AOP ID and Title:
Graphical Representation
Status
| Author status | OECD status | OECD project | SAAOP status |
|---|---|---|---|
| Under development: Not open for comment. Do not cite | Under Development | 1.109 | Included in OECD Work Plan |
Abstract
The proposed AOP (Figure 2) links AR antagonism (MIE26) to ovarian cycle irregularities (KE405) and reduced female fertility (KE406) via three key events: decreased AR activity (KE1614), altered AR gene transcription (KE286), and reduced granulosa cell proliferation (KE1800). Briefly, the binding of an antagonist to the AR prevents receptor activation and subsequent transcriptional regulation, ultimately disrupting expression of AR target genes necessary for follicle growth. This attenuates granulosa cell proliferation, leading to changes in the follicle population, which again disrupts the finely tuned ovarian cycle leading to subfertility.
The six KEs span a selected causal pathway between direct AR antagonism and reduced fertility in females. The first three KEs describe the essential component linking a chemical’s direct interaction with the AR preventing normal ligand binding and receptor activation, leading to altered AR-regulated gene transcription in target cells and tissues in complex in vivo systems (Draskau et al 2024, accepted). The first two KEs may have broad taxonomic applicability, whereas KE286 serves as a placeholder KE for tissue/organ-specific changes in gene regulation; for this AOP the ovaries.
Decreased AR activity described in KE1614 can result from several upstream events, notably lower androgen levels, or as presented in this AOP, from AR antagonism (KE26). KE26 can be easily measured in vitro either by using reporter gene assays or by monitoring AR dimerization and nucleus translocation, both essential for the canonical AR pathway. KE1614 is not measured directly in mammals, but an assay in fish, the RADAR assay, is available.
Although AR can have both non-genomic and genomic actions, we have focussed on the canonical genomic actions in this AOP, including KE286 which refers to altered expression of AR-target genes. In principle, KE286 can describe the transcriptional changes in specific organs or tissues at specific life stages in response to AR antagonism, which will be specific for whichever AO it leads to. There is currently no standardized method for measuring this KE; however, standard methods such as reverse transcription-quantitative PCR (RT-qPCR) or RNA sequencing can be employed.
The fourth KE, ‘reduced granulosa cell proliferation’(KE1800), represents an ovary-specific outcome of reduced AR signaling which integrates several known signaling pathways, such as PI3K/Akt, but also kit-ligand (Kitl) and growth differentiation factor 9 (Gdf9) that all may be under the control of the AR in the granulosa cells (Shiina et al., 2006). With the many pathways potentially involved in granulosa cell proliferation, they are challenging to measure in isolation, hence cell proliferation was considered the most pragmatic KE leading to disrupted pathway progression. KE1800 can be measured in vitro by proliferation assays using commercially available granulosa-like cell lines. Granulosa cell proliferation manifests as follicle growth, therefore counting and assessing the growth stage of follicles is the currently standardized method to measure this KE in vivo. Follicle growth can also be assessed with detection of proliferation markers in situ, albeit not currently included in test guidelines.
KE405 relates to ovarian cycle irregularities, encompassing variations in cycle length and/or ovulation problems (deferred ovulation or anovulation). These irregularities indicate disturbances in any parts of the Hypothalamic-Pituitary-Ovarian (HPO) axis, which regulates reproductive processes. Therefore, we have considered KE405 as an AO. It can be measured in vivo by estrous cycle monitoring, an endpoint in several guideline tests. Lastly, the AO on impaired female fertility refers to the capacity to conceive and is measured by calculating fertility rate based on born offspring numbers.
Summary of the AOP
Events
Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)
| Sequence | Type | Event ID | Title | Short name |
|---|---|---|---|---|
| MIE | 26 | Antagonism, Androgen receptor | Antagonism, Androgen receptor | |
| KE | 1614 | Decrease, androgen receptor activation | Decrease, AR activation | |
| KE | 286 | Altered, Transcription of genes by the androgen receptor | Altered, Transcription of genes by the AR | |
| KE | 1800 | Granulosa cell proliferation of gonadotropin-independent follicles, Reduced | Reduced granulosa cell proliferation | |
| AO | 405 | irregularities, ovarian cycle | irregularities, ovarian cycle | |
| AO | 406 | impaired, Fertility | impaired, Fertility |
Key Event Relationships
| Upstream Event | Relationship Type | Downstream Event | Evidence | Quantitative Understanding |
|---|---|---|---|---|
| Antagonism, Androgen receptor | adjacent | Decrease, androgen receptor activation | ||
| Decrease, androgen receptor activation | adjacent | Altered, Transcription of genes by the androgen receptor | ||
| Altered, Transcription of genes by the androgen receptor | adjacent | Granulosa cell proliferation of gonadotropin-independent follicles, Reduced | Moderate | Low |
| Granulosa cell proliferation of gonadotropin-independent follicles, Reduced | adjacent | irregularities, ovarian cycle | ||
| irregularities, ovarian cycle | adjacent | impaired, Fertility | High | Low |
Stressors
| Name | Evidence |
|---|---|
| Flutamide | Moderate |
Overall Assessment of the AOP
Weight of evidence assessment is conducted for the AOP overall to establish the confidence in the causal relationships between linked KEs. Using modified Bradford-Hill criteria, we subjectively rated the overall confidence in AOP345 as ‘moderate’, with the weakest link, relative to scientific evidence, being KER2273.
Domain of Applicability
Life Stage Applicability| Life Stage | Evidence |
|---|---|
| Adult, reproductively mature | High |
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| mammals | mammals | High | NCBI |
| Sex | Evidence |
|---|---|
| Female | High |
The domain of applicability of an AOP is defined by the most narrowly restricted of its KE(R)s. In this AOP, the early KEs have a broad domain of applicability that includes all ages and sexes within vertebrates, although they have been developed currently for mammalian species. The adverse outcomes of this AOP narrow the applicability domain to females of reproductive age with evidence currently from mainly rodent studies but also humans, non-human primates, and livestock animals.
Essentiality of the Key Events
Direct evidence for all included KEs is provided from studies where KE upstream is blocked and an effect on KE downstream is observed. However, one of the strongest pieces of evidence for this AOP comes from ARKO mouse models where all of the downstream KEs can be observed. Global ARKO models demonstrate altered gene expression, whereas granulosa cell-specific ARKO models demonstrate reduced granulosa cell proliferation, ovarian cycle irregularities and subfertility (Sen & Hammes, 2010; Walters et al., 2012). The essentiality of all KEs was assessed as high (Table 1).
Weight of Evidence Summary
We have classified the strength of each KER based on the modified Bradford-Hill criteria, by rating their biological plausibility, empirical support and essentiality of downstream KEs as ‘high’, ‘moderate’, or ‘low’ according to the instructions in OECD’s Guidance Document for Developing and Assessing AOPs.
Table 1. The strength of each KER was assessed using the modified Bradford-Hill criteria. The biological plausibility for each KER, empirical support, and essentiality of the downstream KE were assessed and assigned as ‘high’ or ‘moderate’. No criterion was assigned as ‘low’ strength within the proposed AOP. Biological plausibility was deemed ‘high’ in cases of established mechanistic basis and ‘moderate’ when mechanistic understanding was incomplete. For essentiality, direct evidence exists for all included KEs where AR antagonists and ARKO models show that downstream KEs are impacted. Empirical support was deemed ‘high’ when there was consistent evidence using a wide range of stressors and as moderate in the case of a limited range of stressors.
|
Criteria |
KER2130 |
KER2124 |
KER2273 |
KER3142 |
KER394 |
|
Biological Plausibility |
HIGH
|
HIGH
|
MODERATE
|
HIGH |
HIGH |
|
Essentiality of downstream KEs |
HIGH (KE1614) |
HIGH (KE286) |
HIGH (KE1800) |
HIGH (KE405) |
HIGH (KE406) |
|
Empirical support |
HIGH |
HIGH |
MODERATE
|
HIGH |
HIGH |
For the KERs in which systematic and semi-systematic literature search approaches were employed (KER2273 and KER3142 respectively), additional quality control was performed. The exposure studies used as empirical evidence for each KER were assessed for their quality using the online tool SciRAP (Science in Risk Assessment and Policy, scirap.org) (Molander et al., 2015). SciRAP provided predetermined criteria for reporting and methodological quality for in vitro and in vivo studies. In this case, a simple approach using the score outcome was used to assign studies to different reliability categories, as listed in Table 2. Studies with methodological scores of more than 80% were categorized as reliable without restriction. Studies with scores below that cutoff but above 65% were classified as reliable with restriction. In Table 2, the scores of all assessed studies within one KER have been averaged. The scores of individual studies can be found in Supplementary material. Based on the reliability category assigned from the SciRAP evaluation and the empirical support strength of the non-canonical knowledge KER2273, we concluded that the overall confidence in the KER was ‘moderate’.
Table 2. Average reporting and methodological quality score of exposure studies used as empirical evidence to support KERs. Based on the methodological score the overall reliability was assessed.
|
KER ID |
Average reporting quality score |
Average methodological quality score |
Reliability category |
|
2273 |
77 |
76 |
Reliable with restrictions |
|
3142 |
71 |
81 |
Reliable without restrictions |
Quantitative Consideration
The quantitative understanding of this AOP is limited, particularly regarding all KERs beyond the initial one, consequently categorizing it as low.
Considerations for Potential Applications of the AOP (optional)
Female reproductive disorders are on the rise and there is increasing evidence supporting a role for exposure to environmental chemicals, not least EDCs (Johansson et al., 2017). Despite this proposed causal relationship, there is still a lack of sensitive endpoints and understanding of causal mechanisms. This AOP addresses a knowledge gap as far as EDC identification is concerned, by providing an analytically constructed causal pathway linking disrupted androgen signaling with ovarian dysfunction and reduced fertility in females. Importantly, most KEs of the pathway include methods for effect measurements, which can support causal inference between in vitro data and adverse effects in an intact organism.
AOP345 also highlight gaps in knowledge and assay capacity, which can encourage the development of new approach methodologies (NAMs) to aid with chemical testing and regulation. Furthermore, it highlights the importance of ovarian follicle counts as an endpoint that currently is only optional in OECD test guidelines. Notably, however, follicle counting is a subjective, time-consuming and labor-intensive endpoint to measure, thus replacing it with a method assessing granulosa cell proliferation could be valuable. Such a method could potentially compliment estrus cycle monitoring, an endpoint that is potentially affected by different experimental set-ups, for example group size, study length and statistical analyses. AOP345 therefore offers a promising approach to address these methodological challenges. Finally, as quantitative understanding of this AOP continues to develop, it can provide a standardized methodology for assessing chemical effects and guide future regulatory decisions for the complex endpoint of female fertility.
References
Campana, C., Pezzi, V., & Rainey, W. E. (2015). Cell-based assays for screening androgen receptor ligands. Seminars in Reproductive Medicine, 33(3), 225. https://doi.org/10.1055/S-0035-1552989
Chamberlain, N. L., Driverand, E. D., & Miesfeldi, R. L. (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. In Nucleic Acids Research(Vol. 22, Issue 15).
Franks, S., & Hardy, K. (2018). Androgen action in the ovary. In Frontiers in Endocrinology (Vol. 9, Issue AUG, p. 452). Frontiers Media S.A. https://doi.org/10.3389/fendo.2018.00452
Hickey, T., Chandy, A., & Norman, R. J. (2002). The androgen receptor CAG repeat polymorphism and X-chromosome inactivation in Australian Caucasian women with infertility related to polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism, 87(1), 161–165. https://doi.org/10.1210/jcem.87.1.8137
Jiang, X., Teng, Y., Chen, X., Liang, N., Li, Z., Liang, D., & Wu, L. (2020). Six novel Mutation analysis of the androgen receptor gene in 17 Chinese patients with androgen insensitivity syndrome. Clinica Chimica Acta, 506, 180–186. https://doi.org/10.1016/j.cca.2020.03.036
Johansson, H. K. L., Svingen, T., Fowler, P. A., Vinggaard, A. M., & Boberg, J. (2017). Environmental influences on ovarian dysgenesis-developmental windows sensitive to chemical exposures. In Nature Reviews Endocrinology (Vol. 13, Issue 7, pp. 400–414). Nature Publishing Group. https://doi.org/10.1038/nrendo.2017.36
Lee, S. H., Hong, K. Y., Seo, H., Lee, H. S., & Park, Y. (2021). Mechanistic insight into human androgen receptor-mediated endocrine-disrupting potentials by a stable bioluminescence resonance energy transfer-based dimerization assay. Chemico-Biological Interactions, 349, 109655. https://doi.org/10.1016/J.CBI.2021.109655
Lim, J. J., Han, C. Y., Lee, D. R., & Tsang, B. K. (2017). Ring Finger Protein 6 Mediates Androgen-Induced Granulosa Cell Proliferation and Follicle Growth via Modulation of Androgen Receptor Signaling. Endocrinology, 158(4), 993–1004. https://doi.org/10.1210/en.2016-1866
Lim, J. J., Lima, P. D. A., Salehi, R., Lee, D. R., & Tsang, B. K. (2017). Regulation of androgen receptor signaling by ubiquitination during folliculogenesis and its possible dysregulation in polycystic ovarian syndrome. Scientific Reports, 7(1), 10272. https://doi.org/https://dx.doi.org/10.1038/s41598-017-09880-0
Lledó, B., Llácer, J., Turienzo, A., Ortiz, J. A., Guerrero, J., Morales, R., Ten, J., & Bernabeu, R. (2014). Androgen receptor CAG repeat length is associated with ovarian reserve but not with ovarian response. Reproductive BioMedicine Online, 29, 509–515. https://doi.org/10.1016/j.rbmo.2014.06.012
Molander, L., Ågerstrand, M., Beronius, A., Hanberg, A., & Rudén, C. (2015). Science in Risk Assessment and Policy (SciRAP): An Online Resource for Evaluating and Reporting In Vivo (Eco)Toxicity Studies. Human and Ecological Risk Assessment, 21(3), 753–762. https://doi.org/10.1080/10807039.2014.928104
OECD. (2020). Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals. In OECD Guidelines for the Testing of Chemicals, Section 4 (OECD Guide). OECD Publishing. https://doi.org/10.1787/9789264264366-en
OECD. (2022). Test No. 251: Rapid Androgen Disruption Activity Reporter (RADAR) assay. OECD Publishing. https://doi.org/10.1787/da264d82-en
Panagiotou, E. M., Draskau, M. K., Li, T., Hirschberg, A., Svingen, T., & Damdimopoulou, P. (2022). AOP key event relationship report: Linking decreased androgen receptor activation with decreased granulosa cell proliferation of gonadotropin-independent follicles. Reproductive Toxicology, 112, 136–147. https://doi.org/10.1016/j.reprotox.2022.07.004
Sen, A., & Hammes, S. R. (2010). Granulosa Cell-Specific Androgen Receptors Are Critical Regulators of Ovarian Development and Function. Molecular Endocrinology, 24(7), 1393–1403. https://doi.org/10.1210/me.2010-0006
Shiina, H., Matsumoto, T., Sato, T., Igarashi, K., Miyamoto, J., Takemasa, S., Sakari, M., Takada, I., Nakamura, T., Metzger, D., Chambon, P., Kanno, J., Yoshikawa, H., & Kato, S. (2006). Premature ovarian failure in androgen receptor-deficient mice. In PNAS (Vol. 103, Issue 1). www.pnas.orgcgidoi10.1073pnas.0506736102
Svingen, T., Villeneuve, D. L., Knapen, D., Panagiotou, E. M., Draskau, M. K., Damdimopoulou, P., & O’Brien, J. M. (2021). A Pragmatic Approach to Adverse Outcome Pathway Development and Evaluation. Toxicological Sciences, 184(2), 183–190. https://doi.org/10.1093/TOXSCI/KFAB113
Tut, T. G., Ghadessy, F. J., Trifiro, M. A., Pinsky, L., & Yong, E. L. (1997). Long Polyglutamine Tracts in the Androgen Receptor Are Associated with Reduced Trans-Activation, Impaired Sperm Production, and Male Infertility*. In J Clin Endocrinol Metab (Vol. 82). https://academic.oup.com/jcem/article/82/11/3777/2866074
Walters, K. A., Middleton, L. J., Joseph, S. R., Hazra, R., Jimenez, M., Simanainen, U., Allan, C. M., & Handelsman, D. J. (2012). Targeted loss of androgen receptor signaling in murine granulosa cells of preantral and antral follicles causes female subfertility. Biology of Reproduction, 87(6). https://doi.org/10.1095/biolreprod.112.102012
Appendix 1
List of MIEs in this AOP
Event: 26: Antagonism, Androgen receptor
Short Name: Antagonism, Androgen receptor
AOPs Including This Key Event
| AOP ID and Name | Event Type |
|---|---|
| Aop:306 - Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male (mammalian) offspring | MolecularInitiatingEvent |
| Aop:344 - Androgen receptor (AR) antagonism leading to nipple retention (NR) in male (mammalian) offspring | MolecularInitiatingEvent |
| Aop:345 - Androgen receptor (AR) antagonism leading to decreased fertility in females | MolecularInitiatingEvent |
| Aop:372 - Androgen receptor antagonism leading to testicular cancer | MolecularInitiatingEvent |
| Aop:477 - Androgen receptor (AR) antagonism leading to hypospadias in male offspring | MolecularInitiatingEvent |
| Aop:476 - Adverse Outcome Pathways diagram related to PBDEs associated male reproductive toxicity | MolecularInitiatingEvent |
Stressors
| Name |
|---|
| Mercaptobenzole |
| Triticonazole |
| Flusilazole |
| Epoxiconazole |
| Prochloraz |
| Propiconazole |
| Tebuconazole |
| Flutamide |
| Cyproterone acetate |
| Vinclozolin |
Biological Context
| Level of Biological Organization |
|---|
| Molecular |
Cell term
| Cell term |
|---|
| eukaryotic cell |
Domain of Applicability
Taxonomic Applicability| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| mammals | mammals | High | NCBI |
| Life Stage | Evidence |
|---|---|
| During development and at adulthood | High |
| Sex | Evidence |
|---|---|
| Mixed | High |
Both the DNA-binding and ligand-binding domains of the AR are highly evolutionary conserved, whereas the transactivation domain show more divergence which may affect AR-mediated gene regulation across species (Davey & Grossmann, 2016). Despite certain inter-species differences, AR function mediated through gene expression is highly conserved, with mutations studies from both humans and rodents showing strong correlation for AR-dependent development and function (Walters et al, 2010).
This KE is applicable for both sexes, across developmental stages into adulthood, in numerous cells and tissues and across mammalian taxa. It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.
Key Event Description
The androgen receptor (AR) and its function
The AR is a ligand-activated transcription factor belonging to the steroid hormone nuclear receptor family (Davey & Grossmann, 2016). The AR has three domains: the N-terminal domain, the DNA-binding domain and the ligand-binding domain, with the latter being most evolutionary conserved. Testosterone (T) and the more biologically active dihydrotestosterone (DHT) are endogenous ligands for the AR (MacLean et al, 1993; MacLeod et al, 2010; Schwartz et al, 2019). In teleost fishes, 11-ketotestosterone is the second main ligand (Schuppe et al, 2020). Human AR mutations and mouse knock-out models have established a pivotal role for the AR in masculinization and spermatogenesis (Walters et al, 2010). Apart from the essential role for AR in male reproductive development and function (Walters et al, 2010), the AR is also expressed in many other tissues and organs such as bone, muscles, ovaries, and the immune system (Rana et al, 2014).
AR antagonism as Key Event
The main function of the AR is to activate gene transcription in cells. Canonical signaling occurs by ligands (androgens) binding to AR in the cytoplasm which results in translocation to the cell nucleus, receptor dimerization and binding to specific regulatory DNA sequences (Heemers & Tindall, 2007). The gene targets regulated by AR activation depends on cell/tissue type and what stage of development activation occur, and is, for instance, dependent on available co-factors. Apart from the canonical signaling pathway, AR can also initiate cytoplasmic signaling pathways with other functions than the nuclear pathway, for instance rapid change in cell function by ion transport changes (Heinlein & Chang, 2002) and association with Src kinase to activate MAPK/ERK signaling and activation of the PI3K/Akt pathway (Leung & Sadar, 2017).
