AOP-Wiki

AOP ID and Title:

AOP 307: Decreased testosterone synthesis leading to short anogenital distance (AGD) in male (mammalian) offspring
Short Title: Decreased testosterone synthesis leading to short AGD

Graphical Representation

Authors

Monica K. Draskau; National Food Institute, Technical University of Denmark, Lyngby, DK-2800, Denmark

Marie L. Holmer; National Food Institute, Technical University of Denmark, Lyngby, DK-2800, Denmark

Terje Svingen; National Food Institute, Technical University of Denmark, Lyngby, DK-2800, Denmark

Status

Author status OECD status OECD project SAAOP status
Under development: Not open for comment. Do not cite Under Development 1.90 Included in OECD Work Plan

Abstract

This AOP links decreased testosterone levels with short anogenital distance (AGD) in male offspring. It does not yet contain an MIE, as the upstream events leading to ‘reduced testosterone’ synthesis in fetal testis can be many, for example by inhibiting various enzymes of the steroidogenesis pathway. The precursor molecule cholesterol is converted to testosterone via several enzymatic steps and includes, for instance, the CYP enzymes CYP11 and CYP17. Following synthesis, testosterone is released into the circulation and transported to target tissues and organs where it initiates masculinization processes, typically by binding to and activating the androgen receptor (AR) in target cells. Notably, testosterone can be converted to DHT by 5α-reductase, with DHT being a more potent AR agonist than testosterone; this testosterone-to-DHT conversion is critical during development for differentiation of male traits, including masculinization of the developing fetus, including differentiation of the levator ani/bulbocavernosus (LABC) muscle complex (Davey and Grossmann, 2016; Keller et al, 1996; Robitaille and Langlois, 2020). The LABC complex does not develop in the absence, or low levels of, androgen signaling, as in female fetuses.

A short AGD around birth is a marker for feminization of male fetuses and is associated with male reproductive disorders, including reduced fertility in adulthood (Schwartz et al, 2019). Although a short AGD is not necessarily ‘adverse’ from a human health perspective, it is considered an ‘adverse outcome’ in OECD test guidelines; AGD measurements are mandatory in specific tests for developmental and reproductive toxicity in chemical risk assessment (TG 443, TG 421/422, TG 414), with measurement guidance provided in OECD guidance documents 43 (OECD, 2008) and 151 (OECD, 2013).

A central event in this pathway is inhibition of testosterone synthesis by fetal testes. In turn, this results in reduced circulating testosterone levels and less DHT (converted by 5α-reductase). Low DHT fails to properly activate AR in target tissues, including the developing perineal region, which leads to failure to properly masculinize the perineum/LABC complex and ultimately a short AGD.

Background

Androgen signaling is critical for male sex differentiation during fetal life and suboptimal action during critical life stages leads to under-masculinized offspring. Androgens, primarily testosterone and dihydro-testosterone (DHT), act by binding to and activating the AR is target cells. Blocking the AR basically blocks androgen signaling and masculinization of tissues and organs that otherwise should masculinize in male fetuses.  One morphometric marker for reduced fetal androgen action is a shorter than normal anogenital distance.

Summary of the AOP

Events

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Sequence Type Event ID Title Short name
KE 1690 Decrease, testosterone levels Decrease, testosterone levels
KE 1614 Decrease, androgen receptor activation Decrease, AR activation
KE 286 Altered, Transcription of genes by the androgen receptor Altered, Transcription of genes by the AR
AO 1688 anogenital distance (AGD), decreased AGD, decreased

Key Event Relationships

Upstream Event Relationship Type Downstream Event Evidence Quantitative Understanding
Decrease, testosterone levels adjacent Decrease, androgen receptor activation High Moderate
Decrease, androgen receptor activation adjacent Altered, Transcription of genes by the androgen receptor Moderate Low
Decrease, androgen receptor activation non-adjacent anogenital distance (AGD), decreased High Moderate
Altered, Transcription of genes by the androgen receptor non-adjacent anogenital distance (AGD), decreased Moderate Low

Stressors

Name Evidence
Dibutyl phthalate High
Bis(2-ethylhexyl) phthalate High

Overall Assessment of the AOP

Domain of Applicability

Life Stage Applicability
Life Stage Evidence
Foetal High
Pregnancy High
Taxonomic Applicability
Term Scientific Term Evidence Links
human Homo sapiens Moderate NCBI
rat Rattus norvegicus High NCBI
mouse Mus musculus Moderate NCBI
Sex Applicability
Sex Evidence
Male High

The upstream part of the AOP, culminating at KE-286 (altered transcription of genes by the AR), has a broad applicability domain. It is built primarily on mammalian data and includes all life stages and both sexes. It could be extended to cover non-mammalian vertebrates by adding additional relevant knowledge, as previously discussed (Draskau et al, 2024). The overall applicability domain is limited by AO-1688 (decreased AGD). The AGD is strongly influenced by androgen action during critical fetal stages in mammals, with evidence from humans (Murashima et al, 2015; Thankamony et al, 2016), and from numerous gestational exposure studies in rats and mice to anti-androgenic chemicals (Gray et al, 2001; Schwartz et al, 2019). The male masculinisation programming window occurs at a developmental stage included in the applicability domain of these AOPs and corresponds to around gestational day 16-20 in rats and gestation weeks 8-14 in humans (Welsh et al, 2008). Only males are included in the applicability domain since the male AGD, but not the female AGD, is shortened by decreased androgen action (Schwartz et al, 2019).

Essentiality of the Key Events

The essentiality of each key event (KE) was evaluated, meaning that if an upstream KE is blocked or does not occur, subsequent downstream KEs or the adverse outcome (AO) are prevented or altered. Both direct and indirect evidence of essentiality were assessed according to the OECD developer’s handbook, with a summary provided in Table 1.

Table 1: Essentiality assessment of KEs of AOP 307.

Event

Direct evidence

Indirect evidence

Contradictory evidence

Overall essentiality assessment

KE-1690

 

***

 

High

KE-1614

***

***

 

High

KE-286

 

***

 

High

*Low level of evidence (some support for essentiality), ** Intermediate level of evidence (evidence for impact on one or more downstream KEs), ***High level of evidence (evidence for impact on AO).

