AOP-Wiki

AOP ID and Title:

AOP 492: Glutathione conjugation leading to reproductive dysfunction via oxidative stress
Short Title: Glutathione conjugation leading to reproductive dysfunction

Graphical Representation

Authors

Vieira, Leonardo

Farias, Davi

Souza, Terezinha

Status

Author status OECD status OECD project SAAOP status
Under Development: Contributions and Comments Welcome

Abstract

Here, an Adverse Outcome Pathway (AOP) is proposed for reproductive dysfunction via oxidative stress, which is motivated by the current understanding of the role of oxidative stress in reproductive disorders. The AOP was developed based on OECD's guide no. 184 and the specific considerations of OECD Users' handbook supplement to the guidance document for developing and assessing AOPs (no. 233).

According to qualitative and quantitative experimental data that were evaluated, GSH conjugation is the first upstream Key Event (KE) of this AOP, triggering oxidative stress (OS). This event causes depletion of GSH basal levels (KE2). Consequently, this reduction of free GSH induces an increase of ROS (KE3) generated by natural cellular metabolic processes (cellular respiration) of the organisms. As expected, the intensified growth of these reactive species' levels, in turn, induces an increase of lipid peroxidation (KE4). This KE, consequently, leads to a rise in the amount of toxic substances, such as malondialdehyde and hydroxynonenal. Both are intrinsically associated with the decrease in the quality and competence of gamete cell division, and, consequently, cause impairment of fertility (KE5 and Adverse Outcome).

Background

This AOP was developed for the project "CHRONIC TOXICITY OF PESTICIDES IN DRINKING WATER IN PARAÍBA (TRIGGER): IDENTIFYING THE TRIGGERS OF A SILENT EPIDEMIC," financed by the "Fundação de Apoio à Pesquisa do Estado da Paraíba (FAPESQ-PB)." The project aims to understand how oxidative stress and reproductive toxicity can be triggered in animals by aquatic pollutants, such as atrazine

Summary of the AOP

Events

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Sequence Type Event ID Title Short name
MIE 2131 Conjugation, GSH Conjugation, GSH
KE 130 Depletion, GSH Depletion, GSH
KE 1115 Increased, Reactive oxygen species Increased, Reactive oxygen species
KE 1445 Increased, Lipid peroxidation Increased, LPO
AO 406 impaired, Fertility impaired, Fertility

Key Event Relationships

Upstream Event Relationship Type Downstream Event Evidence Quantitative Understanding
Conjugation, GSH adjacent Depletion, GSH High High
Depletion, GSH adjacent Increased, Reactive oxygen species High High
Increased, Reactive oxygen species adjacent Increased, Lipid peroxidation High High
Increased, Lipid peroxidation adjacent impaired, Fertility High High

Stressors

Name Evidence
atrazine
Mercuric chloride
Diethyl maleate

Overall Assessment of the AOP

Biological plausibility, empirical support and quantitative understanding of the KERs and the evidence that uphold essentialities of KEs in this AOP were analyzed together for the overall assessment of an AOP. In this case, overall assessment (WoE) of the general biological plausibility and of the empirical support of KERs was considered as high for this AOP, as well as essentiality, once for this criterion the first four KEs that trigger the AO are also classified as such. Finally, although the amount of data that support each of the relations differed considerably among them in number, it was possible to obtain an overview about the quantitative comprehension of the KERs, as well as understand their mechanisms. Nevertheless, it is suitable to suggest that more data must be generated, with regard to KER 2879, in order to improve comprehension of this relation among different taxonomic groups.

Domain of Applicability

Life Stage Applicability
Life Stage Evidence
Adult, reproductively mature High
Taxonomic Applicability
Term Scientific Term Evidence Links
mammals mammals High NCBI
fish fish High NCBI
Sex Applicability
Sex Evidence
Unspecific High

This AOP is limited to fishes and mammals and is applicable to both sexes, including sexually immature males. However, interspecies differences are possible because the effectiveness of GSH conjugation as a detoxification mechanism may depend on the species and the specific chemical being considered (Summer et al., 1979).

Essentiality of the Key Events

After blocking the synthesis of GSH with the inhibitor buthionine sulfoximine (BSO) – at a dose of 2 mmol/kg at 12-hour intervals for 7 days – male rats (4 months old) experienced a dramatic decrease in GSH levels. In the seminal vesicles, there was a depletion of 71% in the content, while in the epididymal tissues, this depletion was more severe: 81% in the caput, 87% in the corpus, and 92% in the cauda of the epididymis. Furthermore, the enzymatic activity of catalase increased significantly in the epididymal tissues, while, on the other hand, the activity of manganese superoxide dismutase (Mn SOD) and glutathione peroxidase (GPX) decreased in the seminal vesicle. Additionally, the sperm motility of the animals was reduced (Zubkova et al., 2004).