How it is Measured or Detected
AR antagonism can be measured in vitro by transient or stable transactivation assays to evaluate nuclear receptor activation. There is already a validated test guideline for AR (ant)agonism adopted by the OECD, Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals (OECD, 2016). This test guideline contains three different methods. More information on limitations, advantages, protocols, and availability and description of cells are given in the test guideline.
Besides these validated methods, other transiently or stably transfected reporter cell lines are available as well as yeast based systems (Campana et al, 2015; Körner et al, 2004). AR nuclear translocation can be monitored by various assays (Campana et al 2015), for example by monitoring fluorescent rat AR movement in living cells (Tyagi et al 2020), with several human AR translocation assays being commercially available; e.g. Fluorescent AR Nuclear Translocation Assay (tGFP-hAR/HEK293) or Human Androgen NHR Cell Based Antagonist Translocation LeadHunter Assay.
Additional information on AR interaction can be obtained employing competitive AR binding assays (Freyberger et al 2010, Shaw et al 2018), which can also inform on relative potency of the compounds, though not on downstream effect of the AR binding.
The recently developed AR dimerization assay provides an assay with an improved ability to measure potential stressor-mediated disruption of dimerization/activation (Lee et al, 2021).
References
Campana C, Pezzi V, Rainey WE (2015) Cell based assays for screening androgen receptor ligands. Semin Reprod Med 33: 225-234.
Freyberger A, Weimer M, Tran HS, Ahr HJ. Assessment of a recombinant androgen receptor binding assay: initial steps towards validation. Reprod Toxicol. 2010 Aug;30(1):2-8. doi: 10.1016/j.reprotox.2009.10.001. Epub 2009 Oct 13. PMID: 19833195.
OECD (2022). Test No. 251: Rapid Androgen Disruption Activity Reporter (RADAR) assay. Paris: OECD Publishing doi:10.1787/da264d82-en.
Shaw J, Leveridge M, Norling C, Karén J, Molina DM, O'Neill D, Dowling JE, Davey P, Cowan S, Dabrowski M, Main M, Gianni D. Determining direct binders of the Androgen Receptor using a high-throughput Cellular Thermal Shift Assay. Sci Rep. 2018 Jan 9;8(1):163. doi: 10.1038/s41598-017-18650-x. PMID: 29317749; PMCID: PMC5760633.
Tyagi RK, Lavrovsky Y, Ahn SC, Song CS, Chatterjee B, Roy AK (2000) Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol Endocrinol 14: 1162-1174
List of Key Events in the AOP
Event: 1614: Decrease, androgen receptor activation
Short Name: Decrease, AR activation
AOPs Including This Key Event
Biological Context
| Level of Biological Organization |
|---|
| Tissue |
Domain of Applicability
Taxonomic Applicability| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| mammals | mammals | High | NCBI |
| Life Stage | Evidence |
|---|---|
| During development and at adulthood | High |
| Sex | Evidence |
|---|---|
| Mixed | High |
This KE is considered broadly applicable across mammalian taxa as all mammals express the AR in numerous cells and tissues where it regulates gene transcription required for developmental processes and functions. It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.
Key Event Description
This KE refers to decreased activation of the androgen receptor (AR) as occurring in complex biological systems such as tissues and organs in vivo. It is thus considered distinct from KEs describing either blocking of AR or decreased androgen synthesis.
The AR is a nuclear transcription factor with canonical AR activation regulated by the binding of the androgens such as testosterone or dihydrotestosterone (DHT). Thus, AR activity can be decreased by reduced levels of steroidal ligands (testosterone, DHT) or the presence of compounds interfering with ligand binding to the receptor (Davey & Grossmann, 2016; Gao et al., 2005).
In the inactive state, AR is sequestered in the cytoplasm of cells by molecular chaperones. In the classical (genomic) AR signaling pathway, AR activation causes dissociation of the chaperones, AR dimerization and translocation to the nucleus to modulate gene expression. AR binds to the androgen response element (ARE) (Davey & Grossmann, 2016; Gao et al., 2005). Notably, for transcriptional regulation the AR is closely associated with other co-factors that may differ between cells, tissues and life stages. In this way, the functional consequence of AR activation is cell- and tissue-specific. This dependency on co-factors such as the SRC proteins also means that stressors affecting recruitment of co-activators to AR can result in decreased AR activity (Heinlein & Chang, 2002).
Ligand-bound AR may also associate with cytoplasmic and membrane-bound proteins to initiate cytoplasmic signaling pathways with other functions than the nuclear pathway. Non-genomic AR signaling includes association with Src kinase to activate MAPK/ERK signaling and activation of the PI3K/Akt pathway. Decreased AR activity may therefore be a decrease in the genomic and/or non-genomic AR signaling pathways (Leung & Sadar, 2017).
How it is Measured or Detected
This KE specifically focuses on decreased in vivo activation, with most methods that can be used to measure AR activity carried out in vitro. They provide indirect information about the KE and are described in lower tier MIE/KEs (see for example MIE/KE-26 for AR antagonism, KE-1690 for decreased T levels and KE-1613 for decreased dihydrotestosterone levels). In this way, this KE is a placeholder for tissue-specific responses to AR activation or inactivation that will depend on the adverse outcome (AO) for which it is included.
In fish, The Rapid Androgen Disruption Activity Reporter (RADAR) assay included in OECD test guideline no. 251 can be used to measure genomic AR activity (OECD, 2022). Employing a spg1-gfp construct under control of the AR-binding promoter spiggin1 in medaka fish embryos, any stressor activating or inhibiting the androgen axis will be detected. This includes for instance stressors that agonize or antagonize AR, as well as stressors that modulate androgen synthesis or metabolism. Non-genomic AR activity cannot be detected by the RADAR assay (OECD, 2022). Similar assays may in the future be developed to measure AR activity in mammalian organisms.
References
Davey, R. A., & Grossmann, M. (2016). Androgen Receptor Structure, Function and Biology: From Bench to Bedside. The Clinical Biochemist. Reviews, 37(1), 3–15.
Gao, W., Bohl, C. E., & Dalton, J. T. (2005). Chemistry and structural biology of androgen receptor. Chemical Reviews, 105(9), 3352–3370. https://doi.org/10.1021/cr020456u
Heinlein, C. A., & Chang, C. (2002). Androgen Receptor (AR) Coregulators: An Overview. https://academic.oup.com/edrv/article/23/2/175/2424160
Leung, J. K., & Sadar, M. D. (2017). Non-Genomic Actions of the Androgen Receptor in Prostate Cancer. Frontiers in Endocrinology, 8. https://doi.org/10.3389/fendo.2017.00002
OECD (2022). Test No. 251: Rapid Androgen Disruption Activity Reporter (RADAR) assay. Paris: OECD Publishing doi:10.1787/da264d82-en.
|
|
|
Event: 286: Altered, Transcription of genes by the androgen receptor
Short Name: Altered, Transcription of genes by the AR
Key Event Component
| Process | Object | Action |
|---|---|---|
| regulation of gene expression | androgen receptor | decreased |
AOPs Including This Key Event
Stressors
| Name |
|---|
| Bicalutamide |
| Cyproterone acetate |
| Epoxiconazole |
| Flutamide |
| Flusilazole |
| Prochloraz |
| Propiconazole |
| Stressor:286 Tebuconazole |
| Triticonazole |
| Vinclozalin |
Biological Context
| Level of Biological Organization |
|---|
| Tissue |
Domain of Applicability
Taxonomic Applicability| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| mammals | mammals | High | NCBI |
| Life Stage | Evidence |
|---|---|
| During development and at adulthood | High |
| Sex | Evidence |
|---|---|
| Mixed | High |
Both the DNA-binding and ligand-binding domains of the AR are highly evolutionary conserved, whereas the transactivation domain show more divergence, which may affect AR-mediated gene regulation across species (Davey and Grossmann 2016). Despite certain inter-species differences, AR function mediated through gene expression is highly conserved, with mutation studies from both humans and rodents showing strong correlation for AR-dependent development and function (Walters et al. 2010).
This KE is considered broadly applicable across mammalian taxa, sex and developmental stages, as all mammals express the AR in numerous cells and tissues where it regulates gene transcription required for developmental processes and function. It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.
Key Event Description
This KE refers to transcription of genes by the androgen receptor (AR) as occurring in complex biological systems such as tissues and organs in vivo. Rather than measuring individual genes, this KE aims to capture patterns of effects at transcriptome level in specific target cells/tissues. In other words, it can be replaced by specific KEs for individual adverse outcomes as information becomes available, for example the transcriptional toxicity response in prostate tissue for AO: prostate cancer, perineum tissue for AO: reduced AGD, etc. AR regulates many genes that differ between tissues and life stages and, importantly, different gene transcripts within individual cells can go in either direction since AR can act as both transcriptional activator and suppressor. Thus, the ‘directionality’ of the KE cannot be either reduced or increased, but instead describe an altered transcriptome.
The Androgen Receptor and its function
The AR belongs to the steroid hormone nuclear receptor family. It is a ligand-activated transcription factor with three domains: the N-terminal domain, the DNA-binding domain, and the ligand-binding domain with the latter being the most evolutionary conserved (Davey and Grossmann 2016). Androgens (such as dihydrotestosterone and testosterone) are AR ligands and act by binding to the AR in androgen-responsive tissues (Davey and Grossmann 2016). Human AR mutations and mouse knockout models have established a fundamental role for AR in masculinization and spermatogenesis (Maclean et al.; Walters et al. 2010; Rana et al. 2014). The AR is also expressed in many other tissues such as bone, muscles, ovaries and within the immune system (Rana et al. 2014).
Altered transcription of genes by the AR as a Key Event
Upon activation by ligand-binding, the AR translocates from the cytoplasm to the cell nucleus, dimerizes, binds to androgen response elements in the DNA to modulate gene transcription (Davey and Grossmann 2016). The transcriptional targets vary between cells and tissues, as well as with developmental stages and is also dependent on available co-regulators (Bevan and Parker 1999; Heemers and Tindall 2007). It should also be mentioned that the AR can work in other ‘non-canonial’ ways such as non-genomic signaling, and ligand-independent activation (Davey & Grossmann, 2016; Estrada et al, 2003; Jin et al, 2013).
A large number of known, and proposed, target genes of AR canonical signaling have been identified by analysis of gene expression following treatments with AR agonists (Bolton et al. 2007; Ngan et al. 2009, Jin et al. 2013).
How it is Measured or Detected
Altered transcription of genes by the AR can be measured by measuring the transcription level of known downstream target genes by RT-qPCR or other transcription analyses approaches, e.g. transcriptomics.
Since this KE aims to capture AR-mediated transcriptional patterns of effect, downstream bioinformatics analyses will typically be required to identify and compare effect footprints. Clusters of genes can be statistically associated with, for example, biological process terms or gene ontology terms relevant for AR-mediated signaling. Large transcriptomics data repositories can be used to compare transcriptional patterns between chemicals, tissues, and species (e.g. TOXsIgN (Darde et al, 2018a; Darde et al, 2018b), comparisons can be made to identified sets of AR ‘biomarker’ genes (e.g. as done in (Rooney et al, 2018)), and various methods can be used e.g. connectivity mapping (Keenan et al, 2019).
References
Bevan C, Parker M (1999) The role of coactivators in steroid hormone action. Exp. Cell Res. 253:349–356
Bolton EC, So AY, Chaivorapol C, et al (2007) Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 21:2005–2017. doi: 10.1101/gad.1564207
Darde, T. A., Gaudriault, P., Beranger, R., Lancien, C., Caillarec-Joly, A., Sallou, O., et al. (2018a). TOXsIgN: a cross-species repository for toxicogenomic signatures. Bioinformatics 34, 2116–2122. doi:10.1093/bioinformatics/bty040.
Darde, T. A., Chalmel, F., and Svingen, T. (2018b). Exploiting advances in transcriptomics to improve on human-relevant toxicology. Curr. Opin. Toxicol. 11–12, 43–50. doi:10.1016/j.cotox.2019.02.001.
Davey RA, Grossmann M (2016) Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev 37:3–15
Estrada M, Espinosa A, Müller M, Jaimovich E (2003) Testosterone Stimulates Intracellular Calcium Release and Mitogen-Activated Protein Kinases Via a G Protein-Coupled Receptor in Skeletal Muscle Cells. Endocrinology 144:3586–3597. doi: 10.1210/en.2002-0164
Heemers H V., Tindall DJ (2007) Androgen receptor (AR) coregulators: A diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev. 28:778–808
Jin, Hong Jian, Jung Kim, and Jindan Yu. 2013. “Androgen Receptor Genomic Regulation.” Translational Andrology and Urology 2(3):158–77. doi: 10.3978/j.issn.2223-4683.2013.09.01
Keenan, A. B., Wojciechowicz, M. L., Wang, Z., Jagodnik, K. M., Jenkins, S. L., Lachmann, A., et al. (2019). Connectivity Mapping: Methods and Applications. Annu. Rev. Biomed. Data Sci. 2, 69–92. doi:10.1146/ANNUREV-BIODATASCI-072018-021211.
Maclean HE, Chu S, Warne GL, Zajact JD Related Individuals with Different Androgen Receptor Gene Deletions
MacLeod DJ, Sharpe RM, Welsh M, et al (2010) Androgen action in the masculinization programming window and development of male reproductive organs. In: International Journal of Andrology. Blackwell Publishing Ltd, pp 279–287
Ngan S, Stronach EA, Photiou A, et al (2009) Microarray coupled to quantitative RT–PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells. Oncogene 28:2051–2063. doi: 10.1038/onc.2009.68
Rana K, Davey RA, Zajac JD (2014) Human androgen deficiency: Insights gained from androgen receptor knockout mouse models. Asian J. Androl. 16:169–177
Rooney, J. P., Chorley, B., Kleinstreuer, N., and Corton, J. C. (2018). Identification of Androgen Receptor Modulators in a Prostate Cancer Cell Line Microarray Compendium. Toxicol. Sci. 166, 146–162. doi:10.1093/TOXSCI/KFY187.
Walters KA, Simanainen U, Handelsman DJ (2010) Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum Reprod Update 16:543–558. doi: 10.1093/humupd/dmq003
Event: 1800: Granulosa cell proliferation of gonadotropin-independent follicles, Reduced
Short Name: Reduced granulosa cell proliferation
AOPs Including This Key Event
| AOP ID and Name | Event Type |
|---|---|
| Aop:345 - Androgen receptor (AR) antagonism leading to decreased fertility in females | KeyEvent |
Biological Context
| Level of Biological Organization |
|---|
| Cellular |
Cell term
| Cell term |
|---|
| eukaryotic cell |
Organ term
| Organ term |
|---|
| ovarian follicle |
Domain of Applicability
Taxonomic Applicability| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| human | Homo sapiens | High | NCBI |
| mouse | Mus musculus | High | NCBI |
| rat | Rattus norvegicus | High | NCBI |
| Monkey | Monkey | High | NCBI |
| Pig | Pig | High | NCBI |
| cow | Bos taurus | High | NCBI |
| Life Stage | Evidence |
|---|---|
| During development and at adulthood | High |
| Sex | Evidence |
|---|---|
| Female | High |
Overview
Mechanisms controlling folliculogenesis are well conserved between mammalian species, including mice, farm animals and humans(Adhikari and Liu, 2009; McGee and Hsueh, 2000).
Key Event Description
Granulosa cell function
Granulosa cells of the ovary play an important structural and functional role during folliculogenesis. They form the ovarian follicle architecture and transmit molecular messages to the oocyte through gap junction channels, ensuring developmental competence(Kidder and Vanderhyden, 2010). Folliculogenesis can be roughly divided into two phases: gonadotropin-independent and gonadotropin-dependent by the requirement for the gonadotropin follicle-stimulating hormone (FSH) to grow(Hsueh et al., 2015). During the gonadotropin-independent growth phase, growth factors secreted by the follicle, e.g. growth differentiation factor-9 (GDF9) by the oocyte and anti-Müllerian hormone (AMH) by the granulosa cells control the necessary morphological changes of granulosa cells and their proliferation(Hsueh et al., 2015). The growth can be histologically observed as proliferation of the granulosa cells as the flat granulosa cells of primordial follicles become cuboidal and increase in numbers(Gougeon, 2010). The connection between granulosa cell numbers and follicle growth during gonadotropin-independent growth is well described (Gougeon and Chainy, 1987).
Reduced granulosa cell proliferation as Key Event
Genetically modified mouse models have demonstrated that granulosa cell proliferation is a prerequisite for normal follicle growth and fertility. For example, deletion of the oocyte-specific growth factor GDF9 that stimulates granulosa cells halt folliculogenesis at the primary follicle stage in mice: the granulosa cells fail to proliferate to generate secondary follicles, the oocytes degenerate, and the mice are sterile(Dong et al., 1996). Conversely, mice administered GDF9 have accelerated granulosa cell proliferation and higher numbers of primary and secondary follicles compared to non-treated ones(Vitt et al., 2000).
AMH is a growth factor secreted by granulosa cells during the gonadotropin-independent follicle growth stage, and it inhibits the activation of primordial follicles to keep the growing and dormant follicles in balance. In mice overexpressing AMH, follicle growth to antral stages is inhibited and the numbers of all developmental stages of follicles decline faster by age than in wildtype controls(Pankhurst et al., 2018). Exposure of human ovarian tissue to AMH in culture inhibits follicle growth(Carlsson et al., 2006).
How it is Measured or Detected
In vitro
Decreased granulosa cell proliferation can be measured in cell culture. There are commercially available human granulosa cell tumor lines, for instance KGN (#RCB1154) “Granulosa cell tumor”, available from the Riken cell Bank. This cell line is representative of undifferentiated granulosa cells at early stages of follicle development making it suitable to study interactions of primordial to early antral pathways independent from hormonal control from theca cells and hypothalamic-pituitary axis (Nishi et al., 2001).
Well-established assays to detect proliferation include methods to assess DNA synthesis (e.g. BrdU), cellular metabolism (e.g. MTT, XTT, ATP detection assays), and proliferation proteins (e.g. PCNA, Ki67, MCM-2)(Adan et al., 2016). The same methods can also be used in ovarian follicle or tissue culture.
In vivo
Granulosa cell proliferation manifests as increased numbers of granulosa cells within ovarian follicles(Gougeon and Chainy, 1987). Analysis of follicle growth is based on the numbers of granulosa cell layers which is also reflected in the diameter of the follicle(Gougeon and Chainy, 1987). Granulosa cell proliferation is inseparably connected to folliculogenesis, and therefore numbers of follicles in different developmental stages reflect the proliferation of granulosa cells. Granulosa cell proliferation can therefore be measured by counting follicles in different stages (primordial, primary, secondary) or by measuring the follicle diameters. Changes in the proliferation of granulosa cells during the early follicle growth phase would lead to altered proportions of follicles in different stages. For example, inhibition of granulosa cell proliferation can lead to reduced numbers of secondary follicles(Dong et al., 1996; Pankhurst et al., 2018). Therefore, studying ratios between follicles in different developmental stages can reveal changes in the proliferation of granulosa cells. Follicle counts are already suggested endpoints in the Extended One-Generation Reproductive Toxicity Study; EOGRTS (OECD 443)(2018).
References
Adan, A., Kiraz, Y., and Baran, Y. (2016). Cell Proliferation and Cytotoxicity Assays. Current Pharmaceutical Biotechnology 17, 1213–1221. https://doi.org/10.2174/1389201017666160808160513.
Adhikari, D., and Liu, K. (2009). Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocrine Reviews 30, 438–464. https://doi.org/10.1210/er.2008-0048.
Carlsson, I.B., Scott, J.E., Visser, J.A., Ritvos, O., Themmen, A.P.N., and Hovatta, O. (2006). Anti-Müllerian hormone inhibits initiation of growth of human primordial ovarian follicles in vitro. Human Reproduction 21, 2223–2227. https://doi.org/10.1093/humrep/del165.
