCBI |
| Life Stage | Evidence |
|---|---|
| Foetal | High |
| Adult, reproductively mature | High |
| Sex | Evidence |
|---|---|
| Mixed | High |
Both the DNA-binding and ligand-binding domains of the AR are highly evolutionary conserved, whereas the transactivation domain show more divergence, which may affect AR-mediated gene regulation across species (Davey and Grossmann 2016). Despite certain inter-species differences, AR function mediated through gene expression is highly conserved, with mutation studies from both humans and rodents showing strong correlation for AR-dependent development and function (Walters et al. 2010).
This KE is applicable for both sexes, across developmental stages into adulthood, in numerous cells and tissues and across taxa.
Key Event Description
The Androgen Receptor and its function
Androgens act by binding to the Androgen receptor (AR) in androgen-responsive tissues (Davey and Grossmann 2016). Human AR mutations and mouse knockout models have established the fundamental role of AR in masculinization and spermatogenesis (Maclean et al.; Walters et al. 2010; Rana et al. 2014). The AR is also expressed in many other tissues such as bone, muscles, ovaries and within the immune system (Rana et al. 2014).
Altered transcription of genes by the AR as a Key Event
The AR belongs to the steroid hormone nuclear receptor family. It is a ligand-activated transcription factor with three domains; the N-terminal domain, the DNA-binding domain, and the ligand-binding domain with the latter being the most evolutionary conserved (Davey and Grossmann 2016). Upon activation by ligand-binding, the AR translocate from the cytoplasm to the cell nucleus, dimerizes, binds to androgen response elements in the DNA to modulate gene transcription (Davey and Grossmann 2016). The transcriptional targets varies between different cells and tissues, as well as with developmental stages and is, for instance, dependent on available co-regulators (Bevan and Parker 1999; Heemers and Tindall 2007).
Several known and proposed target genes of AR canonical signaling have been identified by analysis of gene expression following treatments with AR agonists (Bolton et al. 2007; Ngan et al. 2009) and can for instance be found in the Androgen-Responsive Gene Database (Jiang et al. 2009).
How it is Measured or Detected
In vitro
Decreased transcription of genes by the AR can be measured by measuring the transcription level of known downstream target genes by RT-qPCR or other transcription analyses approaches, eg transcriptomics.
Indirect approaches include the use of transient or stable transactivation assays including the validated OECD test guideline assay, Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals (OECD 2016). The stably transfected AR-EcoScreenTM cell line is freely available for the Japanese Collection of Research Bioresources (JCRB) Cell Bank under reference number JCRB1328. These cell-based transcriptional activation assays are typically used to detect AR agonists and antagonists. However, these types of assays are well suited to measure this KE as what they measure is exactly AR transcriptional activity. Other assays along this line include the AR-CALUX reporter gene assay that is derived from human U2-OS cells stably transfected with the human AR and an AR responsive reporter gene (van der Burg et al. 2010).
In vivo
Known downstream target gene transcription level can be measured in tissues by RT-qPCR or other gene expression analyses approaches.
