AOP-Wiki

AOP ID and Title:

AOP 521: Essential element imbalance leads to reproductive failure via oxidative stress
Short Title: Essential element imbalance leads to reproductive failure via oxidative stress

Authors

Status

Author status OECD status OECD project SAAOP status
Under development: Not open for comment. Do not cite

Summary of the AOP

Events

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Sequence Type Event ID Title Short name
MIE 2205 Increased, essential element imbalance Increased, essential element imbalance
KE 1115 Increased, Reactive oxygen species Increased, Reactive oxygen species
KE 1392 Oxidative Stress Oxidative Stress
KE 1445 Increased, Lipid peroxidation Increased, LPO
KE 2206 Increased, histomorphological alteration of testis Increased, histomorphological alteration of testis
KE 1758 Impaired, Spermatogenesis Impaired, Spermatogenesis
AO 2147 Decreased, Viable Offspring Decreased, Viable Offspring

Key Event Relationships

Upstream Event Relationship Type Downstream Event Evidence Quantitative Understanding
Increased, essential element imbalance adjacent Increased, Reactive oxygen species
Increased, Reactive oxygen species adjacent Oxidative Stress
Oxidative Stress adjacent Increased, Lipid peroxidation
Increased, Lipid peroxidation adjacent Increased, histomorphological alteration of testis
Increased, histomorphological alteration of testis adjacent Impaired, Spermatogenesis
Impaired, Spermatogenesis adjacent Decreased, Viable Offspring
Increased, Reactive oxygen species non-adjacent Increased, Lipid peroxidation

Overall Assessment of the AOP

References

Appendix 1

List of MIEs in this AOP

Event: 2205: Increased, essential element imbalance

Short Name: Increased, essential element imbalance

AOPs Including This Key Event

Biological Context

Level of Biological Organization
Molecular

List of Key Events in the AOP

Event: 1115: Increased, Reactive oxygen species

Short Name: Increased, Reactive oxygen species

Key Event Component

Process Object Action
reactive oxygen species biosynthetic process reactive oxygen species increased

AOPs Including This Key Event

AOP ID and Name Event Type
Aop:186 - unknown MIE leading to renal failure and mortality KeyEvent
Aop:213 - Inhibition of fatty acid beta oxidation leading to nonalcoholic steatohepatitis (NASH) KeyEvent
Aop:303 - Frustrated phagocytosis-induced lung cancer KeyEvent
Aop:383 - Inhibition of Angiotensin-converting enzyme 2 leading to liver fibrosis KeyEvent
Aop:382 - Angiotensin II type 1 receptor (AT1R) agonism leading to lung fibrosis KeyEvent
Aop:384 - Hyperactivation of ACE/Ang-II/AT1R axis leading to chronic kidney disease KeyEvent
Aop:396 - Deposition of ionizing energy leads to population decline via impaired meiosis KeyEvent
Aop:409 - Frustrated phagocytosis leads to malignant mesothelioma KeyEvent
Aop:413 - Oxidation and antagonism of reduced glutathione leading to mortality via acute renal failure KeyEvent
Aop:416 - Aryl hydrocarbon receptor activation leading to lung cancer through IL-6 toxicity pathway KeyEvent
Aop:418 - Aryl hydrocarbon receptor activation leading to impaired lung function through AHR-ARNT toxicity pathway KeyEvent
Aop:386 - Deposition of ionizing energy leading to population decline via inhibition of photosynthesis KeyEvent
Aop:387 - Deposition of ionising energy leading to population decline via mitochondrial dysfunction KeyEvent
Aop:319 - Binding to ACE2 leading to lung fibrosis KeyEvent
Aop:451 - Interaction with lung resident cell membrane components leads to lung cancer KeyEvent
Aop:476 - Adverse Outcome Pathways diagram related to PBDEs associated male reproductive toxicity MolecularInitiatingEvent
Aop:492 - Glutathione conjugation leading to reproductive dysfunction via oxidative stress KeyEvent
Aop:497 - ERa inactivation alters mitochondrial functions and insulin signalling in skeletal muscle and leads to insulin resistance and metabolic syndrome KeyEvent
Aop:500 - Activation of MEK-ERK1/2 leads to deficits in learning and cognition via ROS and apoptosis KeyEvent
Aop:505 - Reactive Oxygen Species (ROS) formation leads to cancer via inflammation pathway MolecularInitiatingEvent
Aop:513 - Reactive Oxygen (ROS) formation leads to cancer via Peroxisome proliferation-activated receptor (PPAR) pathway MolecularInitiatingEvent
Aop:521 - Essential element imbalance leads to reproductive failure via oxidative stress KeyEvent

Biological Context

Level of Biological Organization
Cellular

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links
Vertebrates Vertebrates High NCBI
Life Stage Applicability
Life Stage Evidence
All life stages High
Sex Applicability
Sex Evidence
Unspecific High

ROS is a normal constituent found in all organisms.

Key Event Description

Biological State: increased reactive oxygen species (ROS)

Biological compartment: an entire cell -- may be cytosolic, may also enter organelles.

Reactive oxygen species (ROS) are O2- derived molecules that can be both free radicals (e.g. superoxide, hydroxyl, peroxyl, alcoxyl) and non-radicals (hypochlorous acid, ozone and singlet oxygen) (Bedard and Krause 2007; Ozcan and Ogun 2015). ROS production occurs naturally in all kinds of tissues inside various cellular compartments, such as mitochondria and peroxisomes (Drew and Leeuwenburgh 2002; Ozcan and Ogun 2015). Furthermore, these molecules have an important function in the regulation of several biological processes – they might act as antimicrobial agents or triggers of animal gamete activation and capacitation (Goud et al. 2008; Parrish 2010; Bisht et al. 2017). 
However, in environmental stress situations (exposure to radiation, chemicals, high temperatures) these molecules have its levels drastically increased, and overly interact with macromolecules, namely nucleic acids, proteins, carbohydrates and lipids, causing cell and tissue damage (Brieger et al. 2012; Ozcan and Ogun 2015). 

How it is Measured or Detected

Photocolorimetric assays (Sharma et al. 2017; Griendling et al. 2016) or through commercial kits purchased from specialized companies.

Yuan, Yan, et al., (2013) described ROS monitoring by using H2-DCF-DA, a redox-sensitive fluorescent dye. Briefly, the harvested cells were incubated with H2-DCF-DA (50 µmol/L final concentration) for 30 min in the dark at 37°C. After treatment, cells were immediately washed twice, re-suspended in PBS, and analyzed on a BD-FACS Aria flow cytometry. ROS generation was based on fluorescent intensity which was recorded by excitation at 504 nm and emission at 529 nm.

Lipid peroxidation (LPO) can be measured as an indicator of oxidative stress damage Yen, Cheng Chien, et al., (2013).