Dong, J., Albertini, D.F., Nishimori, K., Kumar, T.R., Lu, N., and Matzuk, M.M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531–535. https://doi.org/10.1038/383531a0.
Gougeon, A. (2010). Croissance folliculaire dans l’ovaire humain: de l’entrée en croissance du follicule primordial jusqu’à la maturation préovulatoire. Annales d’Endocrinologie 71, 132–143. https://doi.org/10.1016/j.ando.2010.02.021.
Gougeon, A., and Chainy, G.B.N. (1987). Morphometric studies of small follicles in ovaries of women at different ages. Journal of Reproduction and Fertility 81, 433–442. https://doi.org/10.1530/jrf.0.0810433.
Hsueh, A.J.W., Kawamura, K., Cheng, Y., and Fauser, B.C.J.M. (2015). Intraovarian control of early folliculogenesis. Endocrine Reviews 36, 1–24. https://doi.org/10.1210/er.2014-1020.
Kidder, G.M., and Vanderhyden, B.C. (2010). Bidirectional communication between oocytes and follicle cells: Ensuring oocyte developmental competence. Canadian Journal of Physiology and Pharmacology 88, 399–413. https://doi.org/10.1139/Y10-009.
McGee, E.A., and Hsueh, A.J.W. (2000). Initial and Cyclic Recruitment of Ovarian Follicles*. Endocrine Reviews 21, 200–214. https://doi.org/10.1210/edrv.21.2.0394.
Nishi, Y., Yanase, T., Mu, Y.-M., Oba, K., Ichino, I., Saito, M., Nomura, M., Mukasa, C., Okabe, T., Goto, K., et al. (2001). Establishment and Characterization of a Steroidogenic Human Granulosa-Like Tumor Cell Line, KGN, That Expresses Functional Follicle-Stimulating Hormone Receptor. Endocrinology 142, 437–445. https://doi.org/10.1210/endo.142.1.7862.
Pankhurst, M.W., Kelley, R.L., Sanders, R.L., Woodcock, S.R., Oorschot, D.E., and Batchelor, N.J. (2018). Anti-Müllerian hormone overexpression restricts preantral ovarian follicle survival. Journal of Endocrinology 237, 153–163. https://doi.org/10.1530/JOE-18-0005.
Vitt, U.A., McGee, E.A., Hayashi, M., and Hsueh, A.J.W. (2000). In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats. Endocrinology 141, 3814–3820. https://doi.org/10.1210/endo.141.10.7732.
(2018). Test No. 443: Extended One-Generation Reproductive Toxicity Study (OECD).
List of Adverse Outcomes in this AOP
Event: 405: irregularities, ovarian cycle
Short Name: irregularities, ovarian cycle
Key Event Component
| Process | Object | Action |
|---|---|---|
| ovulation cycle | disrupted |
AOPs Including This Key Event
Biological Context
| Level of Biological Organization |
|---|
| Individual |
Domain of Applicability
Taxonomic ApplicabilityThe estrous cycle comprises the recurring physiologic changes that are induced by reproductive hormones in most mammalian females. Many of the mechanisms involved in the regulation of the reproductive axis are similar across species (particularly those mediated through the estrogen receptor), assessments of rodent estrous cyclicity can offer insight into potential adverse effects in humans (Goldman, Murr, & Cooper, 2007). While evaluations of vaginal cytology in the laboratory rodent can provide a valuable reflection of the integrity of the hypothalamic-pituitary-ovarian axis, other indices are more useful in humans to determine the functional status of the reproductive system (e.g. menses, basal body temperature, alterations in vaginal pH, cervical mucous viscosity, and blood hormone levels). Nevertheless, since many of the mechanisms involved in the regulation of the reproductive axis are similar across species (particularly those mediated through the estrogen receptor), assessments of rodent estrous cyclicity can offer insight into potential adverse effects in humans (Rasier, Toppari, Parent, & Bourguignon, 2006).
Key Event Description
Biological state
The female ovarian cycle is the result of a balanced cooperation between several organs and is determined by a complex interaction of hormones. Ovarian cycle irregularities include disturbances in the ovarian cycle (e.g. longer cycle, persistent estrus) and/or ovulation problems (deferred ovulation or anovulation). The estrous cycle (also oestrous cycle) comprises the recurring physiologic changes that are induced by reproductive hormones in females. Estrous cycles start after sexual maturity in females and are interrupted by anestrous phases or pregnancies. During this cycle numerous well defined and sequential alterations in reproductive tract histology, physiology and cytology occur, initiated and regulated by the hypothalamic-pituitary-ovarian (HPO) axis. The central feature of the mammalian estrous cycle is the periodic maturation of eggs that will be released at ovulation and luteinisation of the follicles after ovulation to form corpora lutea. Adapted from www.oecd.org/chemicalsafety/testing/43754807.pdf Biological compartments
The cyclic changes that occur in the female reproductive tract are initiated and regulated by the hypothalamic-pituitary-ovarian (HPO) axis. Although folliculogenesis occurs independently of hormonal stimulation up until the formation of early tertiary follicles, the gonadotrophins luteinising hormone (LH) and follicle stimulating hormone (FSH) are essential for the completion of follicular maturation and development of mature preovulatory (Graafian) follicles. The oestrous cycle consists of four stages: prooestrus, oestrus, metoestrus (or dioestrus 1) and dioestrus (or dioestrus 2) orchestrated by hormones. Levels of LH and FSH begin to increase just after dioestrus. Both hormones are secreted by the same secretory cells (gonadotrophs) in the pars distalis of the anterior pituitary (adenohypophysis). FSH stimulates the development of the zona granulosa and triggers expression of LH receptors by granulosa cells. LH initiates the synthesis and secretion of androstenedione and, to a lesser extent, testosterone by the theca interna; these androgens are utilised by granulosa cells as substrates in the synthesis of estrogen. Pituitary release of gonadotrophins thus drives follicular maturation and secretion of estrogen during prooestrus. Gonadotrophin secretion by the anterior pituitary is regulated by luteinising hormone-releasing hormone (LHRH), produced by the hypothalamus. LHRH is transported along the axons of hypothalamic neurones to the median eminence where it is secreted into the hypothalamic-hypophyseal portal system and transported to the anterior pituitary. The hypothalamus secretes LHRH in rhythmic pulses; this pulsatility is essential for the normal activation of gonadotrophs and subsequent release of LH and FSH. Adapted from www.oecd.org/chemicalsafety/testing/43754807.pdf
Follicles that produce estrogens have sequestered pituitary FSH which in turn stimulates the aromatase reaction. Such follicles can undergo normal development and ovulation and contain eggs that readily resume meiosis when released. In the absence of an active local aromatase (i.e., no follicle-stimulating hormone), the follicles and oocytes become atretic and regress without ovulating. If aromatase is present, the estrogen and follicle stimulating hormone can further develop the follicular cells for normal luteal function after ovulation takes place (Ryan, 1982).
General role in biology
A sequential progression of interrelated physiological and behavioural cycles underlines the female's successful production of young. In many but not all species the first and most basic of these is estrous cycle, which is itself a combination of cycles.
How it is Measured or Detected
Methods that have been previously reviewed and approved by a recognized authority should be included in the Overview section above. All other methods, including those well established in the published literature, should be described here. Consider the following criteria when describing each method: 1. Is the assay fit for purpose? 2. Is the assay directly or indirectly (i.e. a surrogate) related to a key event relevant to the final adverse effect in question? 3. Is the assay repeatable? 4. Is the assay reproducible?
The pattern of events in the estrous cycle may provide a useful indicator of the normality of reproductive neuroendocrine and ovarian function in the nonpregnant female. It also provides a means to interpret hormonal, histologic, and morphologic measurements relative to stage of the cycle, and can be useful to monitor the status of mated females.
Regular cyclicity is one of the key parameters in assessment of female reproductive function in rodents.
Parameters assessed for cyclicity:
- Number of cycling females
- Number of females with regular cycles
- Number of cycles
- Estrous cycle length
- Percentage of time spent in the various estrous cycle stages
Estrous cyclicity provides a method for evaluating the endocrine disrupting activity of each test chemical under physiologic conditions where endogenous concentrations of estrogen vary. Abnormal cycles were defined as one or more estrous cycles in the 21-day period with prolonged estrus (≥3 days) and/or prolonged metestrus or diestrus (≥4 days) within a given cycle (Goldman, Murr, & Cooper, 2007).
Estrous cycle normality can be monitored in the rat and mouse by observing the changes in the vaginal smear cytology. Visual observation of the vagina is the quickest method, requires no special equipment, and is best used when only proestrus or estrus stages need to be identified. For details see: (Westwood, 2008), (Byers, Wiles, Dunn, & Taft, 2012) and OECD guidelines (www.oecd.org).
The observation that animals do not ovulate while exhibiting estrous cycles indicates that estrous cyclicity alone may not be a sufficient surrogate of healthy function of ovaries; the measurements of serum hormones and particularly FSH can contribute to more sensitivity indicators of healthy function of ovaries (Davis, Maronpot, & Heindel, 1994).
Monitoring of oestrus cyclicity is included in OECD test guidelines (Test No. 407: Repeated Dose 28-day Oral Toxicity Study in Rodents, 2008) [1], (Test No. 416: Two-Generation Reproduction Toxicity, 2001)[2] and (Test No. 443: Extended One-Generation Reproductive Toxicity Study, 2012) [3]and in USA EPA OCSPP 890.1450.
In vitro testing
The follicle culture models were developed for the in-vitro production of mature oocytes and used to study the process of folliculogenesis and oogenesis in vitro (Cortvrindt & Smitz, 2002). These in vitro cultures demonstrate near-identical effects to those found in vivo, therefore might be able to acquire a place in fertility testing, replacing some in-vivo studies for ovarian function and female gamete quality testing (Stefansdottir, Fowler, Powles-Glover, Anderson, & Spears, 2014).
Regulatory Significance of the AO
Chemicals may be found to interfere with reproductive function in the female rat. This interference is commonly expressed as a change in normal morphology of the reproductive tract or a disturbance in the duration of particular phases of the estrous cycle. This key event lies within the scope of testing for endocrine disrupting activity of chemicals and therefore for testing of female reproductive and developmental toxicity. Monitoring of oestrus cyclicity is included in OECD test guidelines (Test No. 407: Repeated Dose 28-day Oral Toxicity Study in Rodents, 2008), (Test No. 416: Two-Generation Reproduction Toxicity, 2001) and (Test No. 443: Extended One-Generation Reproductive Toxicity Study, 2012) and in USA EPA OCSPP 890.1450. While an evaluation of the estrous cycle in laboratory rodents can be a useful measure of the integrity of the hypothalamic-pituitary-ovarian reproductive axis, it can also serve as a way of insuring that animals exhibiting abnormal cycling patterns are excluded from a study prior to exposure to a test compound. When incorporated as an adjunct to other endpoint measures, a determination of a female's cycling status can contribute important information about the nature of a toxicant insult to the reproductive system. In doing so, it can help to integrate the data into a more comprehensive mechanistic portrait of the effect, and in terms of risk assessment, may provide some indication of a toxicant's impact on human reproductive physiology. Significant evidence that the estrous cycle (or menstrual cycle in primates) has been disrupted should be considered an adverse effect (OECD, 2008). Included should be evidence of abnormal cycle length or pattern, ovulation failure, or abnormal menstruation.
References
Byers, S. L., Wiles, M. V, Dunn, S. L., & Taft, R. A. (2012). Mouse estrous cycle identification tool and images. PloS One, 7(4), e35538. doi:10.1371/journal.pone.0035538
Cortvrindt, R. G., & Smitz, J. E. J. (2002). Follicle culture in reproductive toxicology: a tool for in-vitro testing of ovarian function? Human Reproduction Update, 8(3), 243–54.
Davis, B. J., Maronpot, R. R., & Heindel, J. J. (1994). Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicology and Applied Pharmacology, 128(2), 216–23. doi:10.1006/taap.1994.1200
Goldman, J. M., Murr, A. S., & Cooper, R. L. (2007). The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies. Birth Defects Research. Part B, Developmental and Reproductive Toxicology, 80(2), 84–97. doi:10.1002/bdrb.20106
OECD. (2008). No 43: Guidance document on mammalian reproductive toxicity testing and assessment.
Rasier, G., Toppari, J., Parent, A.-S., & Bourguignon, J.-P. (2006). Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: a review of rodent and human data. Molecular and Cellular Endocrinology, 254-255, 187–201. doi:10.1016/j.mce.2006.04.002
Ryan, K. J. (1982). Biochemistry of aromatase: significance to female reproductive physiology. Cancer Research, 42(8 Suppl), 3342s–3344s.
Stefansdottir, A., Fowler, P. A., Powles-Glover, N., Anderson, R. A., & Spears, N. (2014). Use of ovary culture techniques in reproductive toxicology. Reproductive Toxicology (Elmsford, N.Y.), 49C, 117–135. doi:10.1016/j.reprotox.2014.08.001
Test No. 407: Repeated Dose 28-day Oral Toxicity Study in Rodents. (2008). OECD Publishing. doi:10.1787/9789264070684-en
Test No. 416: Two-Generation Reproduction Toxicity. (2001). OECD Publishing. doi:10.1787/9789264070868-en
Test No. 443: Extended One-Generation Reproductive Toxicity Study. (2012). OECD Publishing. doi:10.1787/9789264185371-en
Westwood, F. R. (2008). The female rat reproductive cycle: a practical histological guide to staging. Toxicologic Pathology, 36(3), 375–84. doi:10.1177/0192623308315665
Event: 406: impaired, Fertility
Short Name: impaired, Fertility
Key Event Component
| Process | Object | Action |
|---|---|---|
| fertility | decreased |
AOPs Including This Key Event
Biological Context
| Level of Biological Organization |
|---|
| Individual |
Domain of Applicability
Taxonomic Applicability| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| rat | Rattus norvegicus | High | NCBI |
| mouse | Mus musculus | High | NCBI |
| human | Homo sapiens | High | NCBI |
| Life Stage | Evidence |
|---|---|
| Adult, reproductively mature | High |
| Juvenile | High |
| Adults | High |
Plausible domain of applicability
Taxonomic applicability: The impaired fertility may also have relevance for fish, mammals, amphibians, reptiles, birds and and invertebrates with sexual reproduction.
Life stage applicability: The impaired fertility can be measured at juveniles and adults.
Sex applicability: The impaired fertility can be measured in both male and female species.
Key Event Description
Biological state
capability to produce offspring
Biological compartments
System
General role in biology
Fertility is the capacity to conceive or induce conception. Impairment of fertility represents disorders of male or female reproductive functions or capacity.
How it is Measured or Detected
As a measure, fertility rate, is the number of offspring born per mating pair, individual or population.
Regulatory Significance of the AO
Under REACH, information on reproductive toxicity is required for chemicals with an annual production/importation volume of 10 metric tonnes or more. Standard information requirements include a screening study on reproduction toxicity (OECD TG 421/422) at Annex VIII (10-100 t.p.a), a prenatal developmental toxicity study (OECD 414) on a first species at Annex IX (100-1000 t.p.a), and from March 2015 the OECD 443(Extended One-Generation Reproductive Toxicity Study) is reproductive toxicity requirement instead of the two generation reproductive toxicity study (OECD TG 416). If not conducted already at Annex IX, a prenatal developmental toxicity study on a second species at Annex X (≥ 1000 t.p.a.).
Under the Biocidal Products Regulation (BPR), information is also required on reproductive toxicity for active substances as part of core data set and additional data set (EU 2012, ECHA 2013). As a core data set, prenatal developmental toxicity study (EU TM B.31) in rabbits as a first species and a two-generation reproduction toxicity study (EU TM B.31) are required. OECD TG 443 (Extended One-Generation Reproductive Toxicity Study) shall be considered as an alternative approach to the multi-generation study.) According to the Classification, Labelling and Packaging (CLP) regulation (EC, 200; Annex I: 3.7.1.1): a) “reproductive toxicity” includes adverse effects on sexual function and fertility in adult males and females, as well as developmental toxicity in the offspring; b) “effects on fertility” includes adverse effects on sexual function and fertility; and c) “developmental toxicity” includes adverse effects on development of the offspring.
References
OECD (2001), Test No. 416: Two-Generation Reproduction Toxicity, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264070868-en.
OECD (2018), Test No. 443: Extended One-Generation Reproductive Toxicity Study, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264185371-en.
OECD (2018), Test No. 414: Prenatal Developmental Toxicity Study, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264070820-en.
OECD (2018), "Reproduction/Developmental Toxicity Screening Test (OECD TG 421) and Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test (OECD TG 422)", in Revised Guidance Document 150 on Standardised Test Guidelines for Evaluating Chemicals for Endocrine Disruption, OECD Publishing, Paris, https://doi.org/10.1787/9789264304741-25-en.
Appendix 2
List of Key Event Relationships in the AOP
List of Adjacent Key Event Relationships
Relationship: 2130: Antagonism, Androgen receptor leads to Decrease, AR activation
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male (mammalian) offspring | adjacent | High | High |
| Androgen receptor (AR) antagonism leading to nipple retention (NR) in male (mammalian) offspring | adjacent | High | |
| Androgen receptor (AR) antagonism leading to hypospadias in male offspring | adjacent | High | |
| Androgen receptor (AR) antagonism leading to decreased fertility in females | adjacent |
Evidence Supporting Applicability of this Relationship
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| mammals | mammals | High | NCBI |
| Life Stage | Evidence |
|---|---|
| During development and at adulthood | High |
| Sex | Evidence |
|---|---|
| Mixed | High |
This KER is applicable to mammals as AR expression and activity is highly conserved (Davey & Grossmann, 2016). AR activity is important for sexual development and reproduction in both males and females (Prizant et al., 2014; Walters et al., 2010). AR function is required during development, puberty, and adulthood. It is, however, acknowledged that this KER most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.
Key Event Relationship Description
The androgen receptor (AR) is a ligand-activated steroid hormone nuclear receptor (Davey & Grossmann, 2016). In its inactive state, the AR locates to the cytoplasm (Roy et al., 2001). When activated, the AR translocates to the nucleus, dimerizes, and, together with co-regulators, binds to specific DNA regulatory sequences to regulate gene transcription (Davey & Grossmann, 2016) (Lamont and Tindall, 2010). This is considered the canonical AR signaling pathway. The AR can also activate non-genomic signalling (Jin et al., 2013). However, this KER focuses on the canonical pathway.
The two main AR ligands are the androgens testosterone (T) and the more potent dihydrotestosterone (DHT). Androgens bind to the AR to mediate downstream androgenic responses, such as male development and masculinization (Rey, 2021; Walters et al., 2010). Antagonism of the AR would decrease AR activation and therefore the downstream AR-mediated effects.
Evidence Supporting this KER
Biological PlausibilityThe biological plausibility for this KER is considered high.
The AR belongs to the steroid hormone nuclear receptor family. The AR has 3 main domains essential for its activity, the N-terminal domain, the ligand binding domain, and the DNA binding domain (Roy et al., 2001). Ligands, such as T and DHT, must bind to the ligand binding domain to activate AR allowing it to fulfill its role as a transcription factor. The binding of the ligand induces a change in AR conformation allowing it to translocate to the nucleus and congregate into a subnuclear compartment (Marcelli et al., 2006; Roy et al., 2001) homodimerize and bind to the DNA target sequences and regulate transcription of target genes. Regulation of AR target genes is greatly facilitated by numerous co-factors. Active AR signaling is essential for male reproduction and sexual development and is also crucial in several other tissues and organs such as ovaries, the immune system, bones, and muscles (Ogino et al., 2011; Prizant et al., 2014; Rey, 2021; William H. Walker, 2021).
AR antagonists can compete with or prevent in different ways AR ligand binding, thereby preventing AR activation. Antagonism of the AR can prevent translocation to the nucleus, compartmentalization, dimerization and DNA binding. Consequently, AR cannot regulate transcription of target genes and androgen signalling is disrupted. This can be observed using different AR activation assays such as AR dimerization, translocation, DNA binding or transcriptional activity assays (Brown et al., 2023; OECD, 2020).