References
Bevan C, Parker M (1999) The role of coactivators in steroid hormone action. Exp. Cell Res. 253:349–356
Bolton EC, So AY, Chaivorapol C, et al (2007) Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 21:2005–2017. doi: 10.1101/gad.1564207
Davey RA, Grossmann M (2016) Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev 37:3–15
Draskau MK, Boberg J, Taxvig C, et al (2019) In vitro and in vivo endocrine disrupting effects of the azole fungicides triticonazole and flusilazole. Environ Pollut 255:113309. doi: 10.1016/j.envpol.2019.113309
Estrada M, Espinosa A, Müller M, Jaimovich E (2003) Testosterone Stimulates Intracellular Calcium Release and Mitogen-Activated Protein Kinases Via a G Protein-Coupled Receptor in Skeletal Muscle Cells. Endocrinology 144:3586–3597. doi: 10.1210/en.2002-0164
Heemers H V., Tindall DJ (2007) Androgen receptor (AR) coregulators: A diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev. 28:778–808
Jiang M, Ma Y, Chen C, et al (2009) Androgen-Responsive Gene Database: Integrated Knowledge on Androgen-Responsive Genes. Mol Endocrinol 23:1927–1933. doi: 10.1210/me.2009-0103
Kjærstad MB, Taxvig C, Nellemann C, et al (2010) Endocrine disrupting effects in vitro of conazole antifungals used as pesticides and pharmaceuticals. Reprod Toxicol 30:573–582. doi: 10.1016/J.REPROTOX.2010.07.009
Laier P, Metzdorff SB, Borch J, et al (2006) Mechanisms of action underlying the antiandrogenic effects of the fungicide prochloraz. Toxicol Appl Pharmacol 213:160–71. doi: 10.1016/j.taap.2005.10.013
Maclean HE, Chu S, Warne GL, Zajact JD Related Individuals with Different Androgen Receptor Gene Deletions
MacLeod DJ, Sharpe RM, Welsh M, et al (2010) Androgen action in the masculinization programming window and development of male reproductive organs. In: International Journal of Andrology. Blackwell Publishing Ltd, pp 279–287
Ngan S, Stronach EA, Photiou A, et al (2009) Microarray coupled to quantitative RT–PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells. Oncogene 28:2051–2063. doi: 10.1038/onc.2009.68
OECD (2016) Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals, OECD Guide. OECD Publishing
Rana K, Davey RA, Zajac JD (2014) Human androgen deficiency: Insights gained from androgen receptor knockout mouse models. Asian J. Androl. 16:169–177
Sonneveld E, Jansen HJ, Riteco JAC, et al (2005) Development of Androgen-and Estrogen-Responsive Bioassays, Members of a Panel of Human Cell Line-Based Highly Selective Steroid-Responsive Bioassays. Toxicol Sci 83:136–148. doi: 10.1093/toxsci/kfi005
van der Burg B, Winter R, Man H yen, et al (2010) Optimization and prevalidation of the in vitro AR CALUX method to test androgenic and antiandrogenic activity of compounds. Reprod Toxicol 30:18–24. doi: 10.1016/j.reprotox.2010.04.012
Walters KA, Simanainen U, Handelsman DJ (2010) Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum Reprod Update 16:543–558. doi: 10.1093/humupd/dmq003
List of Adverse Outcomes in this AOP
Event: 1688: decrease, male anogenital distance
Short Name: short male AGD
Key Event Component
| Process | Object | Action |
|---|---|---|
| androgen receptor signaling pathway | Musculature of male perineum | disrupted |
AOPs Including This Key Event
Stressors
| Name |
|---|
| Butylparaben |
| p,p'-DDE |
| Bis(2-ethylhexyl) phthalate |
| Dexamethasone |
| Fenitrothion |
| Finasteride |
| Flutamide |
| Ketoconazole |
| Linuron |
| Prochloraz |
| Procymidone |
| Triticonazole |
| Vinclozolin |
| di-n-hexyl phthalate |
| Dicyclohexyl phthalate |
| butyl benzyl phthalate |
| monobenzyl phthalate |
| di-n-heptyl phthalate |
Biological Context
| Level of Biological Organization |
|---|
| Tissue |
Organ term
| Organ term |
|---|
| perineum |
Evidence for Perturbation by Stressor
Butylparaben
Butylparaben has been shown to cause decreased male AGD in rats following intrauterine exposure to 500 and 1000 mg/kg bw/day (Boberg et al, 2016; Zhang et al, 2014). A separate study using 600 mg/kg bw/day did not see an effect on male AGD (Boberg et al, 2008).
p,p'-DDE
p,p,DDE has been shown to cause decreased male AGD in rats following intrauterine exposure to 100-200 mg/kg bw/day (Loeffler & Peterson, 1999; Wolf et al, 1999).
Bis(2-ethylhexyl) phthalate
DEHP has been shown to cause decreased male AGD in rats following intrauterine exposure to 300-1500 mg/kg bw/day (Christiansen et al, 2010; Gray et al, 2000; Howdeshell et al, 2007; Jarfelt et al, 2005; Kita et al, 2016; Li et al, 2013; Lin et al, 2009; Moore et al, 2001; Nardelli et al, 2017; Saillenfait et al, 2009; Wolf et al, 1999).
Dexamethasone
Dexamethasone has been shown to cause decreased male AGD in rats following intrauterine exposure to 0.1 mg/kg bw/day (Van den Driesche et al, 2012).