Chattopadhyay, Sukumar, et al. (2002) assayed the generation of free radicals within the cells and their extracellular release in the medium by addition of yellow NBT salt solution (Park et al., 1968). Extracellular release of ROS converted NBT to a purple colored formazan. The cells were incubated with 100 ml of 1 mg/ml NBT solution for 1 h at 37 °C and the product formed was assayed at 550 nm in an Anthos 2001 plate reader. The observations of the ‘cell-free system’ were confirmed by cytological examination of parallel set of explants stained with chromogenic reactions for NO and ROS.

 

References

B.H. Park, S.M. Fikrig, E.M. Smithwick Infection and nitroblue tetrazolium reduction by neutrophils: a diagnostic aid Lancet, 2 (1968), pp. 532-534

Bedard, Karen, and Karl-Heinz Krause. 2007. “The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology.” Physiological Reviews 87 (1): 245–313.

Bisht, Shilpa, Muneeb Faiq, Madhuri Tolahunase, and Rima Dada. 2017. “Oxidative Stress and Male Infertility.” Nature Reviews. Urology 14 (8): 470–85.

Brieger, K., S. Schiavone, F. J. Miller Jr, and K-H Krause. 2012. “Reactive Oxygen Species: From Health to Disease.” Swiss Medical Weekly 142 (August): w13659.

Chattopadhyay, Sukumar, et al. "Apoptosis and necrosis in developing brain cells due to arsenic toxicity and protection with antioxidants." Toxicology letters 136.1 (2002): 65-76.

Drew, Barry, and Christiaan Leeuwenburgh. 2002. “Aging and the Role of Reactive Nitrogen Species.” Annals of the New York Academy of Sciences 959 (April): 66–81.

Goud, Anuradha P., Pravin T. Goud, Michael P. Diamond, Bernard Gonik, and Husam M. Abu-Soud. 2008. “Reactive Oxygen Species and Oocyte Aging: Role of Superoxide, Hydrogen Peroxide, and Hypochlorous Acid.” Free Radical Biology & Medicine 44 (7): 1295–1304.

Griendling, Kathy K., Rhian M. Touyz, Jay L. Zweier, Sergey Dikalov, William Chilian, Yeong-Renn Chen, David G. Harrison, Aruni Bhatnagar, and American Heart Association Council on Basic Cardiovascular Sciences. 2016. “Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association.” Circulation Research 119 (5): e39–75.

Ozcan, Ayla, and Metin Ogun. 2015. “Biochemistry of Reactive Oxygen and Nitrogen Species.” In Basic Principles and Clinical Significance of Oxidative Stress, edited by Sivakumar Joghi Thatha Gowder. Rijeka: IntechOpen.

Parrish, A. R. 2010. “2.27 - Hypoxia/Ischemia Signaling.” In Comprehensive Toxicology (Second Edition), edited by Charlene A. McQueen, 529–42. Oxford: Elsevier.

Sharma, Gunjan, Nishant Kumar Rana, Priya Singh, Pradeep Dubey, Daya Shankar Pandey, and Biplob Koch. 2017. “p53 Dependent Apoptosis and Cell Cycle Delay Induced by Heteroleptic Complexes in Human Cervical Cancer Cells.” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 88 (April): 218–31.

Yen, Cheng Chien, et al. "Inorganic arsenic causes cell apoptosis in mouse cerebrum through an oxidative stress-regulated signaling pathway." Archives of toxicology 85 (2011): 565-575.

Yuan, Yan, et al. "Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway." PloS one 8.5 (2013): e64330.

Event: 1392: Oxidative Stress

Short Name: Oxidative Stress

Key Event Component

Process Object Action
oxidative stress increased

AOPs Including This Key Event

AOP ID and Name Event Type
Aop:220 - Cyp2E1 Activation Leading to Liver Cancer KeyEvent
Aop:17 - Binding of electrophilic chemicals to SH(thiol)-group of proteins and /or to seleno-proteins involved in protection against oxidative stress during brain development leads to impairment of learning and memory KeyEvent
Aop:284 - Binding of electrophilic chemicals to SH(thiol)-group of proteins and /or to seleno-proteins involved in protection against oxidative stress leads to chronic kidney disease KeyEvent
Aop:377 - Dysregulated prolonged Toll Like Receptor 9 (TLR9) activation leading to Multi Organ Failure involving Acute Respiratory Distress Syndrome (ARDS) KeyEvent
Aop:411 - Oxidative stress Leading to Decreased Lung Function MolecularInitiatingEvent
Aop:424 - Oxidative stress Leading to Decreased Lung Function via CFTR dysfunction MolecularInitiatingEvent
Aop:425 - Oxidative Stress Leading to Decreased Lung Function via Decreased FOXJ1 MolecularInitiatingEvent
Aop:429 - A cholesterol/glucose dysmetabolism initiated Tau-driven AOP toward memory loss (AO) in sporadic Alzheimer's Disease with plausible MIE's plug-ins for environmental neurotoxicants KeyEvent
Aop:452 - Adverse outcome pathway of PM-induced respiratory toxicity KeyEvent
Aop:464 - Calcium overload in dopaminergic neurons of the substantia nigra leading to parkinsonian motor deficits KeyEvent
Aop:470 - Deposition of energy leads to vascular remodeling KeyEvent
Aop:478 - Deposition of energy leading to occurrence of cataracts KeyEvent
Aop:479 - Mitochondrial complexes inhibition leading to heart failure via increased myocardial oxidative stress KeyEvent
Aop:481 - AOPs of amorphous silica nanoparticles: ROS-mediated oxidative stress increased respiratory dysfunction and diseases. KeyEvent
Aop:482 - Deposition of energy leading to occurrence of bone loss KeyEvent
Aop:483 - Deposition of Energy Leading to Learning and Memory Impairment KeyEvent
Aop:505 - Reactive Oxygen Species (ROS) formation leads to cancer via inflammation pathway KeyEvent
Aop:521 - Essential element imbalance leads to reproductive failure via oxidative stress KeyEvent

Stressors

Name
Acetaminophen
Chloroform
furan
Platinum
Aluminum
Cadmium
Mercury
Uranium
Arsenic
Silver
Manganese
Nickel
Zinc
nanoparticles

Biological Context

Level of Biological Organization
Molecular

Evidence for Perturbation by Stressor

Platinum

Kruidering et al. (1997) examined the effect of platinum on pig kidneys and found that it was able to induce significant dose-dependant ROS formation within 20 minutes of treatment administration.

Aluminum

In a study of the effects of aluminum treatment on rat kidneys, Al Dera (2016) found that renal GSH, SOD, and GPx levels were significantly lower in the treated groups, while lipid peroxidation levels were significantly increased.

Cadmium

Belyaeva et al. (2012) investigated the effect of cadmium treatment on human kidney cells. They found that cadmium was the most toxic when the sample was treated with 500 μM for 3 hours (Belyaeva et al., 2012). As this study also looked at mercury, it is worth noting that mercury was more toxic than cadmium in both 30-minute and 3-hour exposures at low concentrations (10-100 μM) (Belyaeva et al., 2012).