Empirical EvidenceThe empirical evidence for this KER is considered high
The effects of AR antagonism have been shown in many studies in vivo and in vitro.
Several stressors can act as antagonists of the AR and lead to decreased AR activation. Some of these are detailed in an AOP key event relationship report by (Pedersen et al., 2022) and shown below, exhibiting evidence of dose-concordance:
Stressors
- Cyproterone acetate: Using the AR-CALUX reporter assay in antagonism mode, cyproterone acetate showed an IC50 of 7.1 nM (Sonneveld, 2005)
- Epoxiconazole: Using transiently AR-transfected CHO cells, epoxiconazole showed a LOEC of 1.6 µM and an IC50 of 10 µM (Kjærstad et al., 2010).
- Flutamide: Using the AR-CALUX reporter assay in antagonism mode, flutamide showed an IC50 of 1.3 µM (Sonneveld, 2005).
- Flusilazole: Using hAR-EcoScreen Assay, triticonazole showed a LOEC for antagonisms of 0.8 µM and an IC50 of 2.8 (±0.1) µM (Draskau et al., 2019).
- Prochloraz: Using transiently AR-transfected CHO cells, prochloraz showed a LOEC of 6.3 µM and an IC50 of 13 µM (Kjærstad et al., 2010).
- Propiconazole: Using transiently AR-transfected CHO cells, propiconazole showed a LOEC of 12.5 µM and an IC50 of 18 µM (Kjærstad et al., 2010).
- Tebuconazole: Using transiently AR-transfected CHO cells, tebuconazole showed a LOEC of 3.1 µM and an IC50 of 8.1 µM (Kjærstad et al., 2010).
- Triticonazole: Using hAR-EcoScreen Assay, triticonazole showed a LOEC for antagonisms of 0.2 µM and an IC50 of 0.3 (±0.01) µM (Draskau et al., 2019).
- Vinclozolin: Using the AR-CALUX reporter assay in antagonism mode, vinclozolin showed an IC50of 1.0 µM(Sonneveld, 2005).”(Pedersen et al., 2022)
Other evidence:
Known AR antagonists are used for treatment of AR-sensitive cancers such as flutamide for prostate cancer (Mahler et al., 1998).
Quantitative Understanding of the Linkage
Response-response relationshipThe quantitative relationship between AR antagonism and AR activation will depend on the type of antagonist.
Time-scaleNuclear translocation in HeLa cells transfected with AR-GFP show a response within 2 hours after ligand exposure (Marcelli et al., 2006; Szafran et al., 2008). Another assay focusing on AR binding to promoters in LNCaP cells has shown that after ligand binding, AR is able to translocate and bind to the DNA sequences within 15min showing the speed of AR activation (Kang et al., 2002).
Known Feedforward/Feedback loops influencing this KERAR antagonism can lead to increased AR transcript stability and levels as a compensatory mechanism in prostate cancer cells (Dart et al., 2020). In turn, in presence of increased AR levels, AR antagonists can exhibit agonistic activity (Chen et al., 2003).
References
Brown, E. C., Hallinger, D. R., Simmons, S. O., Puig-Castellví, F., Eilebrecht, E., Arnold, L., & Bioscience, P. A. (2023). High-throughput AR dimerization assay identifies androgen disrupting chemicals and metabolites. Front. Toxicol, 5, 1134783. https://doi.org/10.3389/ftox.2023.1134783
Chen, C. D., Welsbie, D. S., Tran, C., Baek, S. H., Chen, R., Vessella, R., Rosenfeld, M. G., & Sawyers, C. L. (2003). A R T I C L E S Molecular determinants of resistance to antiandrogen therapy. NATURE MEDICINE, 10(1). https://doi.org/10.1038/nm972
Dart, D. A., Ashelford, K., & Jiang, W. G. (2020). AR mRNA stability is increased with AR-antagonist resistance via 3′UTR variants. https://doi.org/10.1530/EC-19-0340
Davey, R. A., & Grossmann, M. (2016). Androgen Receptor Structure, Function and Biology: From Bench to Bedside. In Androgen Receptor Biology Clin Biochem Rev (Vol. 37, Issue 1).
Draskau, M. K., Boberg, J., Taxvig, C., Pedersen, M., Frandsen, H. L., Christiansen, S., & Svingen, T. (2019). In vitro and in vivo endocrine disrupting effects of the azole fungicides triticonazole and flusilazole. Environmental Pollution, 255, 113309. https://doi.org/10.1016/j.envpol.2019.113309
Jin, H. J., Kim, J., & Yu, J. (2013). Androgen receptor genomic regulation. In Translational Andrology and Urology (Vol. 2, Issue 3, pp. 158–177). AME Publishing Company. https://doi.org/10.3978/j.issn.2223-4683.2013.09.01
Kang, Z., Pirskanen, A., Jänne, O. A., & Palvimo, J. J. (2002). Involvement of Proteasome in the Dynamic Assembly of the Androgen Receptor Transcription Complex. Journal of Biological Chemistry, 277(50), 48366–48371. https://doi.org/10.1074/jbc.M209074200
Kjærstad, M. B., Taxvig, C., Nellemann, C., Vinggaard, A. M., & Andersen, H. R. (2010). Endocrine disrupting effects in vitro of conazole antifungals used as pesticides and pharmaceuticals. Reproductive Toxicology, 30(4), 573–582. https://doi.org/10.1016/j.reprotox.2010.07.009
Lamont, K. R., and Tindall, D. J. (2010). Androgen Regulation of Gene Expression. Adv. Cancer Res. 107, 137–162. doi:10.1016/S0065-230X(10)07005-3.
Mahler, C., Verhelst, J., and Denis, L. (1998). Clinical pharmacokinetics of the antiandrogens and their efficacy in prostate cancer. Clin. Pharmacokinet. 34, 405–417. doi:10.2165/00003088-199834050-00005/METRICS.
Marcelli, M., Stenoien, D. L., Szafran, A. T., Simeoni, S., Agoulnik, I. U., Weigel, N. L., Moran, T., Mikic, I., Price, J. H., & Mancini, M. A. (2006). Quantifying effects of ligands on androgen receptor nuclear translocation, intranuclear dynamics, and solubility. Journal of Cellular Biochemistry, 98(4), 770–788. https://doi.org/10.1002/jcb.20593
OECD (2020). Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals. OECD Guide. Paris: OECD Publishing doi:10.1787/9789264264366-en.
Ogino, Y., Miyagawa, S., Katoh, H., Prins, G. S., Iguchi, T., & Yamada, G. (2011). Essential functions of androgen signaling emerged through the developmental analysis of vertebrate sex characteristics. Evolution & Development, 13(3), 315–325. https://doi.org/10.1111/j.1525-142X.2011.00482.x
Pedersen, E. B., Christiansen, S., & Svingen, T. (2022). AOP key event relationship report: Linking androgen receptor antagonism with nipple retention. Current Research in Toxicology, 3, 100085. https://doi.org/10.1016/j.crtox.2022.100085
Prizant, H., Gleicher, N., & Sen, A. (2014). Androgen actions in the ovary: balance is key. Journal of Endocrinology, 222(3), R141–R151. https://doi.org/10.1530/JOE-14-0296
Rey, R. A. (2021). The Role of Androgen Signaling in Male Sexual Development at Puberty. Endocrinology, 162(2). https://doi.org/10.1210/endocr/bqaa215
Roy, A. K., Tyagi, R. K., Song, C. S., Lavrovsky, Y., Ahn, S. C., Oh, T. S., & Chatterjee, B. (2001). Androgen receptor: Structural domains and functional dynamics after ligand-receptor interaction. Annals of the New York Academy of Sciences, 949, 44–57. https://doi.org/10.1111/j.1749-6632.2001.tb04001.x
Sonneveld, E. (2005). Development of Androgen- and Estrogen-Responsive Bioassays, Members of a Panel of Human Cell Line-Based Highly Selective Steroid-Responsive Bioassays. Toxicological Sciences, 83(1), 136–148. https://doi.org/10.1093/toxsci/kfi005
Szafran, A. T., Szwarc, M., Marcelli, M., & Mancini, M. A. (2008). Androgen Receptor Functional Analyses by High Throughput Imaging: Determination of Ligand, Cell Cycle, and Mutation-Specific Effects. PLoS ONE, 3(11), e3605. https://doi.org/10.1371/journal.pone.0003605
Walters, K. A., Simanainen, U., & Handelsman, D. J. (2010). Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. In Human Reproduction Update (Vol. 16, Issue 5, pp. 543–558). Hum Reprod Update. https://doi.org/10.1093/humupd/dmq003
William H. Walker. (2021). Androgen Actions in the Testis and the Regulation of Spermatogenesis. In Advances in Experimental Medicine and Biology: Vol. volume 1381 (pp. 175–203).
Relationship: 2124: Decrease, AR activation leads to Altered, Transcription of genes by the AR
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Androgen receptor (AR) antagonism leading to nipple retention (NR) in male (mammalian) offspring | adjacent | Moderate | Moderate |
| Androgen receptor (AR) antagonism leading to decreased fertility in females | adjacent | ||
| 5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) offspring | adjacent | High | |
| Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male (mammalian) offspring | adjacent | Moderate | |
| Decreased testosterone synthesis leading to short anogenital distance (AGD) in male (mammalian) offspring | adjacent | Moderate | Low |
Evidence Supporting Applicability of this Relationship
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| mammals | mammals | High | NCBI |
| Life Stage | Evidence |
|---|---|
| During development and at adulthood | High |
| Sex | Evidence |
|---|---|
| Mixed | High |
This KER is applicable for both sexes, across developmental stages into adulthood, in numerous cells and tissues and across mammalian taxa. It is, however, acknowledged that this KER most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.
Key Event Relationship Description
The androgen receptor (AR) is a ligand-dependent nuclear transcription factor that upon activation translocates to the nucleus, dimerizes, and binds androgen response elements (AREs) to modulate transcription of target genes (Lamont and Tindall, 2010, Roy et al. 2001). Decreased activation of the AR affects its transcription factor activity, therefore leading to altered AR-target gene expression. This KER refers to decreased AR activation and altered gene expression occurring in complex systems, such as in vivo and the specific effect on transcription of AR target genes will depend on species, life stage, tissue, cell type etc.
Evidence Supporting this KER
Biological PlausibilityThe biological plausibility for this KER is considered high
The AR is a ligand-activated transcription factor part of the steroid hormone nuclear receptor family. Non-activated AR is found in the cytoplasm as a multiprotein complex with heat-shock proteins, immunophilins and, other chaperones (Roy et al. 2001). Upon activation through ligand binding, the AR dissociates from the protein complex, translocates to the nucleus and homodimerizes. Facilitated by co-regulators, AR can bind to DNA regions containing AREs and initiate transcription of target genes, that thus will be different in e.g. different tissues, life-stages, species etc.
Through mapping of AREs and ChIP sequencing studies, several AR target genes have been identified, mainly studied in prostate cells (Jin, Kim, and Yu 2013). Different co-regulators and ligands lead to altered expression of different sets of genes (Jin et al. 2013; Kanno et al. 2022). Alternative splicing of the AR can lead to different AR variants that also affects which genes are transcribed (Jin et al. 2013).
Apart from this canonical signaling pathway, the AR can suppress gene expression, indirectly regulate miRNA transcription, and have non-genomic effects by rapid activation of second messenger pathways in either presence or absence of a ligand (Jin et al. 2013).
Empirical EvidenceThe empirical evidence for this KER is considered high
In humans, altered gene expression profiling in individuals with androgen insensitivity syndrome (AIS) can provide supporting empirical evidence (Holterhus et al. 2003; Peng et al. 2021). In rodent AR knockout (KO) models, gene expression profiling studies and gene-targeted approaches have provided information on differentially expressed genes in several organ systems including male and female reproductive, endocrine, muscular, cardiovascular and nervous systems (Denolet et al. 2006; Fan et al. 2005; Holterhus et al. 2003; Ikeda et al. 2005; Karlsson et al. 2016; MacLean et al. 2008; Rana et al. 2011; Russell et al. 2012; Shiina et al. 2006; Wang et al. 2006; Welsh et al. 2012; Willems et al. 2010; Yu et al. 2008, 2012; Zhang et al. 2006; Zhou et al. 2011).
Exposure to known antiandrogens has been shown to alter transcriptional profiles, for example of neonatal pig ovaries (Knapczyk-Stwora et al. 2019).
Dose concordance has also been observed for instance in zebrafish embryos; a dose of 50 µg/L of the AR antagonist flutamide resulted in 674 differentially expressed genes at 96 h post fertilization whereas 500 µg/L flutamide resulted in 2871 differentially expressed genes (Ayobahan et al., 2023).
Uncertainties and InconsistenciesAR action has been reported to occur also without ligand binding. However, not much is known about the extent and biological implications of such non-canonical, ligand-independent AR activation (Bennesch and Picard 2015).
Quantitative Understanding of the Linkage
Response-response relationshipThere is not enough data to define a quantitative relationship between AR activation and alteration of AR target gene transcription, and such a relationship will differ between biological systems (species, tissue, cell type, life stage etc).
Time-scaleAR and promoter interactions occur within 15 minutes of ligand binding, RNA polymerase II and coactivator recruitment are proposed to occur transiently with cycles of approximately 90 minutes in LNCaP cells (Kang et al. 2002). RNA polymerase II elongation rates in mammalian cells have been shown to range between 1.3 and 4.3 kb/min (Maiuri et al. 2011). Therefore, depending on the cell type and the half-life of the AR target gene transcripts, changes are to be expected within hours.
Known modulating factors| Modulating Factor (MF) | MF Specification | Effect(s) on the KER | Reference(s) |
|---|---|---|---|
| Age | AR expression in aging male rats | Tissue-specific alterations in AR activity with aging | (Supakar et al. 1993; Wu, Lin, and Gore 2009) |
| Genotype | Number of CAG repeats in the first exon of AR | Decreased AR activation with increased number of CAGs |
(Tut et al. 1997; Chamberlain et al. 1994) |
AR has been hypothesized to auto-regulate its mRNA and protein levels (Mora and Mahesh 1999).
References
Ayobahan, S. U., Alvincz, J., Reinwald, H., Strompen, J., Salinas, G., Schäfers, C., et al. (2023). Comprehensive identification of gene expression fingerprints and biomarkers of sexual endocrine disruption in zebrafish embryo. Ecotoxicol. Environ. Saf. 250, 114514. doi:10.1016/J.ECOENV.2023.114514.
Bennesch, Marcela A., and Didier Picard. 2015. “Minireview: Tipping the Balance: Ligand-Independent Activation of Steroid Receptors.” Molecular Endocrinology 29(3):349–63.
Chamberlain, Nancy L., Erika D. Driverand, and Roger L. Miesfeldi. 1994. The Length and Location of CAG Trinucleotide Repeats in the Androgen Receptor N-Terminal Domain Affect Transactivation Function. Vol. 22.
Denolet, Evi, Karel De Gendt, Joke Allemeersch, Kristof Engelen, Kathleen Marchal, Paul Van Hummelen, Karen A. L. Tan, Richard M. Sharpe, Philippa T. K. Saunders, Johannes V. Swinnen, and Guido Verhoeven. 2006. “The Effect of a Sertoli Cell-Selective Knockout of the Androgen Receptor on Testicular Gene Expression in Prepubertal Mice.” Molecular Endocrinology 20(2):321–34. doi: 10.1210/me.2005-0113.
Fan, Wuqiang, Toshihiko Yanase, Masatoshi Nomura, Taijiro Okabe, Kiminobu Goto, Takashi Sato, Hirotaka Kawano, Shigeaki Kato, and Hajime Nawata. 2005. Androgen Receptor Null Male Mice Develop Late-Onset Obesity Caused by Decreased Energy Expenditure and Lipolytic Activity but Show Normal Insulin Sensitivity With High Adiponectin Secretion. Vol. 54.
Holterhus, Paul-Martin, Olaf Hiort, Janos Demeter, Patrick O. Brown, and James D. Brooks. 2003. Differential Gene-Expression Patterns in Genital Fibroblasts of Normal Males and 46,XY Females with Androgen Insensitivity Syndrome: Evidence for Early Programming Involving the Androgen Receptor. Vol. 4.
Ikeda, Yasumasa, Ken Ichi Aihara, Takashi Sato, Masashi Akaike, Masanori Yoshizumi, Yuki Suzaki, Yuki Izawa, Mitsunori Fujimura, Shunji Hashizume, Midori Kato, Shusuke Yagi, Toshiaki Tamaki, Hirotaka Kawano, Takahiro Matsumoto, Hiroyuki Azuma, Shigeaki Kato, and Toshio Matsumoto. 2005. “Androgen Receptor Gene Knockout Male Mice Exhibit Impaired Cardiac Growth and Exacerbation of Angiotensin II-Induced Cardiac Fibrosis.” Journal of Biological Chemistry 280(33):29661–66. doi: 10.1074/jbc.M411694200.
Jin, Hong Jian, Jung Kim, and Jindan Yu. 2013. “Androgen Receptor Genomic Regulation.” Translational Andrology and Urology 2(3):158–77.
Kang, Zhigang, Asta Pirskanen, Olli A. Jänne, and Jorma J. Palvimo. 2002. “Involvement of Proteasome in the Dynamic Assembly of the Androgen Receptor Transcription Complex.” Journal of Biological Chemistry 277(50):48366–71. doi: 10.1074/jbc.M209074200.
Kanno, Yuichiro, Nao Saito, Ryota Saito, Tomohiro Kosuge, Ryota Shizu, Tomofumi Yatsu, Takuomi Hosaka, Kiyomitsu Nemoto, Keisuke Kato, and Kouichi Yoshinari. 2022. “Differential DNA-Binding and Cofactor Recruitment Are Possible Determinants of the Synthetic Steroid YK11-Dependent Gene Expression by Androgen Receptor in Breast Cancer MDA-MB 453 Cells.” Experimental Cell Research 419(2). doi: 10.1016/j.yexcr.2022.113333.
Karlsson, Sara A., Erik Studer, Petronella Kettunen, and Lars Westberg. 2016. “Neural Androgen Receptors Modulate Gene Expression and Social Recognition but Not Social Investigation.” Frontiers in Behavioral Neuroscience 10(MAR). doi: 10.3389/fnbeh.2016.00041.
Knapczyk-Stwora, Katarzyna, Anna Nynca, Renata E. Ciereszko, Lukasz Paukszto, Jan P. Jastrzebski, Elzbieta Czaja, Patrycja Witek, Marek Koziorowski, and Maria Slomczynska. 2019. “Flutamide-Induced Alterations in Transcriptional Profiling of Neonatal Porcine Ovaries.” Journal of Animal Science and Biotechnology 10(1):1–15. doi: 10.1186/s40104-019-0340-y.
Lamont, K. R., and Tindall, D. J. (2010). Androgen Regulation of Gene Expression. Adv. Cancer Res. 107, 137–162. doi:10.1016/S0065-230X(10)07005-3.
MacLean, Helen E., W. S. Maria Chiu, Amanda J. Notini, Anna-Maree Axell, Rachel A. Davey, Julie F. McManus, Cathy Ma, David R. Plant, Gordon S. Lynch, and Jeffrey D. Zajac. 2008. “ Impaired Skeletal Muscle Development and Function in Male, but Not Female, Genomic Androgen Receptor Knockout Mice .” The FASEB Journal 22(8):2676–89. doi: 10.1096/fj.08-105726.
Maiuri, Paolo, Anna Knezevich, Alex De Marco, Davide Mazza, Anna Kula, Jim G. McNally, and Alessandro Marcello. 2011. “Fast Transcription Rates of RNA Polymerase II in Human Cells.” EMBO Reports 12(12):1280–85. doi: 10.1038/embor.2011.196.
Mora, Gloria R., and Virendra B. Mahesh. 1999. Autoregulation of the Androgen Receptor at the Translational Level: Testosterone Induces Accumulation of Androgen Receptor MRNA in the Rat Ventral Prostate Polyribosomes.