Fenitrothion
Fenitrothion has been shown to cause decreased male AGD in rats following intrauterine exposure to 25 mg/kg bw/day (Turner et al, 2002).
Finasteride
Finasteride has been shown to cause decreased male AGD in rats following intrauterine exposure to 100 mg/kg bw/day (Bowman et al, 2003).
Flutamide
Flutamide has been shown to cause decreased male AGD in rats following intrauterine exposure to doses between 16-100 mg/kg bw/day (Foster & Harris, 2005; Hass et al, 2007; Kita et al, 2016; McIntyre et al, 2001; Mylchreest et al, 1999; Scott et al, 2007; Welsh et al, 2007).
Ketoconazole
Ketoconazole has been shown to cause decreased male AGD in rats following intrauterine exposure to 50 mg/kg bw/day in one study (Taxvig et al, 2008), but no effect in another study using same dose (Wolf et al, 1999).
Linuron
Linuron has been shown to cause decreased male AGD in rats following intrauterine exposure to 50-100 mg/kg bw/day (Hotchkiss et al, 2004; McIntyre et al, 2002; Wolf et al, 1999).
Prochloraz
Prochloraz has been shown to cause decreased male AGD in rats following intrauterine exposure to 150-250 mg/kg bw/day (Laier et al, 2006; Noriega et al, 2005).
Procymidone
Procymidone has been shown to cause decreased male AGD in rats following intrauterine exposure to doses between 50-150 mg/kg bw/day (Hass et al, 2012; Hass et al, 2007; Wolf et al, 1999).
Triticonazole
Triticonazole has been shown to cause decreased male AGD in rats following intrauterine exposure to 150 and 450 mg/kg bw/day (Draskau et al, 2019).
Vinclozolin
Vinclozolin has been shown to cause decreased male AGD in rats following intrauterine exposure to doses between 50-200 mg/kg bw/day (Christiansen et al, 2009; Gray et al, 1994; Hass et al, 2007; Matsuura et al, 2005; Ostby et al, 1999; Schneider et al, 2011; Wolf et al, 2004).
di-n-hexyl phthalate
DnHP has been shown to cause decreased male AGD in rats following intrauterine exposure to 500-750 mg/kg bw/day (Saillenfait et al, 2009a; Saillenfait et al, 2009b).
Dicyclohexyl phthalate
DCHP has been shown to cause decreased male AGD in rats following intrauterine exposure to 350-750 mg/kg bw/day (Aydoğan Ahbab & Barlas, 2015; Hoshino et al, 2005; Saillenfait et al, 2009a).
butyl benzyl phthalate
BBP has been shown to cause decreased male AGD in rats following intrauterine exposure to 500-1000 mg/kg bw/day (Ema & Miyawaki, 2002; Gray et al, 2000; Hotchkiss et al, 2004; Nagao et al, 2000; Tyl et al, 2004).
monobenzyl phthalate
MBeP has been shown to cause decreased male AGD in rats following intrauterine exposure to 375 mg/kg bw/day (Ema et al, 2003).
di-n-heptyl phthalate
DHPP has been shown to cause decreased male AGD in rats following intrauterine exposure to 1000 mg/kg bw/day (Saillenfait et al, 2011).
Domain of Applicability
Taxonomic Applicability| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| human | Homo sapiens | Moderate | NCBI |
| rat | Rattus norvegicus | High | NCBI |
| mouse | Mus musculus | High | NCBI |
| Life Stage | Evidence |
|---|---|
| Foetal | High |
| Sex | Evidence |
|---|---|
| Male | High |
A short AGD in male offspring is a marker of insufficient androgen action during critical fetal developmental stages (Schwartz et al, 2019; Welsh et al, 2008). A short AGD is thus a sign of undervirilization, which is also associated with a series of male reproductive disorders, including genital malformations and infertility in humans (Juul et al, 2014; Skakkebaek et al, 2001).
There are numerous human epidemiological studies showing associations with intrauterine exposure to anti-androgenic chemicals and short AGD in newborn boys alongside other reproductive disorders (Schwartz et al, 2019). This underscores the human relevance of this AO. However, in reproductive toxicity studies and chemical risk assessment, rodents (rats and mice) are what is tested on. The list of chemicals inducing short male AGD in male rat offspring is extensive, as evidenced by the ‘stressor’ list and reviewed by (Schwartz et al, 2019).