In another in vivo study, the administration of BSO for 35 days in BALB/c mice at 8 weeks of age – at 2 mmol/kg/day – caused a decrease in GSH content, as well as in catalase (CAT), SOD, and GPX activity. Meanwhile, the MDA content in the testes increased considerably, and a reduction in fertility was recorded through a decrease in normal sperm and sperm motility and an increase in abnormal sperm (Sajjadian et al., 2014). Moreover, according to Lopez and Luderer (2004), rats treated with BSO 5 mmol/kg body weight twice a day showed both a decrease in GSH content and an increase in atretic antral follicles in the ovaries. On the other hand, rats treated with BSO 4 mmol/kg of body weight twice a day showed significantly decreased levels of GSH and enzymatic activity of CAT, SOD, and GPX in blood and erythrocytes, as well as increased levels of MDA. However, glutathione-monoester therapy during exposure promoted the recovery of levels and activity of these oxidative stress markers in animals treated with BSO (Rajasekaran et al., 2004).

In male Nrf2-/- knockout mice, there was a reduction in gene expression levels of antioxidant enzymes in the testis and epididymis, including catalytic glutamate cysteine ligase (Gclc), glutamate cysteine ligase modifying subunit (Gclm) – the rate-limiting enzyme in GSH synthesis – glutathione transferase m1 (Gstm1), Gstm2, Gsta3, and Sod2, as well as a depletion in GSH concentration and GPX activity compared to wild-type males. In addition, MDA levels were shown to be significantly increased, while fertility was reduced by the decrease in the number of litters and pups (Nakamura et al., 2010). Furthermore, Nakamura et al. (2011) showed that Gclm null female mice show a decrease in GSH content in ovulated oocytes and a decrease in fertility through the reduction of litter and offspring production. Additionally, Lim et al. (2015) found a drop in GSH levels and Nernst potential (Eh) (indicating oxidative stress), an increase in 4-hydroxynonenal (4-HNE), and a decline in ovarian follicles in Gclm null female mice. Besides this, Lim et al. (2020) showed that female mice lacking the Gclm gene show depleted GSH concentrations and a reduction in the number of healthy follicles.

Moreover, Garratt et al. (2013) showed that Sod1-/- mice have impaired sperm motility and in vivo fertilization compared to WT animals. Furthermore, Imai et al. (2009) showed that spermatocyte-specific Gpx4-/- knockout mice are completely infertile, whereas GPx4+/− and transgenic rescued Gpx4-/- knockout mice were fully fertile. Additionally, according to Schneider et al. (2009), mGpx4-/- (mitochondrial GPx4) knockout mice are infertile and have less motile and progressive sperm compared to WT.

Table 2: Summary of in vivo studies with fertility endpoints for chemical inhibitors or gene knockout experiments as evidence to support the essentiality of KEs.

Study

Treatment

GSH

ROS

Lipid peroxidation

Fertility

Zubkova et al., 2004

2 mmol/kg BSO 7 d rat

(Young)

↓content

↑CAT, total SOD, Mn SOD and GPx activity

 

↓via spermatozoal motility

2 mmol/kg BSO

7 d rat

(Old)

↓content

↑via CAT activity

↓via spermatozoal motility

Sajjadian et al., 2014

 

2 mmol/kg/day BSO

35 d mice

↓content

↑ via CAT, GPx and SOD units

↑ via MDA

↓via sperm motility and increase of abnormal sperms

Lopez and Luderer, 2004

5 mmol/kg BSO

24 h rat

↓content

↓via atretic antral follicles

Nakamura et al., 2010

 

Nrf2-/- knockout

mice

↓content

↑ via Gclc, Gclm, Gstm1, Gstm2, Gsta3 and SOD2 gene expression and GPx units

↑ via MDA and HAE*

↓via sperm counts, sperm motility, litters and offspring

Nakamura et al. 2011

 

Gclm-/- null

mice

↓content

↓via litter and offspring

Lim et al. 2015

 

Gclm-/- null

mice

↓content

↑ via Nernst potential (Eh)

↑ via 4-HNE

↓via ovarian follicles

Lim et al. 2020

Gclm-/- null

mice

↓content

 

↓via healthy follicles

Garratt et al. 2013

Sod1-/- knockout mice

↓via sperm motility, fertility rates

Schneider et al. 2009

mGPx -/-knockout mice

↓via sperm motility and litter

Imai et al. 2009

mGPx -/-knockout mice

↓via sperm count, motility, fertility rates

Weight of Evidence Summary

Several chemicals that undergo GSH conjugation at high concentrations cause depletion of GSH supplies in the liver and other tissues (D’Souza, Francis, and Andersen 1988; D’Souza and Andersen 1988; Csanády et al. 1996; Mulder and Ouwerkerk-Mahadevan 1997; Fennell and Brown 2001).