Weight of Evidence Summary

Evidence for anti-androgenicity, by antagonizing the AR, is strong. In this AOP, most KERs are considered highly biologically plausible with strong empirical evidence in support of this assessment, both from human data and animal studies. The overall evidence assessment scores for each KER are summarized in the below Table:

ID

Assessment score

Rationale

KER-2131

High

It is well established that testosterone activates the AR and that decreased testosterone levels leads to decreased AR activation.

KER-2124

High

It is well established that the AR regulates gene transcription, and that decreased AR activity leads to altered gene transcription.

KER-2820

High

It is well established that decreased AR activity leads to decreased AGD in male offspring.

KER-2127

Moderate

It is highly plausible that altered gene transcription in the perineum leads to decreased AGD in male offspring.

 

Quantitative Consideration

Quantitative understanding is low.

References

Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, Montori VM; Task Force, Endocrine Society (2010). Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 95(6):2536-59.

Chamberlain NL, Driver ED, Miesfeld RL (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 22(15):3181-6.

Davey RA, Grossmann M (2016). Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev 37(1):3-15.

Draskau MK, Rosenmai AK, Bouftas N, Johansson HKL, Panagiotou EM, Holmer ML, Elmelund E, Zilliacus J, Beronius A, Damdimopolou P, van Duursen M, Svingen T (2024). AOP Report: An Upstream Network for Reduced Androgen Signaling Leading to Altered Gene Expression of Androgen Receptor-Responsive Genes in Target Tissues. Environ Toxicol Chem In Press (doi: 10.1002/etc.5972).

Gray LE, Ostby J, Furr J, Wolf CJ, Lambright C, Parks L, Veeramachaneni DN, Wilson V, Price M, Hotchkiss A, Orlando E, Guillette L (2001). Effects of environmental antiandrogens on reproductive development in experimental animals. Hum Reprod Update 7(3):248-64.

Holmer ML, Zilliacus J, Draskau MK, Hlisníková H, Beronius A, Svingen T (2024). Methodology for developing data-rich Key Event Relationships for Adverse Outcome Pathways exemplified by linking decreased androgen receptor activity with decreased anogenital distance. Reprod Toxicol 128:108662.

Keller ET, Ershler WB, Chang C (1996). The androgen receptor: a mediator of diverse responses. Front Biosci 1:d59-71.

Murashima A, Kishigami S, Thomson A, Yamada G (2015). Androgens and mammalian male reproductive tract development. Biochim Biophys Acta 1849(2):163-70.

OECD (2008), Guidance Document on Mammalian Reproductive Toxicity Testing and Assessment, OECD Series on Testing and Assessment, No. 43, OECD Publishing, Paris.

OECD (2013) Guidance document in support of the test guideline on the extended one generation reproductive toxicity study no. 151.

Robitaille J, Langlois VS (2020). Consequences of steroid-5α-reductase deficiency and inhibition in vertebrates. Gen Comp Endocrinol 290:113400.

Schwartz CL, Christiansen S, Vinggaard AM, Axelstad M, Hass U, Svingen T (2019). Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Arch Toxicol 93(2):253-272.

Supakar PC, Song CS, Jung MH, Slomczynska MA, Kim JM, Vellanoweth RL, Chatterjee B, Roy AK (1993). A novel regulatory element associated with age-dependent expression of the rat androgen receptor gene. J Biol Chem 268(35):26400-8.

Svingen T, Villeneuve DL, Knapen D, Panagiotou EM, Draskau MK, Damdimopoulou P, O'Brien JM (2021). A Pragmatic Approach to Adverse Outcome Pathway Development and Evaluation. Toxicol Sci 184(2):183-190.

Thankamony A, Pasterski V, Ong KK, Acerini CL, Hughes IA (2016). Anogenital distance as a marker of androgen exposure in humans. Andrology 4(4):616-25.

Tut TG, Ghadessy FJ, Trifiro MA, Pinsky L, Yong EL (1997). Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J Clin Endocrinol Metab 82(11):3777-82.

Welsh M, Saunders PT, Fisken M, Scott HM, Hutchison GR, Smith LB, Sharpe RM (2008). Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J Clin Invest 118(4):1479-90.

Wu D, Lin G, Gore AC (2009). Age-related changes in hypothalamic androgen receptor and estrogen receptor alpha in male rats. J Comp Neurol 512(5):688-701.

Appendix 1

List of Key Events in the AOP

Event: 1690: Decrease, testosterone levels

Short Name: Decrease, testosterone levels

Key Event Component

Process Object Action
hormone biosynthetic process testosterone decreased
testosterone decreased
testosterone biosynthetic process testosterone decreased

AOPs Including This Key Event

Biological Context

Level of Biological Organization
Tissue

Organ term

Organ term
blood

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links
mammals mammals High NCBI
Life Stage Applicability
Life Stage Evidence
During development and at adulthood High
Sex Applicability
Sex Evidence
Mixed High

This KE is applicable to mammals since the role of testosterone and its synthesis are conserved (Vitousek et al., 2018). Both sexes need, and produce, testosterone and its role is observed throughout different life stages, from development to adulthood (Luetjens & Weinbauer, 2012; Naamneh Elzenaty et al., 2022). Therefore, this KE is also applicable to both males and females as well as throughout these life stages. Also of note, key enzymes needed for testosterone production first appear in the common ancestor of amphioxus and vertebrates (Baker 2011). Consequently, it is acknowledged that this KE most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability beyond mammals to other vertebrates.

Key enzymes needed for testosterone production first appear in the common ancestor of amphioxus and vertebrates (Baker 2011). Consequently, this key event is applicable to most vertebrates, including humans.

Key Event Description

Testosterone is an endogenous steroid hormone and a potent androgen. Androgens act by binding androgen receptors in androgen-responsive tissues (Murashima et al., 2015). Testosterone and other androgens such as dihydrotestosterone (DHT) are important for reproductive development and masculinization of the fetus. Androgens are also important for bone, brain, muscle and skin health (Alemany, 2022). Just like other steroid hormones, testosterone is produced through a process known as steroidogenesis which is controlled by enzymes converting cholesterol into all of the downstream steroid hormones. In steroidogenesis, androstenedione or androstenediol is converted to testosterone by the enzymes 17β-hydroxysteroid dehydrogenase (HSD) or 3β-HSD, respectively. Testosterone can then be converted to the more potent androgen, DHT, by 5α-reductase, or aromatized by aromatase (CYP19A1) into estrogens. Testosterone secreted in blood circulation can be found free but more frequently is found bound to SHBG or albumin (Trost & Mulhall, 2016).