Key Event Description
The anogenital distance (AGD) refers to the distance between anus and the external genitalia. In rodents and humans, the male AGD is approximately twice the length as the female AGD (Salazar-Martinez et al, 2004; Schwartz et al, 2019). This sexual dimorphisms is a consequence of sex hormone-dependent development of secondary sexual characteristics (Schwartz et al, 2019). In males, it is believed that androgens (primarily DHT) activate AR-positive cells in non-myotic cells in the fetal perineum region to initiate differentiation of the perineal levator ani and bulbocavernosus (LABC) muscle complex (Ipulan et al, 2014). This AR-dependent process occurs within a critical window of development, around gestational days 15-18 in rats (MacLeod et al, 2010). In females, the absence of DHT prevents this masculinization effect from occurring.
The involvement of androgens in masculinization of the male fetus, including the perineum, has been known for a very long time (Jost, 1953), and AGD has historically been used to, for instance, sex newborn kittens. It is now well established that the AGD in newborns is a proxy readout for the intrauterine sex hormone milieu the fetus was developing. Too low androgen levels in XY fetuses makes the male AGD shorter, whereas excess (ectopic) androgen levels in XX fetuses makes the female AGD longer, in humans and rodents (Schwartz et al, 2019).
How it is Measured or Detected
The AGD is a morphometric measurement carried out by trained technicians (rodents) or medical staff (humans).
In rodent studies AGD is assessed as the distance between the genital papilla and the anus, and measured using a stereomicroscope with a micrometer eyepiece. The AGD index (AGDi) is often calculated by dividing AGD by the cube root of the body weight. It is important in statistical analysis to use litter as the statistical unit. This is done when more than one pup from each litter is examined. Statistical analyses is adjusted using litter as an independent, random and nested factor. AGD are analysed using body weight as covariate as recommended in Guidance Document 151 (OECD, 2013).
Regulatory Significance of the AO
In regulatory toxicology, the AGD is mandatory inclusions in OECD test guidelines used to test for developmental and reproductive toxicity of chemicals. Guidelines include ‘TG 443 extended one-generation study’, ‘TG 421/422 reproductive toxicity screening studies’ and ‘TG 414 developmental toxicity study’.
References
Appendix 2
List of Key Event Relationships in the AOP
List of Adjacent Key Event Relationships
Relationship: 1880: 5α-reductase, inhibition leads to Decrease, DHT level
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Inhibition of 5α-reductase leading to impaired fecundity in female fish | adjacent | High | High |
| 5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) offspring | adjacent | High | High |
Relationship: 1935: Decrease, DHT level leads to Decrease, AR activation
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Inhibition of 17α-hydrolase/C 10,20-lyase (Cyp17A1) activity leads to birth reproductive defects (cryptorchidism) in male (mammals) | adjacent | High | High |
| Decreased testosterone synthesis leading to short anogenital distance (AGD) in male (mammalian) offspring | adjacent | High | Moderate |
| 5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) offspring | adjacent |
Evidence Supporting Applicability of this Relationship
| Life Stage | Evidence |
|---|---|
| Foetal | High |
| During development and at adulthood | High |
| Sex | Evidence |
|---|---|
| Male | High |
Key Event Relationship Description
Dihydrotestosterone (DHT) is, together with testosterone, a primary ligand for the Androgen receptor (AR). DHT is an endogenous sex hormone that is synthesis from e.g. testosterone by the enzyme 5α-reductase in selected tissues, not least in the reproductive tracts of both sexes, but also other tissues and organs (Davey & Grossmann, 2016; Marks, 2004). In the absence of ligand (DHT/testosterone) the AR is localized in the cytoplasm. AR is only activated and translocated into the nucleus to carry out its ‘genomic function’ upon ligand binding (Davey & Grossmann, 2016). Hence, AR transcriptional function is directly dependent on the presence of ligands, with DHT being a more potent AR activator (2-fold higher binding affinity) than testosterone (Grino et al, 1990). Reduced levels of DHT will lead to reduced AR activation.