Diethyl maleate at 0.1, 0.5, 1, 2.5, and 5 mM for five hours caused GSH depletion in hepatocytes at all concentrations in a dose-dependent manner. However, only 5 mM of the compound was able to consume GSH to the point that this antioxidant was kept below detection levels (4%) and led to overproduction of ROS (Tirmenstein et al. 2000).

Adult rats treated with BSO 20 and 30 mM for 10 days diligently showed a reduction of, respectively, 44.25% and 60.14% of liver GSH content, while H2O2 levels underwent an augmentation of 42 and 60%, in that order (Ford et al. 2006).

For instance, empirical evidence shows that rat hepatocytes begin ROS production after the first 30 minutes of DEM exposition (5 mM), growing linearly for all the remaining time, whereas the increase in products of lipid peroxidation (TBARS) starts only from the first hour of exposure (Tirmenstein et al. 2000).

Experimental evidence showed that the lipid peroxidation product 4-HNE, at 0, 5, 10, 20, 30, and 50 µM, induces a dose-dependent decrease in meiotic competence during in vitro oocyte maturation, as well as aneuploidies in germinal vesicle (GV) oocytes from 20 µM of 4-HNE (Mihalas et al. 2017).

BSO for 35 days in BALB/c mice at 8 weeks of age – at 2 mmol/kg/day – caused a decrease in GSH content, as well as in catalase (CAT), SOD, and GPX activity. Meanwhile, the MDA content in the testes increased considerably, and reduction in fertility was recorded through a decrease in normal sperm and sperm motility and an increase in abnormal sperm (Sajjadian et al., 2014).

In male Nrf2-/- knockout mice, there was a reduction in gene expression levels of antioxidant enzymes in the testis and epididymis, including catalytic glutamate cysteine ligase (Gclc), glutamate cysteine ligase modifying subunit (Gclm) – the rate-limiting enzyme in GSH synthesis – glutathione transferase m1 (Gstm1), Gstm2, Gsta3, and Sod2, as well as a depletion in GSH concentration and GPX activity compared to wild-type males. In addition, MDA levels were shown to be significantly increased, while fertility was reduced by the decrease in the number of litters and pups (Nakamura et al., 2010).

Lim et al. (2015) found a drop in GSH levels and Nernst potential (Eh) (indicating oxidative stress), an increase in 4-hydroxynonenal (4-HNE), and a decline in ovarian follicles in Gclm null female mice.

References

D’Souza, R. W., and M. E. Andersen. 1988. “Physiologically Based Pharmacokinetic Model for Vinylidene Chloride.” Toxicology and Applied Pharmacology 95 (2): 230–40.

D’Souza, R. W., W. R. Francis, and M. E. Andersen. 1988. “Physiological Model for Tissue Glutathione Depletion and Increased Resynthesis after Ethylene Dichloride Exposure.” The Journal of Pharmacology and Experimental Therapeutics 245 (2): 563–68.

Csanády, G. A., P. E. Kreuzer, C. Baur, and J. G. Filser. 1996. “A Physiological Toxicokinetic Model for 1,3-Butadiene in Rodents and Man: Blood Concentrations of 1,3-Butadiene, Its Metabolically Formed Epoxides, and of Haemoglobin Adducts--Relevance of Glutathione Depletion.” Toxicology 113 (1-3): 300–305.

Mulder, G. J., and S. Ouwerkerk-Mahadevan. 1997. “Modulation of Glutathione Conjugation in Vivo: How to Decrease Glutathione Conjugation in Vivo or in Intact Cellular Systems in Vitro.” Chemico-Biological Interactions 105 (1): 17–34.

Fennell, T. R., and C. D. Brown. 2001. “A Physiologically Based Pharmacokinetic Model for Ethylene Oxide in Mouse, Rat, and Human.” Toxicology and Applied Pharmacology 173 (3): 161–75.

Tirmenstein, M. A., F. A. Nicholls-Grzemski, J. G. Zhang, and M. W. Fariss. 2000. “Glutathione Depletion and the Production of Reactive Oxygen Species in Isolated Hepatocyte Suspensions.” Chemico-Biological Interactions 127 (3): 201–17.

Ford, Rebecca J., Drew A. Graham, Steven G. Denniss, Joe Quadrilatero, and James W. E. Rush. 2006. “Glutathione Depletion in Vivo Enhances Contraction and Attenuates Endothelium-Dependent Relaxation of Isolated Rat Aorta.” Free Radical Biology & Medicine 40 (4): 670–78.

Garratt, M., Bathgate, R., de Graaf, S. P., and Brooks, R. C. 2013. “Copper-zinc superoxide dismutase deficiency impairs sperm motility and in vivo fertility.” Reproduction, 146(4), 297-304.

Schneider, M., Forster, H., Boersma, A., Seiler, A., Wehnes, H., Sinowatz, F., ... and Conrad, M. 2009. “Mitochondrial glutathione peroxidase 4 disruption causes male infertility”. The FASEB journal, 23(9), 3233-3242.