Testosterone is produced mainly by the ovaries (in females ), testes (in males), and to  a lesser degree in the adrenal glands. During fetal development testosterone plays a crucial role in the differentiation of male reproductive tissues and the overall male phenotype. In adulthood, testosterone synthesis is controlled by the Hypothalamus-Pituitary-Gonadal (HPG) axis. GnRH is released from the hypothalamus inducing LH pulses secreted by the anterior pituitary. This LH surge leads to increased testosterone production. If testosterone reaches low levels, this axis is once again stimulated to provoke more testosterone synthesis. This feedback loop is essential for maintenance of appropriate testosterone levels (Chandrashekar & Bartke, 1998; Ellis et al., 1983; Rey, 2021).

Disruption of any of the aforementioned processes may result in reduced testosterone levels, such as inhibition of steroidogenic enzyme activity thereby inhibiting production of testosterone.

General role in biology

Androgens, the main male sex steroids, are the critical factors responsible for the development of the male phenotype during embryogenesis and for the achievement of sexual maturation at puberty. In adulthood, androgens remain essential for the maintenance of male reproductive function and behaviour. Apart from their effects on reproduction, androgens affect a wide variety of non-reproductive tissues such as skin, bone, muscle, and brain (Heemers, Verhoeven, & Swinnen, 2006). Androgens, principally T and 5α-dihydrotestosterone (DHT), exert most of their effects by interacting with a specific receptor, the androgen receptor (AR), for review see (Murashima, Kishigami, Thomson, & Yamada, 2015). On the one hand, testosterone can be reduced by 5α-reductase to produce 5α dihydrotestosterone (DHT). On the other hand, testosterone can be aromatized to generate estrogens. Testosterone effects can also be classified by the age of usual occurrence, postnatal effects in both males and females are mostly dependent on the levels and duration of circulating free testosterone.

How it is Measured or Detected

Quantification of testosterone levels can be performed by various means (e.g. serum levels in vivo, cell culture medium levels in vitro, tissue ex vivo or in vitro). Traditional immunoassay methods (ELISA or RIA), and advanced instrumental techniques (e.g. LC-MS/MS) or liquid scintillation spectrometry (after radiolabeling) can be used (Shiraishi et al., 2008).

The H295R Steroidogenesis assay (OECD TG 456) is used to measure mainly the production of estradiol and testosterone. This is a validated OECD test guideline using adrenal H295R cells and hormone levels are then measured in the cell medium (OECD 2011). H295R adrenocortical carcinoma cells produce all the main enzymes and hormones of the steroidogenic pathway. Therefore, exposure to different stressors allows for broad analysis of their impact on steroidogenesis by measuring hormones in culture medium by LC-MS/MS. H295 assay was designed measure disruption to testosterone or estradiol levels but can now also be used to measure additional steroid hormones such as progesterone or pregnenolone. The U.S. EPA’s ToxCast program developed a high throughput method for the H295R assay which can measure a total of 11 hormones from the steroidogenesis pathway (Haggard et al., 2018). The H295R can be considered an indirect measurement as it provides information on a disruption of overall steroidogenesis that would result in a change of testosterone levels but not the underlying mechanism.

Testosterone can be measured by immunoassays and by isotope-dilution gas chromatography-mass spectrometry in serum (Taieb et al., 2003), (Paduch et al., 2014). Testosterone levels are measured i.a. in: Fish Lifecycle Toxicity Test (FLCTT) (US EPA OPPTS 850.1500), Male pubertal assay (PP Male Assay) (US EPA OPPTS 890.1500), OECD TG 441: Hershberger Bioassay in Rats (H Assay).

References

Alemany, M. (2022). The Roles of Androgens in Humans: Biology, Metabolic Regulation and Health. International Journal of Molecular Sciences, 23(19), 11952. https://doi.org/10.3390/ijms231911952

Baker, M.E. (2011). Insights from the structure of estrogen receptor into the evolution of estrogens: implications for endocrine disruption. Biochem Pharmacol, 82(1), 1-8. https://doi.org/10.1016/j.bcp.2011.03.008

Chandrashekar, V., & Bartke, A. (1998). The Role of Growth Hormone in the Control of Gonadotropin Secretion in Adult Male Rats*. Endocrinology, 139(3), 1067–1074. https://doi.org/10.1210/endo.139.3.5816

Ellis, G. B., Desjardins, C., & Fraser, H. M. (1983). Control of Pulsatile LH Release in Male Rats. Neuroendocrinology, 37(3), 177–183. https://doi.org/10.1159/000123540

Haggard, D. E., Karmaus, A. L., Martin, M. T., Judson, R. S., Setzer, R. W., & Paul Friedman, K. (2018). High-Throughput H295R Steroidogenesis Assay: Utility as an Alternative and a Statistical Approach to Characterize Effects on Steroidogenesis. Toxicological Sciences, 162(2), 509–534. https://doi.org/10.1093/toxsci/kfx274

Heemers, H. V, Verhoeven, G., & Swinnen, J. V. (2006). Androgen activation of the sterol regulatory element-binding protein pathway: Current insights. Molecular Endocrinology (Baltimore, Md.), 20(10), 2265–77. doi:10.1210/me.2005-0479

Luetjens, C. M., & Weinbauer, G. F. (2012). Testosterone: biosynthesis, transport, metabolism and (non-genomic) actions. In Testosterone (pp. 15–32). Cambridge University Press. https://doi.org/10.1017/CBO9781139003353.003

Murashima, A., Kishigami, S., Thomson, A., & Yamada, G. (2015). Androgens and mammalian male reproductive tract development. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1849(2), 163–170. https://doi.org/10.1016/j.bbagrm.2014.05.020

Naamneh Elzenaty, R., du Toit, T., & Flück, C. E. (2022). Basics of androgen synthesis and action. Best Practice & Research Clinical Endocrinology & Metabolism, 36(4), 101665. https://doi.org/10.1016/j.beem.2022.101665