Wang et al. (2009) conducted a study evaluating the effects of cadmium treatment on rats and found that the treated group showed a significant increase in lipid peroxidation. They also assessed the effects of lead in this study, and found that cadmium can achieve a very similar level of lipid peroxidation at a much lower concentration than lead can, implying that cadmium is a much more toxic metal to the kidney mitochondria than lead is (Wang et al., 2009). They also found that when lead and cadmium were applied together they had an additive effect in increasing lipid peroxidation content in the renal cortex of rats (Wang et al., 2009).

Jozefczak et al. (2015) treated Arabidopsis thaliana wildtype, cad2-1 mutant, and vtc1-1 mutant plants with cadmium to determine the effects of heavy metal exposure to plant mitochondria in the roots and leaves. They found that total GSH/GSG ratios were significantly increased after cadmium exposure in the leaves of all sample varieties and that GSH content was most significantly decreased for the wildtype plant roots (Jozefczak et al., 2015).

Andjelkovic et al. (2019) also found that renal lipid peroxidation was significantly increased in rats treated with 30 mg/kg of cadmium.

Mercury

Belyaeva et al. (2012) conducted a study which looked at the effects of mercury on human kidney cells, they found that mercury was the most toxic when the sample was treated with 100 μM for 30 minutes.

Buelna-Chontal et al. (2017) investigated the effects of mercury on rat kidneys and found that treated rats had higher lipid peroxidation content and reduced cytochrome c content in their kidneys.

Uranium

In Shaki et al.’s article (2012), they found rat kidney mitochondria treated with uranyl acetate caused increased formation of ROS, increased lipid peroxidation, and decreased GSH content when exposed to 100 μM or more for an hour.

Hao et al. (2014), found that human kidney proximal tubular cells (HK-2 cells) treated with uranyl nitrate for 24 hours with 500 μM showed a 3.5 times increase in ROS production compared to the control. They also found that GSH content was decreased by 50% of the control when the cells were treated with uranyl nitrate (Hao et al., 2014).

Arsenic

Bhadauria and Flora (2007) studied the effects of arsenic treatment on rat kidneys. They found that lipid peroxidation levels were increased by 1.5 times and the GSH/GSSG ratio was decreased significantly (Bhadauria and Flora, 2007).

Kharroubi et al. (2014) also investigated the effect of arsenic treatment on rat kidneys and found that lipid peroxidation was significantly increased, while GSH content was significantly decreased.

In their study of the effects of arsenic treatment on rat kidneys, Turk et al. (2019) found that lipid peroxidation was significantly increased while GSH and GPx renal content were decreased.

Silver

Miyayama et al. (2013) investigated the effects of silver treatment on human bronchial epithelial cells and found that intracellular ROS generation was increased significantly in a dose-dependant manner when treated with 0.01 to 1.0 μM of silver nitrate.

Manganese

Chtourou et al. (2012) investigated the effects of manganese treatment on rat kidneys. They found that manganese treatment caused significant increases in ROS production, lipid peroxidation, urinary H2O2 levels, and PCO production. They also found that intracellular GSH content was depleted in the treated group (Chtourou et al., 2012).

Nickel

Tyagi et al. (2011) conducted a study of the effects of nickel treatment on rat kidneys. They found that the treated rats showed a significant increase in kidney lipid peroxidation and a significant decrease in GSH content in the kidney tissue (Tyagi et al., 2011).

Zinc

Yeh et al. (2011) investigated the effects of zinc treatment on rat kidneys and found that treatment with 150 μM or more for 2 weeks or more caused a time- and dose-dependant increase in lipid peroxidation. They also found that renal GSH content was decreased in the rats treated with 150 μM or more for 8 weeks (Yeh et al., 2011).

It should be noted that Hao et al. (2014) found that rat kidneys exposed to lower concentrations of zinc (such as 100 μM) for short time periods (such as 1 day), showed a protective effect against toxicity induced by other heavy metals, including uranium. Soussi, Gargouri, and El Feki (2018) also found that pre-treatment with a low concentration of zinc (10 mg/kg treatment for 15 days) protected the renal cells of rats were from changes in varying oxidative stress markers, such as lipid peroxidation, protein carbonyl, and GPx levels.

nanoparticles

Huerta-García et al. (2014) conducted a study of the effects of titanium nanoparticles on human and rat brain cells. They found that both the human and rat cells showed time-dependant increases in ROS when treated with titanium nanoparticles for 2 to 6 hours (Huerta-García et al., 2014). They also found elevated lipid peroxidation that was induced by the titanium nanoparticle treatment of human and rat cell lines in a time-dependant manner (Huerta-García et al., 2014).

Liu et al. (2010) also investigated the effects of titanium nanoparticles, however they conducted their trials on rat kidney cells. They found that ROS production was significantly increased in a dose dependant manner when treated with 10 to 100 μg/mL of titanium nanoparticles (Liu et al., 2010).

Pan et al. (2009) treated human cervix carcinoma cells with gold nanoparticles (Au1.4MS) and found that intracellular ROS content in the treated cells increased in a time-dependant manner when treated with 100 μM for 6 to 48 hours. They also compared the treatment with Au1.4MS gold nanoparticles to treatment with Au15MS treatment, which are another size of gold nanoparticle (Pan et al., 2009). The Au15MS nanoparticles were much less toxic than the Au1.4MS gold nanoparticles, even when the Au15MS nanoparticles were applied at a concentration of 1000 μM (Pan et al., 2009). When investigating further markers of oxidative stress, Pan et al. (2009) found that GSH content was greatly decreased in cells treated with gold nanoparticles.

Ferreira et al. (2015) also studied the effects of gold nanoparticles. They exposed rat kidneys to GNPs-10 (10 nm particles) and GNPs-30 (30 nm particles), and found that lipid peroxidation and protein carbonyl content in the rat kidneys treated with GNPs-30 and GNPs-10, respectively, were significantly elevated.

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links
rodents rodents High NCBI
Homo sapiens Homo sapiens High NCBI
Life Stage Applicability
Life Stage Evidence
All life stages High
Sex Applicability
Sex Evidence
Mixed High

Taxonomic applicability: Occurrence of oxidative stress is not species specific.  

Life stage applicability: Occurrence of oxidative stress is not life stage specific. 

Sex applicability: Occurrence of oxidative stress is not sex specific. 

Evidence for perturbation by prototypic stressor: There is evidence of the increase of oxidative stress following perturbation from a variety of stressors including exposure to ionizing radiation and altered gravity (Bai et al., 2020; Ungvari et al., 2013; Zhang et al., 2009).  

Key Event Description

Oxidative stress is defined as an imbalance in the production of reactive oxygen species (ROS) and antioxidant defenses. High levels of oxidizing free radicals can be very damaging to cells and molecules within the cell.  As a result, the cell has important defense mechanisms to protect itself from ROS. For example, Nrf2 is a transcription factor and master regulator of the oxidative stress response. During periods of oxidative stress, Nrf2-dependent changes in gene expression are important in regaining cellular homeostasis (Nguyen, et al. 2009) and can be used as indicators of the presence of oxidative stress in the cell.