Imai, H., Hakkaku, N., Iwamoto, R., Suzuki, J., Suzuki, T., Tajima, Y., ... and Nakagawa, Y. 2009. “Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice”. Journal of Biological Chemistry, 284(47), 32522-32532.

Lim, J., Ali, S., Liao, L. S., Nguyen, E. S., Ortiz, L., Reshel, S., and Luderer, U. 2020. “Antioxidant supplementation partially rescues accelerated ovarian follicle loss, but not oocyte quality, of glutathione-deficient mice.” Biology of Reproduction, 102(5), 1065-1079.

Lim, J., Nakamura, B. N., Mohar, I., Kavanagh, T. J., and Luderer, U. 2015. “Glutamate cysteine ligase modifier subunit (Gclm) null mice have increased ovarian oxidative stress and accelerated age-related ovarian failure.” Endocrinology, 156(9), 3329-3343.

Nakamura, B. N., Lawson, G., Chan, J. Y., Banuelos, J., Cortés, M. M., Hoang, Y. D., ... and Luderer, U. 2010. “Knockout of the transcription factor NRF2 disrupts spermatogenesis in an age-dependent manner. Free Radical Biology and Medicine, 49(9), 1368-1379.

Nakamura, B. N., Fielder, T. J., Hoang, Y. D., Lim, J., McConnachie, L. A., Kavanagh, T. J., and Luderer, U. 2011. Lack of maternal glutamate cysteine ligase modifier subunit (Gclm) decreases oocyte glutathione concentrations and disrupts preimplantation development in mice.” Endocrinology, 152(7), 2806-2815.

Lopez, S. G., and Luderer, U. 2004. “Effects of cyclophosphamide and buthionine sulfoximine on ovarian glutathione and apoptosis.” Free Radical Biology and Medicine, 36(11), 1366-1377.

Sajjadian, F., Roshangar, L., Hemmati, A., Nori, M., Soleimani-Rad, S., and Soleimani-Rad, J. 2014. “The effect of BSO-induced oxidative stress on histologic feature of testis: testosterone secretion and semen parameters in mice.” Iranian journal of basic medical sciences, 17(8), 606.

Zubkova, E. V., and Robaire, B. 2004. “Effect of glutathione depletion on antioxidant enzymes in the epididymis, seminal vesicles, and liver and on spermatozoa motility in the aging brown Norway rat.” Biology of reproduction, 71(3), 1002-1008.

Rajasekaran, N. S., Devaraj, N. S., and Devaraj, H. 2004. “Modulation of rat erythrocyte antioxidant defense system by buthionine sulfoximine and its reversal by glutathione monoester therapy.’ Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1688(2), 121-129.

Summer, K. H., Rozman, K., Coulston, F., and Greim, H. 1979. Urinary excretion of mercapturic acids in chimpanzees and rats. Toxicology and Applied Pharmacology, 50(2), 207-212.

Appendix 1

List of MIEs in this AOP

Event: 2131: Conjugation, GSH

Short Name: Conjugation, GSH

Key Event Component

Process Object Action
glutathione binding glutathione conjugate increased

AOPs Including This Key Event

Biological Context

Level of Biological Organization
Cellular

Cell term

Cell term
hepatocyte

Organ term

Organ term
liver

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links
Vertebrates Vertebrates High NCBI
Life Stage Applicability
Life Stage Evidence
All life stages High
Sex Applicability
Sex Evidence
Unspecific High

Key Event Description

Glutathione, GSH (γ-L-glutamyl-L-cysteinyl-glycine) is a tripeptide synthesized in the intracellular media in a two-step process: bond between glutamic acid and cysteine by the enzyme glutamate-cystein ligase followed by the combination of the resulting dipeptide with a glycin, which is catalyzed by glutathione-synthetase (Lushchak 2012; Hellou, Ross, and Moon 2012; Aquilano, Baldelli, and Ciriolo 2014). In the oxidative stress pathway, GSH is used as substrate by different types and isoforms of enzymes, such as glutathione-reductases (GRs), glutathione-peroxidases (GPXs) and glutathione-transferases (GSTs).
Conjugation with glutathione might happen spontaneously, but it is a reaction primarily catalyzed by GSTs (X. Li 2009). This class of enzymes conjugates the tripeptide with toxic chemicals (e.g. arene, oxides, unsaturated carbonyls, organic halides) in order to neutralize them, making them harmless to cells through a Michael addition reaction (Forman, Zhang, and Rinna 2009; Lushchak 2012; Aquilano, Baldelli, and Ciriolo 2014). In this case, the sulfhydryl group acts as a nucleophile and binds, for instance, to an amine group or to an atom such as Cl, as well as attacks electrophilic sites of xenobiotics (X. Li 2009). Conjugates generated from this reaction, overall, are less toxic or are excreted from cells, which causes GSH depletion (Forman, Zhang, and Rinna 2009).