Paduch, D. A., Brannigan, R. E., Fuchs, E. F., Kim, E. D., Marmar, J. L., & Sandlow, J. I. (2014). The laboratory diagnosis of testosterone deficiency. Urology, 83(5), 980–8. doi:10.1016/j.urology.2013.12.024

Rey, R. A. (2021). The Role of Androgen Signaling in Male Sexual Development at Puberty. Endocrinology, 162(2). https://doi.org/10.1210/endocr/bqaa215

Shiraishi, S., Lee, P. W. N., Leung, A., Goh, V. H. H., Swerdloff, R. S., & Wang, C. (2008). Simultaneous Measurement of Serum Testosterone and Dihydrotestosterone by Liquid Chromatography–Tandem Mass Spectrometry. Clinical Chemistry, 54(11), 1855–1863. https://doi.org/10.1373/clinchem.2008.103846

Taieb, J., Mathian, B., Millot, F., Patricot, M.-C., Mathieu, E., Queyrel, N., … Boudou, P. (2003). Testosterone measured by 10 immunoassays and by isotope-dilution gas chromatography-mass spectrometry in sera from 116 men, women, and children. Clinical Chemistry, 49(8), 1381–95.

Trost, L. W., & Mulhall, J. P. (2016). Challenges in Testosterone Measurement, Data Interpretation, and Methodological Appraisal of Interventional Trials. The Journal of Sexual Medicine, 13(7), 1029–1046. https://doi.org/10.1016/j.jsxm.2016.04.068

Vitousek, M. N., Johnson, M. A., Donald, J. W., Francis, C. D., Fuxjager, M. J., Goymann, W., Hau, M., Husak, J. F., Kircher, B. K., Knapp, R., Martin, L. B., Miller, E. T., Schoenle, L. A., Uehling, J. J., & Williams, T. D. (2018). HormoneBase, a population-level database of steroid hormone levels across vertebrates. Scientific Data, 5(1), 180097. https://doi.org/10.1038/sdata.2018.97

Event: 1614: Decrease, androgen receptor activation

Short Name: Decrease, AR activation

AOPs Including This Key Event

Biological Context

Level of Biological Organization
Tissue

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links
mammals mammals High NCBI
Life Stage Applicability
Life Stage Evidence
During development and at adulthood High
Sex Applicability
Sex Evidence
Mixed High

This KE is considered broadly applicable across mammalian taxa as all mammals express the AR in numerous cells and tissues where it regulates gene transcription required for developmental processes and functions. It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.

Key Event Description

This KE refers to decreased activation of the androgen receptor (AR) as occurring in complex biological systems such as tissues and organs in vivo. It is thus considered distinct from KEs describing either blocking of AR or decreased androgen synthesis.

The AR is a nuclear transcription factor with canonical AR activation regulated by the binding of the androgens such as testosterone or dihydrotestosterone (DHT). Thus, AR activity can be decreased by reduced levels of steroidal ligands (testosterone, DHT) or the presence of compounds interfering with ligand binding to the receptor (Davey & Grossmann, 2016; Gao et al., 2005).

In the inactive state, AR is sequestered in the cytoplasm of cells by molecular chaperones. In the classical (genomic) AR signaling pathway, AR activation causes dissociation of the chaperones, AR dimerization and translocation to the nucleus to modulate gene expression. AR binds to the androgen response element (ARE) (Davey & Grossmann, 2016; Gao et al., 2005). Notably, for transcriptional regulation the AR is closely associated with other co-factors that may differ between cells, tissues and life stages. In this way, the functional consequence of AR activation is cell- and tissue-specific. This dependency on co-factors such as the SRC proteins also means that stressors affecting recruitment of co-activators to AR can result in decreased AR activity (Heinlein & Chang, 2002).

Ligand-bound AR may also associate with cytoplasmic and membrane-bound proteins to initiate cytoplasmic signaling pathways with other functions than the nuclear pathway. Non-genomic AR signaling includes association with Src kinase to activate MAPK/ERK signaling and activation of the PI3K/Akt pathway. Decreased AR activity may therefore be a decrease in the genomic and/or non-genomic AR signaling pathways (Leung & Sadar, 2017).

How it is Measured or Detected

This KE specifically focuses on decreased in vivo activation, with most methods that can be used to measure AR activity carried out in vitro. They provide indirect information about the KE and are described in lower tier MIE/KEs (see for example MIE/KE-26 for AR antagonism, KE-1690 for decreased T levels and KE-1613 for decreased dihydrotestosterone levels). In this way, this KE is a placeholder for tissue-specific responses to AR activation or inactivation that will depend on the adverse outcome (AO) for which it is included.

In fish, The Rapid Androgen Disruption Activity Reporter (RADAR) assay included in OECD test guideline no. 251 can be used to measure genomic AR activity (OECD, 2022). Employing a spg1-gfp construct under control of the AR-binding promoter spiggin1 in medaka fish embryos, any stressor activating or inhibiting the androgen axis will be detected. This includes for instance stressors that agonize or antagonize AR, as well as stressors that modulate androgen synthesis or metabolism. Non-genomic AR activity cannot be detected by the RADAR assay (OECD, 2022). Similar assays may in the future be developed to measure AR activity in mammalian organisms.  

References

Davey, R. A., & Grossmann, M. (2016). Androgen Receptor Structure, Function and Biology: From Bench to Bedside. The Clinical Biochemist. Reviews, 37(1), 3–15.

Gao, W., Bohl, C. E., & Dalton, J. T. (2005). Chemistry and structural biology of androgen receptor. Chemical Reviews, 105(9), 3352–3370. https://doi.org/10.1021/cr020456u

Heinlein, C. A., & Chang, C. (2002). Androgen Receptor (AR) Coregulators: An Overview. https://academic.oup.com/edrv/article/23/2/175/2424160

Leung, J. K., & Sadar, M. D. (2017). Non-Genomic Actions of the Androgen Receptor in Prostate Cancer. Frontiers in Endocrinology, 8. https://doi.org/10.3389/fendo.2017.00002

OECD (2022). Test No. 251: Rapid Androgen Disruption Activity Reporter (RADAR) assay. Paris: OECD Publishing doi:10.1787/da264d82-en.