In addition to the directly damaging actions of ROS, cellular oxidative stress also changes cellular activities on a molecular level. Redox sensitive proteins have altered physiology in the presence and absence of ROS, which is caused by the oxidation of sulfhydryls to disulfides (2SH àSS) on neighboring amino acids (Antelmann and Helmann 2011). Importantly Keap1, the negative regulator of Nrf2, is regulated in this manner (Itoh, et al. 2010).

ROS also undermine the mitochondrial defense system from oxidative damage. The antioxidant systems consist of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, as well as antioxidants such as α-tocopherol and ubiquinol, or antioxidant vitamins and minerals including vitamin E, C, carotene, lutein, zeaxanthin, selenium, and zinc (Fletcher, 2010). The enzymes, vitamins and minerals catalyze the conversion of ROS to non-toxic molecules such as water and O2. However, these antioxidant systems are not perfect and endogenous metabolic processes and/or exogenous oxidative influences can trigger cumulative oxidative injuries to the mitochondria, causing a decline in their functionality and efficiency, which further promotes cellular oxidative stress (Balasubramanian, 2000; Ganea & Harding, 2006; Guo et al., 2013; Karimi et al., 2017).

However, an emerging viewpoint suggests that ROS-induced modifications may not be as detrimental as previously thought, but rather contribute to signaling processes (Foyer et al., 2017). 

Protection against oxidative stress is relevant for all tissues and organs, although some tissues may be more susceptible. For example, the brain possesses several key physiological features, such as high O2 utilization, high polyunsaturated fatty acids content, presence of autooxidable neurotransmitters, and low antioxidant defenses as compared to other organs, that make it highly susceptible to oxidative stress (Halliwell, 2006; Emerit and al., 2004; Frauenberger et al., 2016).

Sources of ROS Production

Direct Sources: Direct sources involve the deposition of energy onto water molecules, breaking them into active radical species. When ionizing radiation hits water, it breaks it into hydrogen (H*) and hydroxyl (OH*) radicals by destroying its bonds. The hydrogen will create hydroxyperoxyl free radicals (HO2*) if oxygen is available, which can then react with another of itself to form hydrogen peroxide (H2O2) and more O2 (Elgazzar and Kazem, 2015). Antioxidant mechanisms are also affected by radiation, with catalase (CAT) and peroxidase (POD) levels rising as a result of exposure (Seen et al. 2018; Ahmad et al. 2021).

Indirect Sources: An indirect source of ROS is the mitochondria, which is one of the primary producers in eukaryotic cells (Powers et al., 2008).  As much as 2% of the electrons that should be going through the electron transport chain in the mitochondria escape, allowing them an opportunity to interact with surrounding structures. Electron-oxygen reactions result in free radical production, including the formation of hydrogen peroxide (H2O2) (Zhao et al., 2019). The electron transport chain, which also creates ROS, is activated by free adenosine diphosphate (ADP), O2, and inorganic phosphate (Pi) (Hargreaves et al. 2020; Raimondi et al. 2020; Vargas-Mendoza et al. 2021). The first and third complexes of the transport chain are the most relevant to mammalian ROS production (Raimondi et al., 2020). The mitochondria have its own set of DNA and it is a prime target of oxidative damage (Guo et al., 2013). ROS are also produced through nicotinamide adenine dinucleotide phosphate oxidase (NOX) stimulation, an event commenced by angiotensin II, a product/effector of the renin-angiotensin system (Nguyen Dinh Cat et al. 2013; Forrester et al. 2018). Other ROS producers include xanthine oxidase, immune cells (macrophage, neutrophils, monocytes, and eosinophils), phospholipase A2 (PLA2), monoamine oxidase (MAO), and carbon-based nanomaterials (Powers et al. 2008; Jacobsen et al. 2008; Vargas-Mendoza et al. 2021).

How it is Measured or Detected

Oxidative Stress. Direct measurement of ROS is difficult because ROS are unstable. The presence of ROS can be assayed indirectly by measurement of cellular antioxidants, or by ROS-dependent cellular damage. Listed below are common methods for detecting the KE, however there may be other comparable methods that are not listed

  • Detection of ROS by chemiluminescence (https://www.sciencedirect.com/science/article/abs/pii/S0165993606001683)
  • Detection of ROS by chemiluminescence is also described in OECD TG 495 to assess phototoxic potential.
  • Glutathione (GSH) depletion. GSH can be measured by assaying the ratio of reduced to oxidized glutathione (GSH:GSSG) using a commercially available kit (e.g., http://www.abcam.com/gshgssg-ratio-detection-assay-kit-fluorometric-green-ab138881.html). 
  • TBARS. Oxidative damage to lipids can be measured by assaying for lipid peroxidation using TBARS (thiobarbituric acid reactive substances) using a commercially available kit. 
  • 8-oxo-dG. Oxidative damage to nucleic acids can be assayed by measuring 8-oxo-dG adducts (for which there are a number of ELISA based commercially available kits),or  HPLC, described in Chepelev et al. (Chepelev, et al. 2015).

Molecular Biology: Nrf2. Nrf2’s transcriptional activity is controlled post-translationally by oxidation of Keap1. Assay for Nrf2 activity include:

  • Immunohistochemistry for increases in Nrf2 protein levels and translocation into the nucleus
  • Western blot for increased Nrf2 protein levels
  • Western blot of cytoplasmic and nuclear fractions to observe translocation of Nrf2 protein from the cytoplasm to the nucleus
  • qPCR of Nrf2 target genes (e.g., Nqo1, Hmox-1, Gcl, Gst, Prx, TrxR, Srxn), or by commercially available pathway-based qPCR array (e.g., oxidative stress array from SABiosciences)
  • Whole transcriptome profiling by microarray or RNA-seq followed by pathway analysis (in IPA, DAVID, metacore, etc.) for enrichment of the Nrf2 oxidative stress response pathway (e.g., Jackson et al. 2014)
  • OECD TG422D describes an ARE-Nrf2 Luciferase test method
  • In general, there are a variety of commercially available colorimetric or fluorescent kits for detecting Nrf2 activation

 

Assay Type & Measured Content Description Dose Range Studied

Assay Characteristics (Length / Ease of use/Accuracy)

ROS Formation in the Mitochondria assay (Shaki et al., 2012)

“The mitochondrial ROS measurement was performed flow cytometry using DCFH-DA. Briefly, isolated kidney mitochondria were incubated with UA (0, 50, 100 and 200 μM) in respiration buffer containing (0.32 mM sucrose, 10 mM Tris, 20 mM Mops, 50 μM EGTA, 0.5 mM MgCl2, 0.1 mM KH2PO4 and 5 mM sodium succinate) [32]. In the interval times of 5, 30 and 60 min following the UA addition, a sample was taken and DCFH-DA was added (final concentration, 10 μM) to mitochondria and was then incubated for 10 min. Uranyl acetate-induced ROS generation in isolated kidney mitochondria were determined through the flow cytometry (Partec, Deutschland) equipped with a 488-nm argon ion laser and supplied with the Flomax software and the signals were obtained using a 530-nm bandpass filter (FL-1 channel). Each determination is based on the mean fluorescence intensity of 15,000 counts.” 0, 50, 100 and 200 μM of Uranyl Acetate

Long/ Easy

High accuracy

Mitochondrial Antioxidant Content Assay Measuring GSH content

(Shaki et al., 2012)
“GSH content was determined using DTNB as the indicator and spectrophotometer method for the isolated mitochondria. The mitochondrial fractions (0.5 mg protein/ml) were incubated with various concentrations of uranyl acetate for 1 h at 30 °C and then 0.1 ml of mitochondrial fractions was added into 0.1 mol/l of phosphate buffers and 0.04% DTNB in a total volume of 3.0 ml (pH 7.4). The developed yellow color was read at 412 nm on a spectrophotometer (UV-1601 PC, Shimadzu, Japan). GSH content was expressed as μg/mg protein.”