Peng, Yajie, Hui Zhu, Bing Han, Yue Xu, Xuemeng Liu, Huaidong Song, and Jie Qiao. 2021. “Identification of Potential Genes in Pathogenesis and Diagnostic Value Analysis of Partial Androgen Insensitivity Syndrome Using Bioinformatics Analysis.” Frontiers in Endocrinology 12. doi: 10.3389/fendo.2021.731107.
Rana, Kesha, Barbara C. Fam, Michele V Clarke, Tammy P. S. Pang, Jeffrey D. Zajac, and Helen E. Maclean. 2011. “Increased Adiposity in DNA Binding-Dependent Androgen Receptor Knockout Male Mice Associated with Decreased Voluntary Activity and Not Insulin Resistance.” Am J Physiol Endocrinol Me-Tab 301:767–78. doi: 10.1152/ajpendo.00584.2010.-In.
Roy, Arun K., Rakesh K. Tyagi, Chung S. Song, Yan Lavrovsky, Soon C. Ahn, Tae Sung Oh, and Bandana Chatterjee. 2001. “Androgen Receptor: Structural Domains and Functional Dynamics after Ligand-Receptor Interaction.” Pp. 44–57 in Annals of the New York Academy of Sciences. Vol. 949. New York Academy of Sciences.
Russell, Patricia K., Michele V. Clarke, Jarrod P. Skinner, Tammy P. S. Pang, Jeffrey D. Zajac, and Rachel A. Davey. 2012. “Identification of Gene Pathways Altered by Deletion of the Androgen Receptor Specifically in Mineralizing Osteoblasts and Osteocytes in Mice.” Journal of Molecular Endocrinology 49(1):1–10. doi: 10.1530/JME-12-0014.
Shiina, Hiroko, Takahiro Matsumoto, Takashi Sato, Katsuhide Igarashi, Junko Miyamoto, Sayuri Takemasa, Matomo Sakari, Ichiro Takada, Takashi Nakamura, Daniel Metzger, Pierre Chambon, Jun Kanno, Hiroyuki Yoshikawa, and Shigeaki Kato. 2006. Premature Ovarian Failure in Androgen Receptor-Deficient Mice. Vol. 103.
Supakar, P. C., C. S. Song, M. H. Jung, M. A. Slomczynska, J. M. Kim, R. L. Vellanoweth, B. Chatterjee, and A. K. Roy. 1993. “A Novel Regulatory Element Associated with Age-Dependent Expression of the Rat Androgen Receptor Gene.” Journal of Biological Chemistry 268(35):26400–408. doi: 10.1016/s0021-9258(19)74328-2.
Tut, Thein G., Farid J. Ghadessy, M. A. Trifiro, L. Pinsky, and E. L. Yong. 1997. Long Polyglutamine Tracts in the Androgen Receptor Are Associated with Reduced Trans-Activation, Impaired Sperm Production, and Male Infertility*. Vol. 82.
Wang, Ruey Sheng, Shuyuan Yeh, Lu Min Chen, Hung Yun Lin, Caixia Zhang, Jing Ni, Cheng Chia Wu, P. Anthony Di Sant’Agnese, Karen L. DeMesy-Bentley, Chii Ruey Tzeng, and Chawnshang Chang. 2006. “Androgen Receptor in Sertoli Cell Is Essential for Germ Cell Nursery and Junctional Complex Formation in Mouse Testes.” Endocrinology 147(12):5624–33. doi: 10.1210/en.2006-0138.
Welsh, M., L. Moffat, K. Belling, L. R. de França, T. M. Segatelli, P. T. K. Saunders, R. M. Sharpe, and L. B. Smith. 2012. “Androgen Receptor Signalling in Peritubular Myoid Cells Is Essential for Normal Differentiation and Function of Adult Leydig Cells.” International Journal of Andrology 35(1):25–40. doi: 10.1111/j.1365-2605.2011.01150.x.
Willems, Ariane, Sergio R. Batlouni, Arantza Esnal, Johannes V. Swinnen, Philippa T. K. Saunders, Richard M. Sharpe, Luiz R. França, Karel de Gendt, and Guido Verhoeven. 2010. “Selective Ablation of the Androgen Receptor in Mouse Sertoli Cells Affects Sertoli Cell Maturation, Barrier Formation and Cytoskeletal Development.” PLoS ONE 5(11). doi: 10.1371/journal.pone.0014168.
Wu, D. I., Grace Lin, and Andrea C. Gore. 2009. “Age-Related Changes in Hypothalamic Androgen Receptor and Estrogen Receptor in Male Rats.” The Journal of Comparative Neurology 512:688–701. doi: 10.1002/cne.21925.
Yu, I. Chen, Hung Yun Lin, Ning Chun Liu, Ruey Shen Wang, Janet D. Sparks, Shuyuan Yeh, and Chawnshang Chang. 2008. “Hyperleptinemia without Obesity in Male Mice Lacking Androgen Receptor in Adipose Tissue.” Endocrinology 149(5):2361–68. doi: 10.1210/en.2007-0516.
Yu, Shengqiang, Chiuan Ren Yeh, Yuanjie Niu, Hong Chiang Chang, Yu Chieh Tsai, Harold L. Moses, Chih Rong Shyr, Chawnshang Chang, and Shuyuan Yeh. 2012. “Altered Prostate Epithelial Development in Mice Lacking the Androgen Receptor in Stromal Fibroblasts.” Prostate 72(4):437–49. doi: 10.1002/pros.21445.
Zhang, Caixia, Shuyuan Yeh, Yen-Ta Chen, Cheng-Chia Wu, Kuang-Hsiang Chuang, Hung-Yun Lin, Ruey-Sheng Wang, Yu-Jia Chang, Chamindrani Mendis-Handagama, Liquan Hu, Henry Lardy, Chawnshang Chang, and † † George. 2006. Oligozoospermia with Normal Fertility in Male Mice Lacking the Androgen Receptor in Testis Peritubular Myoid Cells.
Zhou, Wei, Gensheng Wang, Christopher L. Small, Zhilin Liu, Connie C. Weng, Lizhong Yang, Michael D. Griswold, and Marvin L. Meistrich. 2011. “Erratum: Gene Expression Alterations by Conditional Knockout of Androgen Receptor in Adult Sertoli Cells of Utp14bjsd/Jsd (Jsd) Mice (Biology of Reproduction (2010) 83, (759-766) DOI: 10.1095/Biolreprod.110.085472).” Biology of Reproduction 84(2):400–408.
Relationship: 2273: Altered, Transcription of genes by the AR leads to Reduced granulosa cell proliferation
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Androgen receptor (AR) antagonism leading to decreased fertility in females | adjacent | Moderate | Low |
Evidence Supporting Applicability of this Relationship
| Life Stage | Evidence |
|---|---|
| During development and at adulthood | High |
| Sex | Evidence |
|---|---|
| Female | High |
Key Event Relationship Description
Decreased transcription of genes that are downstream of AR activation leads to reduced granulosa cell proliferation of the early-stage gonadotropin-independent ovarian follicles. Therefore, the follicle growth to the antral stage is decreased.
Evidence Supporting this KER
Biological PlausibilityAR is a ligand-activated nuclear transcription factor expressed in the ovaries across mammalian species, including humans(Gervásio et al., 2014). During the gonadotropin independent follicular stage, AR activation is hypothesized to promote follicle growth, whereas in later stages it has been shown to inhibit growth and induce apoptosis(Franks and Hardy, 2018; Harlow et al., 1988). In humans, both mRNA and protein of AR are present in the oocyte, stroma cells, theca cells, but most prominently in granulosa cells of small antral follicles(Gervásio et al., 2014; Jeppesen et al., 2012).
In the mouse ovary, AR mRNA and protein are present in the oocyte, theca, and granulosa cells(Gill et al., 2004; Hirai et al., 1994; Szoltys and Slomczynska, 2000; Tetsuka and Hillier, 1996; Tetsuka et al., 1995). In the cow and sheep ovary, AR mRNA is present in granulosa and theca cells, and most prominently in granulosa of antral and early antral follicles(Hampton et al., 2004; Juengel et al., 2006). In the pig ovary, AR mRNA is mainly expressed in the granulosa cells until the antral stage(Cárdenas and Pope, 2002; Slomczynska et al., 2001). In the monkey ovary, AR mRNA and protein are present in theca, but mainly granulosa cells of antral and early antral follicles(Hillier et al., 1997; Weil et al., 1998).
In human follicles, the expression of the AR transcript is observed after the primordial stage and is most pronounced during the small antral stage(Rice et al., 2007). Throughout early folliculogenesis, AR expression controls transcription of genes involved in promoting growth and differentiation of granulosa cells and formation of antrum(Gervásio et al., 2014). Genes under the control of AR that are involved in these processes include Kit ligand (KITL), Bone morphogenetic protein 15 (BMP15), and Hepatocyte growth factor (HGF)(Astapova et al., 2019; Prizant et al., 2014).
In the monkey ovary, high levels of AR mRNA correlates with high levels of granulosa cell proliferation(Vendola et al., 1998; Weil et al., 1998) Increased AR activation is associated with increased follicle growth and increased granulosa cell proliferation in small antral rat follicles, supporting the important role for AR during this developmental stage(Lim et al., 2017a).
AR may mediate early follicle growth through FSHR, supported by studies correlating mRNA levels of AR and FSHR in granulosa cells of small antral follicles(Nielsen et al., 2011,,Weil et al., 1999). In mice, FSH-mediated in vitro follicle growth is increased by androgens, suggesting that androgens through AR may act synergistically with FSHR, which in turn increases follicle growth to antral follicles(Sen et al., 2014).
It is also hypothesized that FSHR activation through AR leads to increased AMH expression in granulosa cells of primary to small antral follicles(Lin et al., 2021). In turn, elevated levels of AMH lead to inhibition of FSH-induced aromatase activity, resulting in higher androgen levels that inhibit further follicular growth.
AR activation has been associated with Insulin-like Growth Factor 1 (IGF1) and Insulin-like Growth Factor 1 Receptor (IGFR1) and other key factors of the IGF signaling pathway, which is essential for granulosa growth and differentiation(Baumgarten et al., 2014),(Vendola et al., 1999). In human granulosa cells of primordial and primary follicles, AR and IGF-related factors are highly enriched at the transcriptional level(Steffensen et al., 2018).
AR activation affects the level of connexins, proteins that form gap junctions between granulosa cells and the oocyte and hence regulate intracellular communication; a prerequisite for folliculogenesis(Kamal et al., 2020).
In humans, the importance of AR in follicular growth becomes evident with the beneficial effects of androgens in assisted reproductive technology outcomes(Bosdou et al., 2012; Casson et al., 2000; Fábregues et al., 2009; Kim et al., 2011, 2014; Nagels et al., 2015; Noventa et al., 2019; Petya Andreeva, Ivelina Oprova, Luboslava Valkova, Petya Chaveeva, Ivanka Dimova, 2020). Although the mechanism remains elusive, it has been suggested that androgen priming of women seeking fertility treatment promotes follicle growth resulting in an increase in the FSH-sensitive follicle pool(Hu et al., 2017). Gene expression studies in human small antral follicles reveal significant association of AR and FSHR levels, suggesting that the increase in follicle growth could be mediated through regulating AR transcription in granulosa cells(Hu et al., 2017; Nielsen et al., 2011). Epidemiological studies have shown that upon androgen pretreatment, increase in the number of antral follicles and mean follicular diameter were observed(Balasch et al., 2006; Kim et al., 2011). This increase supports the hypothesis that androgen receptor signaling is important for early follicle growth. Studies observing no effects upon androgen pre-treatment claim that dose and duration of the selected androgen might lead to contradicting results(Yeung et al., 2014).
Hypoandrogenism provides further evidence for an important role for androgen actions in human follicle development. Lower levels of DHEA or testosterone have been associated with women that have diminished ovarian reserve or premature ovarian aging(Gleicher et al., 2013). In the case of untreated primary adrenal insufficiency, the androgen deficient patient exhibit significantly reduced fertility(Erichsen et al., 2010).
Conclusions on the androgen significance can also be drawn from clinical evidence where women are exposed to an androgen excess. Hyperandrogenism in the case of congenital adrenal hyperplasia and exogenous androgen treatments in trans males lead to polycystic ovaries(Walters and Handelsman, 2018). This indicated that the androgens stimulate early follicle growth and inhibit further maturation(Walters and Handelsman, 2018). In polycystic ovarian syndrome, a syndrome characterized by accumulation of small antral follicles in the ovarian cortex, a plausible cause for this morphology is hyperandrogenaemia(Balen et al., 2003; Lebbe and Woodruff, 2013).
Empirical EvidenceAndrogen Receptor Knock Out (ARKO) mouse model
|
Granulosa-specific ARKO model |
Relevant observations |
Reference |
|
GCARKOEx2 |
Premature ovarian failure, subfertility, longer estrous cycles, slower in vitro follicle growth compared to wild type
|
(Sen & Hammes, 2010) |
|
GCARKOEx3 |
Subfertility, longer estrous cycles, decreased number of preantral and antral follicles compared to wild type, trend of lower ovarian expression of kitl, ifgr1 and fshr compared to wild type (not statistically significant)
|
(Kirsty A. Walters et al., 2012) |
In vitro/Ex vivo
|
Study type |
Species |
Compound |
Effect Dose |
Duration |
Method |
Result |
Reference |
|
Isolated secondary follicles in culture
|
Mouse |
Hydroxyflutamide, Bicalutamide |
50μΜ |
8d, 12d |
Follicle diameter measured |
Reduced follicular growth |
(Lenie & Smitz, 2009) |
|
Isolated late secondary follicles in culture |
Mouse |
Bicalutamide |
10μΜ, 32μΜ |
6d |
Follicle diameter measured |
Reduced follicular growth (dose-depended)
|
(Murray, Gosden, Allison, & Spears, 1998) |
|
Isolated secondary follicles in culture |
Mouse |
Hydroxyflutamide |
1μΜ, 10μΜ |
4d |
Follicle diameter measured |
Reduced androgen-induced follicular growth
|
(Wang et al., 2001) |
|
Isolated secondary follicles in culture |
Mouse |
Flutamide |
20μΜ |
2d, 3d |
Follicle diameter and area measured |
Reduced androgen –induced follicular growth
|
(Laird et al., 2017) |
|
Isolated secondary follicles in culture |
Mouse |
Enzalutamide |
1μΜ |
2d, 4d, 6d |
Follicle diameter measured and number of antral follicles counted
|
Reduced follicular growth and antrum formation |
(Lebbe et al., 2017) |
|
Fetal ovaries in culture |
Mouse |
Vinclozolin |
10μΜ, 50μΜ, 100μΜ, 200μΜ |
7d of 17d |
Follicle diameter measured |
Reduced follicular growth |
(González-Sanz, Barreñada, Rial, Brieño-Enriquez, & del Mazo, 2020)
|
|
Isolated late secondary follicles in culture |
Rat |
Flutamide |
10μΜ |
2d, 4d |
Follicle diameter measured and expressed as follicular volume |
Reduced GDF9 and INSL3 induced follicular growth
|
(Xue, Kim, Liu, & Tsang, 2014) |
|
Isolated late secondary follicles in culture |
Rat |
Flutamide |
10μΜ |
2d, 4d |
Follicle diameter measured and expressed as follicular volume
|
Reduced NR4A1-induced follicular growth |
(Xue, Liu, Murphy, & Tsang, 2012) |
|
Isolated late secondary follicles in culture |
Rat |
Flutamide |
10μΜ |
4d |
Follicle diameter measured and expressed as follicular volume
|
Reduced GDF9-induced follicle growth |
(Orisaka, Jiang, Orisaka, Kotsuji, & Tsang, 2009) |
|
Ovarian cortex pieces in culture |
Cow |
Flutamide |
0.1μΜ, 1μΜ, 10μΜ |
10d |
Follicle counting and classification (histology) |
Reduced number of secondary follicles compared to testosterone group (dose-dependent)
|
(Yang & Fortune, 2006) |
|
Isolated granulosa cells from antral follicles |
Pig |
Hydroxyflutamide |
5μΜ |
1d |
Incorporation of [3H]-thymidine |
Reduced granulosa cell proliferation |
(T. E. Hickey, Marrocco, Gilchrist, Norman, & Armstrong, 2004)
|
|
Isolated mural granulosa cells from small antral follicles
|
Pig |
Hydroxyflutamide |
0.1μΜ, 1μΜ |
1h of 24h |
Incorporation of [3H]-thymidine |
Reduced granulosa cell proliferation |
(T. E. Hickey et al., 2005) |
|
Ovarian cortex pieces in culture |
Pig |
Cyproterone acetate |
0.001 μΜ, 0.0001 μΜ |
7d |
Follicle counting and classification (histology) |
Reduced primordial follicle activation
|
(Magamage, Zengyo, Moniruzzaman, & Miyano, 2011) |
In vivo
|
Study type |
Species |
Compound |
Dose |
Duration |
Method |
Result |
Reference |
|
Fetal exposure |
Pig |
Flutamide |
50 mg/kg body weight/day |
7d |
Follicle counting and classification (histology) |
Reduced numbers of primary follicles and increased of primordial |
(Knapczyk-Stwora, Grzesiak, Duda, Koziorowski, & Slomczynska, 2013)
|
|
Neonatal exposure |
Pig |
Flutamide |
50 mg/kg body weight/day |
10d |
Immunohistochemistry (PCNA) |
Reduced number of follicles with proliferating granulosa cells
|
(Knapczyk-Stwora et al., 2018) |
|
Neonatal exposure |
Pig |
Flutamide |
50 mg/kg body weight/day |
10d |
RNAseq of whole ovary |
Altered expression of genes involved in cell proliferation
|
(Knapczyk-Stwora et al., 2019) |
|
Adult exposure |
Rat |
Flutamide |
One-time 100 pg |
48h after injection |
Follicle counting and classification (histology) |
Reduced number of all stages of follicles
|
(Kumari, Datta, Das, & Roy, 1978) |
Quality assessment of the studies was performed and can be found at: QA of Empirical Evidence
Uncertainties and Inconsistencies
Genomic and non-genomic effects are not distinguished in the studies included in the KER analysis. Hence, it cannot be concluded that all observations are solely due to directly perturbed transcription. However, since AR transcribes genes necessary for early folliculogenesis (KITLG, BMP15, HGF), it is reasonable to assume that genomic mechanisms are involved.
Other uncertainties to consider: different anti-androgenic compounds have different effects on the AR (e.g. different IC50, Cmax); compounds that are anti-androgenic may also affect other mechanisms/modalities; downstream effects of perturbed AR transcriptional function might depend on the duration of exposure as well as the developmental stage of the follicles. In humans, effects can be inconclusive since a part of the population can have androgen-related conditions such as polycystic ovary syndrome (PCOS)(Gleicher et al., 2011).
Quantitative Understanding of the Linkage
Response-response relationshipThe nature of the response-response relationship between decreased AR activation and reduced granulosa cell proliferation in the early stage of follicular development is not clear. Some of the aforementioned studies claim the effects were dose-dependent; however, the limited number of concentrations tested prevents a solid conclusion(Murray et al., 1998; Wang et al., 2001; Yang and Fortune, 2006). Therefore, at present, the quantitative understanding of this KER is rated ‘low’.
Time-scaleStudies included in establishing this KER exhibit observed changes in vitro at 24h in pig granulosa cells, and in vivo studies after 48h in rats(Hickey et al., 2004, 2005; Kumari et al., 1978). The conclusion that can presently be drawn is that the approximate timescale of the changes in KEdownstream relative to changes in KEupstream is less than 48h. However, the species differences between the time scales of folliculogenesis need to be taken into consideration in order for human extrapolations to be made.
Known modulating factorsThe E3 ubiquitin ligase protein Ring Finger Protein 6 (RNF6) regulates AR levels in granulosa cells through polyubiquitination and AR transcriptional activity for KITLG expression in small antral follicles(Lim et al., 2017b, 2017a).
Epidermal growth factor receptor (EGFR) may mediate the androgen-induced granulosa cell proliferation(Franks and Hardy, 2018).