How it is Measured or Detected

Liquid chromatography–mass spectrometry (Pallante et al. 1986; Plakunov et al. 1987; Pflugmacher et al. 1998; Wiegand et al. 2001a; Dai et al. 2008; Dionisio, Gautam, and Fomsgaard 2019).

References

Lushchak, Volodymyr I. 2012. “Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions.” Journal of Amino Acids 2012 (February): 736837.

Hellou, Jocelyne, Neil W. Ross, and Thomas W. Moon. 2012. “Glutathione, Glutathione S-Transferase, and Glutathione Conjugates, Complementary Markers of Oxidative Stress in Aquatic Biota.” Environmental Science and Pollution Research International 19 (6): 2007–23.

Aquilano, Katia, Sara Baldelli, and Maria R. Ciriolo. 2014. “Glutathione: New Roles in Redox Signaling for an Old Antioxidant.” Frontiers in Pharmacology 5 (August): 196.

Forman, Henry Jay, Hongqiao Zhang, and Alessandra Rinna. 2009. “Glutathione: Overview of Its Protective Roles, Measurement, and Biosynthesis.” Molecular Aspects of Medicine 30 (1-2): 1–12.

Li, Xianchun. 2009. “Glutathione and Glutathione-S-Transferase in Detoxification Mechanisms.” In General, Applied and Systems Toxicology. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470744307.gat166.

Pallante, S. L., C. A. Lisek, D. M. Dulik, and C. Fenselau. 1986. “Glutathione Conjugates. Immobilized Enzyme Synthesis and Characterization by Fast Atom Bombardment Mass Spectrometry.” Drug Metabolism and Disposition: The Biological Fate of Chemicals 14 (3): 313–18.

Plakunov, I., T. A. Smolarek, D. L. Fischer, J. C. Wiley Jr, and W. M. Baird. 1987. “Separation by Ion-Pair High-Performance Liquid Chromatography of the Glucuronide, Sulfate and Glutathione Conjugates Formed from Benzo[a]pyrene in Cell Cultures from Rodents, Fish and Humans.” Carcinogenesis 8 (1): 59–66.

Pflugmacher, S., C. Wiegand, A. Oberemm, K. A. Beattie, E. Krause, G. A. Codd, and C. E. Steinberg. 1998. “Identification of an Enzymatically Formed Glutathione Conjugate of the Cyanobacterial Hepatotoxin Microcystin-LR: The First Step of Detoxication.” Biochimica et Biophysica Acta 1425 (3): 527–33.

Wiegand, C., E. Krause, C. Steinberg, and S. Pflugmacher. 2001a. “Toxicokinetics of Atrazine in Embryos of the Zebrafish (Danio Rerio).” Ecotoxicology and Environmental Safety 49 (3): 199–205.

Dai, Ming, Ping Xie, Gaodao Liang, Jun Chen, and Hehua Lei. 2008. “Simultaneous Determination of Microcystin-LR and Its Glutathione Conjugate in Fish Tissues by Liquid Chromatography-Tandem Mass Spectrometry.” Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 862 (1-2): 43–50.

Dionisio, Giuseppe, Maheswor Gautam, and Inge Sindbjerg Fomsgaard. 2019. “Identification of Azoxystrobin Glutathione Conjugate Metabolites in Maize Roots by LC-MS.” Molecules  24 (13). https://doi.org/10.3390/molecules24132473.

List of Key Events in the AOP

Event: 130: Depletion, GSH

Short Name: Depletion, GSH

Key Event Component

Process Object Action
abnormal glutathione level glutathione decreased

AOPs Including This Key Event

Biological Context

Level of Biological Organization
Cellular

Cell term

Cell term
eukaryotic cell

Organ term

Organ term
liver

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links
Vertebrates Vertebrates High NCBI
Life Stage Applicability
Life Stage Evidence
All life stages High
Sex Applicability
Sex Evidence
Unspecific High

Key Event Description

GSH depletion is commonly observed in different types of organs and cells (Deneke and Fanburg 1989; Lushchak 2012; Aquilano, Baldelli, and Ciriolo 2014). One of the main roles of this antioxidant is to sequester free radicals in order to prevent cell damage. A decline in GSH levels has been thoroughly related to the increase of reactive oxygen species, as well as to lipid peroxides, culminating in tissue oxidative stress  (Comporti et al. 1991; Martin and Teismann 2009; Lushchak 2012; Aquilano, Baldelli, and Ciriolo 2014). 

How it is Measured or Detected

  • Photocolorimetric assays (Rahman 2007; Massarsky, Kozal, and Di Giulio 2017),
  • HPLC (Afzal et al. 2002; J. Liu et al. 2010) 
  • Through commercial kits purchased from specialized companies.

References

Deneke, S. M., and B. L. Fanburg. 1989. “Regulation of Cellular Glutathione.” The American Journal of Physiology 257 (4 Pt 1): L163–73.