0, 50, 100, or 200 μM Uranyl Acetate

 

H2O2 Production Assay Measuring H2O2 Production in isolated mitochondria

(Heyno et al., 2008)
“Effect of CdCl2 and antimycin A (AA) on H2O2 production in isolated mitochondria from potato. H2O2 production was measured as scopoletin oxidation. Mitochondria were incubated for 30 min in the measuring buffer (see the Materials and Methods) containing 0.5 mM succinate as an electron donor and 0.2 µM mesoxalonitrile 3‐chlorophenylhydrazone (CCCP) as an uncoupler, 10 U horseradish peroxidase and 5 µM scopoletin.” (

0, 10, 30  μM Cd2+

2  μM
antimycin A
 

Flow Cytometry ROS & Cell Viability

(Kruiderig et al., 1997)
“For determination of ROS, samples taken at the indicated time points were directly transferred to FACScan tubes. Dih123 (10 mM, final concentration) was added and cells were incubated at 37°C in a humidified atmosphere (95% air/5% CO2) for 10 min. At t 5 9, propidium iodide (10 mM, final concentration) was added, and cells were analyzed by flow cytometry at 60 ml/min. Nonfluorescent Dih123 is cleaved by ROS to fluorescent R123 and detected by the FL1 detector as described above for Dc (Van de Water 1995)”  

Strong/easy

medium

DCFH-DA Assay Detection of hydrogen peroxide production (Yuan et al., 2016)

Intracellular ROS production was measured using DCFH-DA as a probe. Hydrogen peroxide oxidizes DCFH to DCF. The probe is hydrolyzed intracellularly to DCFH carboxylate anion. No direct reaction with H2O2 to form fluorescent production.   

0-400 µM

Long/ Easy

High accuracy

H2-DCF-DA Assay Detection of superoxide production (Thiebault et al., 2007)

This dye is a stable nonpolar compound which diffuses readily into the cells and yields H2-DCF. Intracellular OH or ONOO- react with H2-DCF when cells contain peroxides, to form the highly fluorescent compound DCF, which effluxes the cell. Fluorescence intensity of DCF is measured using a fluorescence spectrophotometer. 0–600 µM

Long/ Easy

High accuracy

CM-H2DCFDA Assay **Come back and explain the flow cytometry determination of oxidative stress from Pan et al. (2009)**    

Direct Methods of Measurement

Method of Measurement 

References 

Description 

OECD-Approved Assay

Chemiluminescence 

(Lu, C. et al., 2006; 

Griendling, K. K., et al., 2016)

ROS can induce electron transitions in molecules, leading to electronically excited products. When the electrons transition back to ground state, chemiluminescence is emitted and can be measured. Reagents such as uminol and lucigenin are commonly used to amplify the signal. 

No

 

Spectrophotometry 

(Griendling, K. K., et al., 2016)

NO has a short half-life. However, if it has been reduced to nitrite (NO2-), stable azocompounds can be formed via the Griess Reaction, and further measured by spectrophotometry. 

No

Direct or Spin Trapping-Based Electron Paramagnetic Resonance (EPR) Spectroscopy 

(Griendling, K. K., et al., 2016)

The unpaired electrons (free radicals) found in ROS can be detected with EPR, and is known as electron paramagnetic resonance. A variety of spin traps can be used. 

No

Nitroblue Tetrazolium Assay 

(Griendling, K. K., et al., 2016)

The Nitroblue Tetrazolium assay is used to measure O2 levels. O2 reduces nitroblue tetrazolium (a yellow dye) to formazan (a blue dye), and can be measured at 620 nm. 

No

Fluorescence analysis of dihydroethidium (DHE) or Hydrocyans 

(Griendling, K. K., et al., 2016)

Fluorescence analysis of DHE is used to measure O2 levels. O2  is reduced to O2 as DHE is oxidized to 2-hydroxyethidium, and this reaction can be measured by fluorescence. Similarly, hydrocyans can be oxidized by any ROS, and measured via fluorescence. 

No

Amplex Red Assay 

(Griendling, K. K., et al., 2016)

Fluorescence analysis to measure extramitochondrial or extracellular H2O2 levels. In the presence of horseradish peroxidase and H2O2, Amplex Red is oxidized to resorufin, a fluorescent molecule measurable by plate reader. 

No

Dichlorodihydrofluorescein Diacetate (DCFH-DA) 

(Griendling, K. K., et al., 2016)

An indirect fluorescence analysis to measure intracellular H2O2 levels. H2O2 interacts with peroxidase or heme proteins, which further react with DCFH, oxidizing it to dichlorofluorescein (DCF), a fluorescent product. 

No

HyPer Probe 

(Griendling, K. K., et al., 2016)

Fluorescent measurement of intracellular H2O2 levels. HyPer is a genetically encoded fluorescent sensor that can be used for in vivo and in situ imaging. 

No

Cytochrome c Reduction Assay 

(Griendling, K. K., et al., 2016)

The cytochrome c reduction assay is used to measure O2 levels. O2  is reduced to O2 as ferricytochrome c is oxidized to ferrocytochrome c, and this reaction can be measured by an absorbance increase at 550 nm. 

No

Proton-electron double-resonance imagine (PEDRI)

(Griendling, K. K., et al., 2016)

The redox state of tissue is detected through nuclear magnetic resonance/magnetic resonance imaging, with the use of a nitroxide spin probe or biradical molecule. 

No

Glutathione (GSH) depletion 

(Biesemann, N. et al., 2018) 

A downstream target of the Nrf2 pathway is involved in GSH synthesis. As an indication of oxidation status, GSH can be measured by assaying the ratio of reduced to oxidized glutathione (GSH:GSSG) using a commercially available kit (e.g., http://www.abcam.com/gshgssg-ratio-detection-assay-kit-fluorometric-green-ab138881.html).  

No

Thiobarbituric acid reactive substances (TBARS) 

(Griendling, K. K., et al., 2016)

Oxidative damage to lipids can be measured by assaying for lipid peroxidation with TBARS using a commercially available kit.  

No

Protein oxidation (carbonylation)

(Azimzadeh et al., 2017; Azimzadeh etal., 2015; Ping et al., 2020)

Can be determined with enzyme-linked immunosorbent assay (ELISA) or a commercial assay kit. Protein oxidation can indicate the level of oxidative stress.