Sixteen different mutations of the AR gene (Xq11.2-q12) that cause androgen insensitivity syndrome have been identified(Jiang et al., 2020).
The number of CAG repeats on the N-terminal domain of the AR has been associated with effects on fertility and ovarian reserve(Hickey et al., 2002; Lledo et al., 2014).
Known Feedforward/Feedback loops influencing this KERActivated AR can transcriptionally regulate its own expression through a negative feedback loop(Gelmann, 2002). However, in granulosa cells of monkey ovaries, AR was shown to have the opposite effect, thus creating an autocrine positive feedback(Weil et al., 1998). More studies are needed to understand when AR regulation of its own expression is positive or negative.
During the early stages of folliculogenesis, mainly from the secondary to the small antral stage, activated AR can induce FSH activities in granulosa cells and promote granulosa cell differentiation and follicle maturation, even though follicles are still not gonadotropin-dependent(Gleicher et al., 2011). These activities include changes in androgen metabolism due to altered expression of steroidogenic enzymes. Therefore, it has been suggested that androgens can bind to the AR to establish a loop between activated AR and FSH action(Gleicher et al., 2011; Lenie and Smitz, 2009).
A positive feedback loop connecting activated AR and AMH through FSHR is also hypothesized. Activated AR could lead to increased expression of AMH through FSHR activation, resulting in inhibition of FSH-induced aromatase, ultimately increasing levels of androgens and AR activation(Dewailly et al., 2016). Typically, elevated levels of androgens, for instance in transgender males and PCOS patients, correlate with increased levels of AMH, however, contradictory results exist connecting elevated androgen or FSH levels to reduced AMH(Caanen et al., 2015; Li et al., 2011).
There is also evidence of an intra-follicular feedback loop that regulates steroidogenesis during the secondary follicle stage, causing downregulation of androgen synthesis upon exogenous androgen exposure and upregulation upon androgen receptor antagonism(Lebbe et al., 2017).
As mentioned, genes involved in early folliculogenesis like KITLG and HGF are under the control of AR. Those two genes have been shown to create a positive feedback loop in mice, by increasing the expression levels of each other(Guglielmo et al., 2011).
References
Astapova, O., Minor, B.M.N., and Hammes, S.R. (2019). Physiological and Pathological Androgen Actions in the Ovary. Endocrinology 160, 1166–1174. https://doi.org/10.1210/en.2019-00101.
Balasch, J., Fábregues, F., Peñarrubia, J., Carmona, F., Casamitjana, R., Creus, M., Manau, D., Casals, G., and Vanrell, J.A. (2006). Pretreatment with transdermal testosterone may improve ovarian response to gonadotrophins in poor-responder IVF patients with normal basal concentrations of FSH. Human Reproduction 21, 1884–1893. https://doi.org/10.1093/humrep/del052.
Balen, A.H., Laven, J.S.E., Tan, S.L., and Dewailly, D. (2003). Ultrasound assessment of the polycystic ovary: International consensus definitions. Human Reproduction Update 9, 505–514. https://doi.org/10.1093/humupd/dmg044.
Baumgarten, S.C., Convissar, S.M., Fierro, M.A., Winston, N.J., Scoccia, B., and Stocco, C. (2014). IGF1R signaling is necessary for FSH-induced activation of AKT and differentiation of human cumulus granulosa cells. Journal of Clinical Endocrinology and Metabolism 99, 2995–3004. https://doi.org/10.1210/jc.2014-1139.
Bosdou, J.K., Venetis, C.A., Kolibianakis, E.M., Toulis, K.A., Goulis, D.G., Zepiridis, L., and Tarlatzis, B.C. (2012). The use of androgens or androgen-modulating agents in poor responders undergoing in vitro fertilization: A systematic review and meta-analysis. Human Reproduction Update 18, 127–145. https://doi.org/10.1093/humupd/dmr051.
Caanen, M.R., Soleman, R.S., Kuijper, E.A.M., Kreukels, B.P.C., De Roo, C., Tilleman, K., De Sutter, P., Van Trotsenburg, M.A.A., Broekmans, F.J., and Lambalk, C.B. (2015). Antimüllerian hormone levels decrease in female-to-male transsexuals using testosterone as cross-sex therapy. Fertility and Sterility 103, 1340–1345. https://doi.org/10.1016/J.FERTNSTERT.2015.02.003.
Cárdenas, H., and Pope, W.F. (2002). Androgen receptor and follicle-stimulating hormone receptor in the pig ovary during the follicular phase of the estrous cycle*. Molecular Reproduction and Development 62, 92–98. https://doi.org/10.1002/mrd.10060.
Casson, P.R., Lindsay, M.S., Pisarska, M.D., Carson, S.A., and Buster, J.E. (2000). Dehydroepiandrosterone supplementation augments ovarian stimulation in poor responders: A case series. Human Reproduction 15, 2129–2132. https://doi.org/10.1093/humrep/15.10.2129.
Dewailly, D., Robin, G., Peigne, M., Decanter, C., Pigny, P., and Catteau-Jonard, S. (2016). Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Human Reproduction Update 22, 709–724. https://doi.org/10.1093/HUMUPD/DMW027.
Erichsen, M.M., Husebye, E.S., Michelsen, T.M., Dahl, Alv.A., and Løvås, K. (2010). Sexuality and Fertility in Women with Addison’s Disease. The Journal of Clinical Endocrinology & Metabolism 95, 4354–4360. https://doi.org/10.1210/jc.2010-0445.
Fábregues, F., Peñarrubia, J., Creus, M., Manau, D., Casals, G., Carmona, F., and Balasch, J. (2009). Transdermal testosterone may improve ovarian response to gonadotrophins in low-responder IVF patients: A randomized, clinical trial. Human Reproduction 24, 349–359. https://doi.org/10.1093/humrep/den428.
Franks, S., and Hardy, K. (2018). Androgen action in the ovary. Frontiers in Endocrinology 9, 452. https://doi.org/10.3389/fendo.2018.00452.
Gelmann, E.P. (2002). Molecular biology of the androgen receptor. Journal of Clinical Oncology 20, 3001–3015. https://doi.org/10.1200/JCO.2002.10.018.
Gervásio, C.G., Bernuci, M.P., Silva-de-Sá, M.F., and Rosa-e-Silva, A.C.J. de S. (2014). The Role of Androgen Hormones in Early Follicular Development. ISRN Obstetrics and Gynecology 2014, 1–11. https://doi.org/10.1155/2014/818010.
Gill, A., Jamnongjit, M., and Hammes, S.R. (2004). Androgens promote maturation and signaling in mouse oocytes independent of transcription: a release of inhibition model for mammalian oocyte meiosis. Molecular Endocrinology 18, 97–104. .
Gleicher, N., Weghofer, A., and Barad, D.H. (2011). The role of androgens in follicle maturation and ovulation induction: friend or foe of infertility treatment? Reproductive Biology & Endocrinology 9, 116. https://doi.org/https://dx.doi.org/10.1186/1477-7827-9-116.
Gleicher, N., Kim, A., Weghofer, A., Kushnir, V.A., Shohat-Tal, A., Lazzaroni, E., Lee, H.J., and Barad, D.H. (2013). Hypoandrogenism in association with diminished functional ovarian reserve. Human Reproduction 28, 1084–1091. https://doi.org/https://dx.doi.org/10.1093/humrep/det033.
González-Sanz, S., Barreñada, O., Rial, E., Brieño-Enriquez, M.A., and del Mazo, J. (2020). The antiandrogenic vinclozolin induces differentiation delay of germ cells and changes in energy metabolism in 3D cultures of fetal ovaries. Scientific Reports 10, 1–13. https://doi.org/10.1038/s41598-020-75116-3.
Guglielmo, M.C., Ricci, G., Catizone, A., Barberi, M., Galdieri, M., Stefanini, M., and Canipari, R. (2011). The effect of hepatocyte growth factor on the initial stages of mouse follicle development. Journal of Cellular Physiology 226, 520–529. https://doi.org/10.1002/jcp.22361.
Hampton, J.H., Manikkam, M., Lubahn, D.B., Smith, M.F., and Garverick, H.A. (2004). Androgen receptor mRNA expression in the bovine ovary. Domestic Animal Endocrinology 27, 81–88. .
Harlow, C.R., Shaw, H.J., Hillier, S.G., and Hodges, J.K. (1988). Factors Influencing Follicle-Stimulating Hormone-Responsive Steroidogenesis in Marmoset Granulosa Cells: Effects of Androgens and the Stage of Follicular Maturity. Endocrinology 122, 2780–2787. https://doi.org/10.1210/ENDO-122-6-2780.
Hickey, T., Chandy, A., and Norman, R.J. (2002). The androgen receptor CAG repeat polymorphism and X-chromosome inactivation in Australian Caucasian women with infertility related to polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 87, 161–165. https://doi.org/10.1210/jcem.87.1.8137.
Hickey, T.E., Marrocco, D.L., Gilchrist, R.B., Norman, R.J., and Armstrong, D.T. (2004). Interactions between androgen and growth factors in granulosa cell subtypes of porcine antral follicles. Biology of Reproduction 71, 45–52. .
Hickey, T.E., Marrocco, D.L., Amato, F., Ritter, L.J., Norman, R.J., Gilchrist, R.B., and Armstrong, D.T. (2005). Androgens augment the mitogenic effects of oocyte-secreted factors and growth differentiation factor 9 on porcine granulosa cells. Biology of Reproduction 73, 825–832. .
Hillier, S.G., Tetsuka, M., and Fraser, H.M. (1997). Location and developmental regulation of androgen receptor in primate ovary. Human Reproduction 12, 107–111. .
Hirai, M., Hirata, S., Osada, T., Hagihara, K., and Kato, J. (1994). Androgen receptor mRNA in the rat ovary and uterus. Journal of Steroid Biochemistry & Molecular Biology 49, 1–7. .
Hu, Q., Hong, L., Nie, M., Wang, Q., Fang, Y., Dai, Y., Zhai, Y., Wang, S., Yin, C., and Yang, X. (2017). The effect of dehydroepiandrosterone supplementation on ovarian response is associated with androgen receptor in diminished ovarian reserve women. Journal of Ovarian Research 10, 32. https://doi.org/https://dx.doi.org/10.1186/s13048-017-0326-3.
Jeppesen, J. V, Kristensen, S.G., Nielsen, M.E., Humaidan, P., Dal Canto, M., Fadini, R., Schmidt, K.T., Ernst, E., and Yding Andersen, C. (2012). LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. Journal of Clinical Endocrinology & Metabolism 97, E1524-31. https://doi.org/https://dx.doi.org/10.1210/jc.2012-1427.
Jiang, X., Teng, Y., Chen, X., Liang, N., Li, Z., Liang, D., and Wu, L. (2020). Six novel Mutation analysis of the androgen receptor gene in 17 Chinese patients with androgen insensitivity syndrome. Clinica Chimica Acta 506, 180–186. https://doi.org/10.1016/j.cca.2020.03.036.
Juengel, J.L., Heath, D.A., Quirke, L.D., and McNatty, K.P. (2006). Oestrogen receptor alpha and beta, androgen receptor and progesterone receptor mRNA and protein localisation within the developing ovary and in small growing follicles of sheep. Reproduction 131, 81–92. .
Kamal, D.A.M., Ibrahim, S.F., and Mokhtar, M.H. (2020). Androgen effect on connexin expression in the mammalian female reproductive system: A systematic review. Bosnian Journal of Basic Medical Sciences 20, 293–302. https://doi.org/10.17305/bjbms.2019.4501.
Kim, C.H., Howles, C.M., and Lee, H.A. (2011). The effect of transdermal testosterone gel pretreatment on controlled ovarian stimulation and IVF outcome in low responders. Fertility and Sterility 95, 679–683. https://doi.org/10.1016/j.fertnstert.2010.07.1077.
Kim, C.-H., Ahn, J.-W., Moon, J.-W., Kim, S.-H., Chae, H.-D., and Kang, B.-M. (2014). Ovarian Features after 2 Weeks, 3 Weeks and 4 Weeks Transdermal Testosterone Gel Treatment and Their Associated Effect on IVF Outcomes in Poor Responders. Development & Reproduciton 18, 145–152. https://doi.org/10.12717/dr.2014.18.3.145.
Knapczyk-Stwora, K., Grzesiak, M., Duda, M., Koziorowski, M., and Slomczynska, M. (2013). Effect of flutamide on folliculogenesis in the fetal porcine ovary--regulation by Kit ligand/c-Kit and IGF1/IGF1R systems. Animal Reproduction Science 142, 160–167. https://doi.org/https://dx.doi.org/10.1016/j.anireprosci.2013.09.014.
Knapczyk-Stwora, K., Grzesiak, M., Ciereszko, R.E., Czaja, E., Koziorowski, M., and Slomczynska, M. (2018). The impact of sex steroid agonists and antagonists on folliculogenesis in the neonatal porcine ovary via cell proliferation and apoptosis. Theriogenology 113, 19–26. https://doi.org/https://dx.doi.org/10.1016/j.theriogenology.2018.02.008.
Knapczyk-Stwora, K., Nynca, A., Ciereszko, R.E., Paukszto, L., Jastrzebski, J.P., Czaja, E., Witek, P., Koziorowski, M., and Slomczynska, M. (2019). Flutamide-induced alterations in transcriptional profiling of neonatal porcine ovaries. Journal of Animal Science & Biotechnology 10, 35. https://doi.org/https://dx.doi.org/10.1186/s40104-019-0340-y.
Kumari, G.L., Datta, J.K., Das, R.P., and Roy, S. (1978). Evidence for a role of androgens in the growth and maturation of ovarian follicles in rats. Hormone Research in Paediatrics 9, 112–120. https://doi.org/10.1159/000178903.
Laird, M., Thomson, K., Fenwick, M., Mora, J., Franks, S., and Hardy, K. (2017). Androgen Stimulates Growth of Mouse Preantral Follicles In Vitro: Interaction With Follicle-Stimulating Hormone and With Growth Factors of the TGFbeta Superfamily. Endocrinology 158, 920–935. https://doi.org/https://dx.doi.org/10.1210/en.2016-1538.
Lebbe, M., and Woodruff, T.K. (2013). Involvement of androgens in ovarian health and disease. Molecular Human Reproduction 19, 828–837. https://doi.org/https://dx.doi.org/10.1093/molehr/gat065.
Lebbe, M., Taylor, A.E., Visser, J.A., Kirkman-Brown, J.C., Woodruff, T.K., and Arlt, W. (2017). The Steroid Metabolome in the Isolated Ovarian Follicle and Its Response to Androgen Exposure and Antagonism. Endocrinology 158, 1474–1485. https://doi.org/https://dx.doi.org/10.1210/en.2016-1851.
Lenie, S., and Smitz, J. (2009). Functional AR Signaling Is Evident in an In Vitro Mouse Follicle Culture Bioassay That Encompasses Most Stages of Folliculogenesis1. Biology of Reproduction 80, 685–695. https://doi.org/10.1095/biolreprod.107.067280.
Li, Y., Wei, L.N., and Liang, X.Y. (2011). Follicle-stimulating hormone suppressed excessive production of antimullerian hormone caused by abnormally enhanced promoter activity in polycystic ovary syndrome granulosa cells. Fertility and Sterility 95. https://doi.org/10.1016/J.FERTNSTERT.2011.03.047.
Lim, J.J., Han, C.Y., Lee, D.R., and Tsang, B.K. (2017a). Ring Finger Protein 6 Mediates Androgen-Induced Granulosa Cell Proliferation and Follicle Growth via Modulation of Androgen Receptor Signaling. Endocrinology 158, 993–1004. https://doi.org/https://dx.doi.org/10.1210/en.2016-1866.
Lim, J.J., Lima, P.D.A., Salehi, R., Lee, D.R., and Tsang, B.K. (2017b). Regulation of androgen receptor signaling by ubiquitination during folliculogenesis and its possible dysregulation in polycystic ovarian syndrome. Scientific Reports 7, 10272. https://doi.org/https://dx.doi.org/10.1038/s41598-017-09880-0.
Lin, L. Te, Li, C.J., and Tsui, K.H. (2021). Serum testosterone levels are positively associated with serum anti-mullerian hormone levels in infertile women. Scientific Reports 2021 11:1 11, 1–8. https://doi.org/10.1038/s41598-021-85915-x.
Lledo, B., Llacer, J., Turienzo, A., Ortiz, J.A., Guerrero, J., Morales, R., Ten, J., and Bernabeu, R. (2014). Androgen receptor CAG repeat length is associated with ovarian reserve but not with ovarian response. Reproductive Biomedicine Online 29, 509–515. https://doi.org/https://dx.doi.org/10.1016/j.rbmo.2014.06.012.
Magamage, M.P.S., Zengyo, M., Moniruzzaman, M., and Miyano, T. (2011). Testosterone induces activation of porcine primordial follicles in vitro. Reproductive Medicine & Biology 10, 21–30. https://doi.org/https://dx.doi.org/10.1007/s12522-010-0068-z.
Murray, A.A., Gosden, R.G., Allison, V., and Spears, N. (1998). Effect of androgens on the development of mouse follicles growing in vitro. Journal of Reproduction and Fertility 113, 27–33. https://doi.org/10.1530/jrf.0.1130027.
Nagels, H.E., Rishworth, J.R., Siristatidis, C.S., and Kroon, B. (2015). Androgens (dehydroepiandrosterone or testosterone) for women undergoing assisted reproduction. The Cochrane Database of Systematic Reviews 2015. https://doi.org/10.1002/14651858.CD009749.PUB2.
Nielsen, M.E., Rasmussen, I.A., Kristensen, S.G., Christensen, S.T., Mollgard, K., Wreford Andersen, E., Byskov, A.G., and Yding Andersen, C. (2011). In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA. Molecular Human Reproduction 17, 63–70. https://doi.org/https://dx.doi.org/10.1093/molehr/gaq073.
Noventa, M., Vitagliano, A., Andrisani, A., Blaganje, M., Viganò, P., Papaelo, E., Scioscia, M., Cavallin, F., Ambrosini, G., and Cozzolino, M. (2019). Testosterone therapy for women with poor ovarian response undergoing IVF: a meta-analysis of randomized controlled trials. Journal of Assisted Reproduction and Genetics 36, 673–683. https://doi.org/10.1007/s10815-018-1383-2.
Orisaka, M., Jiang, J.Y., Orisaka, S., Kotsuji, F., and Tsang, B.K. (2009). Growth differentiation factor 9 promotes rat preantral follicle growth by up-regulating follicular androgen biosynthesis. Endocrinology 150, 2740–2748. https://doi.org/10.1210/en.2008-1536.
Petya Andreeva, Ivelina Oprova, Luboslava Valkova, Petya Chaveeva, Ivanka Dimova, A.S. (2020). The Benefits of Testosterone Therapy in Poor Ovarian Responders Undergoing In Vitro Fertilisation (IVF). European Medical Journal https://doi.org/10.33590/emj/20-00095.
Prizant, H., Gleicher, N., and Sen, A. (2014). Androgen actions in the ovary: Balance is key. Journal of Endocrinology 222, 141–151. https://doi.org/10.1530/JOE-14-0296.
Rice, S., Ojha, K., Whitehead, S., and Mason, H. (2007). Stage-specific expression of androgen receptor, follicle-stimulating hormone receptor, and anti-Müllerian hormone type II receptor in single, isolated, human preantral follicles: Relevance to polycystic ovaries. Journal of Clinical Endocrinology and Metabolism 92, 1034–1040. https://doi.org/10.1210/jc.2006-1697.
Sen, A., and Hammes, S.R. (2010). Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Molecular Endocrinology 24, 1393–1403. https://doi.org/10.1210/me.2010-0006.
Sen, A., Prizant, H., Light, A., Biswas, A., Hayes, E., Lee, H.J., Barad, D., Gleicher, N., and Hammes, S.R. (2014). Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proceedings of the National Academy of Sciences of the United States of America 111, 3008–3013. https://doi.org/10.1073/pnas.1318978111.