 

 

Event: 286: Altered, Transcription of genes by the androgen receptor

Short Name: Altered, Transcription of genes by the AR

Key Event Component

Process Object Action
regulation of gene expression androgen receptor decreased

AOPs Including This Key Event

Stressors

Name
Bicalutamide
Cyproterone acetate
Epoxiconazole
Flutamide
Flusilazole
Prochloraz
Propiconazole
Stressor:286 Tebuconazole
Triticonazole
Vinclozalin

Biological Context

Level of Biological Organization
Tissue

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links
mammals mammals High NCBI
Life Stage Applicability
Life Stage Evidence
During development and at adulthood High
Sex Applicability
Sex Evidence
Mixed High

Both the DNA-binding and ligand-binding domains of the AR are highly evolutionary conserved, whereas the transactivation domain show more divergence, which may affect AR-mediated gene regulation across species (Davey and Grossmann 2016). Despite certain inter-species differences, AR function mediated through gene expression is highly conserved, with mutation studies from both humans and rodents showing strong correlation for AR-dependent development and function (Walters et al. 2010). 

This KE is considered broadly applicable across mammalian taxa, sex and developmental stages, as all mammals express the AR in numerous cells and tissues where it regulates gene transcription required for developmental processes and function. It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.

Key Event Description

This KE refers to transcription of genes by the androgen receptor (AR) as occurring in complex biological systems such as tissues and organs in vivoRather than measuring individual genes, this KE aims to capture patterns of effects at transcriptome level in specific target cells/tissues. In other words, it can be replaced by specific KEs for individual adverse outcomes as information becomes available, for example the transcriptional toxicity response in prostate tissue for AO: prostate cancer, perineum tissue for AO: reduced AGD, etc.  AR regulates many genes that differ between tissues and life stages and, importantly, different gene transcripts within individual cells can go in either direction since AR can act as both transcriptional activator and suppressor. Thus, the ‘directionality’ of the KE cannot be either reduced or increased, but instead describe an altered transcriptome.

The Androgen Receptor and its function

The AR belongs to the steroid hormone nuclear receptor family. It is a ligand-activated transcription factor with three domains: the N-terminal domain, the DNA-binding domain, and the ligand-binding domain with the latter being the most evolutionary conserved (Davey and Grossmann 2016). Androgens (such as dihydrotestosterone and testosterone) are AR ligands and act by binding to the AR in androgen-responsive tissues (Davey and Grossmann 2016). Human AR mutations and mouse knockout models have established a fundamental role for AR in masculinization and spermatogenesis (Maclean et al.; Walters et al. 2010; Rana et al. 2014). The AR is also expressed in many other tissues such as bone, muscles, ovaries and within the immune system (Rana et al. 2014).

 

Altered transcription of genes by the AR as a Key Event

Upon activation by ligand-binding, the AR translocates from the cytoplasm to the cell nucleus, dimerizes, binds to androgen response elements in the DNA to modulate gene transcription (Davey and Grossmann 2016). The transcriptional targets vary between cells and tissues, as well as with developmental stages and is also dependent on available co-regulators (Bevan and Parker 1999; Heemers and Tindall 2007). It should also be mentioned that the AR can work in other ‘non-canonial’ ways such as non-genomic signaling, and ligand-independent activation (Davey & Grossmann, 2016; Estrada et al, 2003; Jin et al, 2013).

A large number of known, and proposed, target genes of AR canonical signaling have been identified by analysis of gene expression following treatments with AR agonists (Bolton et al. 2007; Ngan et al. 2009, Jin et al. 2013).

How it is Measured or Detected

Altered transcription of genes by the AR can be measured by measuring the transcription level of known downstream target genes by RT-qPCR or other transcription analyses approaches, e.g. transcriptomics.

Since this KE aims to capture AR-mediated transcriptional patterns of effect, downstream bioinformatics analyses will typically be required to identify and compare effect footprints. Clusters of genes can be statistically associated with, for example, biological process terms or gene ontology terms relevant for AR-mediated signaling. Large transcriptomics data repositories can be used to compare transcriptional patterns between chemicals, tissues, and species (e.g. TOXsIgN (Darde et al, 2018a; Darde et al, 2018b), comparisons can be made to identified sets of AR ‘biomarker’ genes (e.g. as done in (Rooney et al, 2018)), and various methods can be used e.g. connectivity mapping (Keenan et al, 2019).

References

Bevan C, Parker M (1999) The role of coactivators in steroid hormone action. Exp. Cell Res. 253:349–356

Bolton EC, So AY, Chaivorapol C, et al (2007) Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 21:2005–2017. doi: 10.1101/gad.1564207

Darde, T. A., Gaudriault, P., Beranger, R., Lancien, C., Caillarec-Joly, A., Sallou, O., et al. (2018a). TOXsIgN: a cross-species repository for toxicogenomic signatures. Bioinformatics 34, 2116–2122. doi:10.1093/bioinformatics/bty040.

Darde, T. A., Chalmel, F., and Svingen, T. (2018b). Exploiting advances in transcriptomics to improve on human-relevant toxicology. Curr. Opin. Toxicol. 11–12, 43–50. doi:10.1016/j.cotox.2019.02.001.

Davey RA, Grossmann M (2016) Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev 37:3–15

Estrada M, Espinosa A, Müller M, Jaimovich E (2003) Testosterone Stimulates Intracellular Calcium Release and Mitogen-Activated Protein Kinases Via a G Protein-Coupled Receptor in Skeletal Muscle Cells. Endocrinology 144:3586–3597. doi: 10.1210/en.2002-0164

Heemers H V., Tindall DJ (2007) Androgen receptor (AR) coregulators: A diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev. 28:778–808

Jin, Hong Jian, Jung Kim, and Jindan Yu. 2013. “Androgen Receptor Genomic Regulation.” Translational Andrology and Urology 2(3):158–77. doi: 10.3978/j.issn.2223-4683.2013.09.01

Keenan, A. B., Wojciechowicz, M. L., Wang, Z., Jagodnik, K. M., Jenkins, S. L., Lachmann, A., et al. (2019). Connectivity Mapping: Methods and Applications. Annu. Rev. Biomed. Data Sci. 2, 69–92. doi:10.1146/ANNUREV-BIODATASCI-072018-021211.