Lushchak, Volodymyr I. 2012. “Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions.” Journal of Amino Acids 2012 (February): 736837.

Aquilano, Katia, Sara Baldelli, and Maria R. Ciriolo. 2014. “Glutathione: New Roles in Redox Signaling for an Old Antioxidant.” Frontiers in Pharmacology 5 (August): 196.

Comporti, M., E. Maellaro, B. Del Bello, and A. F. Casini. 1991. “Glutathione Depletion: Its Effects on Other Antioxidant Systems and Hepatocellular Damage.” Xenobiotica; the Fate of Foreign Compounds in Biological Systems 21 (8): 1067–76.

Martin, Heather L., and Peter Teismann. 2009. “Glutathione--a Review on Its Role and Significance in Parkinson’s Disease.” FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 23 (10): 3263–72.

Rahman, Khalid. 2007. “Studies on Free Radicals, Antioxidants, and Co-Factors.” Clinical Interventions in Aging 2 (2): 219–36.

Massarsky, Andrey, Jordan S. Kozal, and Richard T. Di Giulio. 2017. “Glutathione and Zebrafish: Old Assays to Address a Current Issue.” Chemosphere 168 (February): 707–15.

Afzal, Mohammed, Aqeela Afzal, Andrew Jones, and Donald Armstrong. 2002. “A Rapid Method for the Quantification of GSH and GSSG in Biological Samples.” Methods in Molecular Biology  186: 117–22.

Liu, Jiaofang, Chunyan Bao, Xinhua Zhong, Chunchang Zhao, and Linyong Zhu. 2010. “Highly Selective Detection of Glutathione Using a Quantum-Dot-Based OFF–ON Fluorescent Probe.” Chemical Communications  46 (17): 2971–73

 

Event: 1115: Increased, Reactive oxygen species

Short Name: Increased, Reactive oxygen species

Key Event Component

Process Object Action
reactive oxygen species biosynthetic process reactive oxygen species increased

AOPs Including This Key Event

AOP ID and Name Event Type
Aop:186 - unknown MIE leading to renal failure and mortality KeyEvent
Aop:213 - Inhibition of fatty acid beta oxidation leading to nonalcoholic steatohepatitis (NASH) KeyEvent
Aop:303 - Frustrated phagocytosis-induced lung cancer KeyEvent
Aop:383 - Inhibition of Angiotensin-converting enzyme 2 leading to liver fibrosis KeyEvent
Aop:382 - Angiotensin II type 1 receptor (AT1R) agonism leading to lung fibrosis KeyEvent
Aop:384 - Hyperactivation of ACE/Ang-II/AT1R axis leading to chronic kidney disease KeyEvent
Aop:396 - Deposition of ionizing energy leads to population decline via impaired meiosis KeyEvent
Aop:409 - Frustrated phagocytosis leads to malignant mesothelioma KeyEvent
Aop:413 - Oxidation and antagonism of reduced glutathione leading to mortality via acute renal failure KeyEvent
Aop:416 - Aryl hydrocarbon receptor activation leading to lung cancer through IL-6 toxicity pathway KeyEvent
Aop:418 - Aryl hydrocarbon receptor activation leading to impaired lung function through AHR-ARNT toxicity pathway KeyEvent
Aop:386 - Deposition of ionizing energy leading to population decline via inhibition of photosynthesis KeyEvent
Aop:387 - Deposition of ionising energy leading to population decline via mitochondrial dysfunction KeyEvent
Aop:319 - Binding to ACE2 leading to lung fibrosis KeyEvent
Aop:451 - Interaction with lung resident cell membrane components leads to lung cancer KeyEvent
Aop:476 - Adverse Outcome Pathways diagram related to PBDEs associated male reproductive toxicity MolecularInitiatingEvent
Aop:492 - Glutathione conjugation leading to reproductive dysfunction via oxidative stress KeyEvent
Aop:497 - ERa inactivation alters mitochondrial functions and insulin signalling in skeletal muscle and leads to insulin resistance and metabolic syndrome KeyEvent
Aop:500 - Activation of MEK-ERK1/2 leads to deficits in learning and cognition via ROS and apoptosis KeyEvent
Aop:505 - Reactive Oxygen Species (ROS) formation leads to cancer via inflammation pathway MolecularInitiatingEvent

Biological Context

Level of Biological Organization
Cellular

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links
Vertebrates Vertebrates High NCBI
Life Stage Applicability
Life Stage Evidence
All life stages High
Sex Applicability
Sex Evidence
Unspecific High

ROS is a normal constituent found in all organisms.

Key Event Description

Biological State: increased reactive oxygen species (ROS)

Biological compartment: an entire cell -- may be cytosolic, may also enter organelles.

