This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 1153
Key Event Title
Inhibition, Deiodinase 3
Short name
Biological Context
| Level of Biological Organization |
|---|
| Molecular |
Cell term
Organ term
Key Event Components
| Process | Object | Action |
|---|---|---|
| catalytic activity | type III iodothyronine deiodinase | decreased |
Key Event Overview
AOPs Including This Key Event
| AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
|---|---|---|---|---|
| DIO3 inhib alters metamorphosis | MolecularInitiatingEvent | Jonathan Haselman (send email) | Under Development: Contributions and Comments Welcome |
Taxonomic Applicability
Life Stages
Sex Applicability
Key Event Description
How It Is Measured or Detected
Domain of Applicability
Taxonomic: According to the evaluation of the empirical taxonomic domain of applicability (tDOA) of an adverse outcome pathway network for thyroid hormone system disruption (THSD) by Haigis et al., 2023, the level of confidence for a linkage between DIO3 inhibition and altered thyroid hormone (TH) levels was considered high for fish and amphibians (Darras, 2021, Darras and Van Herck, 2012, Fini et al., 2007, Heijlen et al., 2014, Houbrechts et al., 2016, Mayasich et al., 2021, Mol et al., 1998, Noyes et al., 2011, Sanders et al., 1999, Thompson and Cline, 2016) and moderate for mammals (Darras, 2021, Darras and Van Herck, 2012, Hernandez et al., 2006, Ng et al., 2009, Olker et al., 2019). This was supported by structural protein conservation analysis by Lalone et al., 2018 and Haigis et al., 2023. Structural protein conservation of mammalian, fish, amphibian, reptilian and avian DIO3 was found compared to the human (Homo sapiens) protein target using the U.S. Environmental Protection Agency’s Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS v6.0; seqapass.epa.gov/seqapass/) tool, while acknowledging the potential existence of interspecies differences in conservation. No empirical evidence linking DIO3 inhibition to THSD was found for reptiles and birds. It should be mentioned that although the level of DIO3 conservation between chicken and the human reference was relatively high, SeqAPASS did not predict DIO3 conservation for birds in general.
References
Darras, V. M. (2021). Deiodinases: How nonmammalian research helped shape our present view. Endocrinology 162.
Darras, V. M., and Van Herck, S. L. J. (2012). Iodothyronine deiodinase structure and function: From ascidians to humans. J. Endocrinol. 215, 189–206.
Fini, J. B., Le Mevel, S., Turque, N., Palmier, K., Zalko, D., Cravedi, J. P., and Demeneix, B. A. (2007). An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption. Environ. Sci. Technol. 41, 5908–5914.
Haigis A-C., Vergauwen L., LaLone C.A., Villeneuve D.L., O'Brien J.M., Knapen D. (2023). Cross-species applicability of an adverse outcome pathway network for thyroid hormone system disruption. Toxicol Sci. 195, 1-27.
Heijlen, M., Houbrechts, A. M., Bagci, E., Van Herck, S. L. J., Kersseboom, S., Esguerra, C. V., Blust, R., Visser, T. J., Knapen, D., and Darras, V. M. (2014). Knockdown of type 3 iodothyronine deiodinase severely perturbs both embryonic and early larval development in zebrafish. Endocrinology 155, 1547–1559.
Hernandez, A., Martinez, M. E., Fiering, S., Galton, V. A., and St. Germain, D. (2006). Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J. Clin. Invest. 116, 476–484.
Houbrechts, A. M., Vergauwen, L., Bagci, E., Van houcke, J., Heijlen, M., Kulemeka, B., Hyde, D. R., Knapen, D., and Darras, V. M. (2016). Deiodinase knockdown affects zebrafish eye development at the level of gene expression, morphology and function. Mol. Cell. Endocrinol. 424, 81–93.
Lalone, C. A., Villeneuve, D. L., Doering, J. A., Blackwell, B. R., Transue, T. R., Simmons, C. W., Swintek, J., Degitz, S. J., Williams, A. J., and Ankley, G. T. (2018). Evidence for cross species extrapolation of mammalian-based high-throughput screening assay results. Environ. Sci. Technol. 52, 13960–13971.
Mayasich, S. A., Korte, J. J., Denny, J. S., Hartig, P. C., Olker, J. H., DeGoey, P., O’Flanagan, J., Degitz, S. J., and Hornung, M. W. (2021). Xenopus laevis and human type 3 iodothyronine deiodinase enzyme cross-species sensitivity to inhibition by ToxCast chemicals. Toxicol. In Vitro 73, 105141.
Mol, K. A., Van Der Geyten, S., Burel, C., Kühn, E. R., Boujard, T., and Darras, V. M. (1998). Comparative study of iodothyronine outer ring and inner ring deiodinase activities in five teleostean fishes. Fish Physiol. Biochem. 18, 253–266.
Ng, L., Hernandez, A., He, W., Ren, T., Srinivas, M., Michelle, M., Galton, V. A., St Germain, D. L., and Forrest, D. (2009). A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and auditory function. Endocrinology 150, 1952–1960.
Noyes, P. D., Hinton, D. E., and Stapleton, H. M. (2011). Accumulation and debromination of decabromodiphenyl ether (BDE-209) in juvenile fathead minnows (Pimephales promelas) induces thyroid disruption and liver alterations. Toxicol. Sci. 122, 265–274.
Olker, J. H., Korte, J. J., Denny, J. S., Hartig, P. C., Cardon, M. C., Knutsen, C. N., Kent, P. M., Christensen, J. P., Degitz, S. J., and Hornung, M. W. (2019). Screening the ToxCast phase 1, phase 2, and e1k chemical libraries for inhibitors of iodothyronine deiodinases. Toxicol. Sci. 168, 430–442.
Sanders, J. P., Van der Geyten, S., Kaptein, E., Darras, V. M., Kühn, E. R., Leonard, J. L., and Visser, T. J. (1999). Cloning and characterization of type III iodothyronine deiodinase from the fish Oreochromis niloticus. Endocrinology 140, 3666–3673.
Thompson, C. K., and Cline, H. T. (2016). Thyroid hormone acts locally to increase neurogenesis, neuronal differentiation, and dendritic arbor elaboration in the tadpole visual system. J. Neurosci. 36, 10356–10375.