Maclean HE, Chu S, Warne GL, Zajact JD Related Individuals with Different Androgen Receptor Gene Deletions

MacLeod DJ, Sharpe RM, Welsh M, et al (2010) Androgen action in the masculinization programming window and development of male reproductive organs. In: International Journal of Andrology. Blackwell Publishing Ltd, pp 279–287

Ngan S, Stronach EA, Photiou A, et al (2009) Microarray coupled to quantitative RT–PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells. Oncogene 28:2051–2063. doi: 10.1038/onc.2009.68

Rana K, Davey RA, Zajac JD (2014) Human androgen deficiency: Insights gained from androgen receptor knockout mouse models. Asian J. Androl. 16:169–177

Rooney, J. P., Chorley, B., Kleinstreuer, N., and Corton, J. C. (2018). Identification of Androgen Receptor Modulators in a Prostate Cancer Cell Line Microarray Compendium. Toxicol. Sci. 166, 146–162. doi:10.1093/TOXSCI/KFY187.

Walters KA, Simanainen U, Handelsman DJ (2010) Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum Reprod Update 16:543–558. doi: 10.1093/humupd/dmq003

List of Adverse Outcomes in this AOP

Event: 1688: anogenital distance (AGD), decreased

Short Name: AGD, decreased

Key Event Component

Process Object Action
androgen receptor signaling pathway Musculature of male perineum disrupted

AOPs Including This Key Event

Stressors

Name
Butylparaben
p,p'-DDE
Bis(2-ethylhexyl) phthalate
Dexamethasone
Fenitrothion
Finasteride
Flutamide
Ketoconazole
Linuron
Prochloraz
Procymidone
Triticonazole
Vinclozolin
di-n-hexyl phthalate
Dicyclohexyl phthalate
butyl benzyl phthalate
monobenzyl phthalate
di-n-heptyl phthalate

Biological Context

Level of Biological Organization
Tissue

Organ term

Organ term
perineum

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links
human Homo sapiens Moderate NCBI
rat Rattus norvegicus High NCBI
mouse Mus musculus High NCBI
Life Stage Applicability
Life Stage Evidence
Foetal High
Sex Applicability
Sex Evidence
Male High

A short AGD in male offspring is a marker of insufficient androgen action during critical fetal developmental stages (Schwartz et al, 2019; Welsh et al, 2008). A short AGD is thus a sign of undervirilization, which is also associated with a series of male reproductive disorders, including genital malformations and infertility in humans (Juul et al, 2014; Skakkebaek et al, 2001).

There are numerous human epidemiological studies showing associations with intrauterine exposure to anti-androgenic chemicals and short AGD in newborn boys alongside other reproductive disorders (Schwartz et al, 2019). This underscores the human relevance of this AO. However, in reproductive toxicity studies and chemical risk assessment, rodents (rats and mice) are what is tested on. The list of chemicals inducing short male AGD in male rat offspring is extensive, as evidenced by the ‘stressor’ list and reviewed by (Schwartz et al, 2019).

Key Event Description

The anogenital distance (AGD) refers to the distance between anus and the external genitalia. In rodents and humans, the male AGD is approximately twice the length as the female AGD (Salazar-Martinez et al, 2004; Schwartz et al, 2019). This sexual dimorphisms is a consequence of sex hormone-dependent development of secondary sexual characteristics (Schwartz et al, 2019). In males, it is believed that androgens (primarily DHT) activate AR-positive cells in non-myotic cells in the fetal perineum region to initiate differentiation of the perineal levator ani and bulbocavernosus (LABC) muscle complex (Ipulan et al, 2014). This AR-dependent process occurs within a critical window of development, around gestational days 15-18 in rats (MacLeod et al, 2010). In females, the absence of DHT prevents this masculinization effect from occurring.

The involvement of androgens in masculinization of the male fetus, including the perineum, has been known for a very long time (Jost, 1953), and AGD has historically been used to, for instance, sex newborn kittens. It is now well established that the AGD in newborns is a proxy readout for the intrauterine sex hormone milieu the fetus was developing. Too low androgen levels in XY fetuses makes the male AGD shorter, whereas excess (ectopic) androgen levels in XX fetuses makes the female AGD longer, in humans and rodents (Schwartz et al, 2019).

How it is Measured or Detected

The AGD is a morphometric measurement carried out by trained technicians (rodents) or medical staff (humans).

In rodent studies AGD is assessed as the distance between the genital papilla and the anus, and measured using a stereomicroscope with a micrometer eyepiece. The AGD index (AGDi) is often calculated by dividing AGD by the cube root of the body weight.  It is important in statistical analysis to use litter as the statistical unit. This is done when more than one pup from each litter is examined. Statistical analyses is adjusted using litter as an independent, random and nested factor. AGD are analysed using body weight as covariate as recommended in Guidance Document 151 (OECD, 2013).

 

Regulatory Significance of the AO

In regulatory toxicology, the AGD is mandatory inclusions in OECD test guidelines used to test for developmental and reproductive toxicity of chemicals. Guidelines include ‘TG 443 extended one-generation study’, ‘TG 421/422 reproductive toxicity screening studies’ and ‘TG 414 developmental toxicity study’.

References

Aydoğan Ahbab M, Barlas N (2015) Influence of in utero di-n-hexyl phthalate and dicyclohexyl phthalate on fetal testicular development in rats. Toxicol Lett 233: 125-137

Boberg J, Axelstad M, Svingen T, Mandrup K, Christiansen S, Vinggaard AM, Hass U (2016) Multiple endocrine disrupting effects in rats perinatally exposed to butylparaben. Toxicol Sci 152: 244-256

Boberg J, Metzdorff S, Wortziger R, Axelstad M, Brokken L, Vinggaard AM, Dalgaard M, Nellemann C (2008) Impact of diisobutyl phthalate and other PPAR agonists on steroidogenesis and plasma insulin and leptin levels in fetal rats. Toxicology 250: 75-81

Bowman CJ, Barlow NJ, Turner KJ, Wallace DG, Foster PM (2003) Effects of in utero exposure to finasteride on androgen-dependent reproductive development in the male rat. Toxicol Sci 74: 393-406