Reactive oxygen species (ROS) are O2- derived molecules that can be both free radicals (e.g. superoxide, hydroxyl, peroxyl, alcoxyl) and non-radicals (hypochlorous acid, ozone and singlet oxygen) (Bedard and Krause 2007; Ozcan and Ogun 2015). ROS production occurs naturally in all kinds of tissues inside various cellular compartments, such as mitochondria and peroxisomes (Drew and Leeuwenburgh 2002; Ozcan and Ogun 2015). Furthermore, these molecules have an important function in the regulation of several biological processes – they might act as antimicrobial agents or triggers of animal gamete activation and capacitation (Goud et al. 2008; Parrish 2010; Bisht et al. 2017). 
However, in environmental stress situations (exposure to radiation, chemicals, high temperatures) these molecules have its levels drastically increased, and overly interact with macromolecules, namely nucleic acids, proteins, carbohydrates and lipids, causing cell and tissue damage (Brieger et al. 2012; Ozcan and Ogun 2015). 

How it is Measured or Detected

Photocolorimetric assays (Sharma et al. 2017; Griendling et al. 2016) or through commercial kits purchased from specialized companies.

Yuan, Yan, et al., (2013) described ROS monitoring by using H2-DCF-DA, a redox-sensitive fluorescent dye. Briefly, the harvested cells were incubated with H2-DCF-DA (50 µmol/L final concentration) for 30 min in the dark at 37°C. After treatment, cells were immediately washed twice, re-suspended in PBS, and analyzed on a BD-FACS Aria flow cytometry. ROS generation was based on fluorescent intensity which was recorded by excitation at 504 nm and emission at 529 nm.

Lipid peroxidation (LPO) can be measured as an indicator of oxidative stress damage Yen, Cheng Chien, et al., (2013).

Chattopadhyay, Sukumar, et al. (2002) assayed the generation of free radicals within the cells and their extracellular release in the medium by addition of yellow NBT salt solution (Park et al., 1968). Extracellular release of ROS converted NBT to a purple colored formazan. The cells were incubated with 100 ml of 1 mg/ml NBT solution for 1 h at 37 °C and the product formed was assayed at 550 nm in an Anthos 2001 plate reader. The observations of the ‘cell-free system’ were confirmed by cytological examination of parallel set of explants stained with chromogenic reactions for NO and ROS.

 

References

B.H. Park, S.M. Fikrig, E.M. Smithwick Infection and nitroblue tetrazolium reduction by neutrophils: a diagnostic aid Lancet, 2 (1968), pp. 532-534

Bedard, Karen, and Karl-Heinz Krause. 2007. “The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology.” Physiological Reviews 87 (1): 245–313.

Bisht, Shilpa, Muneeb Faiq, Madhuri Tolahunase, and Rima Dada. 2017. “Oxidative Stress and Male Infertility.” Nature Reviews. Urology 14 (8): 470–85.

Brieger, K., S. Schiavone, F. J. Miller Jr, and K-H Krause. 2012. “Reactive Oxygen Species: From Health to Disease.” Swiss Medical Weekly 142 (August): w13659.

Chattopadhyay, Sukumar, et al. "Apoptosis and necrosis in developing brain cells due to arsenic toxicity and protection with antioxidants." Toxicology letters 136.1 (2002): 65-76.

Drew, Barry, and Christiaan Leeuwenburgh. 2002. “Aging and the Role of Reactive Nitrogen Species.” Annals of the New York Academy of Sciences 959 (April): 66–81.

Goud, Anuradha P., Pravin T. Goud, Michael P. Diamond, Bernard Gonik, and Husam M. Abu-Soud. 2008. “Reactive Oxygen Species and Oocyte Aging: Role of Superoxide, Hydrogen Peroxide, and Hypochlorous Acid.” Free Radical Biology & Medicine 44 (7): 1295–1304.

Griendling, Kathy K., Rhian M. Touyz, Jay L. Zweier, Sergey Dikalov, William Chilian, Yeong-Renn Chen, David G. Harrison, Aruni Bhatnagar, and American Heart Association Council on Basic Cardiovascular Sciences. 2016. “Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association.” Circulation Research 119 (5): e39–75.

Ozcan, Ayla, and Metin Ogun. 2015. “Biochemistry of Reactive Oxygen and Nitrogen Species.” In Basic Principles and Clinical Significance of Oxidative Stress, edited by Sivakumar Joghi Thatha Gowder. Rijeka: IntechOpen.

Parrish, A. R. 2010. “2.27 - Hypoxia/Ischemia Signaling.” In Comprehensive Toxicology (Second Edition), edited by Charlene A. McQueen, 529–42. Oxford: Elsevier.

Sharma, Gunjan, Nishant Kumar Rana, Priya Singh, Pradeep Dubey, Daya Shankar Pandey, and Biplob Koch. 2017. “p53 Dependent Apoptosis and Cell Cycle Delay Induced by Heteroleptic Complexes in Human Cervical Cancer Cells.” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 88 (April): 218–31.

Yen, Cheng Chien, et al. "Inorganic arsenic causes cell apoptosis in mouse cerebrum through an oxidative stress-regulated signaling pathway." Archives of toxicology 85 (2011): 565-575.