No

Seahorse XFp Analyzer    Leung et al. 2018    The Seahorse XFp Analyzer provides information on mitochondrial function, oxidative stress, and metabolic dysfunction of viable cells by measuring respiration (oxygen consumption rate; OCR) and extracellular pH (extracellular acidification rate; ECAR).    No 

Molecular Biology: Nrf2. Nrf2’s transcriptional activity is controlled post-translationally by oxidation of Keap1. Assays for Nrf2 activity include: 

Method of Measurement 

References 

Description 

OECD-Approved Assay

Immunohistochemistry 

(Amsen, D., de Visser, K. E., and Town, T., 2009)

Immunohistochemistry for increases in Nrf2 protein levels and translocation into the nucleus  

No

Quantitative polymerase chain reaction (qPCR) 

(Forlenza et al., 2012)

qPCR of Nrf2 target genes (e.g., Nqo1, Hmox-1, Gcl, Gst, Prx, TrxR, Srxn), or by commercially available pathway-based qPCR array (e.g., oxidative stress array from SABiosciences) 

No

Whole transcriptome profiling via microarray or via RNA-seq followed by a pathway analysis

(Jackson, A. F. et al., 2014)

Whole transcriptome profiling by microarray or RNA-seq followed by pathway analysis (in IPA, DAVID, metacore, etc.) for enrichment of the Nrf2 oxidative stress response pathway

No

References

Ahmad, S. et al. (2021), “60Co-γ Radiation Alters Developmental Stages of Zeugodacus cucurbitae (Diptera: Tephritidae) Through Apoptosis Pathways Gene Expression”, Journal Insect Science, Vol. 21/5, Oxford University Press, Oxford, https://doi.org/10.1093/jisesa/ieab080

Antelmann, H. and J. D. Helmann (2011), “Thiol-based redox switches and gene regulation.”, Antioxidants & Redox Signaling, Vol. 14/6, Mary Ann Leibert Inc., Larchmont, https://doi.org/10.1089/ars.2010.3400

Amsen, D., de Visser, K. E., and Town, T. (2009), “Approaches to determine expression of inflammatory cytokines”, in Inflammation and Cancer, Humana Press, Totowa, https://doi.org/10.1007/978-1-59745-447-6_5 

Azimzadeh, O. et al. (2015), “Integrative Proteomics and Targeted Transcriptomics Analyses in Cardiac Endothelial Cells Unravel Mechanisms of Long-Term Radiation-Induced Vascular Dysfunction”, Journal of Proteome Research, Vol. 14/2, American Chemical Society, Washington, https://doi.org/10.1021/pr501141b

Azimzadeh, O. et al. (2017), “Proteome analysis of irradiated endothelial cells reveals persistent alteration in protein degradation and the RhoGDI and NO signalling pathways”, International Journal of Radiation Biology, Vol. 93/9, Informa, London, https://doi.org/10.1080/09553002.2017.1339332

Azzam, E. I. et al. (2012), “Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury”, Cancer Letters, Vol. 327/1-2, Elsevier, Ireland, https://doi.org/10.1016/j.canlet.2011.12.012 

Bai, J. et al. (2020), “Irradiation-induced senescence of bone marrow mesenchymal stem cells aggravates osteogenic differentiation dysfunction via paracrine signaling”, American Journal of Physiology - Cell Physiology, Vol. 318/5, American Physiological Society, Rockville, https://doi.org/10.1152/ajpcell.00520.2019.

Balasubramanian, D (2000), “Ultraviolet radiation and cataract”, Journal of ocular pharmacology and therapeutics, Vol. 16/3, Mary Ann Liebert Inc., Larchmont, https://doi.org/10.1089/jop.2000.16.285.

Biesemann, N. et al., (2018), “High Throughput Screening of Mitochondrial Bioenergetics in Human Differentiated Myotubes Identifies Novel Enhancers of Muscle Performance in Aged Mice”, Scientific Reports, Vol. 8/1, Nature Portfolio, London, https://doi.org/10.1038/s41598-018-27614-8

Elgazzar, A. and N. Kazem. (2015), “Chapter 23: Biological effects of ionizing radiation” in The Pathophysiologic Basis of Nuclear Medicine, Springer, New York, pp. 540-548

Fletcher, A. E (2010), “Free radicals, antioxidants and eye diseases: evidence from epidemiological studies on cataract and age-related macular degeneration”, Ophthalmic Research, Vol. 44, Karger International, Basel, https://doi.org/10.1159/000316476.  

Forlenza, M. et al. (2012), “The use of real-time quantitative PCR for the analysis of cytokine mRNA levels” in Cytokine Protocols, Springer, New York, https://doi.org/10.1007/978-1-61779-439-1_2 

Forrester, S.J. et al. (2018), “Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology”, Physiological Reviews, Vol. 98/3, American Physiological Society, Rockville, https://doi.org/10.1152/physrev.00038.201

Foyer, C. H., A. V. Ruban, and G. Noctor (2017), “Viewing oxidative stress through the lens of oxidative signalling rather than damage”, Biochemical Journal, Vol. 474/6, Portland Press, England, https://doi.org/10.1042/BCJ20160814 

Ganea, E. and J. J. Harding (2006), “Glutathione-related enzymes and the eye”, Current eye research, Vol. 31/1, Informa, London, https://doi.org/10.1080/02713680500477347.

Griendling, K. K. et al. (2016), “Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system: a scientific statement from the American Heart Association”, Circulation research, Vol. 119/5, Lippincott Williams & Wilkins, Philadelphia, https://doi.org/10.1161/RES.0000000000000110

Guo, C. et al. (2013), “Oxidative stress, mitochondrial damage and neurodegenerative diseases”, Neural regeneration research, Vol. 8/21, Publishing House of Neural Regeneration Research, China, https://doi.org/10.3969/j.issn.1673-5374.2013.21.009

Hargreaves, M., and L. L. Spriet (2020), “Skeletal muscle energy metabolism during exercise.”, Nature Metabolism, Vol. 2, Nature Portfolio, London, https://doi.org/10.1038/s42255-020-0251-4

Hladik, D. and S. Tapio (2016), “Effects of ionizing radiation on the mammalian brain”, Mutation Research/Reviews in Mutation Research, Vol. 770, Elsevier, Amsterdam, https://doi.org/10.1016/j.mrrev.2016.08.003

Itoh, K., J. Mimura and M. Yamamoto (2010), “Discovery of the negative regulator of Nrf2, Keap1: a historical overview”, Antioxidants & Redox Signaling, Vol. 13/11, Mary Ann Leibert Inc., Larchmont, https://doi.org/10.1089/ars.2010.3222

Jackson, A.F. et al. (2014), “Case study on the utility of hepatic global gene expression profiling in the risk assessment of the carcinogen furan.”, Toxicology and Applied Pharmacology, Vol. 274/11, Elsevier, Amsterdam, https://doi.org/10.1016/j.taap.2013.10.019

Jacobsen, N.R. et al. (2008), “Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FE1-MutaTM Mouse lung epithelial cells”, Environmental and Molecular Mutagenesis, Vol. 49/6, John Wiley & Sons, Inc., Hoboken, https://doi.org/10.1002/em.20406

Karimi, N. et al. (2017), “Radioprotective effect of hesperidin on reducing oxidative stress in the lens tissue of rats”, International Journal of Pharmaceutical Investigation, Vol. 7/3, Phcog Net, Bengaluru, https://doi.org/10.4103/jphi.JPHI_60_17.