Christiansen S, Boberg J, Axelstad M, Dalgaard M, Vinggaard AM, Metzdorff SB, Hass U (2010) Low-dose perinatal exposure to di(2-ethylhexyl) phthalate induces anti-androgenic effects in male rats. Reprod Toxicol 30: 313-321

Christiansen S, Scholze M, Dalgaard M, Vinggaard AM, Axelstad M, Kortenkamp A, Hass U (2009) Synergistic disruption of external male sex organ development by a mixture of four antiandrogens. Environ Health Perspect 117: 1839-1846

Draskau MK, Boberg J, Taxvig C, Pedersen M, Frandsen HL, Christiansen S, Svingen T (2019) In vitro and in vivo endocrine disrupting effects of the azole fungicides triticonazole and flusilazole. Environ Pollut 255: 113309

Ema M, Miyawaki E (2002) Effects on development of the reproductive system in male offspring of rats given butyl benzyl phthalate during late pregnancy. Reprod Toxicol 16: 71-76

Ema M, Miyawaki E, Hirose A, Kamata E (2003) Decreased anogenital distance and increased incidence of undescended testes in fetuses of rats given monobenzyl phthalate, a major metabolite of butyl benzyl phthalate. Reprod Toxicol 17: 407-412

Foster PM, Harris MW (2005) Changes in androgen-mediated reproductive development in male rat offspring following exposure to a single oral dose of flutamide at different gestational ages. Toxicol Sci 85: 1024-1032

Gray LE, Jr., Ostby J, Furr J, Price M, Veeramachaneni DN, Parks L (2000) Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci 58: 350-365

Gray LEJ, Ostby JS, Kelce WR (1994) Developmental effects of an environmental antiandrogen: the fungicide vinclozolin alters sex differentiation of the male rat. Toxicol Appl Pharmacol 129: 46-52

Hass U, Boberg J, Christiansen S, Jacobsen PR, Vinggaard AM, Taxvig C, Poulsen ME, Herrmann SS, Jensen BH, Petersen A, Clemmensen LH, Axelstad M (2012) Adverse effects on sexual development in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides. Reprod Toxicol 34: 261-274

Hass U, Scholze M, Christiansen S, Dalgaard M, Vinggaard AM, Axelstad M, Metzdorff SB, Kortenkamp A (2007) Combined exposure to anti-androgens exacerbates disruption of sexual differentiation in the rat. Environ Health Perspect 115 Suppl. 1: 122-128

Hoshino N, Iwai M, Okazaki Y (2005) A two-generation reproductive toxicity study of dicyclohexyl phthalate in rats. J Toxicol Sci 30 Spec No: 79-96

Hotchkiss AK, Parks-Saldutti LG, Ostby JS, Lambright C, Furr J, Vandenbergh JG, Gray LEJ (2004) A mixture of the "antiandrogens" linuron and butyl benzyl phthalate alters sexual differentiation of the male rat in a cumulative fashion. Biol Reprod 71: 1852-1861

Howdeshell KL, Furr J, Lambright CR, Rider CV, Wilson VS, Gray LE, Jr. (2007) Cumulative effects of dibutyl phthalate and diethylhexyl phthalate on male rat reproductive tract development: altered fetal steroid hormones and genes. Toxicol Sci 99: 190-202

Ipulan LA, Suzuki K, Sakamoto Y, Murashima A, Imai Y, Omori A, Nakagata N, Nishinakamura R, Valasek P, Yamada G (2014) Nonmyocytic androgen receptor regulates the sexually dimorphic development of the embryonic bulbocavernosus muscle. Endocrinology 155: 2467-2479

Jarfelt K, Dalgaard M, Hass U, Borch J, Jacobsen H, Ladefoged O (2005) Antiandrogenic effects in male rats perinatally exposed to a mixture of di(2-ethylhexyl) phthalate and di(2-ethylhexyl) adipate. Reprod Toxicol 19: 505-515

Jost A (1953) Problems of fetal endocrinology: The gonadal and hypophyseal hormones. Recent Prog Horm Res 8: 379-418

Juul A, Almstrup K, Andersson AM, Jensen TK, Jorgensen N, Main KM, Rajpert-De Meyts E, Toppari J, Skakkebaek NE (2014) Possible fetal determinants of male infertility. Nat Rev Endocrinol 10: 553-562

Kita DH, Meyer KB, Venturelli AC, Adams R, Machado DL, Morais RN, Swan SH, Gennings C, Martino-Andrade AJ (2016) Manipulation of pre and postnatal androgen environments and anogenital distance in rats. Toxicology 368-369: 152-161

Laier P, Metzdorff SB, Borch J, Hagen ML, Hass U, Christiansen S, Axelstad M, Kledal T, Dalgaard M, McKinnell C, Brokken LJ, Vinggaard AM (2006) Mechanisms of action underlying the antiandrogenic effects of the fungicide prochloraz. Toxicol Appl Pharmacol 213: 2

Li M, Qiu L, Zhang Y, Hua Y, Tu S, He Y, Wen S, Wang Q, Wei G (2013) Dose-related effect by maternal exposure to di-(2-ethylhexyl) phthalate plasticizer on inducing hypospadiac male rats. Environ Toxicol Pharmacol 35: 55-60

Lin H, Lian QQ, Hu GX, Jin Y, Zhang Y, Hardy DO, Chen GR, Lu ZQ, Sottas CM, Hardy MP, Ge RS (2009) In utero and lactational exposures to diethylhexyl-phthalate affect two populations of Leydig cells in male Long-Evans rats. Biol Reprod 80: 882-888

Loeffler IK, Peterson RE (1999) Interactive effects of TCDD and p,p'-DDE on male reproductive tract development in in utero and lactationally exposed rats. Toxicol Appl Pharmacol 154: 28-39

MacLeod DJ, Sharpe RM, Welsh M, Fisken M, Scott HM, Hutchison GR, Drake AJ, van den Driesche S (2010) Androgen action in the masculinization programming window and development of male reproductive organs. Int J Androl 33: 279-287

Matsuura I, Saitoh T, Ashina M, Wako Y, Iwata H, Toyota N, Ishizuka Y, Namiki M, Hoshino N, Tsuchitani M (2005) Evaluation of a two-generation reproduction toxicity study adding endpoints to detect endocrine disrupting activity using vinclozolin. J Toxicol Sci 30 Spec No: 163-168