Yuan, Yan, et al. "Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway." PloS one 8.5 (2013): e64330.

Event: 1445: Increased, Lipid peroxidation

Short Name: Increased, LPO

AOPs Including This Key Event

Biological Context

Level of Biological Organization
Molecular

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links
fish fish Moderate NCBI

ROS is a normal constituent found in all organisms, therefore, all organisms containing lipid membranes may be affected by lipid peroxidation. 

Structure: Regardless of sex or life stage, when exposed to free radicals, there is potential for lipid peroxidation as a auxiliary response where there are lipid membranes.

Key Event Description

Lipid peroxidation is the direct damage to lipids in the membrane of the cell or the membranes of the organelles inside the cells. Ultimately the membranes will break due to the build-up damage in the lipids. This is mainly caused by oxidants which attack lipids specifically, since these contain carbon-carbon double bonds. During lipid peroxidation several lipid radicals are formed in a chain reaction. These reactions can interfere and stimulate each other. Antioxidants, such as vitamin E, can react with lipid peroxy radicals to prevent further damage in the cell (Cooley et al. 2000).

How it is Measured or Detected

The main product of lipid peroxidation, malondialdehyde and 4-hydroxyalkenals, is used to measure the degree of this process. This is measured by photocolorimetric assays, quantification of fatty acids by gaseous liquid chromatography (GLC) or high performance (HPLC) (L. Li et al. 2019; Jin et al. 2010a) or through commercial kits purchased from specialized companies.

 

References

Cooley HM, Evans RE, Klaverkamp JF. 2000. Toxicology of dietary uranium in lake whitefish (Coregonus clupeaformis). Aquatic Toxicology. 48(4):495–515. https://doi.org/10.1016/S0166-445X(99)00057-0

Jin, Yuanxiang, Xiangxiang Zhang, Linjun Shu, Lifang Chen, Liwei Sun, Haifeng Qian, Weiping Liu, and Zhengwei Fu. 2010a. “Oxidative Stress Response and Gene Expression with Atrazine Exposure in Adult Female Zebrafish (Danio Rerio).” Chemosphere 78 (7): 846–52.

Li, Luxiao, Shanshan Zhong, Xia Shen, Qiujing Li, Wenxin Xu, Yongzhen Tao, and Huiyong Yin. 2019. “Recent Development on Liquid Chromatography-Mass Spectrometry Analysis of Oxidized Lipids.” Free Radical Biology & Medicine 144 (November): 16–34.

List of Adverse Outcomes in this AOP

Event: 406: impaired, Fertility

Short Name: impaired, Fertility

Key Event Component

Process Object Action
fertility decreased

AOPs Including This Key Event

Biological Context

Level of Biological Organization
Individual

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links
rat Rattus norvegicus High NCBI
mouse Mus musculus High NCBI
human Homo sapiens High NCBI
Life Stage Applicability
Life Stage Evidence
Adult, reproductively mature High

Key Event Description

Biological state

capability to produce offspring

Biological compartments

System

General role in biology

Fertility is the capacity to conceive or induce conception. Impairment of fertility represents disorders of male or female reproductive functions or capacity.

How it is Measured or Detected

As a measure, fertility rate, is the number of offspring born per mating pair, individual or population.

Regulatory Significance of the AO

Under REACH, information on reproductive toxicity is required for chemicals with an annual production/importation volume of 10 metric tonnes or more. Standard information requirements include a screening study on reproduction toxicity (OECD TG 421/422) at Annex VIII (10-100 t.p.a), a prenatal developmental toxicity study (OECD 414) on a first species at Annex IX (100-1000 t.p.a), and from March 2015 the OECD 443(Extended One-Generation Reproductive Toxicity Study) is reproductive toxicity requirement instead of the two generation reproductive toxicity study (OECD TG 416). If not conducted already at Annex IX, a prenatal developmental toxicity study on a second species at Annex X (≥ 1000 t.p.a.).

Under the Biocidal Products Regulation (BPR), information is also required on reproductive toxicity for active substances as part of core data set and additional data set (EU 2012, ECHA 2013). As a core data set, prenatal developmental toxicity study (EU TM B.31) in rabbits as a first species and a two-generation reproduction toxicity study (EU TM B.31) are required. OECD TG 443 (Extended One-Generation Reproductive Toxicity Study) shall be considered as an alternative approach to the multi-generation study.) According to the Classification, Labelling and Packaging (CLP) regulation (EC, 200; Annex I: 3.7.1.1): a) “reproductive toxicity” includes adverse effects on sexual function and fertility in adult males and females, as well as developmental toxicity in the offspring; b) “effects on fertility” includes adverse effects on sexual function and fertility; and c) “developmental toxicity” includes adverse effects on development of the offspring.

Appendix 2

List of Key Event Relationships in the AOP