Leung, D.T.H., and Chu, S. (2018), “Measurement of Oxidative Stress: Mitochondrial Function Using the Seahorse System” In: Murthi, P., Vaillancourt, C. (eds) Preeclampsia. Methods in Molecular Biology, vol 1710. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7498-6_22 

Lu, C., G. Song, and J. Lin (2006), “Reactive oxygen species and their chemiluminescence-detection methods”, TrAC Trends in Analytical Chemistry, Vol. 25/10, Elsevier, Amsterdam, https://doi.org/10.1016/j.trac.2006.07.007

Nguyen Dinh Cat, A. et al. (2013), “Angiotensin II, NADPH oxidase, and redox signaling in the vasculature”, Antioxidants & redox signaling, Vol. 19/10, Mary Ann Liebert, Larchmont, https://doi.org/10.1089/ars.2012.4641

Ping, Z. et al. (2020), “Oxidative Stress in Radiation-Induced Cardiotoxicity”, Oxidative Medicine and Cellular Longevity, Vol. 2020, Hindawi, https://doi.org/10.1155/2020/3579143

Powers, S.K. and M.J. Jackson. (2008), “Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production”, Physiological Reviews, Vol. 88/4, American Physiological Society, Rockville, https://doi.org/10.1152/physrev.00031.2007

Raimondi, V., F. Ciccarese and V. Ciminale. (2020), “Oncogenic pathways and the electron transport chain: a dangeROS liason”, British Journal of Cancer, Vol. 122/2, Nature Portfolio, London, https://doi.org/10.1038/s41416-019-0651-y

Seen, S. and L. Tong. (2018), “Dry eye disease and oxidative stress”, Acta Ophthalmologica, Vol. 96/4, John Wiley & Sons, Inc., Hoboken, https://doi.org/10.1111/aos.13526

Ungvari, Z. et al. (2013), “Ionizing Radiation Promotes the Acquisition of a Senescence-Associated Secretory Phenotype and Impairs Angiogenic Capacity in Cerebromicrovascular Endothelial Cells: Role of Increased DNA Damage and Decreased DNA Repair Capacity in Microvascular Radiosensitivity”, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, Vol. 68/12, Oxford University Press, Oxford, https://doi.org/10.1093/gerona/glt057.

 

Vargas-Mendoza, N. et al. (2021), “Oxidative Stress, Mitochondrial Function and Adaptation to Exercise: New Perspectives in Nutrition”, Life, Vol. 11/11, Multidisciplinary Digital Publishing Institute, Basel, https://doi.org/10.3390/life11111269

Wang, H. et al. (2019), “Radiation-induced heart disease: a review of classification, mechanism and prevention”, International Journal of Biological Sciences, Vol. 15/10, Ivyspring International Publisher, Sydney, https://doi.org/10.7150/ijbs.35460

Zhang, R. et al. (2009), “Blockade of AT1 receptor partially restores vasoreactivity, NOS expression, and superoxide levels in cerebral and carotid arteries of hindlimb unweighting rats”, Journal of applied physiology, Vol. 106/1, American Physiological Society, Rockville, https://doi.org/10.1152/japplphysiol.01278.2007.

Zhao, R. Z. et al. (2019), “Mitochondrial electron transport chain, ROS generation and uncoupling”, International journal of molecular medicine, Vol. 44/1, Spandidos Publishing Ltd., Athens, https://doi.org/10.3892/ijmm.2019.4188

Event: 1445: Increased, Lipid peroxidation

Short Name: Increased, LPO

AOPs Including This Key Event

Biological Context

Level of Biological Organization
Molecular

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links
fish fish Moderate NCBI
mammals mammals High NCBI

ROS is a normal constituent found in all organisms, therefore, all organisms containing lipid membranes may be affected by lipid peroxidation. 

Structure: Regardless of sex or life stage, when exposed to free radicals, there is potential for lipid peroxidation as a auxiliary response where there are lipid membranes.

Key Event Description

Lipid peroxidation is the direct damage to lipids in the membrane of the cell or the membranes of the organelles inside the cells. Ultimately the membranes will break due to the build-up damage in the lipids. This is mainly caused by oxidants which attack lipids specifically, since these contain carbon-carbon double bonds. During lipid peroxidation several lipid radicals are formed in a chain reaction. These reactions can interfere and stimulate each other. Antioxidants, such as vitamin E, can react with lipid peroxy radicals to prevent further damage in the cell (Cooley et al. 2000).

How it is Measured or Detected

The main product of lipid peroxidation, malondialdehyde and 4-hydroxyalkenals, is used to measure the degree of this process. This is measured by photocolorimetric assays, quantification of fatty acids by gaseous liquid chromatography (GLC) or high performance (HPLC) (L. Li et al. 2019; Jin et al. 2010a) or through commercial kits purchased from specialized companies.

 

References

Cooley HM, Evans RE, Klaverkamp JF. 2000. Toxicology of dietary uranium in lake whitefish (Coregonus clupeaformis). Aquatic Toxicology. 48(4):495–515. https://doi.org/10.1016/S0166-445X(99)00057-0

Jin, Yuanxiang, Xiangxiang Zhang, Linjun Shu, Lifang Chen, Liwei Sun, Haifeng Qian, Weiping Liu, and Zhengwei Fu. 2010a. “Oxidative Stress Response and Gene Expression with Atrazine Exposure in Adult Female Zebrafish (Danio Rerio).” Chemosphere 78 (7): 846–52.

Li, Luxiao, Shanshan Zhong, Xia Shen, Qiujing Li, Wenxin Xu, Yongzhen Tao, and Huiyong Yin. 2019. “Recent Development on Liquid Chromatography-Mass Spectrometry Analysis of Oxidized Lipids.” Free Radical Biology & Medicine 144 (November): 16–34.