Slomczynska, M., Duda, M., and Sl zak, K. (2001). The expression of androgen receptor, cytochrome P450 aromatase and FSH receptor mRNA in the porcine ovary. Folia Histochemica et Cytobiologica 39, 9–13. .
Steffensen, L.L., Ernst, E.H., Amoushahi, M., Ernst, E., and Lykke-Hartmann, K. (2018). Transcripts Encoding the Androgen Receptor and IGF-Related Molecules Are Differently Expressed in Human Granulosa Cells From Primordial and Primary Follicles. Frontiers in Cell & Developmental Biology 6, 85. https://doi.org/https://dx.doi.org/10.3389/fcell.2018.00085.
Szoltys, M., and Slomczynska, M. (2000). Changes in distribution of androgen receptor during maturation of rat ovarian follicles. Experimental & Clinical Endocrinology & Diabetes 108, 228–234. .
Tetsuka, M., and Hillier, S.G. (1996). Androgen receptor gene expression in rat granulosa cells: the role of follicle-stimulating hormone and steroid hormones. Endocrinology 137, 4392–4397. .
Tetsuka, M., Whitelaw, P.F., Bremner, W.J., Millar, M.R., Smyth, C.D., and Hillier, S.G. (1995). Developmental regulation of androgen receptor in rat ovary. Journal of Endocrinology 145, 535–543. .
Vendola, K., Zhou, J., Wang, J., Famuyiwa, O.A., Bievre, M., and Bondy, C.A. (1999). Androgens promote oocyte insulin-like growth factor I expression and initiation of follicle development in the primate ovary. Biology of Reproduction 61, 353–357. .
Vendola, K.A., Zhou, J., Adesanya, O.O., Weil, S.J., and Bondy, C.A. (1998). Androgens stimulate early stages of follicular growth in the primate ovary. Journal of Clinical Investigation 101, 2622–2629. .
Walters, K.A., and Handelsman, D.J. (2018). Role of androgens in the ovary. Molecular and Cellular Endocrinology 465, 36–47. https://doi.org/10.1016/j.mce.2017.06.026.
Walters, K.A., Middleton, L.J., Joseph, S.R., Hazra, R., Jimenez, M., Simanainen, U., Allan, C.M., and Handelsman, D.J. (2012). Targeted loss of androgen receptor signaling in murine granulosa cells of preantral and antral follicles causes female subfertility. Biology of Reproduction 87. https://doi.org/10.1095/biolreprod.112.102012.
Wang, H., Andoh, K., Hagiwara, H., Xiaowei, L., Kikuchi, N., Abe, Y., Yamada, K., Fatima, R., and Mizunuma, H. (2001). Effect of adrenal and ovarian androgens on type 4 follicles unresponsive to FSH in immature mice. Endocrinology 142, 4930–4936. .
Weil, S., Vendola, K., Zhou, J., and Bondy, C.A. (1999). Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. Journal of Clinical Endocrinology & Metabolism 84, 2951–2956. .
Weil, S.J., Vendola, K., Zhou, J., Adesanya, O.O., Wang, J., Okafor, J., and Bondy, C.A. (1998). Androgen receptor gene expression in the primate ovary: cellular localization, regulation, and functional correlations. Journal of Clinical Endocrinology & Metabolism 83, 2479–2485. .
Xue, K., Liu, J.Y., Murphy, B.D., and Tsang, B.K. (2012). Orphan nuclear receptor NR4A1 is a negative regulator of DHT-induced rat preantral follicular growth. Molecular Endocrinology 26, 2004–2015. https://doi.org/10.1210/me.2012-1200.
Xue, K., Kim, J.Y., Liu, J.Y., and Tsang, B.K. (2014). Insulin-like 3-induced rat preantral follicular growth is mediated by growth differentiation factor 9. Endocrinology 155, 156–167. https://doi.org/10.1210/en.2013-1491.
Yang, M.Y., and Fortune, J.E. (2006). Testosterone stimulates the primary to secondary follicle transition in bovine follicles in vitro. Biology of Reproduction 75, 924–932. https://doi.org/10.1095/biolreprod.106.051813.
Yeung, T.W.Y., Chai, J., Li, R.H.W., Lee, V.C.Y., Ho, P.C., and Ng, E.H.Y. (2014). A randomized, controlled, pilot trial on the effect of dehydroepiandrosterone on ovarian response markers, ovarian response, and in vitro fertilization outcomes in poor responders. Fertility and Sterility 102, 108-115.e1. https://doi.org/10.1016/j.fertnstert.2014.03.044.
Relationship: 3142: Reduced granulosa cell proliferation leads to irregularities, ovarian cycle
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Androgen receptor (AR) antagonism leading to decreased fertility in females | adjacent |
Evidence Supporting Applicability of this Relationship
| Term | Scientific Term | Evidence | Links |
|---|---|---|---|
| mammals | mammals | High | NCBI |
| Life Stage | Evidence |
|---|---|
| Adult, reproductively mature | High |
| Sex | Evidence |
|---|---|
| Female | High |
The supporting empirical evidence includes rodent studies and biological plausibility additionally includes humans. However, the taxonomic applicability can be expanded to other mammals as follicle growth is the basic principle driving the ovarian cycle in all mammalian species.
Key Event Relationship Description
This KER connects reduced granulosa cell proliferation of early-stage follicles (gonadotropin-independent, up to antral stage) to ovarian cycle irregularities, which include disturbances in the ovarian cycle (e.g. longer cycle) and/or ovulation problems (deferred ovulation or anovulation). Reduced granulosa cell proliferation manifests as reduced follicle growth, which can be observed by follicle counting or staging.
Evidence Supporting this KER
Biological PlausibilityOvarian follicles are composed of a centrally located immature oocyte surrounded by supporting somatic cells where granulosa cells make up the inner layer most closely associated with the oocyte. In humans, it is important to emphasize that all follicles are formed during fetal life and this pool of primordial follicles makes up the ovarian reserve. Once primordial follicles are activated, they can grow into primary follicles as granulosa cells proliferate and change in morphology. This transition is driven by factors produced by either the granulosa cells or the oocytes, notably Kit ligand (KITL). As granulosa cells continue to proliferate, the follicles become secondary, a process regulated by factors including Growth Differentiation Factor 9 (GDF9) and Bone Morphogenetic Protein 15 (BMP15). As more layers of granulosa cells are established, the follicle forms an antral cavity. Up to this stage, the growth and survival of the follicles is not dependent on gonadotropins, and thus do not involve the hypothalamus-pituitary-gonadal signaling axis, which is activated during puberty.
For later stages of follicular maturation and ovulation, the gonadotrophins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are essential. They are secreted from the anterior pituitary gland upon stimulation from the gonadotropin-releasing hormone (GnRH) from the hypothalamus. LH stimulates androgen production in theca cells of late-stage ovarian follicles, and is used by the neighbor granulosa cells to produce estrogens upon FSH stimulation. The hormones produced by these late-stage follicles and the corpora lutea formed by ovulated follicles, control the release of hormones from hypothalamus and anterior pituitary. The ovarian cycle results from the cyclic changes that occur in the female reproductive tract and are initiated and regulated by the hypothalamic-pituitary-ovarian (HPO) axis.
All stages of follicles can be found in the ovaries of reproductively active adult mammals, with the majority of the follicles being primordial. Only a minority of the primordial follicles ever complete folliculogenesis, with the majority dying by atresia. The granulosa cells are key determinants of follicle fate. Therefore, disruption of granulosa cell proliferation can halt follicular growth. By reducing the number of available earlier-stage gonadotropin-independent follicles, this will also affect the pool of more mature follicles. Consequently, fewer steroid hormones that regulate the ovarian cycle will be produced, leading to disturbances such as longer cycles. Additionally, less mature follicles will be available for ovulation, leading to e.g. deferred ovulation or anovulation. Biological evidence in humans can be provided by the irregular menstrual cycles observed in perimenopausal individuals (O’Connor et al., 2001).
Empirical EvidenceSelected studies demonstrating an effect on early follicles by reducing their population and leading to effects on estrus cyclicity were selected as empirical evidence for the KER. An effect was observed by histologically identifying, staging, and counting the follicles in all of the included studies. Studies that observed a decrease in primordial follicle counts were excluded, as this indicates an effect on the follicular reserve, rather than on follicle growth.
Table 1. In vivo rodent exposure studies demonstrating reduced granulosa cell proliferation leading to ovarian cycle irregularities.
|
Species |
Exposure |
Dose |
Duration and Age |
Reduced granulosa proliferation |
Ovarian cycle irregularities |
Reference |
|
Wistar rats |
2,4,6-trinitrotoluene (TNT) |
40, 80 g |
Single explosion (6 w.o.) |
Preantral proportions |
Longer diestrus |
(Lin et al., 2023) |
|
ICR mice |
Perfluorohexane sulfonate (PFHxS) |
5 mg/kg/day intragastrical |
42 days (8 w.o.) |
Secondary and antral follicles |
Longer diestrus |
(Yin et al., 2021) |
|
ICR mice |
Pueraria murifica |
100 mg/kg/day in water |
8 weeks (∼10 w.o.) |
Primary, secondary, Graffian |
Longer estrus |
(Jaroenporn et al., 2007) |
|
Sprague Dawley albino rats |
Triclocarban |
0.5 mg/l/day in water |
GD 5 to PND 21 |
Primary, secondary, antral Reduced Ki67 on granulosa |
Longer estrus |
(Mandour et al., 2021) |
|
Sprague Dawley rats |
Di-(2-ethylhexyl)-phthalate (DEHP) |
600 mg/kg/alternate day oral gavage |
60 days (6 w.o.) |
Primary, secondary |
Longer estrus cycle |
(Xu et al., 2010) |
|
CD-1 mice |
Phthalate mixture |
20, 200 µg/kg/day oral dosing |
GD 10 to birth |
Preantral percentage in F3 |
Longer metestrus, diestrus in F3 |
(Brehm et al., 2020) |
|
CD-1 mice |
Di-(2-ethylhexyl)-phthalate (DEHP) |
200 µg/kg/day 500mg/kg/day oral dosing |
GD 11 to birth |
Preantral percentage in F3 |
Shorter prestrus, longer metestrus/diestrus |
(Brehm et al., 2018) |
|
ICR mice |
Perfluorooctane sulfonate (PFOS) |
0.1 mg/kg/day in water |
4 months (12 w.o.) |
Antral |
Longer diestrus |
(Feng et al., 2015) |
|
Sprague Dawley rats |
Perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) |
0.1 mg/kg/day subcutaneous injection |
5 days (PND 1–5 or PND 26–30) |
Primary and secondary |
Longer diestrus, acyclicity |
(Du et al., 2019) |
|
Sprague Dawley rats |
3,3′,4,4′,5-Pentachlorobiphenyl(PCB126) |
250 ng/kg/day 7.5 μg/kg/day oral dosing |
Day 13-19 post-conception |
Antral |
Longer diestrus |
(Muto et al., 2003) |
|
Wistar rats |
1-bromopropane |
400 ppm inhalation 8h/day |
12 weeks (10 w.o.) |
Primary, secondary, antral |
Longer diestrus |
(Yamada et al., 2003) |
Table 2. In vivo rodent model demonstrating reduced granulosa cell proliferation leading to ovarian cycle irregularities.
|
Model |
Reduced granulosa proliferation |
Ovarian cycle irregularities |
Reference |
|
DHT-treated NOD/ShiLtJ mice (polycystic ovarian syndrome model) |
Preantral, small antral |
Longer metestrus/diestrus, shorter proestrus |
(Binder et al., 2023) |
|
Maternal high-fat diet Sprague-Dawley rats |
Secondary |
Irregular cycle |
(Zhou et al., 2019) |
|
Akt1-/- mice |
Early antral, antral, Graffian Reduced BrdU incorporation in granulosa of secondary |
Longer diestrus |
(Brown et al., 2010) |
|
GCARKOEx2 |
Antral |
Longer estrus cycle |
(Sen & Hammes, 2010) |
|
GCARKOEx3 |
Preantral, antral |
Longer estrus cycle |
(Walters et al., 2012) |
The studies included as empirical evidence report decreased numbers of growing follicles of early stages. However, some of the studies also report increased atresia, which could imply that the observations of altered follicle numbers are a result of stage-specific atresia rather than decreased follicular growth.
During our evidence collection, we identified studies that observed changes in follicle numbers with no effects on the ovarian cycle (Guerra et al., 2011; Ulker et al., 2020). An additional uncertainty is that estrus cyclicity is an endpoint potentially affected by different experimental set-ups, for example, group size, study length and statistical analyses (Goldman et al., 2007). Lastly, ovarian cycle irregularities indicate disturbances in any parts of the Hypothalamic-Pituitary-Ovarian (HPO) axis, which regulates reproductive processes. Therefore, direct effects on hypothalamus and pituitary can lead to uncertainties.
References
Binder, A. K., Peecher, D. L., Qvigstad, A. J., Gutierrez, S. D., Magaña, J., Banks, D. B., & Korach, K. S. (2023). Differential Strain-dependent Ovarian and Metabolic Responses in a Mouse Model of PCOS. Endocrinology (United States), 164(4). https://doi.org/10.1210/endocr/bqad024
Brehm, E., Rattan, S., Gao, L., & Flaws, J. A. (2018). Prenatal exposure to Di(2-ethylhexyl) phthalate causes long-term transgenerational effects on female reproduction in mice. Endocrinology, 159(2), 795–809. https://doi.org/10.1210/en.2017-03004
Brehm, E., Zhou, C., Gao, L., & Flaws, J. A. (2020). Prenatal exposure to an environmentally relevant phthalate mixture accelerates biomarkers of reproductive aging in a multiple and transgenerational manner in female mice. Reproductive Toxicology, 98, 260–268. https://doi.org/10.1016/j.reprotox.2020.10.009
Brown, C., Larocca, J., Pietruska, J., Ota, M., Anderson, L., Smith, S. D., Weston, P., Rasoulpour, T., & Hixon, M. L. (2010). Subfertility Caused by Altered Follicular Development and Oocyte Growth in Female Mice Lacking PKBalpha/Akt1 1. BIOLOGY OF REPRODUCTION, 82, 246–256. https://doi.org/10.1095/biolreprod.109.077925
Du, G., Hu, J., Huang, Z., Yu, M., Lu, C., Wang, X., & Wu, D. (2019). Neonatal and juvenile exposure to perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS): Advance puberty onset and kisspeptin system disturbance in female rats. Ecotoxicology and Environmental Safety, 167, 412–421. https://doi.org/10.1016/j.ecoenv.2018.10.025
Feng, X., Wang, X., Cao, X., Xia, Y., Zhou, R., & Chen, L. (2015). Chronic exposure of female mice to an environmental level of perfluorooctane sulfonate suppresses estrogen synthesis through reduced histone h3k14 acetylation of the StAR promoter leading to deficits in follicular development and ovulation. Toxicological Sciences, 148(2), 368–379. https://doi.org/10.1093/toxsci/kfv197
Goldman, J. M., Murr, A. S., & Cooper, R. L. (2007). The rodent estrous cycle: Characterization of vaginal cytology and its utility in toxicological studies. In Birth Defects Research Part B - Developmental and Reproductive Toxicology (Vol. 80, Issue 2, pp. 84–97). https://doi.org/10.1002/bdrb.20106
Guerra, M. T., de Toledo, F. C., & Kempinas, W. D. G. (2011). In utero and lactational exposure to fenvalerate disrupts reproductive function in female rats. Reproductive Toxicology, 32(3), 298–303. https://doi.org/10.1016/j.reprotox.2011.08.002
Jaroenporn, S., Malaivijitnond, S., Wattanasirmkit, K., Watanabe, G., Taya, K., & Cherdshewasart, W. (2007). Assessment of Fertility and Reproductive Toxicity in Adult Female Mice after Long-Term Exposure to Pueraria mirifica Herb. In Journal of Reproduction and Development (Vol. 53, Issue 5).
Lin, D., Chen, Y., Liang, L., Huang, Z., Guo, Y., Cai, P., & Wang, W. (2023). Effects of exposure to the explosive and environmental pollutant 2,4,6-trinitrotoluene on ovarian follicle development in rats. Environmental Science and Pollution Research, 30(42), 96412–96423. https://doi.org/10.1007/s11356-023-29161-w
Mandour, D. A., Aidaros, A. A. M., & Mohamed, S. (2021). Potential long-term developmental toxicity of in utero and lactational exposure to Triclocarban (TCC) in hampering ovarian folliculogenesis in rat offspring. Acta Histochemica, 123(6). https://doi.org/10.1016/j.acthis.2021.151772
Muto, T., Imano, N., Nakaaki, K., Takahashi, H., Hano, H., Wakui, S., & Furusato, M. (2003). Estrous cyclicity and ovarian follicles in female rats after prenatal exposure to 3,3′,4,4′,5-pentachlorobiphenyl. Toxicology Letters, 143(3), 271–277. https://doi.org/10.1016/S0378-4274(03)00175-9
O’Connor, K. A., Holman, D. J., & Wood, J. W. (2001). Menstrual cycle variability and the perimenopause. American Journal of Human Biology, 13(4), 465–478. https://doi.org/10.1002/ajhb.1078
Sen, A., & Hammes, S. R. (2010). Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Molecular Endocrinology, 24(7), 1393–1403. https://doi.org/10.1210/me.2010-0006
Ulker, N., Yardimci, A., Kaya Tektemur, N., Bulmus, O., Kaya, S. O., Bulmus, F. G., Turk, G., & Canpolat, S. (2020). Irisin may have a role in pubertal development and regulation of reproductive function in rats. https://doi.org/10.1530/REP
Walters, K. A., Middleton, L. J., Joseph, S. R., Hazra, R., Jimenez, M., Simanainen, U., Allan, C. M., & Handelsman, D. J. (2012). Targeted loss of androgen receptor signaling in murine granulosa cells of preantral and antral follicles causes female subfertility. Biology of Reproduction, 87(6). https://doi.org/10.1095/biolreprod.112.102012
Xu, C., Chen, J. A., Qiu, Z., Zhao, Q., Luo, J., Yang, L., Zeng, H., Huang, Y., Zhang, L., Cao, J., & Shu, W. (2010). Ovotoxicity and PPAR-mediated aromatase downregulation in female Sprague-Dawley rats following combined oral exposure to benzo[a]pyrene and di-(2-ethylhexyl) phthalate. Toxicology Letters, 199(3), 323–332. https://doi.org/10.1016/j.toxlet.2010.09.015
Yamada, T., Ichihara, G., Wang, H., Yu, X., Maeda, K.-I., Tsukamura, H., Kamijima, M., Nakajima, T., & Takeuchi, Y. (2003). Exposure to 1-Bromopropane Causes Ovarian Dysfunction in Rats. https://academic.oup.com/toxsci/article/71/1/96/1639572
Yin, X., Di, T., Cao, X., Liu, Z., Xie, J., & Zhang, S. (2021). Chronic exposure to perfluorohexane sulfonate leads to a reproduction deficit by suppressing hypothalamic kisspeptin expression in mice. Journal of Ovarian Research, 14(1). https://doi.org/10.1186/s13048-021-00903-z
Zhou, Z., Lin, Q., Xu, X., Illahi, G. S., Dong, C., & Wu, X. (2019). Maternal high-fat diet impairs follicular development of offspring through intraovarian kisspeptin/GPR54 system. Reproductive Biology and Endocrinology, 17(1). https://doi.org/10.1186/s12958-019-0457-z
Relationship: 394: irregularities, ovarian cycle leads to impaired, Fertility
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding |
|---|---|---|---|
| Aromatase (Cyp19a1) reduction leading to impaired fertility in adult female | non-adjacent | Moderate | |
| Inhibition of ALDH1A (RALDH) leading to impaired fertility via disrupted meiotic initiation of fetal oogonia of the ovary | adjacent | High | Low |
| Androgen receptor (AR) antagonism leading to decreased fertility in females | adjacent | High | Low |
Evidence Supporting Applicability of this Relationship
In many instances, human female reproductive toxicity of an agent is suspected based on studies performed in experimental animals. The neuroendocrinology, steroid biochemistry, and other physiologic events in the females of most small experimental species often used (mouse, rat, hamster) are similar in their susceptibility to disruption by toxicants (Massaro, 1997).