McIntyre BS, Barlow NJ, Foster PM (2001) Androgen-mediated development in male rat offspring exposed to flutamide in utero: permanence and correlation of early postnatal changes in anogenital distance and nipple retention with malformations in androgen-dependent tissues. Toxicol Sci 62: 236-249

McIntyre BS, Barlow NJ, Sar M, Wallace DG, Foster PM (2002) Effects of in utero linuron exposure on rat Wolffian duct development. Reprod Toxicol 16: 131-139

Melching-Kollmuss S, Fussell KC, Schneider S, Buesen R, Groeters S, Strauss V, van Ravenzwaay B (2017) Comparing effect levels of regulatory studies with endpoints derived in targeted anti-androgenic studies: example prochloraz. Arch Toxicol 91: 143-162

Moore RW, Rudy TA, Lin TM, Ko K, Peterson RE (2001) Abnormalities of sexual development in male rats with in utero and lactational exposure to the antiandrogenic plasticizer Di(2-ethylhexyl) phthalate. Environ Health Perspect 109: 229-237

Mylchreest E, Sar M, Cattley RC, Foster PM (1999) Disruption of androgen-regulated male reproductive development by di(n-butyl) phthalate during late gestation in rats is different from flutamide. Toxicol Appl Pharmacol 156: 81-95

Nagao T, Ohta R, Marumo H, Shindo T, Yoshimura S, Ono H (2000) Effect of butyl benzyl phthalate in Sprague-Dawley rats after gavage administration: a two-generation reproductive study. Reprod Toxicol 14: 513-532

Nardelli TC, Albert O, Lalancette C, Culty M, Hales BF, Robaire B (2017) In utero and lactational exposure study in rats to identify replacements for di(2-ethylhexyl) phthalate. Sci Rep 7: 3862

Noriega NC, Ostby J, Lambright C, Wilson VS, Gray LE, Jr. (2005) Late gestational exposure to the fungicide prochloraz delays the onset of parturition and causes reproductive malformations in male but not female rat offspring. Biol Reprod 72: 1324-1335

OECD. (2013) Guidance document in support of the test guideline on the extended one generation reproductive toxicity study No. 151.

Ostby J, Kelce WR, Lambright C, Wolf CJ, Mann P, Gray CLJ (1999) The fungicide procymidone alters sexual differentiation in the male rat by acting as an androgen-receptor antagonist in vivo and in vitro. Toxicol Ind Health 15: 80-93

Saillenfait AM, Gallissot F, Sabaté JP (2009a) Differential developmental toxicities of di-n-hexyl phthalate and dicyclohexyl phthalate administered orally to rats. J Appl Toxicol 29: 510-521

Saillenfait AM, Roudot AC, Gallissot F, Sabaté JP (2011) Prenatal developmental toxicity studies on di-n-heptyl and di-n-octyl phthalates in Sprague-Dawley rats. Reprod Toxicol 32: 268-276

Saillenfait AM, Sabaté JP, Gallissot F (2009b) Effects of in utero exposure to di-n-hexyl phthalate on the reproductive development of the male rat. Reprod Toxicol 28: 468-476

Salazar-Martinez E, Romano-Riquer P, Yanez-Marquez E, Longnecker MP, Hernandez-Avila M (2004) Anogenital distance in human male and female newborns: a descriptive, cross-sectional study. Environ Health 3: 8

Schneider S, Kaufmann W, Strauss V, van Ravenzwaay B (2011) Vinclozolin: a feasibility and sensitivity study of the ILSI-HESI F1-extended one-generation rat reproduction protocol. Regulatory Toxicology and Pharmacology 59: 91-100

Schwartz CL, Christiansen S, Vinggaard AM, Axelstad M, Hass U, Svingen T (2019) Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Arch Toxicol 93: 253-272

Scott HM, Hutchison GR, Mahood IK, Hallmark N, Welsh M, De Gendt K, Verhoeven H, O'Shaughnessy P, Sharpe RM (2007) Role of androgens in fetal testis development and dysgenesis. Endocrinology 148: 2027-2036

Skakkebaek NE, Rajpert-De Meyts E, Main KM (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16: 972-978

Taxvig C, Vinggaard AM, Hass U, Axelstad M, Metzdorff S, Nellemann C (2008) Endocrine-disrupting properties in vivo of widely used azole fungicides. Int J Androl 31: 170-177

Turner KJ, Barlow NJ, Struve MF, Wallace DG, Gaido KW, Dorman DC, Foster PM (2002) Effects of in utero exposure to the organophosphate insecticide fenitrothion on androgen-dependent reproductive development in the Crl:CD(SD)BR rat. Toxicol Sci 68: 174-183

Tyl RW, Myers CB, Marr MC, Fail PA, Seely JC, Brine DR, Barter RA, Butala JH (2004) Reproductive toxicity evaluation of dietary butyl benzyl phthalate (BBP) in rats. Reprod Toxicol 18: 241-264

Van den Driesche S, Kolovos P, Platts S, Drake AJ, Sharpe RM (2012) Inter-relationship between testicular dysgenesis and Leydig cell function in the masculinization programming window in the rat. PloS one 7: e30111

Welsh M, Saunders PT, Fisken M, Scott HM, Hutchison GR, Smith LB, Sharpe RM (2008) Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J Clin Invest 118: 1479-1490

Welsh M, Saunders PT, Sharpe RM (2007) The critical time window for androgen-dependent development of the Wolffian duct in the rat. Endocrinology 148: 3185-3195

Wolf CJ, LeBlanc GA, Gray LE, Jr. (2004) Interactive effects of vinclozolin and testosterone propionate on pregnancy and sexual differentiation of the male and female SD rat. Toxicol Sci 78: 135-143

Wolf CJJ, Lambright C, Mann P, Price M, Cooper RL, Ostby J, Gray CLJ (1999) Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol Ind Health 15: 94-118

Zhang L, Dong L, Ding S, Qiao P, Wang C, Zhang M, Zhang L, Du Q, Li Y, Tang N, Chang B (2014) Effects of n-butylparaben on steroidogenesis and spermatogenesis through changed E₂ levels in male rat offspring. Environ Toxicol Pharmacol 37: 705-717

Appendix 2

List of Key Event Relationships in the AOP