Event: 2206: Increased, histomorphological alteration of testis

Short Name: Increased, histomorphological alteration of testis

AOPs Including This Key Event

Biological Context

Level of Biological Organization
Tissue

Organ term

Organ term
testis

Event: 1758: Impaired, Spermatogenesis

Short Name: Impaired, Spermatogenesis

Key Event Component

Process Object Action
Abnormal spermatogenesis Mature sperm cell abnormal

AOPs Including This Key Event

Stressors

Name
Flutamide
Vinclozolin
Bis(2-ethylhexyl) phthalate

Biological Context

Level of Biological Organization
Organ

Organ term

Organ term
testis

Evidence for Perturbation by Stressor

Flutamide

Flutamide impairs spermatogenesis in adult male zebrafish (Yin et al., 2017)

Male fathead minnows exposed to flutamide show spermatocyte degredation and necrosis in their testis (Jensen et al., 2004)

Vinclozolin

A review of androgen signaling in male fish cites several studies showing vinclozolin decreases sperm quality (Golshan et al., 2019)

Bis(2-ethylhexyl) phthalate

A review of androgen signaling in male fish cites several studies showing DEHP decreases sperm quality (Golshan et al., 2019)

Domain of Applicability

Taxonomic Applicability
Term Scientific Term Evidence Links
Vertebrates Vertebrates High NCBI
Life Stage Applicability
Life Stage Evidence
Adult, reproductively mature High
Sex Applicability
Sex Evidence
Male High

Taxonomic Applicability: The relevance for invertebrates has not been evaluated. 

Life Stage Applicability: Only applicable for sexually mature adults

Sex Applicability: Only applicable to males

Key Event Description

Spermatogenesis is a multiphase process of cellular transformation that produces mature male gametes known as sperm for sexual reproduction (Xu et al., 2015). The process of spermatogenesis can be broken down into 3 phases: the mitotic proliferation of spermatogonia, meiosis, and post-meiotic differentiation(spermiogenesis) (Boulanger et al., 2015). Spermatogenesis can be impaired within these phases or due to external factors such as chemical exposures or the gonadal tissue environment. For example, zebrafish and fathead minnow exposed to flutamide, an antiandrogen, have shown signs of impaired spermatogenesis such as spermatocyte degradation(Jensen et al., 2004, Yin et al., 2017).

How it is Measured or Detected

Impairment of spermatogenesis can be measured and detected in a multitude of ways. One example of this is qualitative histological assessments (Jensen et al., 2004). Through histology, sperm morphology can be examined and quantified through the number and stage of the sperm. Sperm morphology, overall quantity, and quantity within each stage can be ways to detect impaired spermatogenesis(Uhrin et al., 2000, Xie et al., 2020). Additionally, sperm quality can also be another assessment of impaired spermatogenesis such as sperm motility, velocity, ATP content, and lipid peroxidation(Gage et al., 2004, Xia et al., 2018, Chen et al., 2015). Impaired spermatogenesis can also be seen by measuring sperm density(Chen et al., 2015).

References

Boulanger, G., Cibois, M., Viet, J., Fostier, A., Deschamps, S., Pastezeur, S., Massart, C., Gschloessl, B., Gautier-Courteille, C., & Paillard, L. (2015). Hypogonadism Associated with Cyp19a1 (Aromatase) Posttranscriptional Upregulation in Celf1 Knockout Mice. Molecular and cellular biology, 35(18), 3244–3253. https://doi.org/10.1128/MCB.00074-15

Chen, J., Xiao, Y., Gai, Z., Li, R., Zhu, Z., Bai, C., Tanguay, R. L., Xu, X., Huang, C., & Dong, Q. (2015). Reproductive toxicity of low level bisphenol A exposures in a two-generation zebrafish assay: Evidence of male-specific effects. Aquatic toxicology (Amsterdam, Netherlands), 169, 204–214. https://doi.org/10.1016/j.aquatox.2015.10.020

Golshan, M. & S.M.H. Alvai (2019) “Androgen signaling in male fishes: Examples of anti-androgenic chemicals that cause reproductive disorders”, Theriogenology, Vol. 139, Elsevier, pp. 58-71. https://doi.org/10.1016/j.theriogenology.2019.07.020 

Jensen, K.M. et al. (2004) “Characterization of responses to the antiandrogen flutamide in a short-term reproduction assay with the fathead minnow”, Aquatic Toxicology, Vol. 70(2), Elsevier, pp. 99-110. https://doi.org/10.1016/j.aquatox.2004.06.012 

Uhrin, P., Dewerchin, M., Hilpert, M., Chrenek, P., Schöfer, C., Zechmeister-Machhart, M., Krönke, G., Vales, A., Carmeliet, P., Binder, B. R., & Geiger, M. (2000). Disruption of the protein C inhibitor gene results in impaired spermatogenesis and male infertility. The Journal of clinical investigation, 106(12), 1531–1539. https://doi.org/10.1172/JCI10768

Xia, H., Zhong, C., Wu, X., Chen, J., Tao, B., Xia, X., Shi, M., Zhu, Z., Trudeau, V. L., & Hu, W. (2018). Mettl3 Mutation Disrupts Gamete Maturation and Reduces Fertility in Zebrafish. Genetics, 208(2), 729–743. https://doi.org/10.1534/genetics.117.300574

Xie, H., Kang, Y., Wang, S., Zheng, P., Chen, Z., Roy, S., & Zhao, C. (2020). E2f5 is a versatile transcriptional activator required for spermatogenesis and multiciliated cell differentiation in zebrafish. PLoS genetics, 16(3), e1008655. https://doi.org/10.1371/journal.pgen.1008655

Xu, K., Wen, M., Duan, W., Ren, L., Hu, F., Xiao, J., Wang, J., Tao, M., Zhang, C., Wang, J., Zhou, Y., Zhang, Y., Liu, Y., & Liu, S. (2015). Comparative analysis of testis transcriptomes from triploid and fertile diploid cyprinid fish. Biology of reproduction, 92(4), 95. https://doi.org/10.1095/biolreprod.114.125609

Yin, P. et al. (2017) “Diethylstilbestrol, flutamide and their combination impaired the spermatogenesis of male adult zebrafish through disrupting HPG axis, meiosis and apoptosis”, Aquatic Toxicology, Vol. 185, Elsevier, pp. 129-137. https://doi.org/10.1016/j.aquatox.2017.02.013

List of Adverse Outcomes in this AOP

Event: 2147: Decreased, Viable Offspring

Short Name: Decreased, Viable Offspring

Key Event Component

Process Object Action
sexual reproduction decreased

AOPs Including This Key Event

Biological Context

Level of Biological Organization
Individual

Domain of Applicability

Life Stage Applicability
Life Stage Evidence
Adult, reproductively mature High
Sex Applicability
Sex Evidence
Unspecific

Taxonomic applicabilityDecrease in viable offspring may have relevance for species with sexual reproduction, including fish, mammals, amphibians, reptiles, birds, and invertebrates.

Life stage applicability: Decrease in viable offspring is relevant for reproductively mature individuals.

Sex applicability: Decrease in viable offspring can be measured for both males and females.

Key Event Description

The production of viable offspring in sexual reproduction is through fertilization of oocytes that then develop into offspring. Producing viable offspring is dependent on multiple factors, including but not limited to, oocyte maturation and ovulation, spermatogenesis and sperm production, successful fertilization of oocytes, development including successful organogenesis, and adequate nutrition.

How it is Measured or Detected

Effects on the production of viable offspring is measured or detected through the ability (or inability) of reproductively mature organisms to produce offspring, number of offspring produced (per pair, individual, or population), and/or percent of fertilized, viable embryos.

Appendix 2

List of Key Event Relationships in the AOP