Although the assessment of the human ovarian cycle may have a variety of biomarkers distinct from those in rats, many of the underlying endocrine mechanisms associated with successful follicular development, ovulation, pregnancy, and parturition are homologous between the two (for review see (Bretveld et al., 2006). For this reason, a toxicant-induced perturbation of ovarian cycles in female rats suggest that a compound may function as a reproductive toxicant in human females.
Mice
- environmental air pollution (Mohallem et al., 2005)
- phthalates (DEHP)
- abortion rate of 100% in F0 dams in the 500-mg/kg/day was observed, in F1 females found that the total number of F2 embryos (exposed to DEHP only as germ cells) was not impaired. However, in the 0.05- and 5-mg DEHP groups, 28% and 29%, respectively, of the blastocysts were degenerated, compared with 8% of controls (Schmidt et al., 2012).
- Lamb et al. studied fertility effects of DEHP in mice (both sexes) and found that DEHP caused dose-dependent decreases in fertility. DBP exposure resulted in a reduction in the numbers of litters per pair and of live pups per litter and in the proportion of pups born alive at the 1.0% amount, but not at lower dose levels. A crossover mating trial demonstrated that female mice, but not males, were affected by DBP, as shown by significant decreases in the percentage of fertile pairs, the number of live pups per litter, the proportion of pups born alive, and live pup weight. DHP in the diet resulted in dose-related adverse effects on the numbers of litters per pair and of live pups per litter and proportion of pups born alive at 0.3, 0.6, and 1.2% DHP in the diet. A crossover mating study demonstrated that both sexes were affected. DEHP (at 0.1 and 0.3%) caused dose-dependent decreases in fertility and in the number and the proportion of pups born alive. A crossover mating trial showed that both sexes were affected by exposure to DEHP. These data demonstrate the ability of the continuous breeding protocol to discriminate the qualitative and quantitative reproductive effects of the more and less active congeners as well as the large differences in reproductive toxicity attributable to subtle changes in the alkyl substitution of phthalate esters (Lamb et al., 1987).
Rat phthalates (DEHP)
- female rats exposed to a high dose of DEHP (3,000 mg/kg/day) had irregular estrous cycles and a slight decline in pregnancy rate (Takai et al., 2009). At 1,000 mg/kg bw/day over a period of 4 weeks did not disturb female fertility or early embryo development.
- There was significant evidence that 5, 15, 50, and 400 mg /kg/day females differed from the control females in the relative amount of time spent in oestrous stages, however no changes were revealed in the number of females with regular cycles, cycle length, number of cycles, and in number of cycling females across the dose groups as compared to the control females The litter size (number of live pups) produced by the P0 generation was significantly reduced in the 400 mg/kg/day dose group (Blystone et al., 2010).
Human
Studies showing a correlation between decreased fertility and;
- professional activity (Olsen, 1994)
- phthalates (DEHP) In occupationally exposed women to high concentration of phthalates exhibit hypoestrogenic anovulary cycles and was associated with decreased pregnancy rate and higher miscarriage rates (Aldyreva,M.V.,Klimove,T.S.,Iziumova,A.S.,Timofeevskaia,L.A., 1975).
- smoking (Hull, North, Taylor, Farrow, & Ford, 2000)
- the use of certain drugs or radiation exposure (Dobson & Felton, 1983)
For the taxonomic applicability see also the Table 1.
Key Event Relationship Description
The ovarian cycle irregularities impact on reproductive capacity of the females that may result in impaired fertility:
1. Irregular cycles may reflect impaired ovulation. Extended vaginal estrus usually indicates that the female cannot spontaneously achieve the ovulatory surge of LH (Huang and Meites, 1975). The persistence of regular vaginal cycles after treatment does not necessarily indicate that ovulation occurred, because luteal tissue may form in follicles that have not ruptured. However, that effect should be reflected in reduced fertility. Conversely, subtle alterations of cyclicity can occur at doses below those that alter fertility (Gray et al., 1989).
2. Persistent or constant vaginal cornification (or vaginal estrus) may result from one or several effects. Typically, in the adult, if the vaginal epithelium becomes cornified and remains so in response to toxicant exposure, it is the result of the agent’s estrogenic properties (i.e., DES or methoxychlor), or the ability of the agent to block ovulation. In the latter case, the follicle persists and endogenous estrogen levels bring about the persistent vaginal cornification. Histologically, the ovaries in persistent estrus will be atrophied following exposure to estrogenic substances. In contrast, the ovaries of females in which ovulation has been blocked because of altered gonadotropin secretion will contain several large follicles and no corpora lutea. Females in constant estrus may be sexually receptive regardless of the mechanism responsible for this altered ovarian condition. However, if ovulation has been blocked by the treatment, an LH surge may be induced by mating (Brown-Grant et al., 1973; Smith, E.R. and Davidson, 1974) and a pregnancy or pseudopregnancy may ensue. The fertility of such matings is reduced (Cooper et al., 1994).
3. Significant delays in ovulation can result in increased embryonic abnormalities and pregnancy loss (Fugo and Butcher, 1966; Cooper et al., 1994).
4. Persistent diestrus indicates temporary or permanent cessation of follicular development and ovulation, and thus at least temporary infertility.
5. Prolonged vaginal diestrus, or anestrus, may be indicative of agents (e.g., polyaromatic hydrocarbons) that interfere with follicular development or deplete the pool of primordial follicles (Mattison and Nightingale, 1980) or agents such as atrazine that interrupt gonadotropin support of the ovary (Cooper et al., 1996). Pseudopregnancy is another altered endocrine state reflected by persistent diestrus. The ovaries of anestrous females are atrophic, with few primary follicles and an unstimulated uterus (Huang and Meites, 1975). Serum estradiol and progesterone are abnormally low.
6. Lengthening of the cycle may be a result of increased duration of either estrus or diestrus.
Evidence Supporting this KER
Biological PlausibilityIn females, normal reproductive function involves the appropriate interaction of central nervous system, anterior pituitary, oviducts, uterus, cervix and ovaries. During the reproductive years the ovary is the central organ in this axis. The functional unit within the ovary is the follicle which is composed of theca; granulosa cells and the oocyte. The somatic compartment synthesizes and secrets hormones (steroids and growth factors) necessary for the orchestration of the inter-relationship between the other parts of the reproductive tract and the central nervous system. Oestrus cycle is under strict hormonal control, therefore perturbations of hormonal balance lead to perturbations of normal cyclicity (change in number of cycles or duration of each phase) and/or ovulation problems leading to impaired female reproductive function. However, there are other mechanisms that might result in impaired fertility (e.g cellular maturation in ovary).
Empirical EvidenceMany chemicals are found to interfere with reproductive function in the female. This interference is commonly expressed as a change in normal morphology of the reproductive tract or in ovarian cycle irregularities (disturbance in the duration of particular phases of the estrous cycle and/or ovulation problems). Monitoring estrous cyclicity provides a means to identify alterations in reproductive functions which are mediated through nonestrogenic as well as estrogenic mechanisms (Blasberg, Langan, & Clark, 1997), (Clark, Blasberg, & Brandling-Bennett, 1998). Adverse alteration in the nonpregnant female reproductive system have been observed at dose levels below those that result in reduced fertility or produce other overt effects on pregnancy or pregnancy outcomes. A disruption of cycling caused by xenobiotic treatment can induce a persistent estrus, a persistent diestrus, an irregular pattern with cycles of extended duration and ovulation problems. Common classes of chemicals have been shown to cause cycle irregularities in rats, humans, and non-human primates. Examples include the polychlorinated biphenyls (PCBs) and dioxins, which are associated with such irregularities in rats and humans (e.g (Li, Johnson, & Rozman, 1995) (Meerts et al., 2004), (Chao, Wang, Lin, Lee, & Päpke, 2007) and various agricultural pesticides, including herbicides, fungicides, and fumigants for review see (Bhattacharya & Keating, 2012),(Bretveld, Thomas, Scheepers, Zielhuis, & Roeleveld, 2006).
|
Compound class |
Species |
AO:ovarian cycle irregularities |
AO:Impaired fertility |
reference |
|
Phthalates (DEHP) |
rat |
5-400 mg/kg/day females differed from the control in the relative amount of time spent in oestrous stages |
number of live pups (P0) reduced (400 mg/kg/day) |
(Blystone et al., 2010) |
|
Phthalates (DEHP) |
rat |
irregular estrous cycles (3,000 mg/kg/day) |
slight decline in pregnancy rate (3,000 mg/kg/day) |
(Takai et al., 2009) |
|
Phthalates (DEHP) |
mice |
|
dose-dependent decreases in fertility |
(Lamb, Chapin, Teague, Lawton, & Reel, 1987) |
|
Phthalates (DEHP) |
mice |
No change |
abortion rate of 100% in F0 dams (500-mg/kg/day) |
(Schmidt, Schaedlich, Fiandanese, Pocar, & Fischer, 2012). |
|
Phthalates (DEHP) |
sheep |
dose-dependent effect on the duration of the estrous cycles shortening of the ovulatory cycles due mainly to a reduction in the size and lifespan of CL |
|
(Herreros, Gonzalez-Bulnes, et al., 2013) |
|
Phthalates (DEHP) |
sheep |
No effect on ovulatory efficiency |
|
(Herreros, Encinas, et al., 2013) |
|
Phthalates (DEHP) |
rat |
No changes in F0, increase of cycle by 0.4 day in F1 at 10,000ppm |
18% and 21% decrease in live pups/litter F0 at 7500ppm and 10,000ppm respectively, no viable litters (F1 10,000 ppm ~643.95mg/kg/day) |
(NTP, 2005) |
|
Phthalates (DEHP) |
rat |
Deficit in growing follicles and corpora lutea |
4-fold increase in females with stillborn pups in F0 at 9000ppm 2.1-fold Postimplantation loss in F0 at 9000ppm |
(Schilling, K., Deckardt. K., Gembardt, Chr., and Hildebrand, 1999) |
|
Phthalates (DEHP) |
rat |
prolong the estrous cycle, anovulation |
|
(Davis, Maronpot, & Heindel, 1994) |
|
Phthalates |
|
|
Reduced fertility and fecundity |
(Wolf et al., 1999) |
|
Organochlorine (methoxychlor) |
rat |
Decreased number of cycles, extended diestrus and estrus |
|
(Laws, 2000) |
|
Organotins tributyltin chloride (TBTCl) |
rat |
At 125 ppm vaginal opening and impaired estrous cyclicity |
|
(Ogata et al., 2001) |
Table 1 Summary the empirical evidence supporting the KER.
It is known that exposure to 17-β-estradiol can disrupt the normal 4- to 5-day estrous cycle in adult female rats by inducing an extended period of diestrus consistent with pseudopregnancy within 5–7 days after the exposure (Gilmore & McDonald, 1969). This is due to the estrogen-dependent increase in prolactin that rescues ovarian corpora lutea and the subsequent synthesis and release of progesterone (Cooper, R. L., and Goldman, 1999). Significant evidence that the estrous cycle (or menstrual cycle in primates) has been disrupted should be considered an adverse effect (OECD, 2008).
Uncertainties and InconsistenciesChemicals may be found to interfere with reproductive function in the female. This interference is commonly expressed as a change in normal morphology of the reproductive tract or a disturbance in the duration of particular phases of the estrous cycle. However, menstrual cyclicity is affected by many parameters such as age, nutritional status, stress, exercise level, certain drugs, and the use of contraceptive measures that alter endocrine feedback. In nonpregnant females, repetitive occurrence of the four stages of the estrous cycle at regular, normal intervals suggests that neuroendocrine control of the cycle and ovarian responses to that control are normal. Even normal, control animals can show irregular cycles. However, a significant alteration compared with controls in the interval between occurrence of estrus for a treatment group is cause for concern. Generally, the cycle will be lengthened or the animals will become acyclic. Therefore changes in cyclicity should be interpreted with caution and not judged adverse without a comprehensive consideration of additional relevant endpoints in a weight-of-evidence approach.
Inconsistencies
Two generation studies by Tyl et al with Butyl benzyl phthalate (BBP) did not observe effects in F0 females on any parameters of estrous cycling, mating, or gestation. However, F1 females carrying F2 litters at and reduced number of total and live pups/litter at birth, with no effects on pre- or postnatal survival (Tyl et al., 2004).
References
Aldyreva,M.V.,Klimove,T.S.,Iziumova,A.S.,Timofeevskaia,L.A. (1975). The effect of phthalate plasticizers on the generative function. Gig.Tr.Prof.Zabol., (19), 25–29.
Bhattacharya, P., & Keating, A. F. (2012). Impact of environmental exposures on ovarian function and role of xenobiotic metabolism during ovotoxicity. Toxicology and Applied Pharmacology, 261(3), 227–35. doi:10.1016/j.taap.2012.04.009
Blasberg, M. E., Langan, C. J., & Clark, A. S. (1997). The effects of 17 alpha-methyltestosterone, methandrostenolone, and nandrolone decanoate on the rat estrous cycle. Physiology & Behavior, 61(2), 265–72.
Blystone, C. R., Kissling, G. E., Bishop, J. B., Chapin, R. E., Wolfe, G. W., & Foster, P. M. D. (2010). Determination of the di-(2-ethylhexyl) phthalate NOAEL for reproductive development in the rat: importance of the retention of extra animals to adulthood. Toxicological Sciences : An Official Journal of the Society of Toxicology, 116(2), 640–6. doi:10.1093/toxsci/kfq147
Bretveld, R. W., Thomas, C. M. G., Scheepers, P. T. J., Zielhuis, G. A., & Roeleveld, N. (2006). Pesticide exposure: the hormonal function of the female reproductive system disrupted? Reproductive Biology and Endocrinology : RB&E, 4(1), 30. doi:10.1186/1477-7827-4-30
Chao, H.-R., Wang, S.-L., Lin, L.-Y., Lee, W.-J., & Päpke, O. (2007). Placental transfer of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in Taiwanese mothers in relation to menstrual cycle characteristics. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 45(2), 259–65. doi:10.1016/j.fct.2006.07.032
Clark, A. S., Blasberg, M. E., & Brandling-Bennett, E. M. (1998). Stanozolol, oxymetholone, and testosterone cypionate effects on the rat estrous cycle. Physiology & Behavior, 63(2), 287–95.
Cooper, R. L., and Goldman, J. M. (1999). Vaginal cytology. In An Evaluation and Interpretation of Reproductive Endpoints for Human Health Risk Assessment. Washington. Davis, B. J., Maronpot, R. R., & Heindel, J. J. (1994). Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicology and Applied Pharmacology, 128(2), 216–23. doi:10.1006/taap.1994.1200
Dobson, R. L., & Felton, J. S. (1983). Female germ cell loss from radiation and chemical exposures. American Journal of Industrial Medicine, 4(1-2), 175–90.
Gilmore, D. P., & McDonald, P. G. (1969). Induction of prolonged diestrus in the rat by a low level of estrogen. Endocrinology, 85(5), 946–8. doi:10.1210/endo-85-5-946 Herreros, M. A., Encinas, T., Torres-Rovira, L., Garcia-Fernandez, R. A., Flores, J. M., Ros, J. M., & Gonzalez-Bulnes, A. (2013). Exposure to the endocrine disruptor di(2-ethylhexyl)phthalate affects female reproductive features by altering pulsatile LH secretion. Environmental Toxicology and Pharmacology, 36(3), 1141–9. doi:10.1016/j.etap.2013.09.020
Herreros, M. A., Gonzalez-Bulnes, A., Iñigo-Nuñez, S., Contreras-Solis, I., Ros, J. M., & Encinas, T. (2013). Toxicokinetics of di(2-ethylhexyl) phthalate (DEHP) and its effects on luteal function in sheep. Reproductive Biology, 13(1), 66–74. doi:10.1016/j.repbio.2013.01.177
Hull, M. G., North, K., Taylor, H., Farrow, A., & Ford, W. C. (2000). Delayed conception and active and passive smoking. The Avon Longitudinal Study of Pregnancy and Childhood Study Team. Fertility and Sterility, 74(4), 725–33.
Lamb, J. C., Chapin, R. E., Teague, J., Lawton, A. D., & Reel, J. R. (1987). Reproductive effects of four phthalic acid esters in the mouse. Toxicology and Applied Pharmacology, 88(2), 255–69.
Laws, S. C. (2000). Estrogenic Activity of Octylphenol, Nonylphenol, Bisphenol A and Methoxychlor in Rats. Toxicological Sciences, 54(1), 154–167. doi:10.1093/toxsci/54.1.154
Li, X., Johnson, D. C., & Rozman, K. K. (1995). Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on estrous cyclicity and ovulation in female Sprague-Dawley rats. Toxicology Letters, 78(3), 219–22.
Massaro, E. J. (Ed.). (1997). Handbook of Human Toxicology, Volume 236. Taylor & Francis.
Meerts, I. A. T. M., Hoving, S., van den Berg, J. H. J., Weijers, B. M., Swarts, H. J., van der Beek, E. M., … Brouwer, A. (2004). Effects of in utero exposure to 4-hydroxy-2,3,3’,4',5-pentachlorobiphenyl (4-OH-CB107) on developmental landmarks, steroid hormone levels, and female estrous cyclicity in rats. Toxicological Sciences : An Official Journal of the Society of Toxicology, 82(1), 259–67. doi:10.1093/toxsci/kfh251
Mohallem, S. V., de Araújo Lobo, D. J., Pesquero, C. R., Assunção, J. V., de Andre, P. A., Saldiva, P. H. N., & Dolhnikoff, M. (2005). Decreased fertility in mice exposed to environmental air pollution in the city of Sao Paulo. Environmental Research, 98(2), 196–202. doi:10.1016/j.envres.2004.08.007
NTP. (2005). Multigenerational Reproductive Assessment by Continuous Breeding when Diethylhexylphthalate (CAS 117-81-7).
OECD. (2008). No 43: Guidance document on mammalian reproductive toxicity testing and assessment.
Ogata, R., Omura, M., Shimasaki, Y., Kubo, K., Oshima, Y., Aou, S., & Inoue, N. (2001). Two-generation reproductive toxicity study of tributyltin chloride in female rats. Journal of Toxicology and Environmental Health. Part A, 63(2), 127–44. doi:10.1080/15287390151126469
Olsen, J. (1994). Is human fecundity declining--and does occupational exposures play a role in such a decline if it exists? Scandinavian Journal of Work, Environment & Health, 20 Spec No, 72–7.
Schilling, K., Deckardt. K., Gembardt, Chr., and Hildebrand, B. (1999). Di-2-ethylhexyl phthalate – two-generation reproduction toxicity range-finding study in Wistar rats. Continuos dietary administration.
Schmidt, J.-S., Schaedlich, K., Fiandanese, N., Pocar, P., & Fischer, B. (2012). Effects of di(2-ethylhexyl) phthalate (DEHP) on female fertility and adipogenesis in C3H/N mice. Environmental Health Perspectives, 120(8), 1123–9. doi:10.1289/ehp.1104016
Takai, R., Hayashi, S., Kiyokawa, J., Iwata, Y., Matsuo, S., Suzuki, M., … Deki, T. (2009). Collaborative work on evaluation of ovarian toxicity. 10) Two- or four-week repeated dose studies and fertility study of di-(2-ethylhexyl) phthalate (DEHP) in female rats. The Journal of Toxicological Sciences, 34 Suppl 1(I), SP111–9.
Tyl, R. W., Myers, C. B., Marr, M. C., Fail, P. a, Seely, J. C., Brine, D. R., … Butala, J. H. (2004). Reproductive toxicity evaluation of dietary butyl benzyl phthalate (BBP) in rats. Reproductive Toxicology (Elmsford, N.Y.), 18(2), 241–64. doi:10.1016/j.reprotox.2003.10.006
Wolf, C., Lambright, C., Mann, P., Price, M., Cooper, R. L., Ostby, J., & Gray, L. E. (1999). Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p’-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differen. Toxicology and Industrial Health, 15(1-2), 94–118. doi:10.1177/074823379901500109